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Abstract
We present an approach to mitigating the risks
of malicious image editing posed by large diffu-
sion models. The key idea is to immunize im-
ages so as to make them resistant to manipula-
tion by these models. This immunization relies
on injection of imperceptible adversarial pertur-
bations designed to disrupt the operation of the
targeted diffusion models, forcing them to gener-
ate unrealistic images. We provide two methods
for crafting such perturbations, and then demon-
strate their efficacy. Finally, we discuss a policy
component necessary to make our approach fully
effective and practical—one that involves the or-
ganizations developing diffusion models, rather
than individual users, to implement (and support)
the immunization process.1

1. Introduction
Large diffusion models such as DALL·E 2 (Ramesh et al.,
2022) and Stable Diffusion (Rombach et al., 2022) are
known for their ability to produce high-quality photorealis-
tic images, and can be used for a variety of image synthesis
and editing tasks. However, the ease of use of these mod-
els has raised concerns about their potential abuse, e.g., by
creating inappropriate or harmful digital content. For ex-
ample, a malevolent actor might download photos of peo-
ple posted online and edit them maliciously using an off-
the-shelf diffusion model (as in Figure 1 top).

How can we address these concerns? First, it is important
to recognize that it is, in some sense, impossible to com-
pletely eliminate such malicious image editing. Indeed,
even without diffusion models in the picture, malevolent
actors can still use tools such as Photoshop to manipulate
existing images, or even synthesize fake ones entirely from
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scratch. The key new problem that large generative mod-
els introduce is that these actors can now create realistic
edited images with ease, i.e., without the need for special-
ized skills or expensive equipment. This realization moti-
vates us to ask:

How can we raise the cost of malicious (AI-powered)
image manipulation?

In this paper, we put forth an approach that aims to alter the
economics of AI-powered image editing. At the core of our
approach is the idea of image immunization—that is, mak-
ing a specific image resistant to AI-powered manipulation
by adding a carefully crafted (imperceptible) perturbation
to it. This perturbation would disrupt the operation of a dif-
fusion model, forcing the edits it performs to be unrealistic
(see Figure 1). In this paradigm, people can thus continue
to share their (immunized) images as usual, while getting a
layer of protection against undesirable manipulation.

We demonstrate how one can craft such imperceptible per-
turbations for large-scale diffusion models and show that
they can indeed prevent realistic image editing. We then
discuss in Section 5 complementary technical and policy
components needed to make our approach fully effective
and practical.

2. Preliminaries
We start by providing an overview of diffusion models as
well as of the key concept we will leverage: adversarial
attacks.

2.1. Diffusion Models

Diffusion models have emerged recently as powerful tools
for generating realistic images (Sohl-Dickstein et al., 2015;
Ho et al., 2020). These models excel especially at gen-
erating and editing images using textual prompts, and
currently surpass other image generative models such as
GANs (Goodfellow et al., 2014) in terms of the quality of
produced images.

Diffusion process. At their core, diffusion models em-
ploy a stochastic differential process called the diffusion
process (Sohl-Dickstein et al., 2015). This process allows
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Figure 1: Overview of our framework. An adversary seeks to modify an image found online. The adversary describes
via a textual prompt the desired changes and then uses a diffusion model to generate a realistic image that matches the
prompt (top). By immunizing the original image before the adversary can access it, we disrupt their ability to successfully
perform such edits (bottom).

us to view the task of (approximate) sampling from a dis-
tribution of real images q(·) as a series of denoising prob-
lems. More precisely, given a sample x0 ∼ q(·), the diffu-
sion process incrementally adds noise to generate samples
x1, . . . ,xT for T steps, where xt+1 = atxt + btεt, and
εt is sampled from a Gaussian distribution2. Note that, as
a result, the sample xT starts to follow a standard normal
distributionN (0, I) when T →∞. Now, if we reverse this
process and are able to sample xt given xt+1, i.e., denoise
xt+1, we can ultimately generate new samples from q(·).
This is done by simply starting from xT ∼ N (0, I) (which
corresponds to T being sufficiently large), and iteratively
denoising these samples for T steps, to produce a new im-
age x̃ ∼ q(·).

The element we need to implement this process is thus to
learn a neural network εθ that “predicts” given xt+1 the
noise εt added to xt at each time step t. Consequently, this
denoising model εθ is trained to minimize the following
loss function:

L(θ) = Et,x0,ε∼N (0,1)

[
‖ε− εθ(xt+1, t)‖22

]
, (1)

where t is sampled uniformly over the T time steps. We de-
fer discussion of details to Appendix B and refer the reader
to (Weng, 2021) for a more in-depth treatment of diffusion
models.

2Here, at and bt are the parameters of the distribution
q(xt+1|xt). Details are provided in Appendix B.

Latent diffusion models (LDMs). Our focus will be on
a specific class of diffusion models called the latent diffu-
sion models (LDMs) (Rombach et al., 2022)3. These mod-
els apply the diffusion process described above in the latent
space instead of the input (image) space. As it turned out,
this change enables more efficient training and faster infer-
ence, while maintaining high quality generated samples.

Training an LDM is similar to training a standard diffusion
model and differs mainly in one aspect. Specifically, to
train an LDM, the input image x0 is first mapped to its la-
tent representation z0 = E(x0), where E is a given encoder.
The diffusion process then continues as before (just in the
latent space) by incrementally adding noise to generate
samples z1, . . . , zT for T steps, where zt+1 = atzt + btεt,
and εt is sampled from a Gaussian distribution. Finally, the
denoising network εθ is then learned analogously to as be-
fore but, again, now in the latent space, by minimizing the
following loss function:

L(θ) = Et,z0,ε∼N (0,1)

[
‖ε− εθ(zt+1, t)‖22

]
(2)

Once the denoising network εθ is trained, the same gen-
erative process can be applied as before, starting from a
random vector in the latent space, to obtain a latent repre-
sentation z̃ of the (new) generated image. This representa-
tion is then decoded into an image x̃ = D(z̃) ∼ q(·), using

3Our methodology can be adjusted to other diffusion models.
Our focus on LDMs is motivated by the fact that all popular open-
sourced diffusion models are of this type.
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Prompt: A photo of Mount Everest 
surrounded by Cherry Blossom trees

Prompt: A photo of a black cow swimming on 
the beach

Prompt: A photo of two men in a wedding

+

Generating images using prompts Generating image variations using prompts

Editing images using prompts

Editable Region

Figure 2: Diffusion models offer various capabilities, such as (1) generating images using text prompts (top left), (2)
generating variations of an input image using text prompts (top right), and (3) editing images using text prompts (bottom).

the corresponding decoder D.

Prompt-guided sampling using an LDM. An LDM by
default generates a random sample from the distribution of
images q(·) it was trained on. However, it turns out one can
also guide the sampling using natural language. This can
be accomplished by combining the latent representation zT
produced during the diffusion process with the embedding
of the user-defined textual prompt t.4 The denoising net-
work εθ is applied to the combined representation for T
steps, yielding z̃ which is then mapped to a new image us-
ing the decoder D as before.

LDMs capabilities. LDMs turn out to be powerful text-
guided image generation and editing tools. In particular,
LDMs can be used not only for generating images using
textual prompts, as described above, but also for generat-
ing textual prompt–guided variations of an image or edits
of a specific part of an image (see Figure 2). The latter
two capabilities (i.e., generation of image variations and
image editing) requires a slight modification of the gener-
ative process described above. Specifically, to modify or

4Conditioning on the text embedding happens at every stage
of the generation process. See (Rombach et al., 2022) for more
details.

edit a given image x, we condition the generative process
on this image. That is, instead of applying, as before, our
generative process of T denoising steps to a random vector
in the latent space, we apply it to the latent representation
obtained from running the latent diffusion process on our
image x. To edit only part of the image we additionally
condition the process on freezing the parts of the image
that were to remain unedited.

2.2. Adversarial Attacks

For a given computer vision model and an image, an adver-
sarial example is an imperceptible perturbation of that im-
age that manipulates the model’s behavior (Szegedy et al.,
2014; Biggio et al., 2013). In image classification, for ex-
ample, an adversary can construct an adversarial example
for a given image x that makes it classified as a specific
target label ytarg (different from the true label). This con-
struction is achieved by minimizing the loss of a classifier
fθ with respect to that image:

δadv = arg min
δ∈∆
L(fθ(x + δ), ytarg). (3)

Here, ∆ is a set of perturbations that are small enough that
they are imperceptible—a common choice is to constrain
the adversarial example to be close (in `p distance) to the
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Figure 3: Overview of our proposed attacks. When applying the encoder attack (left), our goal is to map the representation
of the original image to the representation of a target image (gray image). Our (more complex) diffusion attack (right), on
the other hand, aims to break the diffusion process by manipulating the whole process to generate image that resembles a
given target image (gray image).

original image, i.e., ∆ = {δ : ‖δ‖p ≤ ε}. The canonical
approach to constructing an adversarial example is to solve
the optimization problem (3) via projected gradient descent
(PGD) (Nesterov, 2003; Madry et al., 2018).

3. Adversarially Attacking Latent Diffusion
Models

We now describe our approach to immunizing images, i.e.,
making them harder to manipulate using latent diffusion
models (LDMs). At the core of our approach is to leverage
techniques from the adversarial attacks literature (Szegedy
et al., 2014; Madry et al., 2018; Akhtar et al., 2021) and
add adversarial perturbations (see Section 2.1) to immunize
images. Specifically, we present two different methods to
execute this strategy (see Figure 3): an encoder attack, and
a diffusion attack.

Encoder attack. Recall that an LDM, when applied to
an image, first encodes the image using an encoder E into
a latent vector representation, which is then used to gener-
ate a new image (see Section 2). The key idea behind our
encoder attack is now to disrupt this process by forcing the
encoder to map the input image to some “bad” representa-
tion. To achieve this, we solve the following optimization
problem using projected gradient descent (PGD):

δencoder = arg min
‖δ‖∞≤ε

‖E(x + δ)− ztarg‖22, (4)

where x is the image to be immunized, and ztarg is some
target latent representation (e.g., ztarg can be the represen-
tation, produced using encoder E , of a gray image). Solu-
tions to this optimization problem yield small, impercepti-
ble perturbations δencoder which, when added to the origi-

nal image, result in an (immunized) image that is similar to
the (gray) target image from the LDM’s encoder perspec-
tive. This, in turn, causes the LDM to generate an irrelevant
or unrealistic image. An overview of this attack is shown
in Figure 3 (left)5.

Diffusion attack. Although the encoder attack is effec-
tive at forcing the LDM to generate images that are unre-
lated to the immunized ones, we still expect the LDM to use
the textual prompt. For example, as shown in the encoder
attack diagram in Figure 3, editing an immunized image of
two men using the prompt “Two men in a wedding” still re-
sults in a generated image with two men wearing wedding
suits, even if the image will contain some visual artifacts
indicating that it has been manipulated. Can we disturb the
diffusion process even further so that the diffusion model
“ignores” the textual prompt entirely and generates a more
obviously manipulated image?

It turns out that we are able to do so by using a more com-
plex attack, one where we target the diffusion process itself
instead of just the encoder. In this attack, we perturb the
input image so that the final image generated by the LDM
is a specific target image (e.g., random noise or gray im-
age). Specifically, we generate an adversarial perturbation
δdiffusion by solving the following optimization problem
(again via PGD):

δdiffusion = arg min
‖δ‖∞≤ε

‖f(x + δ)− xtarg‖22. (5)

Above, f is the LDM, x is the image to be immunized,
and xtarg is the target image to be generated. An overview

5See Algorithm 1 for the details of the encoder attack.
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Generated image 
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Generated image 
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Figure 4: Given a source image (e.g., image of a white cow on the beach) and a textual prompt (e.g., "black cow on the
beach"), the SDM can generate a realistic image matching the prompt while still similar to the original image (middle
column). However, when the source image is immunized, the SDM fails to do so (right-most column). More examples are
in Appendix C.

of this attack is depicted in Figure 3 (right)6. As we al-
ready mentioned, this attack targets the full diffusion pro-
cess (which includes the text prompt conditioning), and
tries to nullify not only the effect of the immunized im-
age, but also that of the text prompt itself. Indeed, in our
example (see Figure 3 (right)) no wedding suits appear in
the edited image whatsoever.

It is worth noting that this approach, although more pow-
erful than the encoder attack, is harder to execute. Indeed,
to solve the above problem (5) using PGD, one needs to
backpropagate through the full diffusion process (which, as
we recall from Section 2.1, includes repeated application of
the denoising step). This causes memory issues even on the
largest GPU we used7. To address this challenge, we back-
propagate through only a few steps of the diffusion process,
instead of the full process, while achieving adversarial per-
turbations that are still effective. We defer details of our
attacks to Appendix A.

4. Results
In this section, we examine the effectiveness of our pro-
posed immunization method.

6See Algorithm 2 for the details of the diffusion attack.
7We used an A100 with 40 GB memory.

Setup. We focus on the Stable Diffusion Model (SDM)
v1.5 (Rombach et al., 2022), though our methods can be ap-
plied to other diffusion models too. In each of the following
experiments, we aim to disrupt the performance of SDM by
adding imperceptible noise (using either of our proposed
attacks)—i.e., applying our immunization procedure—to a
variety of images. The goal is to force the model to gener-
ate images that are unrealistic and unrelated to the original
(immunized) image. We evaluate the performance of our
method both qualitatively (by visually inspecting the gen-
erated images) and quantitatively (by examining the image
quality using standard metrics). We defer further experi-
mental details to Appendix A.

4.1. Qualitative Results

Immunizing against generating image variations. We
first assess whether we can disrupt the SDM’s ability to
generate realistic variations of an image based on a given
textual prompt. For example, given an image of a white
cow on the beach and a prompt of “black cow on the
beach”, the SDM should generate a realistic image of a
black cow on the beach that looks similar to the original
one (cf. Figure 4). Indeed, the SDM is able to generate
such images. However, when we immunize the original
images (using the encoder attack), the SDM fails to gener-
ate a realistic variation—see Figure 4.
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Figure 5: Given a source image (e.g., image of two men watching a tennis game) and a textual prompt (e.g., "two men in a
wedding"), the SDM can edit the source image to match the prompt (second column). However, when the source image is
immunized using the encoder attack, the SDM fails to do so (third column). Immunizing using the diffusion attack further
reduces the quality of the edited image (forth column). More examples are in Appendix C.

Immunizing against image editing. Now we consider
the more challenging task of disrupting the ability of SDMs
to edit images using textual prompts. The process of edit-
ing an image using an SDM involves inputting the image, a
mask indicating which parts of the image should be edited,
and a text prompt guiding how the rest of the image should
be manipulated. The SDM then generates an edited ver-
sion based on that prompt. An example can be seen in Fig-
ure 2, where an image of two men watching a tennis game
is transformed to resemble a wedding photo. This corre-
sponded to inputting the original image, a binary mask ex-
cluding from editing only the men’s heads, and the prompt
“A photo of two men in a wedding.” However, when the
image is immunized (using either encoder or diffusion at-
tacks), the SDM is unable to produce realistic image edits
(cf. Figure 5). Furthermore, the diffusion attack results in
more unrealistic images than the encoder attack.

4.2. Quantitative Results

Image quality metrics. Figures 4 and 5 indicate that, as
desired, edits of immunized images are noticeably differ-
ent from those of non-immunized images. To quantify this
difference, we generate 60 different edits of a variety of
images using different prompts, and then compute several
metrics capturing the similarity between resulting edits of
immunized versus non-immunized images8: FID (Heusel
et al., 2017), PR (Sajjadi et al., 2018), SSIM (Wang

8We use the implementations provided in: https://
github.com/photosynthesis-team/piq.

et al., 2004), PSNR, VIFp (Sheikh & Bovik, 2006), and
FSIM (Zhang et al., 2011)9. The better our immunization
method is, the less similar the edits of immunized images
are to those of non-immunized images.

The similarity scores, shown in Table 1, indicate that ap-
plying either of our immunization methods (encoder or dif-
fusion attacks) indeed yields edits that are different from
those of non-immunized images (since, for example, FID
is far from zero for both of these methods). As a base-
line, we consider a naive immunization method that adds
uniform random noise (of the same intensity as the pertur-
bations used in our proposed immunization method). This
method, as we verified, is not effective at disrupting the
SDM, and yields edits almost identical to those of non im-
munized images. Indeed, in Table 1, the similarity scores
of this baseline indicate closer edits to non-immunized im-
ages compared to both of our attacks.

Image-prompt similarity. To further evaluate the qual-
ity of the generated/edited images after immunization (us-
ing diffusion attack), we measure the similarity between the
edited images and the textual prompt used to guide this edit,
with and without immunization. The fact that the SDM
uses the textual prompt to guide the generation of an image
indicates that the similarity between the generated image
and the prompt should be high in the case of no immu-
nization. However, after immunization (using the diffusion
attack), the similarity should be low, since the immuniza-

9We report additional metrics in Appendix C.1.
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Method FID ↓ PR ↑ SSIM ↑ PSNR ↑ VIFp ↑ FSIM ↑
Immunization baseline (Random noise) 82.57 1.00 0.75± 0.13 19.21± 4.00 0.43± 0.13 0.83± 0.08
Immunization (Encoder attack) 130.6 0.95 0.58± 0.11 14.91± 2.78 0.30± 0.10 0.73± 0.08
Immunization (Diffusion attack) 167.6 0.87 0.50± 0.09 13.58± 2.23 0.24± 0.09 0.69± 0.06

Table 1: We report various image quality metrics measuring the similarity between edits originating from immunized vs.
non-immunized images. We observe that edits of immunized images are substantially different from those generated from
the original (notn-immunized) images. Note that the arrows next to the metrics denote increasing image similarity. Since
our goal is to make the edits as different as possible from the original edits in the presence of no immunization, then lower
image similarity is better. Confidence intervals denote one standard deviation over 60 images. Additional metrics are in
Appendix C.1.
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Figure 6: Image-prompt similarity. We plot the cosine
similarity between the CLIP embeddings of the generated
images and the text prompts, with and without immuniza-
tion, as well as with a baseline immunization of adding
small random noise to the original image. Error bars de-
note the interquartile range (IQR) over 60 runs.

tion process disrupts the full diffusion process, and forces
the diffusion model to ignore the prompt during generation.
We use the same 60 edits as in our previous experiment,
and we extract—using a pretrained CLIP model (Radford
et al., 2021)—the visual embeddings of these images and
the textual prompts used to generate them. We then com-
pute the cosine similarity between these two embeddings.
As show in Figure 6, the immunization process decreases
the similarity between the generated images and the textual
prompts to generated them, as expected.

5. A Techno-Policy Approach to Mitigation of
AI-Powered Editing

In the previous sections we have developed an immuniza-
tion procedure that, when applied to an image, protects the
immunized version of that image from realistic manipula-
tion by a given diffusion model. Our immunization proce-
dure has, however, certain important limitations. We now
discuss these limitations as well as a combination of tech-
nical and policy remedies needed to obtain a fully effective

approach to raising the cost of malicious AI-powered im-
age manipulation.

(Lack of) robustness to transformations. One of the
limitations of our immunization method is that the adver-
sarial perturbation that it relies on may be ineffective after
the immunized image is subjected to image transformations
and noise purification techniques. For instance, malicious
actors could attempt to remove the disruptive effect of that
perturbation by cropping the image, adding filters to it, ap-
plying a rotation, or other means. This problem can be
addressed, however, by leveraging a long line of research
on creating robust adversarial perturbations, i.e., adversar-
ial perturbations that can withstand a broad range of im-
age modifications and noise manipulations (Eykholt et al.,
2018; Kurakin et al., 2016; Athalye et al., 2018; Brown
et al., 2018).

Forward-compatibility of the immunization. While
the immunizing adversarial perturbations we produce
might be effective at disrupting the current generation of
diffusion-based generative models, they are not guaranteed
to be effective against the future versions of these mod-
els. Indeed, one could hope to rely here on the so-called
transferability of adversarial perturbations (Papernot et al.,
2016; Liu et al., 2017), but no perturbation will be perfectly
transferable.

To truly address this limitation, we thus need to go beyond
purely technical methods and encourage—or compel—via
policy means a collaboration between organizations that
develop large diffusion models, end-users, as well as data
hosting and dissemination platforms. Specifically, this col-
laboration would involve the developers providing APIs
that allow the users and platforms to immunize their im-
ages against manipulation by the diffusion models the de-
velopers create. Importantly, these APIs should guarantee
“forward compatibility”, i.e., effectiveness of the offered
immunization against models developed in the future. This
can be accomplished by planting, when training such future
models, the current immunizing adversarial perturbations
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as backdoors. (Observe that our immunization approach
can provide post-hoc “backward compatibility” too. That
is, one can create immunizing adversarial perturbations that
are effective for models that were already released.)

It is important to point out that we are leveraging here an in-
centive alignment that is fundamentally different to the one
present in more typical applications of adversarial pertur-
bations and backdoor attacks. In particular, the “attackers”
here—that is, the parties that create the adversarial pertur-
bations/execute the backdoor attack—are the same parties
that develop the models being attacked. This crucial dif-
ference is, in particular, exactly what helps remedy the for-
ward compatibility challenges that turns out to be crippling,
e.g., in the context of “unlearnable” images creation (i.e.,
creation of images that are immune to being leveraged by,
e.g., facial recognition models) (Radiya-Dixit et al., 2021).

6. Related Work
Data misuse after model training. Recent advances in
ML-powered image generation and editing have raised con-
cerns about the potential misuse of personal data for gener-
ating fake images. This issue arose first in the context of the
development of generative adversarial networks (GANs)
for image generation and editing (Goodfellow et al., 2014;
Mirza & Osindero, 2014; Salimans et al., 2016; Isola et al.,
2017; Zhu et al., 2017; Zhang et al., 2017; Karras et al.,
2018; Brock et al., 2019; Karras et al., 2019), and led
to research on methods for defending against such ma-
nipulation, such as attacking the GAN itself (Ruiz et al.,
2020a;b; Sun et al., 2021). This problem became exacer-
bated recently with the advent of (publicly available) diffu-
sion models (Rombach et al., 2022; Ramesh et al., 2022).
Indeed, one can now easily describe in text how one wants
to manipulate an image, and immediately get the result of
an impressive quality (see Figure 2) that significantly out-
performs previous methods, such as GANs.

Deepfake detection. A line of work related to ours aims
to detect fake images rather than prevent their generation.
Deepfake detection methods include analyzing the consis-
tency of facial expressions and identifying patterns or ar-
tifacts in the image that may indicate manipulation, and
training machine learning models to recognize fake im-
ages (Korshunov & Marcel, 2018; Afchar et al., 2018;
Nguyen et al., 2019; Mirsky & Lee, 2021; Rossler et al.,
2019; Durall et al., 2019; Li et al., 2020a;b; Bonettini et al.,
2021). While some deepfake detection methods are more
effective than others, no single method is foolproof. A po-
tential way to mitigate this shortcoming could involve de-
velopment of so-called watermarking methods (Cox et al.,
1997; Neekhara et al., 2022). These methods aim to ensure
that it is easy to detect that a given output has been pro-

duced using a generative model—such watermarking ap-
proaches have been recently developed for a related con-
text of large language models (Kirchenbauer et al., 2023).
Still, neither deepfake detection nor watermarking methods
could protect images from being manipulated in the first
place. A manipulated image can hence cause harm before
being flagged as fake. Also, given that our work is comple-
mentary to deepfake detection and watermarking methods,
it could, in principle, be combined with them.

Data misuse during model training. The abundance of
readily available data on the Internet has played a signifi-
cant role in recent breakthroughs in deep learning, but has
also raised concerns about the potential misuse of such data
when training models. Therefore, there has been an in-
creasing interest in protection against unauthorized data ex-
ploitation, e.g., by designing unlearnable examples (Huang
et al., 2021; Fu et al., 2021). These methods propose adding
imperceptible backdoor signals to user data before upload-
ing it online, so as to prevent models from fruitfully uti-
lizing this data. However, as pointed out by Radiya-Dixit
et al. (2021), these methods can be circumvented, often
simply by waiting until subsequently developed models can
avoid being fooled by the planted backdoor signal.

7. Conclusion
In this paper, we presented a method for raising the diffi-
culty of using diffusion models for malicious image ma-
nipulation. Our method involves “immunizing” images
through addition imperceptible adversarial perturbations.
These added perturbations disrupt the inner workings of the
targeted diffusion model and thus prevent it from producing
realistic modifications of the immunized images.

We also discussed the complementary policy component
that will be needed to make our approach fully effective.
This component involves ensuring cooperation of the orga-
nizations developing diffusion-based generative models in
provisioning APIs that allow users to immunize their im-
ages to manipulation by such models (and the future ver-
sions of thereof).
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A. Experimental Setup
A.1. Details of the diffusion model we used

In this paper, we used the open-source stable diffusion model hosted on the Hugging Face10. We use the hyperparameters
presented in Table 2 to generated images from this model. For a given image on which we want to test our immunization
method, we first search for a good random seed that leads to a realistic modification of the image given some textual prompt.
Then we use the same seed when editing the immunized version of the same image using the diffusion model. This ensures
that the immunized image is modified in the same way as the original image, and that the resulting non-realistic edits are
due to immunization and not to random seed.

Table 2: Hyperparameters used for the Stable Diffusion model.

height width guidance_scale num_inference_steps eta

512 512 7.5 100 1

A.2. Our attacks details

Throughout the paper, we use two different attacks: an encoder attack and a diffusion attack. These attacks are described
in the main paper, and are summarized here in Algorithm 1 and Algorithm 2, respectively. For both of the attacks, we use
the same set of hyperparameters shown in Table 3. The choice of ε was such that it is the large enough to disturb the image,
but small enough to not be noticeable by the human eye.

Table 3: Hyperparameters used for the adversarial attacks.

Norm ε step size number of steps

`∞ 16/255 2/255 200

Algorithm 1 Encoder Attack on a Stable Diffusion Model

1: Input: Input image x, target image xtarg, Stable Diffusion model encoder E , perturbation budget ε, step size k,
number of steps N .

2: Compute the embedding of the target image: ztarg ← E(xtarg)
3: Initialize adversarial perturbation δencoder ← 0, and immunized image xim ← x
4: for n = 1 . . . N do
5: Compute the embedding of the immunized image: z← E(xim)
6: Compute mean squared error: l← ‖ztarg − z‖22
7: Update adversarial perturbation: δencoder ← δencoder + k · sign(∇xim l)
8: δencoder ← clip(δencoder,−ε, ε)
9: Update the immunized image: xim ← xim − δencoder

10: end for
11: Return: xim

B. Extended Background for Diffusion Models
Overview of the diffusion process. At their heart, diffusion models leverage a statistical concept: the diffusion pro-
cess (Sohl-Dickstein et al., 2015; Ho et al., 2020). Given a sample x0 from a distribution of real images q(·), the diffusion
process works in two steps: a forward step and a backward step. During the forward step, Gaussian noise is added to
the sample x0 over T time steps, to generate increasingly noisier versions x1, . . . ,xT of the original sample x0, until the
sample is equivalent to an isotropic Gaussian distribution. During the backward step, the goal is to reconstruct the original
sample x0 by iteratively denoising the noised samples xT , . . . ,x1. The power of the diffusion models stems from the

10This model is available on: https://huggingface.co/runwayml/stable-diffusion-v1-5.
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Algorithm 2 Diffusion Attack on a Stable Diffusion Model

1: Input: Input image x, target image xtarg, Stable Diffusion model f , perturbation budget ε, step size k, number of
steps N .

2: Initialize adversarial perturbation δdiffusion ← 0, and immunized image xim ← x
3: for n = 1 . . . N do
4: Generate an image using diffusion model: xout ← f(xim)
5: Compute mean squared error: l← ‖xtarg − xout‖22
6: Update adversarial perturbation: δdiffusion ← δdiffusion + k · sign(∇xim

l)
7: δdiffusion ← clip(δdiffusion,−ε, ε)
8: Update the immunized image: xim ← xim − δdiffusion
9: end for

10: Return: xim

ability to learn the backward process using neural networks. This allows to generate new samples from the distribution q(·)
by first generating a random Gaussian sample, and then passing it through the “neural” backward step.

Forward process. During the forward step, Gaussian noise is iteratively added to the original sample x0. The forward
process q(x1:T |x0) is assumed to follow a Markov chain, i.e. the sample at time step t depends only on the sample at the
previous time step. Furthermore, the variance added at a time step t is controlled by a schedule of variances {βt}Tt=1

11.

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1); q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (6)

Backward process. At the end of the forward step, the sample xT looks as if it is sampled from an isotropic Gaussian
p(xT ) = N (xT ; 0, I). Starting from this sample, the goal is to recover x0 by iteratively removing the noise using neural
networks. The joint distribution pθ(x0:T ) is referred to as the reverse process, and is also assumed to be a Markov chain.

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt); pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (7)

Training a diffusion model. At its heart, diffusion models are trained in a way similar to Variational Autoencoders,
i.e. by optimizing a variational lower bound. Additional tricks are employed to make the process faster. For an extensive
derivation, refer to (Weng, 2021).

Eq(x0)[− log pθ(x0)] ≤ Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
= LV LB (8)

Latent Diffusion Models (LDMs). In this paper, we focus on a specific class of diffusion models, namely LDMs, which
was proposed in (Rombach et al., 2022) as a model that applies the diffusion process described above in a latent space
instead of the image space. This enables efficient training and inference of diffusion models.

To train an LDM, the input image x0 is first mapped to a latent representation z0 = E(x0), where E is an image encoder.
This input representation z0 is then passed to the diffusion process to obtain a denoised z̃. The generated image x̃ is then
obtained by decoding z̃0 using a decoder D, i.e. x̃ = D(z̃).

C. Additional Results
C.1. Additional quantitative results

We presented in Section 4 several metrics to assess the similarity between the images generated with and without immu-
nization. Here, we report in Table 4 additional metrics to evaluate this: SR-SIM (Zhang & Li, 2012), GMSD (Xue et al.,
2014), VSI (Zhang et al., 2014), DSS (Balanov et al., 2015), and HaarPSI (Reisenhofer et al., 2018). Similarly, we indicate

11The values of at and bt from the main paper correspond to at =
√
1− βt and bt = βt
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for each metric whether a higher value corresponds to higher similarity (using ↑), or contrariwise (using ↓). We again
observe that applying the encoder attack already decreases the similarity between the generated images with and without
immunization, and applying the diffusion attack further decreases the similarity.

Table 4: Additional similarity metrics for Table 1. Errors denote standard deviation over 60 images.

Method SR-SIM ↑ GMSD ↓ VSI ↑ DSS ↑ HaarPSI ↑
Immunization baseline (Random noise) 0.91± 0.04 0.20± 0.06 0.94± 0.03 0.35± 0.18 0.52± 0.15
Immunization (Encoder attack) 0.86± 0.05 0.26± 0.05 0.90± 0.03 0.19± 0.09 0.35± 0.11
Immunization (Diffusion attack) 0.84± 0.05 0.27± 0.04 0.89± 0.03 0.17± 0.08 0.31± 0.08
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C.2. Generating Image Variations using Textual Prompts

Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

An airplane flying 
under the moon

A black cow on the 
beach

A brown cat playing 
poker

A black cow on the 
beach

A bunny eating an 
apple

A civilian airplane

Figure 7: Immunization against generating prompt-guided image variations.
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C.3. Image Editing via Inpainting

Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

A man in a wedding

A man in a wedding

A man in New York 
City

A man in the gym

A man in a restaurant

A man playing poker

Generated image 
(diffusion attack)

Figure 8: Immunization against image editing via prompt-guided inpainting.

16



Raising the Cost of Malicious AI-Powered Image Editing

Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

A man in a farm

A man in a restaurant

A man in a store

A man in a restaurant

A man preparing dinner

A man holding a 
microphone

Generated image 
(diffusion attack)

Figure 9: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

A man holding a 
phone

A man preparing 
dinner

A man playing poker

A man drinking hot 
coffee

A man playing poker

A man playing poker

Generated image 
(diffusion attack)

Figure 10: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

A man sitting in a 
metro

A man sitting in first 
class airplane

A man dancing on 
stage

A man sitting in the 
airport

A man in a meeting

A man riding a 
motorcycle

Generated image 
(diffusion attack)

Figure 11: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

Two men ballroom 
dancing

Two men cooking in 
the kitchen

Two men cooking in 
the kitchen

Two men cooking in 
the kitchen

Two men grilling

Two men grilling

Generated image 
(diffusion attack)

Figure 12: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

Two men in a hot tub

Two men in a 
wedding

Two men in jail

Two men in a 
wedding on a 

seafront

Two men in the forest

Two men on the grass

Generated image 
(diffusion attack)

Figure 13: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

Two men in the zoo

Two men playing 
guitar

Two men street 
fighting

Two men sneaking 
into a building

Generated image 
(diffusion attack)

Figure 14: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

A man receiving an 
award

Two men attending a 
wedding

Two men in an 
airplane

Two men attending 
a wedding

Two men in a 
restaurant

Two men in a 
restaurant

Generated image 
(diffusion attack)

Figure 15: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

Two men in a 
restaurant

Two men in Europe

Two men in front of 
the Eiffel Tower

Two men in an 
airplane

Two men riding a 
motorcycle

Two men wearing 
gray shirts in the fog

Generated image 
(diffusion attack)

Figure 16: Immunization against image editing via prompt-guided inpainting.
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Generated image 
(without immunization)

Generated image 
(encoder attack)

Source Image

Two men wearing 
green T-shirts

Two men wearing 
red shirts in the fog

Generated image 
(diffusion attack)

Figure 17: Immunization against image editing via prompt-guided inpainting.

25


	Introduction
	Preliminaries
	Diffusion Models
	Adversarial Attacks

	Adversarially Attacking Latent Diffusion Models
	Results
	Qualitative Results
	Quantitative Results

	A Techno-Policy Approach to Mitigation of AI-Powered Editing
	Related Work
	Conclusion
	Acknowledgements
	Experimental Setup
	Details of the diffusion model we used
	Our attacks details

	Extended Background for Diffusion Models
	Additional Results
	Additional quantitative results
	Generating Image Variations using Textual Prompts
	Image Editing via Inpainting


