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Abstract

Typical generative diffusion models rely on a
Gaussian diffusion process for training the back-
ward transformations, which can then be used to
generate samples from Gaussian noise. However,
real world data often takes place in discrete-state
spaces, including many scientific applications.
Here, we develop a theoretical formulation for
arbitrary discrete-state Markov processes in the
forward diffusion process using exact (as opposed
to variational) analysis. We relate the theory to the
existing continuous-state Gaussian diffusion as
well as other approaches to discrete diffusion, and
identify the corresponding reverse-time stochas-
tic process and score function in the continuous-
time setting, and the reverse-time mapping in the
discrete-time setting. As an example of this frame-
work, we introduce “Blackout Diffusion”, which
learns to produce samples from an empty image
instead of from noise. Numerical experiments on
the CIFAR-10, Binarized MNIST, and CelebA
datasets confirm the feasibility of our approach.
Generalizing from specific (Gaussian) forward
processes to discrete-state processes without a
variational approximation sheds light on how to
interpret diffusion models, which we discuss.

1. Introduction

Diffusion processes have been recently utilized to construct
Diffusion Models, a class of generative models in deep learn-
ing (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2021d). These frameworks consist of a set of trainable
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transformations (implemented as deep neural networks) that
sequentially process a prescribed distribution (the prior,
usually a high-dimensional isotropic Gaussian) to the data
distribution. To train the networks, samples drawn from the
data distribution are transformed by a stochastic process,
which goes forward in time, and which has the prior as a
stationary (final) distribution. Realizations from the forward
diffusion process are used to train transformations that ap-
proximate the reverse-time process. In generative inference,
samples are drawn from the prior, and the trained network
is used to transform them into samples of the learned data
distribution.

Diffusion Models have been used for many applications, in-
cluding image (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Nichol & Dhariwal, 2021; Song & Ermon, 2019; 2020; Song
et al., 2021d;b), audio (Kong et al., 2021), video (Hoppe
et al., 2022; Ho et al., 2022), and language (Gong et al.,
2022). Most works follow the original formulation (Sohl-
Dickstein et al., 2015; Ho et al., 2020), utilizing Gaussian
diffusion on continuous domains. However, there are wide-
ranging data domains which are not continuous in nature',
and applying quantization and de-quantization for treating
these data may not be ideal. For example, single-molecule
and single-cell gene expressions (Munsky et al., 2015; Pi-
chon et al., 2018) study systems with very small counts, in
which discrete effects are qualitatively relevant to system
behavior. As another example, phase-separated fluid prob-
lems occur in many applications pertaining to industrial and
earth sciences, where each region of space is occupied cat-
egorically, that is, by exactly one of several fluid types (Li
et al., 2016). Graph structures are pervasive and machine
learning on these structures is an area of tremendous recent
growth (Zhou et al., 2020), for example being the dominant
representation for molecular structure, which is of relevance
to chemistry (Gilmer et al., 2017), drug discovery (Wieder
et al., 2020; Smith et al., 2018), and biophysics (Jiang et al.,
2021). In bioinformatics, both DNA and protein sequences
are codes consisting of discrete values (Ingraham et al.,
2019).

Some prior works have investigated diffusion modeling be-
yond the Gaussian paradigm. For example, Bansal et al.

"Even digital images are usually encoded using quantized level-
values for each pixel.
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(2022) challenged the notion that noise is required by show-
ing that deterministic degradation (e.g. blurring) applied to
images, constructing a deterministic alternative, and discard-
ing the stochastic theory entirely. Despite the abundance
of potential applications, few theoretical formulations diffu-
sion modeling of arbitrary discrete-state systems have been
proposed. Sohl-Dickstein et al. (2015) explores a partic-
ular form of binomial diffusion kernels as a discrete-time
diffusion. Ye et al. (2022) proposed leveraging the exit
distribution of first-passage processes to achieve discrete-
state generative modeling. Termed as the First Hitting Dif-
fusion Models (FHDM), the underlying process is still a
continuous-state Gaussian (Itd) diffusion, but FHDM can
sample discrete-state distributions without ad hoc quanti-
zation and dequantization. Most relevant to our work in-
clude (1) Multinomial Diffusion (Hoogeboom et al., 2021),
which invoked a specific discrete Markovian process (the
multinomial process) and solved for the corresponding re-
verse process analytically, (2) Austin et al. (2021) created
Masked Diffusion using a discrete-state Markov chain as
the forward diffusion which transforms samples to a unique
“masked state”, and (3) the recent work by Campbell et al.
(2022) described a theoretical framework for continuous-
time discrete-state Generative Diffusion Modeling. Impor-
tantly, the theories developed in both Austin et al. (2021);
Campbell et al. (2022) take a variational inference approach
to constructing the loss function, and Campbell et al. (2022)
achieves a continuous-time formulation by taking a limit of
this approach. An exact (i.e. non-variational) analysis has
not been seen in the existing literature.

Addressing diffusion for arbitrary discrete-state processes
requires answering several questions. For example, is there
a discrete-state formula corresponding to the Brownian
bridge? used in Ho et al. (2020) for learning the reverse-time
mappings, and more broadly, is diffusion modeling only pos-
sible when there are closed-form solutions for reverse-time
mapping? What is the Stein score function (Song & Ermon,
2019; 2020; Song et al., 2021d;b) for learning the reverse-
time process? Our contribution is to answer these questions
and put forth a general and exact theoretical framework for
constructing Diffusion Models in discrete-state spaces for
an arbitrary Markov process, which can be either discrete-
time or continuous-time in nature. Our core contribution is a
prescription for the generator of the reverse-time stochastic
process, forming the discrete analog to Anderson (1982) for
It Stochastic Differential Equations (SDEs).

2Ho et al. (2020) used a discrete-time formulation and Bayes
formula to derive the reverse map. The same technique is often
used for constructing conditional distributions for It processes,
and the derived formula is commonly known as the Brownian
bridge(Revuz & Yor, 1994) because it connects initial and final
conditions, resulting in an intermediate-time (‘bridge’) Gaussian
distribution, although this connection to the technique was not
pointed out in Ho et al. (2020).

We then examine explicitly a specific case, the pure-death
process, which corresponds physically to radioactive de-
cay. In this case, the prior consists of a single point—a
completely black image, similar to Mask Diffusion (Austin
et al., 2021). Based on this characteristic, we call this ap-
proach Blackout Diffusion. We emphasize that our process
is different from Mask Diffusion (Austin et al., 2021), al-
though both processes (almost-surely) converge to a singular
state as ¢ — co. We show that Blackout Diffusion can learn
and generate the CIFAR-10, CelebA, and Binarized MNIST
datasets without interpreting the data as continuous at any
stage. Additionally, we consider how discrete-state mod-
els answer two additional conceptual questions regarding
generative Diffusion Models: (1) Do the forward and re-
verse stochastic processes have to correspond to noisifying
and denoising processes? (2) Is it natural to consider the
prescribed prior as a latent-space representation, as can be
done for normalizing flows (Rezende & Mohamed, 2015)
and variational autoencoders (Kingma & Welling, 2014)?

The rest of the paper is structured as follows. Section 2
presents the construction of discrete-space forward, back-
ward and reverse processes, loss functions and score func-
tions, and the relationship to Gaussian diffusion. For the
rest of the article, we choose a particular Markov model,
Blackout Diffusion defined in Sec. 2.5, presenting results in
Sec. 3 and questions raised in Sec. 4.

2. Method

There are several key components to tractable Diffusion
Models. First, one must be able to sample the forward
stochastic process efficiently for generating the training
data. Secondly, one needs to analytically prescribe sum-
mary statistics for training the backwards transformations;
learning from individual samples would be computationally
prohibitive. Existing generative Diffusion Models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Nichol & Dhariwal,
2021; Song & Ermon, 2019; 2020; Song et al., 2021d;b) use
a particular Gaussian diffusion process which is applied in-
dependently in the dimension of the data, e.g. in each color
channel of each pixel in an image, for which the theoretical
formulation is complete. For discrete-time implementations
(Sohl-Dickstein et al., 2015; Nichol & Dhariwal, 2021),
the forward solution is analytically tractable, and the sum-
mary statistics—the conditional mean and variance of the
reverse-time mapping—can be obtained via the Brownian
bridge technique (Revuz & Yor, 1994). For continuous-time
implementations (Song & Ermon, 2019; 2020; Song et al.,
2021d;b), the forward solution is also tractable, and the
summary statistics (the drift and diffusion of SDE) for the
reverse-time process were provided by Anderson (1982).

In this section, we present the theoretical formulation for
generative modeling using discrete-state Markov processes.
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Detailed derivations can be found in the Appendices. We
present the forward and backward Kolmogorov equations
(Sec. 2.2), and reverse-time processes (Sec. 2.3) for discrete-
space diffusion modeling. We further elaborate (Sec.2.4)
on the continuum limit of discrete-state systems, providing
the connection to continuous-state systems, and describ-
ing the discrete-state score functions. The loss functions
(Sec. 2.6) and sample generation (Sec. 2.7) procedures are
also provided.

2.1. Notations

State space. We consider an /N -dimensional state space QN
where each dimension of the data lives in a finite discrete-
state space (), and each state is labeled and ordered by
{0... M}. For example, in CIFAR-10, N = 32 x 32 x 3
and Q = {0,1,... M = 255}. A state in this space, a
high-dimensional random variable, is denoted by X € QY.
For most of the derivations, it suffices to consider a single
dimension (one color channel of a particular pixel) which
will be denoted by X € Q. We will use the lower-case
symbols (e.g., m, n, 0) to denote the dummy state variable.
We will use the subscript to denote the time parameter of
the random process: For discrete-time systems, the random
process is denoted as Xy, k € Z>(, and continuous-time
random process is denoted as X, t > 0.

Probability distributions. We use p to denote joint or
conditional probabilities. In addition, a shorthand notation
will be employed, for example with times s, ¢ > 0,

Pmpy = P{Xy =m}, (1a)
Plnb)l(m,s) = P{Xe = n| Xy =m}, (1b)
P(m,s),(n,t)|(0,0) = ]P){Xs =m,X; = n|X0 = 0} . (1¢)

2.2. Forward and Backward equations

The forward process is described by the Chapman—
Kolmogorov equations (Kolmogorov, 1931; van Kampen,
2007; Gardiner, 2009). We will consider a one-dimensional
Markov process applied independently to each of the dimen-
sions of the joint state X. In the continuous-time setting,
the forward equation can be written as a Master Equation
(van Kampen, 2007; Gardiner, 2009; Weber & Frey, 2017):

d
_ t
P00 = > L P 1)1(0.0); @

m’

where L is the generator of the continuous-time and discrete-
state stochastic process and L is the adjoint operator of L.

We first explain our results for a subset of Markov pro-
cesses where the states are only allowed to transition be-
tween neighboring states, so that the generator in Eq. (2)
have a tri-diagonal structure. For this subset of processes, it
is convenient to use the step operators (van Kampen, 2007)

to reformulate the forward equation (2). The step operators
&+ are defined by £1 f(m) = f(m + 1) for any test func-
tion f. Employing the Einstein summation convention for
the + signs o € {+, —}, the forward equation (2) can be
expressed by

d

Peleo = (E=1) o) pempion)] )

where v, (m) is the transition rate from state m to m+ o - 1.

The backward equation for the continuous-time process
(3) is the Kolmogorov backward equation (Kolmogorov,
1931; van Kampen, 2007; Gardiner, 2009) for the transition
probabilities from state m at an earlier time s > 0 to state
at n at a later time ¢:

d

_&p(n,t)\(m,s) = Va(m) (gcr - 1)p(n,t)|(m,9) “4)

2.3. Reverse-time process

Here we prescribe the reverse-time stochastic process, anal-
ogous to the prescription of Anderson (1982) which is ap-
plied for Gaussian diffusion. Formally, the reverse-time pro-
cess describes how conditional probability p(,,s)(n,T),(0,0)>
0 < s < T, evolves reversely in time, which is necessary for
designing the likelihood or loss function and for generation,
thereby laying the foundation for Diffusion Model learning
and inference. Here, we present the results, and leave the
detailed derivations in Appendix A.

For the continuous-time Markov process (3), the reverse-
time evolutionary equation for any time 0 < s < ¢ reads

d
- = 5
45 Pm.) | (1.),(0,0) )

P(my,5)[(0,0)

(50 - 1) Vo (m::r)
P(m,s)|(0,0)

P(m,s)|(n.t),(0,0) | -

Note that the reverse-time process is an explicitly time-
dependent Markov process, whose transition rates depend
on the forward solution p, 5)|(n,0)- This is analogous to the
fact that the drift and diffusion of the reverse-time Gaussian
diffusion processes depend on the forward solution (Ander-
son, 1982). Note also that a state m later in time can transit
to a state mm/ at an early time only if there exists a transition
m’ — m defined in the forward process (see Remark 1 in
Appendix A). These expressions, derived from formal oper-
ator algebra, can be understood intuitively as a conditional
Bayes formula (see Appendix A).

While Egs. (3)-(5) are specific to tri-diagonal transitions, all
of these results generalize to arbitrary transition matrices,
as shown in Appendix B, by writing the transition matrix
as a sum over banded processes and exploiting linearity.
We also remark that the theory applies to arbitrary discrete-
state spaces. The state space does not have to be ordered,
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although it is ordered in our application of image dataset
below. Finally, as illustrated in Appendix A, there exists a
corresponding theory for generic discrete-time and discrete-
time stochastic processes.

2.4. Relationship to Gaussian diffusion

To shed light on the connection between our discrete-state
diffusion formulas and Gaussian diffusion, we use Kramers—
Moyal expansion (van Kampen, 2007; Gardiner, 2009; We-
ber & Frey, 2017), a standard asymptotic analysis to study
the limiting behavior in a state space with large number
discrete states (M > 1) densely distributed in 2. Appendix
C presents the formal expansion, showing that both the for-
ward and reversal discrete-state processes asymptotically
converge to the standard (multiplicative) Gaussian diffu-
sion in this limit. Importantly, the asymptotic expansion
of the discrete-state reversal process is consistent with the
reversal process (by Anderson (1982)) of the asymptotically
expanded forward process.

Performing the continuous limit also allows the identifica-
tion of the discrete-state score function sgjs, o

Sdis.0 (m’ S) X Vo (m;) Pm? ,s)|(0,0) — p(m,s)\(o,O)7 (6)
D(m,s)|(0,0)

which is an analog to the Stein score function, the key learn-
ing target for score-based generative models (Song & Er-
mon, 2019; 2020; Song et al., 2021d;b). Interestingly, there
is a transformation to learn for each type of transition event
into state m, rather than simply a transformation for each
feature in the data. (see discussion in Appendices C and G).

2.5. Blackout Diffusion

Here, we choose a simple Markov process to illustrate the
utility of the proposed discrete-state formulation. The pro-
cess is adequate for the digital images, whose state space
) = {0...255} is discrete and naturally ordered. One of
the simplest processes of this class is the pure-death process,
such that the only event is the transition m € Qtom — 1
with a transition rate ym:

m 2 om— 1. 7

The pure-death process is a mathematical model for con-
stant, independent decay, such as in radioactivity. For digital
image data, it can be interpreted as such: Each unit inten-
sity of a specific pixel and color channel decays from 1 to
0 with a rate . This process is a homogenous stochastic
process, that is, the transition rate is constant in time. We
can arbitrarily set the timescale such that v = 1. With
E? 2), the transition matrix can be defined by a banded
L) . =m(0mm —1— dm,m), where ¢ is the Kronecker
delta. Note that the pure-death process is distinct from Mask

Diffusion (Austin et al., 2021), which has one-step transi-
tion from any state to the absorbing state, per pixel and
per channel. For pure-death process, a state n requires n
transition events before it reaches the absorbing state 0, per
pixel and per channel. The two processes are very similar
on binary data, only differing in that Masked Diffusion is
non-homogenous process (i.e., the transition rate is time-
dependent). With the representation Eq. (3), we have the
negative transition v_ (m) = m and the positive transition
vi(m) = 0, m € . It is elementary to derive the so-
lution of the forward process as a binomial distribution?,
X; ~ Binom (Xg, %), or equivalently

o —m —tylo—m
Pim.b)l(0.0) = ( m )6 e )

Thus, at any finite time ¢ € (0,00), any initial state is
diffused to a binomial distribution that decays exponentially.
As t — o0, all initial states o converge to the same state, 0.
Thus, the prior for this process consists of a §-distribution
at a single point—an entirely black image—hence the name
Blackout Diffusion. Because the prior is singular®, diffused
samples cannot contain any information about the initial
data, a point we will discuss further in Sec. 4. Examples
of Gaussian and Blackout diffusion as forward processes
are provided in Fig. 1. We will use the continuous-time
formulation (i.e., Egs. (2), (4), (5)) because of the rather
large state space |2| = 256 > 1. Preliminary experiments
showed that using a discrete-time formulation would involve
either too many time steps or too noisy transitions, resulting
in lower-quality generated samples.

Prescribed by Eq. (5), the reverse-time dynamics is a birth-
only process, with a non-trivial transition rate

ry P’ )l(0,0) e’

=(0=m)—=.
P(m,s)|(0,0) I—et

v_(m )
Figure 2 contrasts the forward and reverse-time processes
for Gaussian Diffusion with the improved noise schedule
(Nichol & Dhariwal, 2021) and Blackout Diffusion.

Note that Eq. (9) prescribes only the instantaneous time-
dependent transition rates. Due to the simplicity of Blackout
Diffusion, we can establish that the solution of the reverse-
time process after a finite-time leap, i.€., D(m,s)|(n,t),(0,0)>
0 < s <'t, is also binomial in nature (see Appendix D):

( e )r”‘"(l -,
ri=s(e ™ —e ) /(1—e").  (10)

3The pure-death process is a special case of the birth-and-
death process or equivalently the M/M/1 queue, whose analytical
solutions are known (Abate & Whitt, 1987; Gardiner, 2009).

“The singular distribution is not a special property of discrete-
state systems. There exists Itd SDE that admits singular Diract §
distribution as their limiting distribution (Feller, 1951; 1952).

P(m,s)|(n,t),(0,0) =
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Figure 1. The forward process of (a) Gaussian diffusion and (b) Blackout Diffusion applied on an image, sampled at discrete time k.
The colormap is adjusted per-image to better visualize the noisy signal of Blackout Diffusion at large times. Fig. 5 shows images with

unadjusted colormap.
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Figure 2. Probability distribution (heatmap) and paths (solid line) on a discrete-support Q@ = {0, 1,...

M = 8}. (a) Gaussian diffusion

with de-quantization. The stochastic paths are not constrained on the discrete support, and also not bounded between [0, M]. Here, the
Gaussian process is that in (Ho et al., 2020), with the cosine schedule. The forward process brings all the states to a high-dimensional
Gaussian. (b) The discrete-state pure-death process takes place only on €2 and bring all the states to a d-distribution at 0. Here, we used
the discrete observation times specified in Appendix E. Both processes have 7" = 1000 steps.

In more compact notation, this can be written
Xs|(Xo,X:) — Xt ~ Binom (Xo — X;,7). We la-
bel Eq. (10) as the Binomial bridge formula, since it is
analogous to the key Brownian bridge formula used in
Gaussian Generative Diffusion Models. Since we chose an
independent decay process for each feature in the image
data, all of the above can be immediately transferred from
pixels X € € to full images X € QV.

2.6. Diffusion Schedule and Loss functions

For training, a set of T" observation times tj, € R>o, k =
1,...T is defined a priori, ordered by 0 < t; < to...tp.

In addition, ty := 0. The choice of the observation times
is analogous to the noise schedule in Gaussian diffusion
models. Rather than treating the observation times/noise
amplitudes as a hyperparameter to be optimized, as in Sohl-
Dickstein et al. (2015); Nichol & Dhariwal (2021); Ho et al.
(2020), we take a mathematical approach to defining the
schedule of observation times t;. The schedule is designed
to uniformize the change in the Fisher information of the
degraded samples, and this is derived in Appendix E.

Similar to other diffusion models, the goal is to train a neural
network which transforms samples at ¢, to ¢;_;. However,
we accomplish this with a novel approach: Observing the
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instantaneous transition rate Eq. (9) and the finite reverse-
time propagation Eq. (10), this goal can be achieved by
training the neural net to predict the difference Xy — Xy, _,,
given a realization of X;, . We will write the neural-net
predicted difference as y := NN (X4, , tx). We remark that
this computational instantiation is drastically different from
existing discrete diffusion implementations (Austin et al.,
2021; Campbell et al., 2022) which model transition rates.
With Blackout Diffusion, transition rates decays several
orders of magnitudes, making it difficult to train a neural
network to learn the transition rates. The remaining task
is to establish the loss function that minimizes a metric on
Egs. (9) and (10).

We use a likelihood approach to define the loss function.
Appendix F presents the derivation, showing that for a sam-
ple X, generated by a particular training sample Xy, the
loss function can be defined as:

li = (tk — tr—1) e [y — (Xo — Xy, ), logys] . (11)

where ¢ indexes components of the multidimensional state.
A finite-time correction by the binomial bridge formula is

— ™) [y — (Xo — Xy,); logyi] . (12)

We average over each component ¢, samples in the training
set X, and randomly sampled observation time index k;
the full loss is £ = (I;) (x, 4 ;- Note that if one chooses
a uniformly distributed observation times and if the time
difference A := ¢, — t;,_1 < 1, Eq. (12) converges asymp-
totically to Eq. (11).

li = (e_t"'*l

2.7. Generating sample images

For image generation, we chose ¢ = 15, a time that is
deemed long enough to approximate ¢ — oo, in which limit
all initial states converged to O (i.e., all the images degrade
to all black). More accurately speaking, p(o,15)|(255,0) >
0.9999. To generate samples, we start with an all-black im-
age and use the trained neural network to predict X;, — X,
clipped at 0 and 255. Then, we can either use the general
T-leaping algorithm (Gillespie, 2001) (which is analogous
to the Euler—Maruyama integrator for Itd SDEs (Kloeden &
Platen, 1999)) to generate a Poisson random number, or ex-
ploit the analytically exact binomial bridge Eq. (10), whose
applicability is limited to Blackout Diffusion. The former
sampling approach is similar to integrating It6 SDE in (Song
et al., 2021d), and the latter approach is analogous to the De-
noising Diffusion Probabilistic Model (Ho et al., 2020). The
drawn numbers are added to the all-black image to obtain
X r_,- The procedure repeats until X is obtained.

We summarize the proposed training and inference methods
in Algorithms 1 and 2. The algorithms can be generalized to
accommodate arbitrary continuous-time and discrete-state
Markov process in Appendix G.

Algorithm 1 Training Blackout Diffusion
repeat
Xg ¢ x, drawn from the training set
Draw an index k from {1, ... 7T} uniformly
X, ~ Binomial (Xg, e ~t*) (element-wise)
y < NNy (Xy,, k)
if Using instantaneous loss function Eq. (11) then
Wi (b —tg_q) et
else if Using finite-time loss function Eq. (12) then
Wy, e -1 — etk
end if
[ + wi x mean{y — (Xog — X;, ) logy}
Take a gradient step on Vyl
until Converged

Algorithm 2 Generating images by Blackout Diffusion
Initiate a blacked-out image X;, = 0
for k=T to1do
vo < clip(NNy (X4,, k), 0, 2551 — X4, )
if Using Poisson then

. —tg
_€e ®
d Poisson (YQ T—o

— ) (element-wise)
X4, _, < clip(Xs, +d,0,255I)
else if Using Binomial Bridge then
d ~ Binomial (yg, 64:77_5:%
th71 < th +d
end if

end for

) (element-wise)

3. Numerical Experiments

We chose the CIFAR-10 dataset to validate the feasibility
of using Blackout Diffusion for generative modeling. We
stress that our goal is to provide evidence that the theoretical
results for discrete-state diffusion, derived above, are useful
for practical tasks, rather than to advance the state-of-the-
art® for CIFAR-10 or any other dataset. To do so, we adopted
the improved Noise Conditional Score Network (NCSN++)
architecture presented in Song et al. (2021d;c) to serve the
NN function in Egs. (11) and (12). We made two minimal
modifications on NCSN++ which bring the architecture in
line with the theoretical requirements of Blackout Diffusion
Modeling. (1) We applied a softplus function on the output
of NCSN++ to ensure the positivity of the output. This
is because the target (Xo — X, > 0) is non-negative in
Blackout Diffusion. (2) For inference, we clip the output of
softplus (NCSN++ (-)) by 0 and 2551 — X, , followed by a
round-off to the nearest integer. We used mini-batches with
256 samples, and the training was stopped at 300K iterations,
above which we observed degraded quality of the generated

5By the time the authors concluded this write-up the lowest
FID (1.97) was attributed to (Karras et al., 2022)
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Table 1. Results of the numerical experiments (iteration 300K).

Loss SAMPLING FID ({) IS (1)
INSTANTANEOUS  BINOMIAL 4.77 9.01
INSTANTANEOUS POISSON 4.92 9.18

FINITE-TIME BINOMIAL 4.83 9.00

FINITE-TIME POISSON 5.01 9.08

samples. We did not modify other hyperparameters of the
NSCN++. We fixed T' = 1000 in this feasibility experiment.
We performed the analysis on both loss functions, Egs. (11)
and Eq. (12), and by both binomial and Poisson sampling.
The training was carried out by two NVIDIA A100 GPUs
for ~72 hr. Due to limited computational resources, we
only trained once for each loss function. We then generated
50K samples, which took approximately 10.5 hours.

Selected samples are visualized in Fig. 3, which shows how
the Blackout Diffusion Model generates different images
from the same terminal condition (X, = 0). Using 50K
generated images, we computed the Fréchet Inception Dis-
tance (FID) to the training set and the Inception score (IS)
in Table 1. Our results suggest that the quality of the gen-
erated samples is not sensitive to the choice of the loss
function, and using the binomial bridge formula for sam-
pling is slightly advantageous. We visualize 400 generated
images in Fig. 7. Results of binary MNIST and CelebA are
shown in Table 2 and Figs. 8-10.

4. Discussion and Conclusion

We developed an exact theoretical framework for gen-
eral discrete-state Markov processes, on either discrete- or
continuous-time domain, which enables the exploration of
Diffusion Modeling using a large class of stochastic pro-
cesses. Our theoretical formulation for the discrete-state
processes is analogous to Anderson (1982) for Gaussian
processes®. To the authors’ knowledge, a complete anal-
ogous theory for general discrete-state Markov processes
has not yet been proposed. These theoretical results can be
summarized as such: (1) We generalized the diffusion mod-
els based on those SDEs whose underlying noise is Wiener
process (Song et al., 2021d) to discrete-state Markov pro-
cesses. Besides yielding Blackout Diffusion based on the
pure-death process, this paves the way to include more com-
plex stochastic processes that involve some discreteness,
e.g., jump-diffusion model (Huang et al., 2014), piecewise-

%We emphasize that one should not confuse the reverse-time
process, our Eq. (5), with the Kolmogorov backward equation (4).
While Sohl-Dickstein et al. (2015) attributed the credit to Feller
(1949), which presents the standard Kolmogorov backward equa-
tions (Kolmogorov, 1931), Anderson (1982) derived the general
reversal stochastic process which enables the generative diffusion
modeling by Gaussian diffusion.

deterministic Markov process (Faggionato et al., 2009),
Gaussian diffusion with Markov switching (Mao & Yuan,
2006). Some of these more complex models could ex-
pand the current extent of generative diffusion models. (2)
We derived the discrete-state score functions, Eqgs. (6) and
(42). These functions are analogous to the Stein score
function (Song & Ermon, 2019). Since the score function
was not used for training Blackout Diffusion, it remains
for future work to see if score-based Diffusion Modeling
(Song et al., 2021d; Song & Ermon, 2019) can be applied
to discrete-state processes. For generic discrete-state mod-
els, the reverse-time generator Eq. (5) holds the key to en-
able FHDM (our Eq. (5) is the discrete-state counterpart
of the continuous-state I1t6 SDE (9) in Ye et al. (2022)).
FHDM uses distinct training and sampling methods based
on Doob’s transformation to achieve improved quality and
efficiency. Although in this paper we did not combine our
theoretical formulation and FHDM, such a combination
can be a fruitful research direction. Furthermore, as estab-
lished in Ye et al. (2022), FHDM can be connected to the
(continuous-state) Schrodinger—F:ollmer bridge formalism
(Vargas et al., 2023; 2021; De Bortoli et al., 2021) and the
(continuous-state) Path Integral Sampler (Zhang & Chen,
2022), we hypothesize that a successful application of our
theoretical formulation to FHDM could initiate a new class
of problems on corresponding discrete-state Schrodinger—
Follmer bridge and Path Integral formalism, which to our
best knowledge do not exist yet. (3) We associate the “noise
schedules” to the observation times of a continuous-time
diffusion process. Such an association allowed us to design
a principled, albeit heuristic, argument to construct the ob-
servation times based on Fisher information of the forward
process. We remark that a different heuristic existed for
training Mask Diffusion (Austin et al., 2021). (4) Using the
exact theoretical formulation, we formulated a loss function
based on maximum likelihood. This contrasts to Camp-
bell et al. (2022), who took an approximate (variational)
approach and then send the discrete time step down to zero.
Our result (in Appendix G) shows that the variational bound
in Campbell et al. (2022) is tight in the continuum-time
limit. Finally, (4) we provide a demonstration that discrete-
state Diffusion Modeling can be effective while exhibiting
completely different qualitative behavior from Gaussian dif-
fusion, by learning a Blackout Diffusion model on binarized
MNIST, CIFAR-10, and CelebA-64.

These results also allow us to address conceptual questions
about the technique of Diffusion Modeling more broadly:

Is Gaussian noise special? Our numerical experiment on
Blackout Diffusion shows that Gaussian noise is not a
crucial property for generative diffusion modeling. The
discrete-state (Poissonian) noise in Blackout Diffusion can
also be used for Generative Diffusion Modeling. This dis-
covery is in line with a few other recently proposed models,
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Table 2. Summary of discrete methods

STARTS FROM A CORRECTOR TIME
DATASET DISCRETE METHODS SINGULAR POINT? STEPS HOMOGENEOUS FID (1)
D3PM ABSORBING (AUSTIN ET AL., 2021) v NONE X 30.97
D3PM GAUSS (AUSTIN ET AL., 2021) X NONE X 7.34
CIFAR10 7LDR-0 (CAMPBELL ET AL., 2022) X NONE X 8.10
7LDR-10 (CAMPBELL ET AL., 2022) X 10 X 3.74
BLACKOUT (OURS) v NONE v 4.77
BLACKOUT (OURS) v 2 v 4.58
BINARIZED MNIST BLACKOUT (OURS) v NONE v 0.02
CELEBA BLACKOUT (OURS) v NONE v 3.21

Figure 3. Image generation based on Blackout Diffusion. The color is adjusted per-image to better visualize the noisy signal at large times.

Fig. 6 shows images with unadjusted colormap.

e.g., Cold Diffusion Bansal et al. (2022) and Multinomial
Diffusion Hoogeboom et al. (2021); Song et al. (2021a).
Beyond the computational experiments, the existence of the
generic instantaneous loss formula implies that the learning
is tractable for any discrete-state process.

Must the forward and reverse processes correspond to nois-
ifying and de-noising, respectively? Often, the forward
process is described as one adds noise to the image (Ho
et al., 2020; Hoogeboom et al., 2021). Blackout Diffusion
highlights that this association must be taken with some
subtlety. If noise corresponds to variance in the data across
the space of samples of the stochastic process, for ¢ < log 2,
the forward process for Blackout Diffusion adds noise, but
for ¢ > log 2, the forward process removes noise as samples
converge towards a blank image. The scenario is, of course,

the reverse in the process of generating an image. As such,
the first phase of inference involves adding noise to the
sample. However, the whole forward (respectively, reverse)
Blackout Diffusion is a degradation (reconstruction) process
that removes (adds) information of the generated samples.
This represents an apparent paradox: information is con-
stantly diffusing away, despite the fact that all the pixels are
converging to the same singular distribution, which has max-
imal information in the sense of Shannon entropy. As such,
to declare whether a process is adding noise or removing
noise critically depends on what type of stochastic process
is used, and how noise is defined. Notably, the same phe-
nomenon can be observed in Mask Diffusion, although the
“denoisng” nature was not discussed (Austin et al., 2021). In
light of this, we find it more accurate to simply declare that
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the forward and reverse processes are stochastic processes.

Does the final state X.,. constitute a latent-space represen-
tation? The final state of the forward process is sometimes
conceived as a latent-space representation, e.g., see Song
et al. (2021d). Under this view, Diffusion Modeling ap-
pears conceptually very similar to Variational Autoencoders
(Kingma & Welling, 2014) or Normalizing Flows (Rezende
& Mohamed, 2015). However, both Mask Diffusion (Austin
et al., 2021) and Blackout Diffusion converges all data to
a single discrete point. Therefore, it seems impossible to
conceive of the terminal space of the forward process as con-
stituting a latent representation of the data. This highlights
a fundamental difference between Diffusion Modeling and
deterministic generative modeling. We argue that X, is not
a latent space, but the path-based conception of Rombach
et al. (2022), where (X, ,_,) may be viewed as a latent
representation of the data—although this joint space is far
larger than the original state space. With the similar spirit,
we argue that the Cold Diffusion (Bansal et al., 2022) is
more a flow model than a diffusion model because it cannot
be directly applied to singular priors.

Finally, we would like to remark on the motivations that
gave rise to our results and on future work that might be built
from them. These results, collectively, arose out of the Au-
thors’ endeavor to understand the theory behind Diffusion
Modeling—Ilike many Machine Learning advancements, a
fairly complex foundational idea yields, in practice, a few
simple formulas to implement. A great many recent works
have treated the exploration of Diffusion Modeling as a
problem of hyperparameters. Practical but ad hoc processes
such as dequantization/requantization, and noise schedules
have been included in pursuit of an engineering goal to
improve model performance, but these stray significantly
from the theoretical framework governing the underlying
learning task. However, when looking at fundamentally
different data domains—including but not limited to the
discrete-space examples laid out in our introduction—this
line of attack will likely introduce even machine learning
algorithms for which the success cannot be explained and
replicated. We believe that ad hoc procedures which im-
prove performance are less likely to transfer across tasks
or even individual datasets. In contrast, when a clear theo-
retical framework is provided, the individual pieces of the
learning task, such as the forward evolution, reverse pro-
cess, and loss function, can be more closely examined and
tested, and the exploration of innovations can be driven by
understanding in addition to empirical testing.

Having laid out the exact theoretical framework, discrete-
space Diffusion Modeling thus presents many well-
motivated opportunities. For example, we hypothesize that
with further work, discrete-space Diffusion Models may be
found that are far more computationally efficient than Gaus-
sian Diffusion Models, because the state space is far smaller

(mathematically, infinitely so) than in the continuous case.
An empirical hint that this may be so comes from the fact
that we adopted an existing continuous-space architecture
(NCSN++) out-of-the-box and achieved reasonable results;
further search of the space of network architectures and
hyperparameters ought to yield some improvement.

Another advantage of our framework is that the instanta-
neous loss, Eq. (11), can be applied without any bridge
formula that prescribes the reverse process analytically. Yet
another advantage is in the computational tractability of
the forward solution. For Gaussian Diffusion, the forward
process is only computationally tractable because it can
be analytically solved, and other continuous-state process
which cannot be analytically solved are not computationally
tractable. However, the forward evolution of discrete-state
is very often numerically tractable, ask it involves powers
(discrete-time) or exponentiation (continuous-time) of the
transition matrix. These can be efficiently computed, e.g. by
the Krylov subspace method (Saad, 1992; Gaudreault et al.,
2018), bypassing the need for an analytical forward solu-
tion. Because of both of these advantages, we anticipate a
rich library of discrete-state processes that can be used for
diffusion modeling, and hope that these processes can be
tailor-matched to the rich space of discrete-state data and
systems that arise in the natural world.

Reproducibility and code availability

The codes we developed to perform the experi-
ments are deposited at https://github.com/lanl/
Blackout-Diffusion, with a C-number C23047 ap-
proved by the Richard P. Feynman Center for Innovation
(FCI) at the Los Alamos National Laboratory.
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A. Deriving the Reverse-Time Evolutions

We first derive the reverse-time evolution for the continuous-time process (3). With 0 < s < ¢, recall that the conditional
probabilities

P(m,s),(n,)[(0,0) = P(n,0)[(m,5),(0,0)P(1m,5)](0,0) = P(n,t)|(m,s)P(m,s)|(0,0)- (13)
We use the Markov property p(n,1)|(m,s),(0,0) = P(n,t)|(m,s) tO €stablish the last equality. Applying —d/ds to the equation
above and by the chain rule, we arrive at

_d _ _ Wi _ dp(m,5)1(0,0)
2o Pmes). (n.1)](0.0) G5 Pns)l00) ~ Pru)lims) g

= Vo (M)P(m.5)[(0.0) (€5 = 1) Pt (m.) = Pn.t)|(m.s) (€8 = 1) [Vo (M) Pamsyi00)] (19
by the forward and backward equations (3) and (4). Next, we apply the product identity to the terms involving the forward
equation

Pl lms) (EF = 1) [Vo (M) Pm,s)1(0.0)] = = (E3 = 1) [Ptn,t) (m,5)Vo (1) Dom, ) (0,0)]
+{&5 Vo (M) Pm )00 ] {(EF = D) Ppim} . (19)
to expand Eq. (14):

d
_£p(m,s),(n,t)\(o,0) = VU(m)p(m,s)|(o,0)p(n,t)\(Sa[m],s) - VU(m)p(n7t)|(m,s)p(m,s)\(0,0)

— (&5 = 1) [Pty (m.5) Vo (1) Dm0 0,0) ]
+ Vo (ELIM]) P ) )1 (0,00 Pt (€1 )
— Vo (5; [m]) Dielim],s)|(0,0)P(n,t)|(m,s)- (16)

Next, note that three of the terms in the RHS of Eq. (16) cancel due to the identity

(&8 = 1) [ve ()P, ms)Pims)00)] =
Vo (g(j [m]) Dieiim],9)|(0,0)P(n,t)|(EL[m],s) ~ Vo (M)P(n,)[(m,5)P(m.s)|(0,0) (17

Eq. (16) can be simplified

d
= 15 Pms) 0] (0.0) = Vo ()P, (0.0)P(n.0)|(Esm] ) — Yor (€ 1M]) Pt 1n) )1 (0.0)Pm1) ()

= (& —1) {Vo (5; [m]) p(g;[m],3)‘(070)p(n,t)|(m,s)} ) (13)

by the identity of any step operators £, = 1. Next, multiplying and dividing D(m,s)|(0,0) l€ads to the evolutionary equation
of the joint ((m, s) and (n, t)) conditional (on initial condition (o, 0))

d

Pglim],s)|(0,0
_&p(m,s),(n,t)\(o,o) = (ga - 1) |:VJ (8; [m]) M

P(n,t)|(m,s)P(m,s)| (o,
D(m,s)(0,0) (nt)[(m,s)P(m,s)| (o 0)}

_ — vo (EL[m
= (& —1) { » (& [m]) Pim.s)[(0:0)

p(n,t),(m,s)|(o,0):| . (19)

which is a closed-form evolution of the joint distribution p(,, ¢),(m,s)|(0,0)» iven the forward solution p(,, s)|(0,0)- Finally,
we divide both side of the equation on a particular terminal probability p(, +)|(0,0) (assumed finite) to obtain Eq. (5):

d P(edm].9)I(0.0)
— 7 P(m,s)|(n,t),(0,0) = 50 -1 |:Vo g; m #p m,s)|(n,t),(o, . (20)
asPml 0,00 = (& = 1) o (& [m]) =% 5 pam sl (00)
"Consider two test functions fi and f2 of m. (&5 —1)[fi(m) f2(m)] = f1 (€L [m]) f2 (€5 Im]) — fi(m)f2(m). The
product rule can be established by adding and subtracting a term f1 (€] [n]) f2 (m), which leads to (£} — 1) [f1 (m) f2 (m)] =

fr(EEIm]) [(EL = 1) f2(m)] + f2 (m) [(EF — 1) f1 (m)].
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The derivation of the reverse-time evolution for the discrete-time process mostly follows the above derivation, but with a few
additional technical details. With discrete-time index k, £ € Z>, k < ¢, the forward and backward equations read

Pkt 1)[(0,0) = Plm i)l (00) T (EF = 1) [t (M) Don )1 (0,0)] - (21
D(n,T)|(m.k) = P(n,T)|(mk+1) T to (M) (Eo = 1) Pn,T)|(m,k+1) 5 (22)

where 1, (m) is the transition probability from state m to m + o - 1. We first express the conditional probabilities
P(m,k),(n,0)|(0,0) = P(n,0)|(m,k)P(m,k)|(0,0)5 again, the Markov property p(,.e)|(m,k),(0,0) = P(n,0)|(m.k) 1S used. Next, we

establish an expression that is analogous to Eq. (14):
P(m,k),(n,0)[(0,0) ~ P(m,k+1),(n,0)[(0,0) = P(n,8)|(m,k)P(m,k)|(0,0) ~ P(n,0)|(m,k+1)P(m,k+1)|(0,0)

= = Pmb)|(0.0) [P0 (m.k+1) = Plnt)|(mk)] F+ Pint)|(mk+1) [Pmk)[(0.0) = Pl k41 (0.0)]

= P(m.0)| (001 (M) (Eo = 1) Do) (k1) = Pln.0) (k1) (€8 = 1) [t (m) P y10.0)] (23)
where the last equality was established by the forward and backward equations, (21) and (22). Next, we use the product
identity to the terms involving the forward equation

= Pl mi+1) (EF = 1) [t (1) P 1) (0.0)]
= = (€1 =1) [Py m k1) 0 (M) Pl i) (00)] + [EX (10 (1) Pan.ty (0.0))] [(EF = 1) Pty )] 24

to expand (23):

D(m.k),(n.0)](0,0) — P(m,k+1),(n.0)[(0,0) = P(m.k)|(0,0) o (M) (E5 — 1)p(n,é)\(m,k+1)
— (&5 = 1) [Pene) (k1) o (M) Do )1 (0,0))
+ [E8 (16 (1) Dim,110.0)) ] [(EF = 1) Pty (ot 1)]
= D(m.k)|(0,0) o (M) D(n,0)(£4 [m) k+1) — Plm.k)|(0,0)Ho (M)D(n 0y (m. k+1)
— (€8 = 1) [Pty mpet 1) 8 (1) P ) (0,0) ]
+ 1o (€] [m]) P(edim) k)1(0,0P(n,0)|(£] [m] k+1)
— 11 (EX [M]) Pt () k) (0.0 P (mo4 1) (25)

The above expanded equation can be simplified by the identity
(5; = 1) [P0 1(mo k1) o (M) Do, ) (0,0)] = p(n,e)\(gj,[m],kﬂ)ﬂa(gg [m])p(gi[m],k)\(o,m
= P(n,0)|(mk+1) o (1) D(m k)] (0,0)» (26)

leading to the reverse-time evolutionary equation for the joint conditional probabilities, analogous to Eq. (19):

Pl k), (m0)[(0,0) = Plam,k41),(m,0)](0,0) = Plom,k)|(0,0) Ho (T)P(m,0) (£ lm] b +1) — Hor (EF [M]) Pt (], (0,0)P(0,0) [ (moe+1)

= (& -1) [ua(fi [m]) p et [m],k)|<o,O)P<n,é>|<m,k+1>}

Pglim], k)| (0,0
- (ga - ]-) |:ﬂcr(g:,[ [m])(M)(())p(n,é),(7rz,k+1)(o,o):| . (27)
P(m,k+1)|(0,0)

Dividing both side by p(, ¢)|(0,0) leads to:

pfim,k 0,0
(5; [m]) (€5[m],k)[(0,0)

P(m,k+1)|(0,0),(n,0) | » (28)
Plm k11)[(0.0) (m,k+1)](0,0),( )}

P(m,k)[(0,0),(n,6) = P(m,k+1)|(0,0),(n,¢) + (€5 — 1) {HU

which is the reverse-time stochastic process for the discrete-time and discrete-state Markov processes.

Remark 1. Both Eqs. (20) and (28) can be understood as the forward equation for the reverse-time process. Note that an
overall operator £, — 1 is applied to the product of the transition rate and conditional probabilities (cf. the adjoint operator
E! — 1 in the forward equation of the forward process, Egs. (21) and (3)). This indicates that the shift operators for the
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reverse-time process is adjoint to those in the forward process, meaning the possible transitions are opposite—a state m later
in time can only transit to a state m/, earlier in time, if a transition from m/, to m is permitted in the forward process. Note,
however, the transition rate (or probability) of the reverse-time m — m/ is not identical to the transition rate (or probability)
of the forward process m,, — m.

Remark 2. For the discrete-time system, it is possible to adopt an alternative derivation that is similar to (Sohl-Dickstein
et al., 2015), without introducing the formal operator-algebraic derivation in this section. We are interested in deriving the
probability P,/ k)| (m,k+1),(0,0)- Using conditional Bayes formula, we can express

P(m,k+1)|(m?, k),(0,0)P(m! ,k)|(0,0) .

P(m?’ k)| (m,k+1),(0,0) = (29)

P(m,k+1)|(0,0)
By the Markov property of the process, p(m k+1)(my,.k),(0,0)P(m/, k)|(0,0) = P(m.k+1)|(m, k)> Which is the transition
probability L., (and vy (ml) in the context of process Eq. (21)). Thus, (29) prescribes the transition probabilities of the
reverse-time evolution, which is described by Eq. (28).

Remark 3. A typical technique to derive continuous-time master equations is to consider a discrete-time Markov chain and
express the transition probabilities in terms of continuous-time rate constants, (i, (m) = v, (m)At, and sending At | 0. It
is clear to see such treatment transforms Eq. (28) to Eq. (20).

B. Generalization of the Theoretical Formulation for Arbitrary Discrete-State Markov Processes

In this section, we present the generalization for the continuous-time process, defined as the forward Chapman—Kolmogorov
Equation (2). A parallel derivation for the discrete-time case (Eq. (21)) is omitted.

The key idea is to realize that the step operators £, are simply a way for us to reformulate the transition matrix L in (2). Let
us define rate functions for a general n-step transition (those transitions from m to m’ such that |m — m/| = n):

Ll

U, o(m) = { Om‘*‘onmw itm+o-ne
b

(30
else.

It suffices to consider n = 1, ... M for our setup (where the state in the finite-state space €2 is labeled from 1 to M). Then,
Eq. (2) can be reformulated as a linear sum of powers of the shift operators

d n
GPm0l0,0) = {(5(1) — 1} [Vn,0 () D(mt)[(0,0)] - (31)

We remind the reader that we used the Einstein summation convention to sum over o € {4, —} and n € {0, ... M} in the
above equation. Similarly, the Kolmogorov backward equation is

d n
~ g Pnlm.s) = Vo (m) (&7 = 1) P(rn,)|(m,s) (32)

As the powers of the step operators are still step operators, the procedure in Appendix A can be applied to deliver the
reverse-time evolutionary equation:

d n P(m’,8)|(0,0)
= P(m,s)|(n,t),(0,0) = |Vnjo (M) ———"—""D(m s)|(n,t),(0,0) | » (33)
35 Pm.9)|(n,0),(0,0) ( >p<m,s>\(o,o> (m,8)|(1,1),(0,0)

where m’ is again the pre-image (£])" [m] of transition (n, ) mapping m’ to m forward in time.

C. Kramers—Moyal expansion of the reverse-time evolution in discrete-state spaces

In this section, we aim to apply the Kramers—Moyal expansion (van Kampen, 2007; Gardiner, 2009; Weber & Frey, 2017)
to the both the forward and reverse-time discrete-state process, Eq. (5) and (5) respectively. Albeit rather standard and
straightforward, the analysis on the reversal process requires extra care compared to the usual practices, due to the fact that
the (reverse-time) transition rate depends on non-local information (i.e., v, is evaluated at the preimage of viable transitions
to the state m).
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As usual, we set out the analysis by asserting a large system size V := O (X;) > 1. We denote the scaled variables by a
tilde, for example, m := m/V, 7 :=n/V, and 6 := o/V. Similarly, the scaled rate constants 7, (/) := v,(m)/V. The
probabilities p’s now relate to a probability density p in the continuum (state) limit, p = pdz = p/V, withdz := 1/V <« 1.
Now for any test function f on the discrete-state space,

(5[,—1)f(m)=f(m+0-1)—f(m):Vf(m+U~‘1/>. (34)

With minor assumptions on the scaled test function f, it can be Taylor-expanded, which is the foundation of the Kramers—
Moyal expansion, i.e.,

df+id2f

(& = 1) () = f (m+01) = f(m) = VF () + 0 40+ -

(35)

Per the constraints pointed out Pawula (1967), one usually asymptotically expands up to O (1 / V2) and truncates the higher
orders to obtain the Fokker—Planck equation.

For the forward process, the expansion leads to the following It6 stochastic differential equation

dX, = v (Xt) dt+ /D (Xt)th, (36)

where X; ~ X,/V is the scaled continuum-state variable, v(z) := [, (Vz) — v_(Vz)] /V is the drift, and D (z) :=
[vy (V) +v_ (V)] /(2V?) is the diffusion. The forward solution of the discrete-state system, p(,,,¢)|(o,0)- asymptotically
converges to the solution of Eq. (36) in the continuum limit M > 1.

Performing the expansion for the reversal process Eq. (5) requires extra care. The complication from the fact that the
transition rates inside the square brackets are non-local and requires asymptotic expansion, and a careful matching of the
asymptotic orders is needed. We first rewrite the reverse-time transition rate

b fim],9)|(o p F1ml,s)) (o — P(m,s)|(o,
v (€] [m]) ZELNOO _ 1, (23 () — v, (1) + vy (m)] { (X ml9)l(,0) — Fm2)1(0:0) +1]. (37)
P(m,s)|(0,0) P(m,s)|(0,0)

Asymptotically expanding difference terms in both brackets to O (1/V):

dr, 1

T _ — (st _ - _ g —
Vo (EX[m]) — vo (m) = (€] = 1) vy (M) s +0 (V) , (38a)

Pigdiml,9)l(0,0) ~ P(ms)I(0,0) (&8 = 1) Pm.s)(0.0)
D(m,s)|(0,0) D(m,s)|(0,0)
o 1 dp (m, s|0,0) 1
= — = ol=). 38b
Voumsle0)  dm  TO\V (38b)
A key detail of the analysis is that
1 dp (m, 56,0)\ dlog(m)\

© <p(m, s/6,0) om =0 om =0, G

because the variance of the forward Gaussian diffusion p (1, |0, 0) is of order O (1/V'). We can now collect the leading
(@] (Vl)) asymptotic expression of the transition rates in Eq. (37):

P(fm],s)|(0,0) [ o 1 dp (m, 5|0, 0)} 1
vo (E5 [m]) —22R02) — y (m) |1 — — ——— . +0 (VY. (40a)
( [ ]) D(m,s)|(0,0) (m) V p(m,s|6,0) dm ( )

As such, asymptotically speaking, the transition rates of the reverse-time process are almost identical to the forward process,
except for the correction (o/V') Os,p (1, ). The Kramers—Moyal expansion of the process (5) results in the standard Itd
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stochastic differential equation (36), with the drift v and diffusion D defined as

L - - o 1 dp (m, s|6,0)
vim= 3, U'V"(V'm){l_vp(m,sw,o) din

oce{+,—}
- = enwem) - (Nlro)dp(”gf'o’o), (41a)
celr—) p(m,s|o, m
N 1 N N
D (m) = 5 eg}y(, (V-m). (41b)

Note that the functional form of the correction in the drift v is similar to that in Anderson (1982). Such a correction term is
the key target for learning in the score-based generative models (Song & Ermon, 2019; 2020; Song et al., 2021d;b).

Remark 1. The analogous Stein score function (Song & Ermon, 2019; 2020; Song et al., 2021d;b) for the discrete-state
system can be identified in the above analysis (see Eq. (37))

) P(eiim),8)|(0,0) ~ P(m,s)](0,0)
p(m,s)|(o,0)

Sdis,o (M, 8) X Vg (5; [m (42)
The asymptotic analysis shows in the dense-grid limit, the above finite-difference formula is asymptotically proportional
to the Stein score function for continuous-sate system, s (1, s) := 97, log p (M, s). The proportionality came from the
constant 1/V/, which is proportional to the variance of the forward solution. Such a proportionality constant is usually
normalized in the score-based approaches, see discussion in Song et al. (2021d). It is straightforward to show that the score

function of Blackout Diffusion Eq. (7) has an interesting functional form

1 oe t—m
m+1<1—et _1>' “43)

We did not directly learn this function in this paper.

Remark 2. The discrete-state score functions Eq. (42) depends on the forward solution evaluated at the preimage m’ = &1 [m)]
of a viable transition to the state m. For general Markov transition process (see Appendix B) with J viable transitions into

state m (i.e., J non-zero Linm/, m # m'), there exists J distinct score functions with the same functional form (42).

D. Deriving the binomial bridge formula

The Binomial Bridge Formula (10) can be established straightforwardly. For 0 < s < ¢, Eq. (8) states

o —ms —s\o—m
Pim.5)l(0.0) = ( m )6 (1) (a4)
0 —nt —t\o—n
Pln.t)l(0,0) = ( n >€ (1-e)" . 45)
In addition, the forward propagation from time s to ¢ can be expressed in a similar form, by the Markov property of the
process:
m —n(i—s C(i—s m—n
P(n,t)|(m,s) = ( n ) e =) (1 —e )) : (46)

Applying conditional Bayes formula,

P(n.t)|(m,s),(0,0)P(m.s)|(0,0) _ P(n.t)[(m,5)P(m,5)|(0,0)

P(m,s)|(n,t),(0,0) =

P(n,t)|(0,0) P(n,t)|(0,0)
B (0 o TL)' e—ms (1 _ e—s)o_m e—n(t—s) (1 _ e—(t—s))m_n
~ (m—n)!(0o—m)! et (1 — e t)o"
(o —n)! 1—e s\ fes —et\"T"
- S 47
(m=—n)l{o—m)! \1—e? 1—et ’ “7)
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where we used the Markov property to establish the first equality. By defining r := (¢7* — e~ %) / (1 — e™t), the above
equation can be succinctly expressed as

(o —n)!

m —mn)!(o—m)! (L =)™, (48)

P(m,s)|(n,t),(0,0) = (

which is the probability mass function of a binomial distribution.

Remark (the “physicists’ solution”). The Binomial Bridge Formula can be understood intuitively by the following argument.
Consider o radioactive particles going through a 3 decay process. We are asked to infer how many are radioactive at time
s, given that there are n still active at time ¢. Another way to frame the condition is that at time ¢, there are o — n already
decayed. For any one of these particles, the conditional probability that it already decayed at time s conditioned on that
it decayed at time ¢ is (1 — e~*)/(1 — e~ *); equivalently, the conditional probability that it remained radioactive at time
s conditioned on that it decayed at time tis 1 — (1 — e~ %) /(1 —e™t) = (e7* — e~ *) /(1 — e~ *). Because each particle
goes through an independent process, among those o — n which decayed at time ¢, Binom (0 — n, (e ™* —e™ ) /(1 — ™))
remained radioactive at time s. Adding n which has not decayed by time ¢, the total remaining population at time s is thus
n + Binom (0 — n, (1 —e™%) /(1 — ¢7!)) remaining.

E. Observation times

The observation times {tk};‘gzl specify when the realizations of the forward stochastic processes are generated. The choice

of {tk}le, analogous to the noise schedules in Gaussian diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2021d),
is crucial to the quality of the trained generative model. Here, we present a heuristic way to design the observation times.

Our proposition is to adopt the Fisher information (FI) of the forward process as a guidance. The main idea is that we
will use more observation times when the forward process (3) has higher FI. Recall that for the pure-death process (7),
suppose the color pixel at ¢ = 0 is at a state o € {2, at time ¢ the solution to the forward process is Binom (o, ¢(t)), where
the parameter ¢(t) = exp (—t). As such, the FI of parameter ¢ can be expressed

q(1—q)

Importantly, the time-dependent part of the FI(g) is identical for all initial configuration; the implicit dependence comes
from ¢(t) = exp (—t). Next, let us define a probability distribution ¢ of the observation times in infinitely-many observation
limit (T" — 00), such that the corresponding density d¢ is proportional to the time-dependent part of the FI:

Fl(q) = (49)

1
do(q) < ——. (50)
) q(1—q)
With a change of variable from ¢ to t by ¢ = e, the density function ¢ on the time domain is
et
de (t) o (51)

e t(1—et)

Note that the function d¢ is symmetric about ¢ = log(2), at which time the system is maximally noisy. Next, we use the
inverse transform sampling to generate discrete observation times. The first step is to express the cumulative distribution
function, obtained by integrating (51)

CDF(t) o Logit (e ") + const. (52)

Note the apparent singularity as ¢ |, 0 and ¢ 1 co. We bypass the singularity by a symmetry argument, that we would like
to put exactly half of the discretization times before and after log(2), and the fact that the final time t7 = 15 < oo will
be chosen. With the symmetry argument, the first finite time ¢; is determined to be — log (1 — e'7). Then, we uniformly
choose in between CDF(¢;) and CDF(T) for the rest ¢;’s, i.e.,

ty = —log {0 (Logit (L—e') + % [Logit (e~*") — Logit (1 — e—tT)]ﬂ , k=1,2,...T, (53)

where o(z) = Logit™*(z) := 1/ (1 4+ e~%) is the sigmoid function. Figure 4 shows the dependence of t;, on k.
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It is worth mentioning that we also experimented other heuristics, including replacing the Fisher Information by the entropy
of the process, entropic production rate, variance, Kullback—Leibler divergence between observation times, signal-to-
noise ratio metrics such as the coefficients of variation, and uniform temporal grid. Among all the heuristic methods we
experimented, the Fisher Information performed significantly better.
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Figure 4. The observation times defined by Eq. (53), in (left panel) linear and (right panel) logarithmic scales. The dashed lines label the
time ¢ = log 2, when the images are maximally noisified.

F. Likelihood functions

In this section, we derive the loss function from the formal likelihood function of continuous-time and discrete-state system.
It suffices to consider one transition (say, m — m’) with aground-truth transition rate A(¢). In the limit of §¢ < 1, the
probability of the state transition to m’ is then A(¢)At (van Kampen, 2007; Gardiner, 2009), and the probability of no
transition event occurred is 1 — A(¢t)A¢. More-than-one transition events can be ignored because they occur at higher
order of O (AtQ). Let us denote the model-predicted transition rate by x¢(t) which depends on model parameters 6. The
corresponding model predicted probabilities are rg(t)At and 1 — kg(t)At. Now, the support of the viable state is only
{m,m’}, so the instantaneous (at time t) negative log-likelihood (NNL) can be easily formulated

AB)AL
Ko (t)At

1— ()AL

~NLL(t) = \(t)Atlog 1— rg(t)AL

+ (1 = A(t)At) log (54

which is the Kullback—Leibler divergence between the two Bernoulli distributions induced by the ground-truth and model-
predicted processes at time ¢. Neglecting #-independent terms, and asymptotically expanding the second term on the

RHS
— (1= A(t)At)log (1 — ko(t)At)) = ro(t) AL + O (AF?), (55)

we arrive at
—NLL(¢) = At (ko(t) — A(t) log kg(t)) + (const. of 6). (56)

Note that in the reversal process, both the ground-truth reversal rate (prescribed by Eq. (5)) and the model-predicted rate k¢
are time-dependent, and we want to learn the whole process, formally 0 < t < co. Let us first consider the full negative
log-likelihood in the continuum-time limit (i.e., infinitely many observation times) by integrating the above expression:

Full NLL = / (ko (1) — A (1) log kg (7)) dT + (const. of 6). &)

In practice, the times are sampled in a Monte Carlo fashion, such that only one observation time is drawn for each drawn
training image. Recall that we devised a sampling distribution, Eq.(51), based on a heuristic argument about Fisher
information of the process in Appendix E. Similar to an importance sampler, each sample is reweighted by the probability
density ¢(t):

1

50 (ko (1) = A (1) log kg (7)) | dT + (const. of ). (58)

Full NLL = / & (1) {
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This brought us to the loss function as
At
l=—— (kg — Nlogkyg), 59)
5 )
and by minimizing [ we can achieve maximization of the likelihood. For the Blackout Diffusion process, the reverse-time

transition rate
(tk — tkfl) etk

A= (Xo— Xtpy) T (60)
and as the neural net predicts also the difference y = 0 — m,
etk
kg =Yy X m, (61)

which leads to the expression (11), after neglecting another #-independent constant.

We next derive finite-time corrected loss function, Eq. (12). Note that the model predicted k¢ can only be evaluated at a
priori defined observation times, t;’s. Using the (constant) rates predicted at time ¢ to evolve the system back to ¢5_;
is identical to the 7-leaping algorithm (Gillespie (2001); it is analogous to the Euler—Maruyama integration scheme for
continuous-state systems). Without taking time-dependent rate constants into account, the constant-rate approach results in
Xt | (XO, X, +1) — X, ~ Poisson (kg), and forms only an approximation to the true binomial distribution D. In this case,
we can still formulate the exact likelihood: assuming that at time ¢y

M
—logL = Z PMFgr (m) log

j=m

PMFgr (m)

PMFy (m) ’ 62)

where PMFgr is the ground-truth probability mass function of the binomial Eq. (10), and PMF; is the model-predicted
probability mass function, i.e., Poisson (k¢). Inserting the expressions, we obtain

M
—logL = — Z PMFgr (m) [mlog ke — kg| + (const. of 6)
j=m

M
Kg — Z mPMFgr (m) | log kg + (const. of 0)
j=m

e th—1 _ gtk

=rg — (0 —m) =" ~log kg + (const. of ). (63)

Since the neural net was used to predict o — m, we obtain (12), after discounting the distribution 1/¢.

G. Algorithms for general continuous-time discrete-state Markov processes

With a little more effort, it is possible to prescribe algorithms for general continuous-time discrete-state Markov processes.
Let us assume that at each discrete state m in 2, there are R potential transitions m — m/. We willuse r = 1... R to
denote the type of transition event, m/.. as the pre-image of the transition event (i.e., m, — m via type r transition), and
vr(m) as the forward transition rate. We will assume that the forward solution p(,, +)|(0,0) is already solved and provided
(see discussion in Sec. 4).

By Eq. (5), we can construct the reversal transition rate m — m/.:

7y Pmy, 4)](0,0)

)‘T (m) =V (mr) ) (64)
P(m,t)|(0,0)

which will be the learning target. Next, assume that the neural network, which is used to approximate the reversal transition
rates, is augmented to account for the index r (a simple but most likely not optimal implementation route is to use R
independent neural nets like NCSN++). A parallel derivation to that of the instantaneous likelihood in Appendix F leads to

R
—logL = Z At (Krp — Arlog Krg) + (const. of ). (65)

r=1
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Algorithm 3 Training for general Markov processes

R

Input: Forward solution p(x, +)|(x,,0). reverse rate functions {\, (X)},_;

repeat
Xg ¢ x, drawn from the training set
Draw an index k from {1, ... 7T} uniformly
Draw an index r from {1, ... R} uniformly
Xt ~ D(Xy,0)|(Xo,0) (Element-wise)
yvr < NNg (X4, , k,7)
wi 4+ (t — ty—1) (1 — =) (Using Eq. (11))
I wi x mean {(tx — tx—1) [yr — A\r (X4, ) logy.]}
Take a gradient step on V!l
until Converged

Algorithm 4 Generating images by 7-leaping

Initiate an all-black image X, =0
for k =T to1do
forr =1to Rdo
/\7;9 <+ NNy (th,k‘, 7“) R
n,.p ~ Poisson (ys) (element-wise)
end for
for Each component ¢ of X;, do
forr =1to Rdo
Perform (n,. ), type-r reversal transition
end for
end for
end for

The above equation agrees Campbell et al. (2022). As our construct of the reverse-time stochastic process is exact, this
indicates that the variational bounds of Campbell et al. (2022) in the continuum-time limit is tight. As the binomial bridge
formula no long holds in general, we use this instantaneous version of the likelihood function (cf. (11)) without the finite-time
correction (cf. (12)). For training, we can either use the direct sum, or a Monte Carlo scheme to sample a particular r for
each sample. We propose a sampling approach in Algorithm 3. Algorithm 3 and 4 prescribes our proposed training and
inference procedures. For inference, the binomial bridge formula no longer holds for the general cases. We thus fold back to
the 7-leaping algorithm (Gillespie, 2001) in Algorithm 4. We remark that Algorithms 1 and 2 can be considered as special
cases of 3 and 4. Our preliminary analysis [data not shown] shows that it is possible to learn a birth-and-death process
(R = 2; (van Kampen, 2007)) for the CIFAR-10 dataset. As the aim of this paper is to present the theoretical foundation and
to establish the feasibility, we focus on Blackout Diffusion and leave the more complex model to a future study.

H. Binarized MNIST dataset

We performed a parallel analysis on training the Blackout Diffusion Model on a binarized MNIST dataset. We first resized
the MNIST samples to 32 x 32, as the architecture provided in Song et al. (2021c) does not apply to 28 x 28 images. We
binarized the dataset by a threshold 127.5. The binarized dataset thus has a highly discrete state space, 2 = {0,1}. We
used the infinitesimal loss function 11, batch size 256, and trained the network for 250K iterations. We used the Poissonian
scheme for generating the dataset. Figure (8) shows the generation and Fig. 9 showcases 400 generated samples. Using
60,000 generated samples, the FID to the training dataset is 0.023.

I. Celeb-A 64x64 dataset

We conducted a similar study, training our model on the CelebA 64x64 dataset. We used the infinitesimal loss function 11
which achieved an FID of 3.22 when comparing 50,000 generated samples to the training dataset, demonstrating the high
fidelity of the model’s output. The first 144 generated images can be seen in Fig. 10.
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Table 3. Continuous-state methods vs Blackout

TRAINING
9

METHODS ON CIFAR10 CONTINUOUS?  SAMPLING STEPS FID () [TERATIONS
IMPROVED++ (NICHOL & DHARIWAL, 2021) v 1K 3.29 500K
IMPROVED++ (NICHOL & DHARIWAL, 2021) v 4K 2.90 500K
SDE VE (DEEP NCSN++) (SONG ET AL., 2021D) v 2K (1K CORRECTOR) 2.2 1.3M
SDE VE (NCSN++)(SONG ET AL., 2021D) v 2K (1K CORRECTOR) 2.38 1.3M

EDM-G++ (KIM ET AL., 2022) v 1K 1.77 PRE-TRAINED MODEL
BLACKOUT (OURS) X 1K 4.77 300K
1000

k=0 k=100 k=200 k=300 k= 400 k

700 & 800

(a)

L

(b)

=

e

Figure 5. Figure 1 without an adjusted colormap.

k=1000 k=900 k=800 k=700 k=600 k=500 k=400 k=300 k=200 k=100

Figure 6. Figure 3 without an adjusted colormap.
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Figure 7. Four hundred samples generated by Blackout Diffusion trained by the instantaneous loss function Eq. (11) and generated by the
binomial bridge formula Eq. (10) during inference.
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Figure 8. Generation of binarized MNIST samples.
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