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Abstract

Supervised learning is often affected by a cov-

ariate shift in which the marginal distributions

of instances (covariates x) of training and test-

ing samples ptr(x) and pte(x) are different but

the label conditionals coincide. Existing ap-

proaches address such covariate shift by either

using the ratio pte(x)/ptr(x) to weight training

samples (reweighted methods) or using the ratio

ptr(x)/pte(x) to weight testing samples (robust

methods). However, the performance of such ap-

proaches can be poor under support mismatch

or when the above ratios take large values. We

propose a minimax risk classification (MRC) ap-

proach for covariate shift adaptation that avoids

such limitations by weighting both training and

testing samples. In addition, we develop effective

techniques that obtain both sets of weights and

generalize the conventional kernel mean match-

ing method. We provide novel generalization

bounds for our method that show a significant in-

crease in the effective sample size compared with

reweighted methods. The proposed method also

achieves enhanced classification performance in

both synthetic and empirical experiments.

1. Introduction

Most supervised learning methods assume that training

and testing samples are drawn i.i.d. from the same un-

derlying distribution. However, practical scenarios are of-

ten affected by a covariate shift in which the marginal

distributions of instances (covariates x) of training and

testing samples ptr(x) and pte(x) are different (see e.g.,

(Sugiyama & Kawanabe, 2012; Quiñonero-Candela et al.,
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2008)), while the conditional label distribution stays the

same. In such scenarios, conventional supervised classi-

fication methods, like empirical risk minimization, can per-

form poorly because the empirical risk is approximating the

training expected risk, rather than the test expected risk.

Most of the existing methods for covariate shift

adaptation are based on the reweighted approach

(Sugiyama & Kawanabe, 2012; Quiñonero-Candela et al.,

2008; Cortes et al., 2008; Huang et al., 2006). These

methods weight loss functions at training using the ratio

pte(x)/ptr(x) so that training samples more likely in

the test distribution are assigned higher weights (see

Fig. 1), increasing their relevance at training. Such ratios

can be estimated by using training and testing instances

(Tsuboi et al., 2009; Yamada et al., 2011; Liu et al., 2013).

Reweighted methods are designed for situations where the

support of ptr contains that of pte. However, even if such

condition is satisfied, reweighted methods may achieve

poor performances if the ratio pte(x)/ptr(x) take large

values at certain training samples, leading to inaccurate

estimations of expected losses (see e.g., (Cortes & Mohri,

2014; Reddi et al., 2015)). Such problems can be alle-

viated by flattening the above ratio (Shimodaira, 2000;

Yamada et al., 2011), by utilizing a regularization term

based on the unweighted solution (Reddi et al., 2015), and

by directly estimating weights for training samples through

kernel mean matching (KMM) methods (Gretton et al.,

2008; Huang et al., 2006).

Robust methods for covariate shift adaptation

(Liu & Ziebart, 2014; 2017; Chen et al., 2016) are de-

rived from a distributionally robust learning framework,

where the feature expectation matching constraints are

obtained from training samples but the adversarial risk

is defined on the test distribution. Such methods weight

feature functions at testing using the ratio ptr(x)/pte(x)
(see Fig. 1). The resulting parametric form produces

less confident predictions when testing samples are less

likely in the training distribution. Robust methods are

designed for situations where the support of pte contains

that of ptr. However, even if such condition is satisfied,

robust methods may achieve poor performances if the ratio

ptr(x)/pte(x) take large values at certain testing samples,

leading to overconfident classification rules.
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 Weights for training samples  Weights for testing samples

Reweighted approach Robust approach Proposed approach

Figure 1. Different approaches for covariate shift adaptation (training and testing instances follow Gaussian distributions with prob-

ability mass concentrated in the red and blue circles, resp.). Reweighted methods weight training instances x using the ratio

β(x) = pte(x)/ptr(x) while robust methods weight testing instances x using the ratio α(x) = ptr(x)/pte(x). The proposed approach

utilizes weights both for training and testing instances and can avoid large weights β(x) by reducing the corresponding α(x) and avoid

large weights α(x) by reducing the corresponding β(x).

In practice, the distributions of training and testing in-

stances can differ in an arbitrary manner (e.g., their sup-

ports may not be contained in each other). This paper pro-

poses a learning methodology that can tackle such general

covariate shift and addresses the limitations of existing ap-

proaches by weighting both training and testing samples

(see Fig. 1). In particular, the methods proposed are based

on minimax risk classifiers (MRCs) (Mazuelas et al., 2022;

2023) and utilize weighted averages of training samples to

estimate expectations of weighted feature functions under

the test distribution. Specifically, the main contributions in

the paper are as follows.

• We present a learning framework for general covari-

ate shift adaptation based on a double-weighting of

both training and testing samples. Our framework en-

compasses existing approaches for specific choices of

weights.

• We propose effective techniques that obtain weights for

training and testing samples, and generalize the con-

ventional KMM that only obtains weights for training

samples.

• We develop generalization bounds for the proposed

methods that show a significant increase in effective

sample size compared with reweighted approaches.

• We experimentally assess the performance improve-

ment obtained by the proposed techniques in multiple

covariate shift scenarios.

Notations. Calligraphic upper case letters represent sets;

bold lower and upper case letters represent vectors and

matrices, respectively; for a vector v, v(i) denotes its i-th
component, |v| denotes its component-wise absolute value,

and (v)+ denotes its positive part; 1 denotes a vector with

all components equal to 1; || · ||1, || · ||∞, and || · ||H denote

the 1-norm, the infinity, and the Hilbert space norm of its ar-

gument, respectively;� and� represent vector component-

wise inequalities; N(m,Σ) denotes the pdf of a Gaussian

r.v. x with mean m and covariance matrix Σ; and Ep{·}
denotes the expectation of its argument w.r.t distribution p.

2. Preliminaries

This section describes the learning setup, the two main ex-

isting approaches for covariate shift adaptation, and the

framework of MRCs.

Setup. Let X be the set of instances and Y the set of la-

bels represented by the set {1, . . . , |Y|}. We denote by

∆(X × Y) the set of probability distributions over X and

Y , and by T(X ,Y) the set of classification rules. For

h ∈ T(X ,Y), we denote by h(y|x) the probability with

which instance x ∈ X is classified by label y ∈ Y . We

use the notation pte for the underlying distribution at test,

and (x1, y1), (x2, y2) . . . , (xn, yn) for the set of training

samples. The ℓ-risk of a classification rule h is its expec-

ted classification loss with respect to the true underlying

distribution at test pte, i.e., R(h) = Epte
{ℓ (h, (x, y))}.

The learning objective is to use the training samples to find

a classification rule h that has small ℓ-risk R(h). In this

paper, we consider 0-1-loss and log-loss:

ℓ01 (h, (x, y)) = 1− h(y|x) (1)

ℓlog (h, (x, y)) = − log h(y|x). (2)

Covariate shift. Under covariate shift, the training

samples (x1, y1), (x2, y2), . . . , (xn, yn) follow a distribu-

tion ptr(x, y) such that the marginal distributions of in-
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stances differ, pte(x) 6= ptr(x), but label condition-

als coincide, ptr(y|x) = pte(y|x). In addition, covari-

ate shift methods assume that the ratio between ptr(x)
and pte(x) is known or that t unsupervised samples

xn+1, xn+2, . . . , xn+t from pte(x) are known at training.

In previous literature, it is also usually assumed that the

training support contains that at testing or vice versa. In this

paper, we consider general scenarios of covariate shift in

which such supports are not required to contain each other.

2.1. Main existing approaches

Reweighted methods. Most of the techniques for co-

variate shift adaptation are based on the reweighted ap-

proach (Sugiyama & Kawanabe, 2012; Shimodaira, 2000;

Zadrozny, 2004; Cortes et al., 2008; Dudı́k et al., 2005;

Lin et al., 2002). These methods exploit that, for any func-

tion f , we have that

Epte
f(x, y) = Eptr

β(x)f(x, y), for β(x) =
pte(x)

ptr(x)
(3)

if pte(x) > 0 ⇒ ptr(x) > 0. Reweighted methods weight

loss functions at training by means of the weight function

β(x) in (3), as detailed in Appendix A. Using these weights,

such methods can account for the fact that some training

instances are unlikely at testing, and assign low relevance

to such instances at training (see Fig.1).

Reweighted methods assume the support of ptr contains

that of pte (i.e., pte(x) > 0 ⇒ ptr(x) > 0) so that (3)

is valid. Even if this condition is satisfied, such meth-

ods may achieve poor performances if the ratio β(x) in

(3) takes large values at certain training samples. In these

cases, the learning process is dominated by few training

samples (see e.g., (Cortes & Mohri, 2014; Gretton et al.,

2008)). The flattening approach alleviates such problems

using weights for training samples smoothed utilizing a hy-

perparameter γ as (pte(x)/ptr(x))
γ

in (Shimodaira, 2000)

and as pte(x)/ (γpte(x) + (1− γ)ptr(x)) in (Yamada et al.,

2011).

Robust methods. Robust methods under covariate shift

(Liu & Ziebart, 2014; 2017) exploit that, for any f :

Epte
α(x)f(x, y) = Eptr

f(x, y), for α(x) =
ptr(x)

pte(x)
(4)

if ptr(x) > 0 ⇒ pte(x) > 0. Robust methods weight fea-

ture functions at testing1 by means of the weight function

α(x) in (4), as detailed in Appendix A. Using these weights,

such methods can account for the fact that some testing

1The robust bias-aware prediction weight the feature functions
in both training and testing as the weight appears in the predictive
parametric form. Here we are emphasizing the weights at testing
to show a symmetric view between these two methods.

instances are unlikely at training, and consider rules that

assign low-confidence predictions to such instances (see

Fig. 1).

Robust methods assume the support of pte contains that of

ptr (i.e., ptr(x) > 0⇒ pte(x) > 0) so that (4) is valid. Even

if this condition is satisfied, such methods may achieve

poor performances if the ratio α(x) in (3) takes large values

at certain testing samples. In these cases, the classification

rule would only provide confident predictions at few testing

samples.

The connection and symmetric relation between re-

weighted and robust methods are also shown in Theorem 3

in (Liu & Ziebart, 2014). They can both be regarded as

special cases of the adversarial risk minimization frame-

work (Fathony et al., 2016) when the feature expectation

matching constraints are set to match different empirical

estimates of the features. To enable covariate shift adapt-

ation in general cases (e.g., training and testing supports

not contained in each other), this paper proposes a learning

framework that avoids the limitations of existing methods

by utilizing a double-weighting approach.

2.2. Minimax Risk Classifiers

Similarly to other approaches based on robust risk minim-

ization (RRM) (Farnia & Tse, 2016; Fathony et al., 2016),

MRC methods (Mazuelas et al., 2022; 2023) do not require

that the training samples follow the same distribution as

the testing samples. MRCs minimize the worst-case ex-

pected loss with respect to distributions in uncertainty sets

that can contain the true underlying distribution with high

probability. The uncertainty sets are given by constraints

on the expectation of a function Φ : X × Y −→ R
m

referred to as feature mapping. Such a function can be

defined using one-hot encodings of the elements of Y as

Φ(x, y) = ey ⊗ x, where ey is the y-th element of the ca-

nonical basis of R|Y| and⊗ denotes the Kronecker product.

Given the uncertainty set U , we say that a classification rule

hU is a ℓ-MRC for U if

hU ∈ arg min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) (5)

and, we denote by R(U) the minimax risk against U , i.e.,

R(U) = min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) (6)

where ℓ(h, p) denotes the expected loss of classification

rule h w.r.t. distribution p.

3. Framework for Adaptation to General

Covariate Shift

This section first describes the proposed double-weighting

approach and the corresponding MRC learning methodo-
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logy. We then describe its relationship with existing tech-

niques, present finite-sample generalization bounds for the

proposed methods, and discuss the trade-off involved in the

choice of weight functions.

3.1. Double-weighting

The proposed framework considers both training and test-

ing weights, β(x) and α(x) (see Fig.1). We exploit the fact

that, for any function f , we have that

Epte
α(x)f(x, y) = Eptr

β(x)f(x, y) (7)

can be attained by multiple choices of weights α(x) and

β(x). For instance, it is satisfied taking

α(x) = min

(

C
ptr(x)

pte(x)
, 1

)

, β(x) = min

(

pte(x)

ptr(x)
, C

)

(8)

for any C > 0, since α(x)pte(x) = β(x)ptr(x), ∀x ∈ X .

Notice that the equality in (7) is satisfied taking weights as

in (8) even if the supports of ptr and pte do not contain each

other.

Such a double-weighting approach can avoid the limita-

tions of reweighed and robust methods. For x ∈ X
with large ratio pte(x)/ptr(x), using a small α(x) can en-

able to have α(x)pte(x) = β(x)ptr(x) with moderate val-

ues of β(x). Reciprocally, for x ∈ X with large ra-

tio ptr(x)/pte(x), using a small β(x) can enable to have

α(x)pte(x) = ptr(x)β(x) with moderate values of α(x).
For instance, using weights as in (8) we have that β(x) ≤ C
and α(x) ≤ 1 for any x ∈ X . Considering both weights

β(x) and α(x), we can both assign low relevance to train-

ing instances that are unlikely at testing, and also assign

low-confidence predictions to testing instances that are un-

likely at training.

3.2. MRC learning framework using double-weighting

The proposed framework adapts to general covariate shift

by constructing the uncertainty set U in (5) using both

weights α(x) and β(x). In particular, we use feature map-

pings weighted by α(x) as Φα(x, y) = α(x)Φ(x, y) and

constrain the difference between the expectation and em-

pirical mean estimates of feature mappings as follows

U = {p ∈ ∆(X × Y) : |EpΦα(x, y)− τ | � λ

and p(x) = pte(x), ∀x ∈ X} (9)

where τ denotes the mean vector of expectation estimates,

and λ is a vector that determines the confidence with which

pte(x, y) ∈ U . The expectation of the feature mapping

Φα(x, y) is estimated using averages of training samples

weighted by β(x) as

τ =
1

n

n
∑

i=1

Φβ(xi, yi), for Φβ(x, y) = β(x)Φ(x, y). (10)

Notice that the mean vector τ is an unbiased estim-

ator of Epte
Φα(x, y) for any choice of weights satisfying

α(x)pte(x) = β(x)ptr(x), in particular for those given by

(8). In addition, the accuracy of τ can be improved using

weights α(x) that avoid large weights β(x), as discussed in

Section 3.4 below.

Convex optimization. We next show how MRCs corres-

ponding with uncertainty sets (9) can be learned by solving

the convex optimization problem

min
µ
−τ Tµ+ Epte(x)ϕℓ(µ, x, α(x)) + λT|µ| (11)

where ϕℓ is a function defined under different loss func-

tions. For 0-1-loss, we have

ϕ01(µ, x, α(x)) = 1+max
C⊆Y

∑

y∈C Φα(x, y)
Tµ− 1

|C| (12)

and, for log-loss, we have

ϕlog(µ, x, α(x)) = log
∑

y∈Y
exp

{

Φα(x, y)
Tµ
}

. (13)

Theorem 3.1. Let τ ,λ ∈ R
m be such that the uncertainty

set U in (9) is not the empty set. If µ∗ is a solution of (11)

for 0-1-loss, the classification rule

hU(y|x) =
(

α(x)Φ(x, y)Tµ∗ − ϕ01(µ
∗, x, α(x)) + 1

)

+
(14)

is a 0-1-MRC for U . If µ∗ is a solution of (11) for log-loss,

the classification rule

hU(y|x) = exp
{

α(x)Φ(x, y)Tµ∗ − ϕlog(µ
∗, x, α(x))

}

(15)

is a log-MRC for U . In addition, the minimax risk R(U) is

given by

R(U) = −τ Tµ∗+Epte(x)ϕℓ(µ
∗, x, α(x))+λT|µ∗|. (16)

Proof. See Appendix B.

Remarks. The optimization in (11) can be addressed in

practice using conventional optimization methods such as

stochastic gradient descent. If unlabeled instances from

the test distribution are available at training, they can

directly be used to obtain samples corresponding to the

(sub)gradient of Epte(x)ϕℓ(µ, x, α(x)) since the function

ϕℓ does not depend on labels. If the marginals ptr(x), pte(x)
are known, training samples can be used to obtain samples

of the above gradient using (3). This theorem is novel as

we apply weights α and β for covariate shift adaptation,

even though the general form is analogous to the results

in (Mazuelas et al., 2022; 2023), which studies MRC with

train and test data sampled i.i.d. from the same distribution.
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Regularization. The convex optimization problem (11)

carries out an L1-type regularization, where the regular-

ization parameter is given by vector λ. The regulariz-

ation term in (11) allows to penalize each component

of parameter µ differently, such that feature components

with poorly estimated expectations (i.e., components i with

large λ(i)) are strongly penalized.

Classification rule. The deterministic classifier associated

with hU classifies each instance with the label maximiz-

ing hU(y|x). For both losses, this deterministic classifier

is given by

argmax
y∈Y

hU(y|x) = argmax
y∈Y

α(x)Φ(x, y)Tµ∗

= argmax
y∈Y

Φ(x, y)Tµ∗.
(17)

Such deterministic classifiers, denoted by hU

d , allow us to

classify testing samples even if we do not know the weights

α(x) associated with them.

Predictive confidence. The values of α(x) adjust the

confidence with which each sample is classified. For in-

stance, for very small values of α(x), the classifier hU

uniformly assigns labels in the set Y for both losses, i.e.,

hU(y|x) = 1/|Y| for all y ∈ Y .

Relation with existing approaches. The general

framework proposed above encompasses existing

approaches, as detailed in Appendix A for binary

classification with log-loss. The usage of weights

α(x) = 1, β(x) = pte(x)/ptr(x) leads to reweighted

methods (Sugiyama & Kawanabe, 2012), approximating

Epte(x)ϕℓ(µ, x, α(x)) in (11) using training instances. The

usage of weights α(x) = ptr(x)/pte(x), β(x) = 1 leads

to robust methods (Liu & Ziebart, 2014), approximating

the gradient of Epte(x)ϕℓ(µ, x, α(x)) in (11) using training

instances.

3.3. Generalization bounds

The following shows the generalization bounds of the pro-

posed methods in Section 3.2. Such bounds are given in

terms of smallest minimax risk, R∞, that corresponds with

the uncertainty set given by the exact expectations, and is

defined by

R∞ = min
µ
−Epte

Φα(x, y)
Tµ+ Epte(x)ϕℓ(µ, x, α(x)).

(18)

The MRC corresponding to that smallest minimax risk R∞

could only be obtained by an exact estimation of the expect-

ation of the feature mapping Φα that in turn would require

an infinite amount of training samples. The theorem below

shows risk bounds for the proposed MRCs in terms of min-

imax risks R(U) and smallest minimax risks R∞.

Theorem 3.2. Let U be a non-empty uncertainty set given

by (9) and hU be an ℓ-MRC for U . If µ∗ and µ∞ are solu-

tions to (11) and (18), respectively, then, we have that

R (hU) ≤R(U) + (|τ − Epte
Φα(x, y)| − λ)

T |µ∗| (19)

R (hU) ≤R∞ + λT (|µ∞| − |µ∗|)
+ |τ − Epte

Φα(x, y)|T |µ∞ − µ∗| . (20)

Proof. See Appendix B.

Note that the minimax risk R(U) obtained at learning offers

an upper bound for the ℓ-risk if λ � |τ − Epte
Φα(x, y)|

and an approximate upper bound for general λ. In addi-

tion, the difference between the risk R (hU) and the smal-

lest minimax risk R∞ decreases with the estimation error

|τ − Epte
Φα(x, y)|.

We next show how the proposed methods can lead to

a significant increase in effective size compared with re-

weighted methods.

Corollary 3.3. Let U be a non-empty uncertainty set given

by (9) with λ = 0, and hU be an ℓ-MRC for U . If weights

α(x) and β(x) are given by (8) with C = B/
√
D for D ≥

1 and

B = sup
x∈X

pte(x)/ptr(x). (21)

Then, with probability at least 1− δ we have that

R(hU) ≤ R∞ +M‖µ∞ − µ∗‖∞
√

2
B2

Dn
log

2

δ
(22)

where M is a constant satisfying ‖Φ(x, y)‖∞ ≤ M for all

x ∈ X , y ∈ Y .

Proof. A direct consequence of Theorem 3.2 and Hoeffd-

ing’s inequality.

As described in (Cortes et al., 2010; Yu & Szepesvári,

2012), reweighted methods have an estimation error of

the order

√

2B2

n
log 2

δ
so that the methods proposed can

achieve an effective sample size increased by a factor of D
using the double-weighting given by (8) with C = B/

√
D.

The next section more broadly discusses such an increase

in effective sample size and the corresponding trade-off for

predictions’ confidence.

3.4. Choice of weight functions

Existing reweighted and robust methods, as well as the pro-

posed general framework, utilize weights α(x) and β(x) in

the estimation of expectations:

1

n

n
∑

i=1

β(xi)f(xi, yi) ≈ Epte
α(x)f(x, y). (23)

The error of such estimates is determined by the weights

β(x). If α(x) and β(x) satisfy α(x)pte(x) = β(x)ptr(x),
using Hoeffding’s inequality we have that
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∣

∣

∣

∣

1

n

n
∑

i=1

β(xi)f(xi, yi)− Epte
α(x)f(x, y)

∣

∣

∣

∣

≤ ||f ||∞
√

2
||β||2∞
n

log
2

δ
(24)

with probability at least 1− δ.

In particular, for reweighted methods the bound (24) be-

comes ||f ||∞
√

2B2

n
log 2

δ
with B given by (21) as shown

in (Cortes et al., 2010; Yu & Szepesvári, 2012).

The error in the expectations estimates in (23) decreases

when we choose the weights α(x) adequately. In par-

ticular, using small values of α(x) we can achieve

α(x)pte(x) = β(x)ptr(x) with moderate values of β(x).
Such improvement comes at the expense of using classifica-

tion rules with significant confidence only in the subregion

of X in which α(x) is significantly larger than 0.

The above trade-off between error in expectations estimates

and confidence of classification rules can be addressed us-

ing pairs of weights of the form (8) and varying the value of

C. For values C ≥ B, α(x) = 1 and β(x) = pte(x)/ptr(x)
that corresponds to the reweighted approach. For values

C < B, the expectations’ estimates improve as we de-

crease C since ‖β‖∞ = C. However, the corresponding

classification rules would only predict with significant con-

fidence in the subregion of X where α(x) is significantly

larger than 0. Such subregion shrinks when C decreases be-

cause it is composed by the x ∈ X where pte(x) is not sig-

nificantly larger than Cptr(x). In the following, we present

methods that obtain weights α and β addressing the above

trade-off, and generalize conventional KMM methods.

4. Double-weighting Kernel Mean Matching

The KMM method obtains weights β ∈ R
n for n

training instances x1, x2, . . . , xn using t testing instances

xn+1, xn+2, . . . , xn+t (Huang et al., 2006; Gretton et al.,

2008). We propose the double-weighting KMM

(DW-KMM) method that obtains weights β ∈ R
n for the

n training instances together with weights α ∈ R
t for the t

testing instances by solving the optimization problem

min
α,β

∥

∥

∥

∥

∥

1

t

t
∑

i=1

α(i)K(xn+i)−
1

n

n
∑

i=1

β(i)K(xi)

∥

∥

∥

∥

∥

2

H

s.t. 0 ≤ β(i) ≤ B/
√
D, for i = 1, . . . , n

0 ≤ α(i) ≤ 1, for i = 1, . . . , t
∣

∣

∣

∣

1

n

n
∑

i=1

β(i) − 1

t

t
∑

i=1

α(i)

∣

∣

∣

∣

≤ ǫ

||α− 1|| ≤
(

1− 1√
D

)√
t (25)

where K : X −→ H is a feature map corresponding with

a reproducing kernel Hilbert space (RKHS) H with kernel

k(x, x̄) = 〈K(x),K(x̄)〉H.

As described above, the hyperparameter D ≥ 1 in (25) bal-

ances the trade-off between error in expectation estimates

and confidence of the classification. For D = 1, the op-

timization problem becomes that of KMM for reweighted

methods (Huang et al., 2006; Gretton et al., 2008).

Performance guarantees. The proposed approach is an

empirical version of the following (population) problem

given by exact expectations

min
α(x),β(x)

∥

∥

∥

∥

Epte(x)α(x)K(x)− Eptr(x)β(x)K(x)

∥

∥

∥

∥

2

H

s.t 0 ≤ β(x) ≤ B/
√
D, 0 ≤ α(x) ≤ 1, ∀x ∈ X

Epte(x)α(x) = Eptr(x)β(x)

Epte(x)

{

(α(x)− 1)2
}

≤
(

1− 1/
√
D
)2

. (26)

The minimum value of (26) is zero since (8) with

C = B/
√
D is a feasible solution. Then, solutions of (26),

β̂(x), α̂(x), provide consistent estimators of expectations

because

Epte(x,y)α̂(x)Φ(x, y) = Eptr(x,y)β̂(x)Φ(x, y) (27)

is satisfied if the kernel k is characteristic or if

Epte(y|x)Φ(x, y) belongs to H, analogously as shown in

(Yu & Szepesvári, 2012).

With finite samples, the following theorem shows bounds

for the difference between the empirical means in feature

space for solutions of (26).

Theorem 4.1. If β̂(x) and α̂(x) are solutions of (26), with

probability at least 1− δ we have that
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

β̂(xi)K(xi)−
1

t

t
∑

i=1

α̂(xn+i)K(xn+i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

≤
(

1 +

√

2 log
2

δ

)

κ

√

(

B2

Dn
+

1

t

)

(28)

where the constant κ satisfies |k(x, x)| ≤ κ2 for all x ∈ X .

Proof. See Appendix C.

Relation with conventional KMM. The solutions β̂(x)
for conventional KMM in reweighted methods satisfy with

probability at least 1− δ
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

β̂(xi)K(xi)−
1

t

t
∑

i=1

K(xn+i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

≤
(

1 +

√

2 log
2

δ

)

κ

√

(

B2

n
+

1

t

)

(29)
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as shown in Lemma 4 of (Huang et al., 2006) and equa-

tion (10) in (Yu & Szepesvári, 2012). Therefore, the pro-

posed DW-KMM allows to significantly improve the ef-

fective sample by exploiting the usage of weights α. Ana-

logously to the results shown in Section 3.4, the effective

sample size of the methods proposed is D times larger than

that of existing KMM for reweighted methods.

5. Practical Algorithm

In this section, we present a practical algorithm for the

proposed Double-Weighting for General Covariate Shift

(DW-GCS), detailed in Algorithm 1. We first compute

weights α and β by solving (25), then, we learn the clas-

sifier’s parameters by solving (11) using mean vector τ

defined in (10) and confidence vector λ.

Algorithm 1 The proposed algorithm: DW-GCS

Input: Training samples (x1, y1), (x2, y2), . . . , (xn, yn)
Testing instances xn+1, xn+2, . . . , xn+t, D

Output: Weights β̂ and α̂

Classifier parameters µ∗, Minimax risk R(U)
1: β̂, α̂← solution of (25)

2: τ ← 1
n

∑n
i=1 β̂

(i)Φ(xi, yi)
3: λ← solution of (31)

4: µ∗ ← solution of (30) using (12) for 0-1-loss, and (13)

for log-loss

5: R(U)← −τ Tµ∗ + 1
t

t
∑

i=1

ϕℓ(µ
∗, xn+i, α̂

(i)) + λT|µ∗|

Computing weights and learning MRCs. Weights α

and β are computed solving the convex optimization (25),

which is a quadratic problem as detailed in Appendix D.

The optimization in (11) can be addressed by approximat-

ing the expectation by means of the t instances in testing

xn+1, xn+2, . . . , xn+t as

min
µ
−τTµ+

1

t

t
∑

i=1

ϕℓ(µ, xn+i, α
(i)) + λT |µ| (30)

that is an unconstrained convex optimization problem and

can be efficiently solved by conventional methods.

Hyperparameters. In principle, both hyperparameters

λ and D can be obtained by cross-validation. However,

standard cross-validation is not valid under covariate shift

(Sugiyama et al., 2007). We hence avoid cross-validation

and determine both parameters as follows.

As detailed in Section 3.4, the hyperparameter D serves to

address the trade-off between error in expectation estimates

and confidence of classification rules. For instance, values

of D close to 1 can be effective in situations with a large

number of samples while higher values of D can be effect-

ive with a reduced number of samples. This is shown by

the theoretical results in the paper, since the estimation er-

ror in the proposed methods is of the order O(1/
√
Dn), as

described by the performance bounds in Corollary 3.3 and

Theorem 4.1.

In practice, we propose to select the hyperparameter D tak-

ing advantage of the minimax risk provided at the learning

stage by the methods presented. Specifically, we select the

value of D to achieve the lowest minimax risk over a cer-

tain range D ≥ 1. Note that, as described in Theorem 3.2,

the minimax risk R(U) obtained at learning offers an upper

bound for the risk if λ � |τ − Epte
Φα(x, y)|, and an ap-

proximate upper bound for general λ. Therefore, the pro-

posed selection method in the paper uses the value of D
that results in the lowest upper bound over a range of val-

ues for D. Appendix E further illustrates the adequacy of

such approach in practice.

The second hyperparameter λ is determined solving

min
p,λ

1Tλ

s.t. τ − λ �
t
∑

i=1

∑

y∈Y
p(y|xn+i)Φα(xn+i, y) � τ + λ

λ,p � 0
∑

y∈Y
p(y|xn+i) = 1/t for i = 1, . . . , t (31)

that ensures the uncertainty set used is non-empty.

Complexity and implementation without testing in-

stances. The computational complexity of the methods pro-

posed is similar to existing methods for covariate shift ad-

aptation. Specifically, the step for DW-KMM that obtains

weights has a similar complexity as that for conventional

KMM. The main difference is that (25) has t additional

variables and t+ 1 additional constraints corresponding to

the weights α. The step that obtains the classifier para-

meters solving convex optimization problem (11) has the

same complexity as that for conventional methods. Finally,

the step that determines hyperparameters not only avoids

the usage of cross-validation but can also reduce complex-

ity. In particular, cross-validation with P partitions would

require solving (11) P times for each candidate value for

hyperparameters, while the methods proposed only require

solving (31) and (11) once, for each candidate value of D.

Algorithm 1 details the implementation of DW-GCS in

cases where testing instances are available at training. The

methods proposed can be implemented with small modi-

fications in cases where only training instances are avail-

able and the marginals (or their ratios) are known. In these

cases, weights α(x) and β(x) can be determined using (8)

with C = B/
√
D instead of solving (25), and optimization

(11) can be addressed using the training instances instead

of testing instances making use of equality (3).

7
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6. Experiments

This section shows experimental results for the pro-

posed approach in comparison with existing methods

on synthetic and real datasets. Reweighted and robust

approaches are implemented as in (Sugiyama et al., 2007;

Liu & Ziebart, 2014) and described in Appendix A, the

flattening method is implemented as in (Shimodaira, 2000),

the RuLSIF is implemented as in (Yamada et al., 2011),

the KMM method is implemented as in (Huang et al.,

2006), and the methods proposed are implemented as

described in Alg. 1. The source code for the methods

presented is publicly available in the library MRCpy

(Bondugula et al., 2023) and the experimental setup in

https://github.com/MachineLearningBCAM/

MRCs-for-Covariate-Shift-Adaptation.

For existing methods, the regularization parameter has been

fine-tuned as shown in Appendix E. For the proposed meth-

ods, hyperparameters are obtained as described in Sec-

tion 5. The results in this section are complemented by

those in Appendix E that provide further implementation

details and experimental results. In particular, the appendix

shows that selecting the hyperparameter D with lowest min-

imax risk results in performances near those obtained with

the best value for D by grid search.

Parameter δ

C
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er
ro

r

No adapt.
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Robust
DW-GCS

0

0.1

0.3

0.5

0.05 0.1 0.2 0.35 0.4 0.45

Figure 2. Classification error for different types of covariate shift.

In the case δ = 0.05, the training support contains that at testing,

while in the case δ = 0.45 we have the opposite.

Experiments with synthetic data. In the first set of res-

ults we show how the proposed approach can achieve cov-

ariate shift adaptation in situations where existing methods

are challenged. For such results, the training and testing

samples are drawn from distributions

ptr(x) = (0.5− δ)N(m1,Σ1) + (0.5 + δ)N(m2,Σ2)

pte(x) = (1− δ)N(m1,Σ1) + δN(m2,Σ2) (32)

with m1 = [−3/2, 0]T, m2 = [3/2, 0]T, Σ1 = Σ2 =

(1/4)I, and labels are y = 1 if x(1)x(2) ≥ 0 and y = 2 oth-

erwise. We use values δ ∈ {0.05, 0.1, 0.2, 0.35, 0.4, 0.45}
to simulate different relations between the marginals of

training and testing instances. We utilize the non-linear

feature mapping given by instances components and their

products and implement existing and proposed methods us-

ing the exact marginals. In addition, for each type of covari-

ate shift (value of δ) we carry out 1,000 random repetitions

with 100 training and testing samples.

Results. Figure 2 shows box-plots corresponding to the

classification error of exiting and proposed approaches in

comparison to that obtained without covariate shift adapta-

tion (α(x) = β(x) = 1). The results in the figure show how

reweighted (resp. robust) methods obtain poor perform-

ances in situations where the support of training (resp. test-

ing) instances does not contain that of testing (resp. train-

ing) instances. On the other hand, the methods proposed

can leverage the presented double-weighting approach and

adapt to more general covariate shifts.

Experiments with real datasets. In the second set of res-

ults, we assess the performance of the proposed methods in

comparison with existing techniques using real datasets. In

particular, reweighted and robust methods are implemented

with marginal distributions estimated using log-linear mod-

els as shown in (Bickel et al., 2007; 2009).

We generate covariate shift in the datasets following

(Huang et al., 2006) and (Gretton et al., 2008). In partic-

ular, we select training and testing samples with different

probabilities based on the medians of the first 3 features,

and based on the median of the first principal component of

features. In (Huang et al., 2006) and (Gretton et al., 2008),

covariate shift is generated with a biased sampling for test-

ing instances that are drawn with probability δte if the first

principal component or feature is larger than a certain value.

In those works, the training samples are uniformly sampled,

so that the generated covariate shifts correspond to situ-

ations where the support of training samples contains that

of testing samples. In the numerical results of the table be-

low, we generate more general covariate shifts by using a

biased sampling both for training and testing instances (us-

ing probabilities δtr = 0.7 and δte = 0.3). These covariate

shifts correspond to situations where the support of train-

ing and testing samples have certain overlap but they do

not need to be contained in each other. Additionally, we in-

clude experimental results using the “News20groups” data-

set that is intrinsically affected by a covariate shift since the

training and testing partitions correspond to different times

(Zhang et al., 2013). We consider the same 5 binary prob-

lems used in (Zhang et al., 2013), utilize the 1,000 features

with highest Pearson’s correlation, and randomly sample

1,000 training and testing samples in each repetition.

Results. Table 1 shows the averaged classification error
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Table 1. Classification errors in 21 scenarios show that the proposed methods can more adequately adapt to general covariate shift. Values

in bold show best classification error in each scenario.

Datasets Reweighted Flattening RuLSIF Robust KMM DW-GCS 0-1 DW-GCS log

Blood
Feature 1 .55± .08 .48± .11 .29± .04 .34± .06 .32± .03 .30± .03 .31± .03
Feature 2 .39± .03 .38± .03 .39± .03 .40± .03 .39± .04 .38± .05 .38± .05
Feature 3 .43± .05 .41± .05 .36± .04 .39± .04 .36± .04 .34± .03 .35± .03
PCA .48± .05 .48± .05 .29± .05 .44± .05 .30± .05 .28± .04 .28± .04
BreastCancer
Feature 1 .05± .02 .05± .03 .05± .02 .06± .03 .06± .02 .04± .02 .04± .02
Feature 2 .06± .02 .05± .02 .06± .03 .07± .03 .06± .03 .04± .02 .04± .02
Feature 3 .05± .02 .05± .02 .05± .02 .06± .03 .05± .02 .04± .02 .04± .02
PCA .03± .01 .03± .01 .03± .01 .03± .01 .03± .01 .02± .01 .02± .01
Haberman
Feature 1 .48± .07 .47± .08 .31± .06 .41± .09 .34± .10 .28± .07 .29± .06
Feature 2 .46± .08 .44± .08 .31± .06 .39± .08 .36± .10 .29± .08 .30± .07
Feature 3 .33± .05 .33± .05 .33± .05 .36± .06 .42± .08 .35± .07 .36± .06
PCA .43± .12 .42± .12 .29± .05 .42± .11 .35± .08 .30± .08 .31± .07
Ringnorm
Feature 1 .27± .02 .26± .02 .25± .02 .26± .02 .25± .02 .25± .02 .25± .02
Feature 2 .28± .02 .27± .02 .25± .02 .27± .02 .26± .02 .25± .02 .25± .02
Feature 3 .28± .02 .27± .02 .25± .02 .27± .02 .26± .03 .25± .02 .25± .02
PCA .32± .03 .29± .03 .25± .02 .26± .02 .28± .02 .27± .02 .26± .02
20 Newsgroups
comp vs sci .41± .02 .41± .02 .41± .02 .42± .03 .40± .02 .22± .02 .22± .02
comp vs talk .37± .03 .37± .03 .37± .03 .40± .05 .34± .03 .11± .02 .11± .02
rec vs sci .43± .02 .42± .02 .42± .02 .42± .03 .41± .02 .17± .02 .17± .02
rec vs talk .40± .03 .40± .03 .40± .03 .41± .03 .38± .03 .15± .02 .15± .02
sci vs talk .41± .03 .41± .02 .41± .02 .41± .04 .39± .02 .20± .02 .20± .02

corresponding to different datasets and covariate shift situ-

ations, together with their standard deviations over 100 ran-

dom partitions as detailed in Appendix E. The first column

of the table describes the different covariate shift datasets

generated as described above.

Overall, the experimental results show that the proposed

method provides improved adaptation to general covariate

shifts, even in situations where the supports of training and

testing samples are not contained in each other. These res-

ults agree with the discussion in Sections 2.1 and 3.1 as

well as the theoretical results in Corollary 3.3 and The-

orem 4.1 that show how the proposed methodology can

be effective in situations where existing methods based on

single weights are challenged. The improvement obtained

by the methods presented can be clearly observed by com-

paring the results obtained by the KMM method, since

that technique is the most closely related to the proposed

method. In particular, the results show that significant per-

formance improvements can be obtained using a double

weighting of both training and testing samples solving (25)

instead of using the existing KMM method (that solves (25)

fixing the weights α to be one).

7. Conclusion

Existing approaches for covariate shift adaptation use the

ratios between marginal distributions to either weight train-

ing or testing samples. However, the performance of such

approaches can be poor when the marginals’ supports are

not contained in each other or when marginals’ ratios take

large values. This paper proposes a minimax risk classi-

fication (MRC) approach for covariate shift adaptation that

avoids such limitations by weighting both training and test-

ing samples. We present effective techniques that obtain

both sets of weights generalizing the conventional kernel

mean matching method that only obtains weights for train-

ing samples. In addition, we present generalization bounds

for the proposed methods that show a significant increase in

effective sample size. The unifying approach and the learn-

ing methods proposed can enable techniques capable to ad-

apt to more general scenarios affected by covariate shift.
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A. Detailed derivations describing existing methods and relation with the proposed framework

The following describes reweighted and robust methods for binary classification with Y ∈ {−1, 1} and log-loss. In

particular, we show how, using the specific weights in (3) and (4), such methods can be obtained from Theorem 3.1 in

Section 3.2 corresponding to the proposed framework.

Reweighted methods consider classification rules of the form

h(y|x) = 1

1 + exp {−yxTµ} (33)

and learn the parameter µ using the fact that equality (3) in Section 2.1 allows to estimate expected losses with respect to

the test distribution using training samples since

Epte(x,y) log
(

1 + exp
{

−yxTµ
})

= Eptr(x,y)β(x) log
(

1 + exp
{

−yxTµ
})

.

for β(x) = pte(x)/ptr(x).

Robust methods consider classification rules of the form

h(y|x) = 1

1 + exp {−α(x)yxTµ} (34)

with α(x) = ptr(x)/pte(x). Such methods learn the parameter µ using the fact that equality (4) in Section 2.1 allows to

estimate the expected gradient of losses with respect to the test distribution using training samples since

Epte(x,y)∇µ log
(

1 + exp

{

−ptr(x)

pte(x)
yxTµ

}

)

= Epte(x,y)α(x)





−yxT

1 + exp
{

ptr(x)
pte(x)

yxTµ
}



 = Eptr(x,y)
−yxT

1 + exp
{

ptr(x)
pte(x)

yxTµ
} .

for α(x) = ptr(x)/pte(x).

For their derivation from the Theorem 3.1 corresponding to the proposed framework; taking Φ(x, y) = yx/2, we have that

optimization problem in (11) of Theorem 3.1 becomes

min
µ
− 1

n

n
∑

i=1

β(xi)
yix

T
i

2
µ+ Epte(x)

{

log
(

exp
{

α(x)
xT

2
µ
}

+ exp
{

− α(x)
xT

2
µ
})

}

(35)

in binary classification with log-loss.

If α(x) = 1, β(x) = pte(x)/ptr(x), the classifier in (15) of Theorem 3.1 coincides with that of reweighted methods in

(33). In addition, using (3) in Section 2.1 and approximating the expectation with training samples, the optimization in

(35) becomes

− 1

n

n
∑

i=1

pte(xi)

ptr(xi)
log
(

1 + exp
{

−yixT
i µ
})

(36)

that coincides with that of reweighted logistic regression (Sugiyama & Kawanabe, 2012).

If α(x) = ptr(x)/pte(x), β(x) = 1, the classifier in (15) of Theorem 3.1 coincides with that of robust methods in (34). In

addition, using (4) in Section 2.1, the gradient of objective function in (35) becomes

− 1

n

n
∑

i=1

xT
i yi
2

+ Eptr(x)
xT

2

1− exp
{

− ptr(x)
pte(x)

xTµ
}

1 + exp
{

− ptr(x)
pte(x)

xTµ
} (37)

that coincides with that shown in equation (7) in (Liu & Ziebart, 2014) for robust methods.

12
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B. Proofs for Section 3

The proofs of Theorem 3.1 and 3.2 below are done for the case of finite X . The proofs for infinite X can be carried out ana-

logously using Fenchel duality instead of Lagrange duality, similarly to as is done in (Altun & Smola, 2006; Mazuelas et al.,

2023).

Proof of Theorem 3.1. Firstly, for each h ∈ T(X ,Y), we have that

maxp∈U ℓ(h, p) = max
p

lTp− I+(p)

s.t.
∑

y∈Y p(x, y) = pte(x), ∀x ∈ X
τ − λ � ΦT

αp � τ + λ

(38)

where l, p, and Φα denote the vectors and matrix with rows ℓ(h, (x, y)), p(x, y), and Φα(x, y)
T, respectively, for

x ∈ X , y ∈ Y , and

I+(p) =

{

0 if p � 0

∞ otherwise.

Optimization problem (38) has Lagrange dual

min
µ

1
,µ

2
,ν(x)

−
(

τ − λ
)T
µ1 +

(

τ + λ
)T
µ2 + Epte(x)ν(x) + f∗(Φα(µ1 − µ2)− ν)

s.t. µ1,µ2 � 0

where ν is the vector in R
|X ||Y| with component corresponding with (x, y) for x ∈ X , y ∈ Y given by ν(x), and f∗ is the

conjugate function of f(p) = −lTp+ I+(p) given by

f∗(w) = sup
p�0

wTp+ lTp =

{

0 if w � −l
∞ otherwise

.

Therefore, the Lagrange dual above becomes

min
µ

1
,µ

2
,ν(x)

−
(

τ − λ
)T
µ1 +

(

τ + λ
)T
µ2 + Epte(x)ν(x)

s.t. µ1,µ2 � 0

Φα(x, y)
T(µ1 − µ2)− ν(x) ≤ −ℓ(h, (x, y)), ∀x ∈ X , y ∈ Y.

It is easy to see that the solution of such optimization problem µ̄1, µ̄2 satisfies that µ̄
(i)
1 µ̄

(i)
2 = 0 for any i such that λ(i) > 0.

Then λT(µ̄1 + µ̄2) = λT|µ̄1 − µ̄2| and taking µ = µ1 − µ2 the Lagrange dual above is equivalent to

min
µ,ν(x)

−τ Tµ+ λT|µ|+ Epte(x)ν(x)

Φα(x, y)
Tµ− ν(x) ≤ −ℓ(h, (x, y)), ∀x ∈ X , y ∈ Y

that has the same value as maxp∈U ℓ(h, p) since the constraints in (38) are affine and U is non-empty.

Therefore,

min
h∈T(X ,Y)

max
p∈U

ℓ(h, p) = min
h,µ,ν(x)

− τ Tµ+ λT|µ|+ Epte(x)ν(x)

Φα(x, y)
Tµ− ν(x) ≤ −ℓ(h, (x, y)), ∀x ∈ X , y ∈ Y.

For 0-1-loss we have that

Φα(x, y)
Tµ− ν(x) ≤ −1 + h(y|x), ∀x ∈ X , y ∈ Y
⇒
∑

y∈C

(

Φα(x, y)
Tµ− ν(x) + 1

)

≤ 1, ∀C ⊆ Y, x ∈ X

⇒ ν(x) ≥ 1 +

∑

y∈C Φα(x, y)
Tµ− 1

|C| , ∀C ⊆ Y, x ∈ X

⇒ ν(x) ≥ ϕ01(µ, x, α(x)), ∀x ∈ X .

13
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Therefore, for each µ, we have that any classification rule satisfying

h(y|x) ≥ Φα(x, y)
Tµ− ϕ01(µ, x, α(x)) + 1, ∀x ∈ X , y ∈ Y

is solution of

min
h,ν(x)

Epte(x)ν(x) = Epte(x)ϕ01(µ, x, α(x))

Φα(x, y)
Tµ− ν(x) + 1 ≤ h(y|x), ∀x ∈ X , y ∈ Y

and the result is obtained because for any x ∈ X , we have that

∑

y∈Y

(

Φα(x, y)
Tµ− ϕ01(µ, x, α(x)) + 1

)

+
= 1

because otherwise there would exist νx < ϕ01(µ, x, α(x)) such that

1 =
∑

y∈Y

(

Φα(x, y)
Tµ− νx + 1

)

+
= max

C⊆Y

∑

y∈C

(

Φα(x, y)
Tµ− νx + 1

)

which contradicts the definition of ϕ01(µ, x, α(x)).

The case of log-loss is analogous to the case for 0-1-loss above taking into account that

Φα(x, y)
Tµ− ν(x) ≤ log(h(y|x)), ∀x ∈ X , y ∈ Y
⇒
∑

y∈Y
exp{Φα(x, y)

Tµ− ν(x)} ≤ 1, ∀x ∈ X

⇒ ν(x) ≥ log
(

∑

y∈Y
exp{Φα(x, y)

Tµ}
)

, ∀x ∈ X

⇒ ν(x) ≥ ϕlog(µ, x, α(x)), ∀x ∈ X .

The lemma below is used in the proof of Theorem 3.2.

Lemma B.1. Let U be the uncertainty set given by (9) for τ ,λ ∈ R
m, and h be a classification rule. If

R01 (U , h) = min
µ
−τTµ+ Epte(x) max

y∈Y

{

1 + α(x)Φ(x, y)Tµ− h(y|x)
}

+ λT |µ| (39)

Rlog (U , h) = min
µ
−τTµ+ Epte(x) max

y∈Y

{

α(x)Φ(x, y)Tµ− log h(y|x)
}

+ λT |µ| (40)

then, for any p ∈ U

ℓ01(h, p) ≤ R01 (U , h) (41)

ℓlog(h, p) ≤ Rlog (U , h) . (42)

Proof of Lemma B.1. The proof is analogous to the proof of Theorem 5 of (Mazuelas et al., 2023). The case U = ∅ is

trivial. For the case where U 6= ∅, we will first calculate the Lagrange dual of the optimization problem minp̂∈U Ep̂q for a

general function q : X × Y → R. Then we will consider the fact that for any p ∈ U and h ∈ T(X ,Y),

min
p̂∈U

ℓ(h, p̂) ≤ ℓ(h, p) ≤ max
p̂∈U

ℓ(h, p̂)

and

max
p̂∈U

ℓ01(h, p̂) = −min
p̂∈U

Ep̂ {h(y|x)− 1}

max
p̂∈U

ℓlog(h, p̂) = −min
p̂∈U

Ep̂ log h(y|x)

14
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for 0-1-loss and log-loss respectively.

First, we have that minp̂∈U Ep̂q is equal to

min
p̂

qT p̂+ I+(p̂)

s.t. −
∑

y∈Y
p̂(x, y) = −pte(x) for all x ∈ X

τ − λ � ΦT
α p̂ � τ + λ (43)

where p̂, q, Φα denote the vectors and matrix with rows p̂(x, y), q(x, y) and α(x)Φ(x, y)T , respectively, for x ∈ X ,

y ∈ Y , and

I+(p̂) =

{

0 if p̂ � 0

∞ otherwise.

Optimization problem (43) has Lagrange dual

max
µ

1
,µ

2
,ν(x)

(τ − λ)Tµ1 − (τ + λ)Tµ2 + Epte(x)ν(x)− f∗ (Φα(µ1 − µ2) + ν)

s.t. µ1,µ2 � 0

where ν denotes the vector in R
|X ||Y| with component corresponding with (x, y) for x ∈ X , y ∈ Y given by ν(x), and f∗

is the conjugate function of f(p̂) = qT p̂+ I+(p̂) that becomes

f∗(w) =

{

0 if w � q

∞ otherwise.

Therefore, the previous Lagrange dual becomes

max
µ

1
,µ

2
,ν(x)

(τ − λ)Tµ1 − (τ + λ)Tµ2 + Epte(x)ν(x)

s.t. µ1,µ2 � 0

Φα(µ1 − µ2) + ν � q

which is equivalent to

max
µ

1
,µ

2

(τ − λ)Tµ1 − (τ + λ)Tµ2 + Epte(x) min
y∈Y

{

q(x, y)− α(x)Φ(x, y)T (µ1 − µ2)
}

s.t. µ1,µ2 � 0.

Taking µ = µ1 − µ2 the Lagrange dual problem is equivalent to

max
µ

τTµ+ Epte(x) min
y∈Y

{

q(x, y)− α(x)Φ(x, y)Tµ
}

− λT |µ|

that has the same value as its primal minp̂∈U Ep̂q since the constraints defining U are affine and U 6= ∅. Then, we have that

max
p̂∈U

ℓ01(h, p̂) = −min
p̂∈U

Ep̂ {h(y|x)− 1} = min
µ
−τTµ+ Epte(x) max

y∈Y

{

1 + α(x)Φ(x, y)Tµ− h(y|x)
}

+ λT |µ|

max
p̂∈U

ℓlog(h, p̂) = −min
p̂∈U

Ep̂ log h(y|x) = min
µ
−τTµ+ Epte(x) max

y∈Y

{

α(x)Φ(x, y)Tµ− log h(y|x)
}

+ λT |µ|

for 0-1-loss and log-loss respectively.

Proof of Theorem 3.2. For inequality (19), let U∞ be the uncertainty set given by the exact mean vector

τ∞ = Epte
Φα(x, y), i.e.,

U∞ = {p ∈ ∆(X × Y) : |EpΦα(x, y)− τ∞| � λ

and p(x) = pte(x), ∀x ∈ X} . (44)
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It is clear that we have pte(x, y) ∈ U∞, then for 0-1-loss, using Lemma B.1 and the definition of h(y|x) in (14), we have

that

R(hU) ≤ R01(U∞, hU) = min
µ
−τT

∞µ+ Epte(x) max
y∈Y

{

1 + α(x)Φ(x, y)Tµ− h(y|x)
}

≤ −τT
∞µ∗ + Epte(x) max

y∈Y

{

1 + α(x)Φ(x, y)Tµ∗ − h(y|x)
}

(45)

≤ −τT
∞µ∗ + Epte(x) max

y∈Y
ϕ01(µ

∗, x, α(x)) (46)

= −τT
∞µ∗ + Epte(x)ϕ01(µ

∗, x, α(x)) (47)

= R(U) + (τ − τ∞)Tµ∗ − λT |µ∗|. (48)

where, for inequality (45)-(46), we have used the fact that h(y|x) ≥ α(x)Φ(x, y)Tµ∗ + 1 − ϕ01(µ
∗, x, α(x)) and for

inequality (47)-(48) we have added and subtracted τTµ∗ and λTµ∗, and used the definition of R(U) in (16).

For log-loss, using Lemma B.1 and the definition of h(y|x) in (15), we have that

R(hU) ≤ Rlog(U∞, hU) = min
µ
−τT

∞µ+ Epte(x) max
y∈Y

{

α(x)Φ(x, y)Tµ− log h(y|x)
}

≤ −τT
∞µ∗ + Epte(x) max

y∈Y

{

α(x)Φ(x, y)Tµ∗ − log h(y|x)
}

(49)

= −τT
∞µ∗ + Epte(x) max

y∈Y
ϕlog(µ

∗, x, α(x)) (50)

= −τT
∞µ∗ + Epte(x)ϕlog(µ

∗, x, α(x)) (51)

= R(U) + (τ − τ∞)Tµ∗ − λT |µ∗| (52)

where, for inequality (49)-(50) we have used the fact that log h(y|x) = α(x)Φ(x, y)Tµ∗ − ϕlog(µ
∗, x, α(x)) and for

inequality (51)-(52) we have added and subtracted τTµ∗ and λTµ∗, and used the definition of R(U) in (16).

For inequality (20), note that using the definition of µ∗ and (47) (resp. (51)) for 0-1-loss (resp. log-loss), we have that

R(hU) ≤ −τT
∞µ∗ + Epte(x)ϕℓ(µ

∗, x, α(x))

≤ −τTµ∞ + Epte(x)ϕℓ(µ∞, x, α(x)) + λT |µ∞|+ (τ − τ∞)
T
µ∗ − λT |µ∗|

= R∞ + λT (|µ∞| − |µ∗|) + (τ∞ − τ )Tµ∞ + (τ − τ∞)Tµ∗

≤ R∞ + λT (|µ∞| − |µ∗|) + |τ − τ∞|T |µ∞ − µ∗| .

C. Proofs for Section 4

Proof of Theorem 4.1. The proof is analogous to Example 6.3 in (Boucheron et al., 2013) that shows a Hoeffding-type

inequality in Hilbert space.

We consider n+ t independent random variables taking values in the Hilbert spaceH as follows

fi =







1
n
β̂(xi)K(xi) if i = 1, 2, . . . , n

− 1
t
α̂(xi)K(xi) if i = n+ 1, n+ 2, . . . , n+ t.

(53)

and we want to bound ||∑n+t
i=1 fi||H. We have that,

||fi||H ≤







1
n

B√
D
κ if i = 1, 2, . . . , n

1
t
κ if i = n+ 1, n+ 2, . . . , n+ t.

(54)
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Taking v = κ2
(

B2

Dn
+ 1

t

)

and using the bounded differences inequality (Theorem 6.2 in (Boucheron et al., 2013)), we

have that, for all l ≥ √v

P

{∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+t
∑

i=1

fi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

> l

}

= P

{∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+t
∑

i=1

fi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

− E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+t
∑

i=1

fi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

> l − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+t
∑

i=1

fi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

}

≤ exp











−

(

l − E

∣

∣

∣

∣

∣

∣

∑n+t
i=1 fi

∣

∣

∣

∣

∣

∣

H

)2

2v











.

(55)

Finally, using Hölder’s inequality and by independence, we have that

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+t
∑

i=1

fi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

≤

√

√

√

√

E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n+t
∑

i=1

fi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

H

=

√

√

√

√

n+t
∑

i=1

E ||fi||2H ≤
√
v.

Therefore,

exp

{

− (l −√v)2
2v

}

= exp



















−

(

l −
√

κ2
(

B2

Dn
+ 1

t

)

)2

2κ2
(

B2

Dn
+ 1

t

)



















so that,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

n

n
∑

i=1

β̂(xi)K(xi)−
1

t

n+t
∑

i=n+1

α̂(xn+i)K(xn+i)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H

≤
(

1 +

√

2 log
1

δ

)

κ

√

(

B2

Dn
+

1

t

)

with probability at least 1− δ.

D. Quadratic version of DW-KMM

The convex optimization in (25) is a quadratic problem since the squared norm inH can be written as

∥

∥

∥

∥

∥

1

t

t
∑

i=1

α(i)K(xn+i)−
1

n

n
∑

i=1

β(i)K(xi)

∥

∥

∥

∥

∥

2

H

=
1

t2

t
∑

i,j=1

α(i)α(j)k(xn+i, xn+j) +
1

n2

n
∑

i,j=1

β(i)β(j)k(xi, xj)−
2

nt

t
∑

i=1

n
∑

j=1

α(i)β(j)k(xn+i, xj)

=
αT

t







k(xn+1, xn+1) · · · k(xn+1, xn+t)
...

. . .
...

k(xn+t, xn+1) · · · k(xn+t, xn+t)







α

t
+

βT

n







k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)







β

n

− 2
βT

n







k(x1, xn+1) · · · k(x1, xn+t)
...

. . .
...

k(xn, xn+1) · · · k(xn, xn+t)







α

t

=
[

βT /n,−αT /t
]

K

[

β/n
−α/t

]

where K is the kernel matrix given by K(i,j) = k(xi, xj).
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Therefore, the optimization problem (25) is equivalent to the quadratic optimization problem

min
α,β

[

βT /n,−αT /t
]

K

[

β/n
−α/t

]

s.t. 0 � β � (B/
√
D)1, 0 � α � 1

∣

∣

∣β
T
1/n−αT1/t

∣

∣

∣ ≤ ǫ (56)

||α− 1|| ≤
(

1− 1√
D

)√
t.

E. Implementation details and additional experimental results

This appendix details the datasets and settings used for the experiments in Section 6 and shows additional experiments.

For the experiments in Section 6, we have considered four binary classification datasets, available in the UCI repository

(Dua & Graff, 2017), and previously used in multiple papers on covariate shift adaptation (Gretton et al., 2008; Huang et al.,

2006; Kanamori et al., 2009; Mazaheri et al., 2020; Wen et al., 2014). In addition, we use the dataset “News20groups” that

is intrinsically affected by covariate shift (Zhang et al., 2013).

Table 2 details the characteristics of the datasets used in the experiments. The table also shows the parameter σ used in

the computation of the kernel matrix K for the RuLSIF, KMM and DW-KMM methods, which is determined using the

common heuristic based on nearest neighbors with K = 50, as is done in (Wen et al., 2014). For the results obtained

using the flattening method in (Shimodaira, 2000) and the RuLSIF method in (Yamada et al., 2011) we considered the

hyperparameter γ = 0.5, which is the default value used in those papers.

Table 2. Datasets used in the experiments.

Dataset Covariates Samples
Ratio of

σ
majority class

Blood 3 748 76.20% 0.7491

BreastCancer 9 683 65.01% 1.6064

Haberman 3 306 75.53% 1.3024

Ringnorm 20 7400 50.49% 3.8299

comp vs sci 1000 5309 3534 55.31% 23.5628

comp vs talk 1000 4888 3256 60.06% 23.4890

rec vs sci 1000 4762 3169 50.17% 24.5642

rec vs talk 1000 4341 2891 55.02% 25.1129

sci vs talk 1000 4325 2880 54.85% 24.8320

In the additional experiments we study the effectiveness of the proposed selection method for hyperparameter D. Specific-

ally, Tables 3 and 4 show the average classification error varying the value of D for the datasets and covariate shifts shown

in Table 1. The first column of these tables shows the classification error obtained when selecting D with the proposed

method that minimizes the minimax risk, while the other columns show the classification error obtained using specific val-

ues of D. The values of the hyperparameter D have been chosen based on the last inequality in the optimization problem

(25). Specifically, we take the values for D such that 1 − 1/
√
D ∈ {0, 0.1, . . . , 0.9}. As can be seen from the tables, the

proposed selection method results in performances near those obtained with the best values of D.
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Table 3. Classification error in 21 scenarios using DW-GCS methods with 0-1-loss varying the value of the hyperparameter D.

Dataset
proposed

D = 1 D = 1.2 D = 1.6 D = 2 D = 2.8 D = 4 D = 6.3 D = 11 D = 25 D = 100
selection

Blood
Feature 1 0.30 0.32 0.31 0.31 0.31 0.30 0.30 0.30 0.29 0.29 0.30
Feature 2 0.38 0.40 0.40 0.40 0.40 0.39 0.39 0.38 0.38 0.37 0.38
Feature 3 0.34 0.39 0.37 0.36 0.36 0.35 0.34 0.34 0.34 0.33 0.34
PCA 0.28 0.32 0.30 0.29 0.28 0.27 0.27 0.28 0.28 0.28 0.28
BreastCancer
Feature 1 0.04 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.04
Feature 2 0.04 0.06 0.06 0.05 0.05 0.05 0.06 0.06 0.06 0.04 0.04
Feature 3 0.04 0.06 0.05 0.05 0.05 0.06 0.05 0.06 0.05 0.04 0.04
PCA 0.02 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.02
Haberman
Feature 1 0.28 0.39 0.36 0.33 0.30 0.29 0.28 0.28 0.28 0.28 0.28
Feature 2 0.29 0.39 0.37 0.35 0.33 0.32 0.30 0.30 0.30 0.30 0.29
Feature 3 0.35 0.46 0.45 0.43 0.40 0.37 0.35 0.35 0.34 0.34 0.34
PCA 0.30 0.40 0.38 0.35 0.32 0.30 0.29 0.29 0.29 0.30 0.29
Ringnorm
Feature 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Feature 2 0.25 0.25 0.26 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Feature 3 0.25 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25
PCA 0.27 0.30 0.29 0.29 0.28 0.28 0.27 0.27 0.26 0.27 0.27
20 Newsgroups
comp vs sci 0.22 0.25 0.24 0.23 0.22 0.21 0.21 0.21 0.21 0.21 0.21
comp vs talk 0.11 0.17 0.16 0.14 0.12 0.11 0.10 0.10 0.10 0.11 0.11
rec vs sci 0.17 0.19 0.18 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.16
rec vs talk 0.15 0.18 0.17 0.16 0.15 0.15 0.14 0.14 0.14 0.14 0.14
sci vs talk 0.20 0.22 0.21 0.20 0.19 0.19 0.18 0.18 0.18 0.19 0.19

Table 4. Classification error in 21 scenarios using DW-GCS methods with log-loss varying the value of the hyperparameter D.

Dataset
proposed

D = 1 D = 1.2 D = 1.6 D = 2 D = 2.8 D = 4 D = 6.3 D = 11 D = 25 D = 100
selection

Blood
Feature 1 0.31 0.32 0.32 0.32 0.31 0.30 0.30 0.30 0.29 0.29 0.30
Feature 2 0.38 0.41 0.40 0.40 0.40 0.39 0.38 0.38 0.38 0.38 0.38
Feature 3 0.35 0.38 0.38 0.37 0.36 0.36 0.35 0.34 0.34 0.34 0.34
PCA 0.28 0.32 0.30 0.29 0.29 0.28 0.28 0.28 0.28 0.28 0.28
BreastCancer
Feature 1 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.04 0.04
Feature 2 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.04 0.04
Feature 3 0.04 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.05 0.04 0.04
PCA 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02
Haberman
Feature 1 0.29 0.38 0.36 0.34 0.31 0.30 0.29 0.29 0.29 0.29 0.28
Feature 2 0.30 0.39 0.37 0.35 0.33 0.32 0.31 0.31 0.31 0.31 0.30
Feature 3 0.36 0.46 0.44 0.43 0.40 0.37 0.36 0.35 0.35 0.35 0.34
PCA 0.31 0.39 0.38 0.36 0.33 0.31 0.30 0.30 0.30 0.31 0.30
Ringnorm
Feature 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
Feature 2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.24 0.25
Feature 3 0.25 0.26 0.26 0.26 0.25 0.26 0.25 0.25 0.25 0.25 0.25
PCA 0.26 0.30 0.29 0.29 0.28 0.27 0.27 0.26 0.26 0.26 0.27
20 Newsgroups
comp vs sci 0.22 0.25 0.24 0.23 0.22 0.21 0.21 0.21 0.21 0.21 0.21
comp vs talk 0.11 0.17 0.16 0.14 0.12 0.11 0.10 0.10 0.10 0.11 0.11
rec vs sci 0.17 0.19 0.18 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.16
rec vs talk 0.15 0.18 0.17 0.16 0.15 0.15 0.14 0.14 0.14 0.14 0.14
sci vs talk 0.20 0.22 0.21 0.20 0.19 0.19 0.18 0.18 0.18 0.19 0.19
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