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Abstract
We present a simple reduction from sequential
estimation to sequential changepoint detection
(SCD). In short, suppose we are interested in de-
tecting changepoints in some parameter or func-
tional θ of the underlying distribution. We demon-
strate that if we can construct a confidence se-
quence (CS) for θ, then we can also successfully
perform SCD for θ. This is accomplished by
checking whether two CSs — one forwards and
the other backwards — ever fail to intersect. Since
the literature on CSs has been rapidly evolving
recently, the reduction provided in this paper im-
mediately solves several old and new change de-
tection problems. Further, our “backward CS”,
constructed by reversing time, is new and poten-
tially of independent interest. We provide strong
nonasymptotic guarantees on the frequency of
false alarms and detection delay, and demonstrate
numerical effectiveness on several problems.

1. Introduction
We study the problem of sequential changepoint detec-
tion (SCD), where the goal is to quickly detect any changes
in the distribution generating a stream of observations, while
controlling the false alarm rate at a specified level. Formally,
for some (possibly infinite-dimensional) index set Θ, let
{Pθ}θ∈Θ denote a class of distributions on some observation
space X . Suppose that for some T ≥ 1, the observations
{Xt : 1 ≤ t ≤ T} are drawn i.i.d. from Pθ0 with θ0 ∈ Θ,
and {Xt : t > T} are drawn i.i.d. from Pθ1 for some
θ1 ∈ Θ, with θ1 ̸= θ0. Then, the SCD problem involves
deciding between the null H0 : {T = ∞}, meaning no
change occurred, and the alternative H1 = ∪i∈N{T = i}.

Since the observations arrive sequentially, our task is to
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design a random stopping time, τ , adapted to the natural
filtration {Ft : t ≥ 1} with Ft = σ(X1, . . . , Xt), at which
we reject the null. A good stopping rule τ takes large values
under the the null (i.e., when T = ∞), while minimizing the
time required to detect the change under the alternative (i.e.,
when T < ∞). Formally, when T = ∞, we require the
average run length (ARL), E∞[τ ], to be lower bounded by
1/α, for a given α ∈ (0, 1], while ensuring a small detection
delay, ET [(τ −T )+], when T <∞. Informally, this means
that we will have a false alarm roughly every 1/α steps, so
the reader may use α = 10−3 as a rough guideline. (We also
briefly discuss how to keep the probability of even a single
false alarm below α, but there is a tradeoff between the false
alarm guarantee and detection delay; detecting true changes
quickly necessitates tolerating infrequent false alarms.)

The literature on the topic of sequential changepoint detec-
tion is vast, as this problem arises in several important real-
world applications, such as quality control (Shewhart, 1930),
monitoring power networks (Chen et al., 2015), analysis of
genomes (Chen et al., 2011; Shen and Zhang, 2012), and epi-
demic detection (Baron et al., 2004; Yu et al., 2013). Some
of the earliest works in this topic (Shewhart, 1925; Page,
1954; Shiryaev, 1963) assume that the pre- and post-change
distributions admit known densities f0 and f1 (w.r.t. some
common reference measure). These methods use statistics
involving likelihood ratios, that can be computed efficiently
in an incremental manner, and have also been shown to
admit strong optimality properties. The ideas underlying
these likelihood-based schemes have also been extended to
the case of (finite-dimensional) parametric families of dis-
tributions, such as the exponential family; see Tartakovsky
et al. (2014) for a detailed discussion. However, these para-
metric assumptions are often too stringent to be applicable
to many practical applications, where the data distributions
may lie in much larger, nonparametric, classes. Most of the
ideas developed for the parametric setting, and in particu-
lar the likelihood-based schemes, fail to be applicable in
the nonparametric case. With some exceptions discussed
later, there are very few general principles for constructing
nonparametric changepoint detection schemes. Our work in
this paper addresses this issue, by developing a conceptually
simple ‘meta-algorithm’ for transforming any confidence se-
quence construction into a powerful changepoint detection
method. As a consequence, we can immediately build upon
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the recent progress in constructing confidence sequences to
instantiate new changepoint detection methods.

Remark 1. We note that the SCD problem is usually studied
in two settings, that differ from each other is a very subtle
manner. In the first (and the more common) setting, the pre-
and post change distributions (Pθ0 and Pθ1) are assumed
to lie in two different, and usually well-separated, classes
of distributions. Using our notation, this is equivalent to
assuming that there exist two known disjoint sets Θ0 and
Θ1, such that θi ∈ Θi, for i = 0, 1. The second setting,
that is the subject of our paper, assumes less information.
That is, both θ0 and θ1 are assumed to lie in some common
index set (Θ in our notation), and the only condition is that
θ0 ̸= θ1. Hence, the first setting is in some sense “easier”,
as the additional knowledge about Θ0 and Θ1 (their size,
and their separation) can be exploited to design appropriate
SCD schemes. While there exist some works that develop
methods for SCD in the second setting, those schemes often
rely on the specific structure of the problems considered. In
this paper, we address this issue by developing a general
principle for designing SCD schemes in the second setting.

2. Preliminaries
The primary technical tool we use in our strategy are time-
uniform version of confidence sets, called confidence se-
quences (CSs), that were first introduced in statistics litera-
ture by Darling and Robbins (1967). We present a definition
adapted to our problem below.

Definition 2 (Confidence Sequences). Suppose
X1, X2, . . . are drawn i.i.d. from Pθ, for some θ ∈ Θ.
Then, for any α ∈ (0, 1), a level-(1 − α) CS, denoted
by {Ct : t ≥ 1}, is a collection of subsets Ct ⊂ Θ, such
that (i) Ct is σ(X1, . . . , Xt)-measurable and (ii) P

(
∀t ≥ 1 :

θ ∈ Ct

)
≥ 1− α.

Remark 3. Due to the time-uniformity in the definition of
CSs, we can replace the confidence set Ct with the smaller
set C̃t := ∩s≤tCs. The new CS, {C̃t : t ≥ 1}, consists of
nested confidence sets; that is, C̃t ⊂ C̃s for s < t.

Remark 4. The data do not need to be i.i.d. for defining
CSs. The above definition can be easily generalized to
the case of independent random variables, with Xt ∼ Pϑt

,
with ϑt ∈ Θ (see Appendix A). This, however, requires
that Θ is endowed with the notions of addition and scalar
multiplication (a sufficient condition is that Θ is a vector
space), which we implicitly assume when needed.

We now introduce a notion of the ‘size’ of the confidence
set Ct, that reflects the amount of uncertainty.

Definition 5 (CS width). Let Θ be endowed with a dis-
tance metric d, and let {Ct : t ≥ 1} denote a level-(1− α)
CS constructed on observations X1, X2, . . . drawn i.i.d.
from Pθ. A function w(t, θ, α) denotes the pointwise width

(bound) of the CS, if for all t ∈ N and θ ∈ Θ, we have
supθ′,θ′′∈Ct

d(θ′, θ′′) ≤ w(t, θ, α). We define the uniform
width over Θ, as w(t,Θ, α) = supθ∈Θ w(t, θ, α).

As we will see later in Section 5, most of the non-trivial CSs
have their pointwise widths (and often, the uniform widths
as well) converging to 0 with the number of observations.

Example 6. Consider independent random variables {Xt :
t ≥ 1}, with Xt ∼ N(θ, 1) and θ ∈ R for all t ≥ 1. In
this case, the parameter set is Θ = R. For this process,
we can define the CS {Ct : t ≥ 1} as follows: Ct =
[X̄t −wt/2, X̄t +wt/2], where X̄t = (1/t)

∑t
i=1Xi, and

wt = 3.4
√

(log log(2t) + 0.72 log(10.4/α)) /t. Thus, if
we endow the parameter space Θ with the metric d(θ, θ′) =
|θ − θ′|, we observe that the uniform width of Ct, denoted
by w(t,Θ, α) = wt, converges to 0.

Related Work. As we mentioned earlier, a large part of the
existing SCD literature focuses on the parametric setting.
We refer the reader to some recent surveys, such as those
by Veeravalli and Banerjee (2014); Xie et al. (2021), and
the textbook by Tartakovsky et al. (2014) for details. In
this section, we discuss some results on nonparametric SCD
methods that are more relevant to our work.

Shin et al. (2022) developed a novel framework for change-
point detection by introducing e-detectors; obtained by com-
bining a sequence of e-processes defined uniformly over
the class of pre-change distribution. They showed that their
resulting strategy using e-detectors controls the ARL un-
der very general conditions, and also proved the optimality
of their schemes (in terms of worst-case detection delays)
in some cases. However, as we mentioned in Remark 1,
their framework is applicable mainly in cases where the pre-
and post-change distributions are known to lie in different
classes. Our techniques, described in Section 3 and Sec-
tion 4, addresses this issue.

Maillard (2019b) considered the task of detecting a change
in the mean of a sequence of independent, univariate, sub-
Gaussian random variables; and proposed an SCD method
by deriving a new, doubly time-uniform confidence se-
quence for the scan statistics associated with a generalized
likelihood ratio scheme (Lai and Xing, 2010). The original
proof of this concentration inequality (Maillard, 2019b, The-
orem 4) was incomplete, and a corrected version (with an
additional log log term) was obtained by the author in (Mail-
lard, 2019a, Chapter 3, § 4.1). For the resulting scheme,
Maillard (2019a) obtained bounds on the probability of false
alarm and on the detection delay, and also established the
optimality of this scheme under certain scenarios (such as
for Gaussian observations). Unlike Maillard (2019a), our
SCD framework is applicable to a much wider class of prob-
lems beyond univariate mean testing. Nevertheless, when
specialized to the case of univariate Gaussian observations,
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our scheme matches the optimal detection delay bound,
while also providing control over the ARL (instead of the
probability of false alarm).

Puchkin and Shcherbakova (2023) considered the SCD prob-
lem under the assumption that both the pre- and post-change
distributions admit densities w.r.t. a common reference mea-
sure, and proposed a strategy based on learning a discrimi-
nator to estimate the density ratio. They showed that their
strategy can control ARL at the required level, and also
obtained high probability upper bound on the detection de-
lay in terms of the Jensen Shannon (JS) divergence and the
L2 norm of the difference of densities. Unlike them, our
framework does not require the existence of densities, and
it also works for distributions that are separated in terms of
a large class of metrics, and not just the JS divergence.

Another class of nonparametric schemes for SCD are based
on the kernel-MMD metric, first employed by Gretton et al.
(2012) for designing powerful nonparametric two-sample
tests. Li et al. (2019) proposed a SCD scheme based on a
variant of the block-MMD statistic (Zaremba et al., 2013)
computed using the observations, and a block of pre-change
data. More recently, Flynn and Yoo (2019) and Wei and
Xie (2022) proposed new SCD schemes that use linear and
block-MMD statistics to define nonparametric analogues of
the CuSum test of Page (1954). However, these schemes
suffer from weak theoretical guarantees on the detection
delay. Furthermore, similar to the case of Puchkin and
Shcherbakova (2023), the strategies for designing these SCD
schemes are specific to the kernel-MMD metric; and there
is no obvious way to extend them to other popular met-
rics, such as the Kolmogorov-Smirnov metric. Our work
addresses these issues.

Similarly, most other existing works in SCD are geared to-
wards specific problem settings. Hence, both the design of
the scheme as well as their analysis are strongly tied to the
details of the problem being studied. Examples include em-
pirical likelihood based methods for distributions on finite
alphabets (Lau et al., 2018), nearest-neighbor techniques for
multivariate or non-euclidean data (Chen, 2019), and spec-
tral scan statistics for graph valued data (Sharpnack et al.,
2013). However, our objective in this paper is different:
instead of developing a powerful SCD scheme for a specific
task, we develop an abstract unifying template for designing
SCD schemes, that can then be instantiated for a large range
of (old and new) SCD problems.

Our Contributions. In Section 3, we first present (as a
warmup) a changepoint detection scheme that uses a single
level-α forward CS. Our strategy is to stop as soon as the
CS becomes ‘inconsistent’; that is, it includes a point that
it had previously discarded. We show in Proposition 8,
that this simple strategy controls the probability of false
alarm at level α, and we also obtain a high probability upper

bound on its detection delay. However, this scheme is too
conservative as its ARL is infinite, and in practice this might
result in large detection delays, especially when T is large.

In Section 4, we present our main strategy that proceeds by
checking at each time t, whether a forward CS and a back-
ward CS (a new notion) are consistent, and stops whenever
an inconsistency is detected. In Theorem 13, we show that
the ARL of this scheme is at least 1/(2α), and we charac-
terize its expected detection delay under general conditions.

Finally, in Section 5, we demonstrate the power and gen-
erality of our proposed scheme by instantiating it with five
different confidence sequences. The general bound on the
detection delay obtained in Theorem 13 easily translate into
problem-specific upper bounds in all these cases, and we
also empirically verify the theoretical predictions through
some simple numerical simulations.

3. Warmup: change detection via a forward CS
Before presenting our general scheme in the next sec-
tion, we first introduce a simpler SCD method that only
uses a single forward CS. We refer to this scheme as the
FCS-Detector. The idea underlying this scheme is that
if there is a change in the distribution generating the obser-
vations {Xt : t ≥ 1}, then the intersection of the CS will
eventually end up being empty. Formally, we proceed by
constructing a level-(1− α) confidence sequence (CS) for
the unknown θ0, denoted by {Ct : t ≥ 1}, as introduced
in Definition 2. When there is no changepoint, then the CS
satisfies P∞(∀t ∈ N : θ0 ∈ Ct) ≥ 1− α. However, if there
is a changepoint at some time T , we expect that the confi-
dence sets, Ct, deviate away from the confidence set CT ,
for t > T . Eventually, after sufficiently many post-change
observations, the confidence sequence will be inconsistent
and self-contradictory. That is, at some time t such that
t−T is large enough, we expect that ∩t

s=1Cs = ∅. We thus
define the stopping time, τ , as the smallest t at which the
above inconsistency is observed.

Definition 7 (FCS-Detector). Given observations
X1, X2, . . ., we construct a confidence sequence (CS), de-
noted by {Ct : t ≥ 1} for the pre-change parameter θ0. We
stop at time τ := min{n ≥ 1 : ∃t < n, Ct ∩ Cn = ∅}.

This strategy satisfies the following properties.

Proposition 8. Consider a change point detection prob-
lem with observations X1, X2, . . . drawn i.i.d. from Pθ0 for
t ≤ T and from Pθ1 for t > T , with T lying in N ∪ {∞}
and θ0, θ1 ∈ Θ. Suppose for any θ ∈ Θ, we can construct
confidence sequences {Ct : t ≥ 1}, with uniform width
w(t) ≡ w(·,Θ, α). Then, we have the following:
(i) When T = ∞, the FCS-Detector controls the
probability of false alarm (PFA) at level α. That is,
P∞ (τ <∞) ≤ α.
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(ii) Suppose T < ∞ is large enough to ensure that
w(T ) < d(θ0, θ1). For t > T , define λt := T/t, and
θ̃t := λtθ0 + (1 − λt)θ1. Then, we have τ − T ≤
min

{
t− T : w(t) + w(T ) ≤ d(θ0, θ̃t)

}
, with probability

at least 1− α.
Remark 9. If d is induced by a norm on Θ, we can bound
the detection delay under the event E by (τ − T )+ ≤
min

{
t− T : w(t) + w(T ) ≤ t−T

t d(θ0, θ1)
}

. In many in-
stances, we have w(t) ≈ 1/

√
t suppressing logarithmic fac-

tors. Then, the above expression implies that from ‘small’ T ,
the delay is linear in T , while for large T , the delay behaves
approximately like

√
T . The details of these calculations,

along with plots of delay versus T are in Appendix B.
Remark 10. The condition on T used above for obtaining
the bound on detection delay is necessary, because we do
not assume that the pre-change distribution (i.e., the parame-
ter θ0) is known to us. Thus, to be able to detect the change
in distribution, we must have enough observations from the
pre-change distribution to estimate θ0 accurately enough,
in comparison the magnitude of change, d(θ0, θ1). As an
extreme example, if T = 1, no method can realistically de-
tect that a change occurred (since it is statistically plausible
that all the data are simply i.i.d. and no change occurred at
all). Said differently, T = 0 and T = ∞ are information
theoretically equivalent, and we need to be far enough away
from those extremes for practical detectability.

When T = ∞, the FCS-Detector continues sampling
without stopping w.p. at least 1 − α. Hence, its ARL is
infinite. This makes it is too conservative in detecting the
changepoint — we cannot provide an upper bound on the
expected detection delay when T <∞, and can only charac-
terize the delay under an event of probability 1−α (see Fig-
ure 5 in Appendix B). We address this next, by proposing
a scheme that augments the forward CS with a series of
backward CSs.

4. Change detection via a backward CS
We now introduce our main SCD strategy that addresses
the two drawbacks of the simpler SCD strategy discussed
in the previous section. Informally, the idea underlying our
strategy is as follows: in each round t ≥ 2, we construct the
usual forward CS, and a new backward CS (using reversed
observations, see Definition 11). We refer to this scheme
as the BCS-Detector. If there has been a changepoint,
we expect the forward and backward CSs to concentrate
on different regions of Θ (i.e., around θ0 and θ1 resp.).
Hence, we stop as soon as they become inconsistent. See ??
in Appendix A for a visual illustration, and Appendix F
for an interpretation of our scheme in terms of repeated
sequential tests.

We now present our definition of backward CSs.

Definition 11 (Backward Confidence Sequences). Let
X1, X2, . . . be drawn i.i.d. from Pθ, for some θ ∈ Θ. For
any n ≥ 1, we say that a sequence of sets {B(n)

t }1≤t≤n ⊆
Θ is a backward CS, if (i) B(n)

t is σ (Xt, . . . , Xn) measur-
able, and (ii) P

(
∀t ∈ [n] : θ ∈ B

(n)
t

)
≥ 1− α.

Note that for n > 1, a forward CS Ct does not satisfy
the first condition, since Ct is built using X1, . . . , Xt, but
B

(n)
t can only use Xt, . . . , Xn. But, a backward CS at any

n can be interpreted as the usual forward CS, introduced
in Definition 2, constructed on observations seen in a reverse
order from n to 1; see Appendix A for details.

Without loss of generality, we assume that any CS consists
of a nested sequence of sets, as discussed in Remark 3.
In other words, at a given time n, Cn is the smallest set
among {Ct : t ∈ [n]}, while B(n)

1 is the smallest among
{B(n)

t : t ∈ [n]}. We say that ‘the two confidence sequences
{Ct : t ≥ 1} and {B(n)

t : t ∈ [n]} ‘do not intersect at time
n’ if Cr ∩ B(n)

s = ∅ for some 1 ≤ r, s ≤ n. It is easy to
check that two nested CSs do not intersect if and only if
their smallest sets (i.e., Cn and B(n)

1 ) do not intersect.

When T = ∞, at every time n, both CSs {Ct : t ≥ 1} and
{B(n)

t : t ∈ [n]} will contain θ0 with probability at least
1−2α, and thus they will intersect with the same probability.
This motivates us to stop and declare a changepoint at the
first time n at which they do not intersect.

Definition 12 (BCS-Detector). Given observations
X1, X2, . . ., suppose we construct a forward CS {Ct : t ≥
1} and new backward CSs {B(n)

t : t ∈ [n]} for every
n ≥ 1. Assume that all the constructed CSs are nested.
Then, we define the stopping time, τ , as the first time
at which the forward and backward CSs do not intersect:
τ := inf{n ≥ 1 : Cn ∩B(n)

1 = ∅}.

Illustration of the BCS-Detector strategy. In Fig-
ure 1, we illustrate the intuition underlying our general
BCS-Detector strategy, introduced above, using the task
of detecting change in means of bounded observations (de-
tails in Section 5.2). The three plots in Figure 1 highlight
the following aspects of our scheme:

• Prior to the changepoint (or if there is no changepoint),
both the forward and backward CSs concentrate around
the same region in parameter space Θ (in this case,
[0, 1]). In particular, note that in this case, for all values
of t, one of the confidence intervals (CI) is entirely
contained in the corresponding CI of the other CS.

• As observations from the post change distribution start
arriving, we expect the forward and backward CSs to
start drifting away from each other. This is illustrated
in the second plot of Figure 1.
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Figure 1. The plots illustrate the general ideas underlying our BCS-Detector strategy. Prior to the changepoint (first plot), both the
forward and backward CSs have significant overlap. After getting some post-change observations (middle plot), the backward CS starts to
drift away from the forward CS, although the deviation is not enough for the two CSs to become inconsistent. Finally, the last plot shows
the scenario, where a sufficiently large number of post-change observations have arrived, which causes the forward and backward CSs to
disagree. When this occurs, our scheme stops and rejects the null.

• Finally, after sufficiently many post-change observa-
tions, the backward CS starts concentrating around the
post-change parameter θ1, as a result of which some of
the backward CIs become disjoint with the forward CIs.
Our BCS-Detector scheme uses this occurrence as
a signal to stop, and declare a changepoint.

We now present the main result of this section.

Theorem 13. Consider a SCD problem with observations
X1, X2, . . . drawn i.i.d. from Pθ0 for t ≤ T and from Pθ1

for t > T , with T lying in N∪{∞} and θ0, θ1 ∈ Θ. Suppose
for any θ ∈ Θ, we can construct confidence sequences
{Ct : t ≥ 1} with pointwise widthw(·, θ, α). Then, we have
the following: (i) When, there is no changepoint (T = ∞),
the BCS-Detector satisfies E∞[τ ] ≥ 1

2α − 3
2 .

(ii) Suppose T < ∞, and the pre-change parameter θ0 is
not known. Introduce the event E = {θ0 ∈ Ct : 1 ≤ t < T},
and note that PT (E) ≥ 1−α by construction. Then, for α ∈
(0, 0.5), we have ET [(τ − T )+|E ] ≤ 3u0(θ0,θ1,T )

1−α , where
u0 := min{t ≥ 1 : w(t, θ1, α) + w(T, θ0, α) < d(θ1, θ0)}.

Recall from Definition 5 that w(t, θ1, α) denotes the width
of the level-α confidence set with t observations, when the
true parameter is θ1. The proof of this theorem is given
in Appendix C. In many problem instances, the pre-change
parameter θ0 is known as it represents the ‘natural state’ of
the process being observed. We can specialize the above
result stated to this case as follows.

Corollary 14. Suppose the pre-change parameter θ0 is
known, and T < ∞. Then, we have ET [(τ − T )

+
] ≤

(3/(1 − α))t0(θ0, θ1, T ), where t0 ≡ t0(θ0, θ1) :=
min{t ≥ 1 : w(t, θ1, α) < d(θ1, θ0)}.

Remark 15. These results demonstrate how the drawbacks
of the FCS-Detector (introduced in Section 3) are ad-
dressed by carefully incorporating the idea of backward
CSs in the design strategy. In particular, this new scheme,

called the BCS-Detector, is less conservative, and has
a finite lower bound on the ARL under the null. More im-
portantly, when T < ∞, the expected detection delay of
BCS-Detector is also finite, and furthermore, it is also
independent of the value of the changepoint T . This is in
contrast to the (high probability) bound on the detection
delay for FCS-Detector, in which the detection delay in-
creases approximately as

√
T , as the changepoint T → ∞.

Remark 16 (Other estimates). We can also con-
struct an estimate of the changepoint, denoted by T̂ , as
the time at which Ct and B(τ)

t are most separated: T̂ ≡
T̂ (τ) := max argmax1≤t≤τ d

(
Ct, B

(τ)
t

)
= max{s ≤

τ : d(Cs, B
(τ)
s ) = max1≤t≤τ d(Ct, B

(τ)
t )}. Addition-

ally, we define an estimate of the magnitude of the change
ϵ := d(θ0, θ1) as the separation between CT̂ and B

(τ)

T̂
,

as measured by the distance metric d: ϵ̂ ≡ ϵ̂(τ) :=
max

θ∈CT̂ ,θ′∈B
(τ)

T̂

d(θ, θ′). While we do not obtain theo-

retical guarantees, some empirical results in the next section
indicate that these estimates are accurate for several instan-
tiations of the BCS-Detector.

5. Instantiations of BCS-Detector
In the previous section, we introduced a conceptually simple
device that allows us to transform any confidence sequence
construction into a powerful, sequential changepoint detec-
tor. This allows us to instantiate our general changepoint
detection meta-algorithm to various scenarios, by leveraging
the recent progress in constructing confidence sequences.
We illustrate this, by presenting a variety of parametric and
nonparametric SCD problems in this section. The code for
reproducing the empirical results is available here.
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5.1. Parametric Change of Mean Detection

We begin by considering the simple case of univariate Gaus-
sian mean changepoint detection. In this problem, we ob-
serve {Xt : t ≥ 1}, drawn i.i.d. according to the distribution
N(µt, 1), with µt = θ0 for t ≤ T and µt = θ1 for t > T .
Note that in this problem, we have Θ = R and we can set
the distance metric, d, to be the absolute value of the dif-
ference. We will use the CS for Gaussian means, recently
derived by Howard et al. (2021), that we had introduced
earlier in Example 6. Furthermore, we can use the same
expression for constructing the backward CS at any time
n, denoted by {B(n)

t : t ≥ 1}, but with the order of obser-
vations reversed, as described in Section 4. The following
result shows that in this parametric setting, our changepoint
detection scheme achieves an order-optimal detection delay
(i.e., optimal modulo poly-logarithmic factors):

Corollary 17. Suppose {Xt : t ≥ 1} are drawn
i.i.d. according to Pθ0 = N(θ0, 1) for t ≤ T , and
Pθ1 = N(θ1, 1) for t > T . Note that in this case,
we have dKL(Pθ1 , Pθ0) = (θ1 − θ0)

2/2. Then, if T =
Ω(log(1/dKL(Pθ1 , Pθ0))/dKL(Pθ1 , Pθ0)), then we have

ET [(τ − T )+|E ] = O

(
log log( 1

dKL(Pθ1
,Pθ0

) ) + log( 1
α )

dKL(Pθ1 , Pθ0)

)
,

where E is the (1− α) probability event in Theorem 13.

Remark 18. If the pre-change mean (θ0) is known, the
above upper bound holds for the worst-case detection
delay without the conditioning, defined as JL(τ) :=
supT>0 esssupE[(τ − T )+|FT ]. Under the assump-
tion that θ1 is also known, Lorden (1971) showed
the following universal lower bound on this quantity:
infτ ′ JL(τ

′) = log(1/α)
dKL(Pθ1

,Pθ0
) (1 + o(1)), as α → 0. Thus,

BCS-Detector matches this optimal performance, mod-
ulo logarithmic factors, without the knowledge of the post-
change parameter. This is unlike some of the existing
schemes for Gaussian mean change detection, such as Pollak
and Siegmund (1991), which achieve the same order opti-
mal detection delay, but with additional assumptions (known
lower bound on change, and in the limit of T → ∞).

Empirical Verification. We now verify the theoretical
claims of our proposed changepoint detection scheme using
observations drawn from a unit-variance normal distribution
with the pre-change mean θ0 = 0, and post-change mean
θ1 = ∆. In Figure 2, we consider the case of ∆ = 0.4
with the change occurring at T = 800. The plots show
the forward and backward CSs at the time at which the
change is detected in a trial, as well as the distributions of
the detection delay, estimated changepoint, and estimated
change magnitude over 250 trials. The plots indicate that
BCS-Detector detects changes quickly and accurately.

In Figure 3, we study the variation of the average detection
delay of our changepoint detection scheme as the change
magnitude ∆ is varied. The empirical results verify the
expected proportionality to 1/∆2 of the average detection
delay, as claimed by our theoretical results.

5.2. Nonparametric Change of Mean Detection

We now consider a nonparametric analog of the change of
mean detection problem from the previous section. Here we
assume that X1, X2, . . . are independent random variables
taking values in a bounded interval X ⊂ R, which we set
to [0, 1] without loss of generality. Prior to the changepoint
T , we assume that the observations have a mean θ0 ∈ Θ =
[0, 1], while it changes to θ1 ̸= θ0 after time T . In this
case, we can use the empirical Bernstein (EB) confidence
intervals developed by Waudby-Smith and Ramdas (2023).
To state the closed-form expression of the EB confidence se-
quence, we first need to introduce the following terms: µ̂t =
1
2+

∑t
i=1 Xi

t+1 , σ̂2
t =

1
4+

∑t
i=1(Xi−µ̂t)

2

t+1 , λt =
√

2 log(2/α)
σ̂2
t t log(t+1)

∧
1
2 , θ̂t =

∑t
i=1 λiXi∑t
i=1 λi

, vt = (4/ log(2/α))(Xt − µ̂t−1)
2, and

ΨE(x) = − log(1−x)−x
4 , for all x ∈ [0, 1). Using these

terms, we can now state the EB-CS derived by Waudby-
Smith and Ramdas (2023) as follows: Ct = [θ̂t+wt/2, θ̂t−
wt/2], with wt =

log(2/α)+
∑t

i=1 viΨE(λi)∑t
i=1 λi

. Again, by an ap-
plication of the general result, Theorem 13, we can get the
following bound on the expected detection delay of the SCD
scheme, that uses the above EB-CS.

Proposition 19. Suppose X1, X2, . . . , XT are drawn i.i.d.
from a distribution on X = [0, 1] with mean θ0 ∈ Θ =
[0, 1], while XT+1, . . . are drawn from Pθ1 with mean
θ1 ̸= θ0. Then, assuming θ0 is known, this instance
of BCS-Detector (Definition 12) satisfies the follow-
ing (with ∆ := |θ0 − θ1|, and σ2

1 = EPθ1
[(X − θ1)

2]):

ET [(τ − T )+] = O
(
σ2
1

log(1/∆) + log(1/α)

∆2

)
.

Remark 20. While we stated the above result under the
assumption that the pre- and post-change observations are
i.i.d. from Pθ0 and Pθ1 respectively, we note that similar
results can be obtained when the random variables are only
independent, with fixed (pre- and post-change) means. Fur-
ther, the assumption that θ0 is known can also be waived, at
the cost of conditioning on the ‘good’ event E .

Remark 21. In this subsection, we have considered the
task of change-of-mean detection in perhaps the simplest
(but nontrivial) nonparametric setting. The same ideas de-
veloped here, can however, we extended easily to other
interesting cases, such as the sub-Gaussian family using
the CS derived by Howard et al. (2021), or for heavy-tailed
distributions (Wang and Ramdas, 2022).
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Figure 2. The figures show the performance of our changepoint detection scheme, BCS-Detector, with univariate Gaussian observations
whose mean changes from 0 to 0.4 at the time T = 800. The first plot shows the forward and backward CSs at time of detection (τ = 1264)
in one of the trials, with the shaded gray region being the points at which the two CSs disagree. The next three plots show the empirical
distribution of the detection delay, the estimated changepoint location, and the estimated changepoint magnitude over 250 repeated trials.

Empirical Verification. To verify our theoretical claims,
we consider the case of an independent stream of observa-
tions supported on X = [0, 1], with pre- and post-change
parameters, θ0 and θ1 respectively. We define distributions
with specified means by taking approprirate mixtures of
uniform distributions, as described in Appendix E. We plot
the performance of our changepoint detection scheme for
a fixed problem instance with (θ0, θ1, T ) = (0.4, 0.6, 800)
in Figure 6 (Appendix E). The predicted inverse quadratic
dependence of the detection delay is verified in Figure 3.

5.3. Detecting Changes in CDFs

Staying with real-valued observations (or more generally,
observations on totally ordered spaces), we now consider
a more general question of detecting whether there have
been any changes in distribution generating the observations.
Since real valued random-variables are completely charac-
terized by their cumulative distribution functions (CDFs),
this task can be framed in terms of detecting changes in
the CDFs. More formally, we assume that we are given a
stream of observations, X1, X2, . . ., that are drawn accord-
ing to a distribution θ0 = F0 for t < T , and according to a
distribution θ1 = F1 for t ≥ T . Thus, in this case, Θ is the
infinite-dimensional space of all feasible CDFs on R, and
we endow it with the Kolmogorov-Smirnov (KS) metric,
dKS, defined as dKS(F,G) = supx∈R |F (x)−G(x)|.

To instantiate our SCD scheme, we will employ the fol-
lowing level-α confidence sequence for the CDF in terms
of the KS metric, recently derived by Howard and Ram-
das (2022): Ct = {θ ∈ Θ : dKS(θ, θ̂t) ≤ wt/2}, where
wt = 1.7

√
log log(et) + 0.8 log(1612/α)/t. As a conse-

quence of the general result in Theorem 13, we can obtain
the following performance guarantee for this scheme.

Corollary 22. Suppose, for some T <∞, the observations
X1, . . . , XT are drawn from a known distribution F0, while
for t ≥ 1, the observations XT+1, XT+2, . . . are drawn
from an unknown F1. Then, our SCD scheme instantiated

with the CS stated above satisfies (with ∆ := dKS(F1, F0)):

ET [(τ − T )+] = O
(
log log(1/∆) + log(1/α)

∆2

)
.

Empirical verification. We test the performance of our pro-
posed scheme for t-distributions with 3 degrees of freedom.
In Figure 7 in Appendix E, we show the performance of our
proposed scheme for a fixed problem instance where the
pre- and post-change CDFs satisfy ∆ = dKS(F0, F1) ≈ 0.4.
The variation of the average detection delay with chang-
ing values of ∆ is plotted in Figure 3, and it displays the
expected inverse quadratic dependence.

5.4. Detecting Change in Homogeneity of Two Streams

Suppose we have a stream of observations in a product
space X = U × U , and the parameter set consists of all
product distributions on U × U ; that is, Θ = {P × Q :
P,Q ∈ P(U)}. Prior to the changepoint, we assume that the
observationsX1, X2, . . . , XT , withXt = (Ut, Vt) ∈ U×U ,
are drawn from θ0 = PU × PV ; while the post-change
observations XT+1, XT+2, . . . are assumed to be drawn
from some other product distributionQU×QV . Given some
statistical distance measure, ρ : P(U) × P(U) → R, we
assume that the ρ(PU , PV ) ̸= ρ(QU , QV ). An interesting
special case of this problem, motivated by the two-sample
testing problem, is when PU = PV , and QU ̸= QV .

If ρ is a probability metric, we can use it induce a
distance metric, d, on the parameter space Θ as fol-
lows: d(θ0, θ1) = |ρ(PU , PV ) − ρ(QU , QV ), where
θ0 = PU × PV and θ1 = QU × QV . Then, to obtain a
changepoint detection scheme we can employ CSs for the
statistical distance ρ. We instantiate this strategy with the
kernel-MMD metric (defined in Appendix A) associated
with a kernel k, denoted by dMMD(·, ·). We use the following
CS derived by Manole and Ramdas (2021) for the kernel-
MMD distance between two distributions (assuming that
supu,u′ k(u, u′) ≤ 1): Ct = {(P,Q) : dMMD(P̂t, Q̂t) −

7
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Figure 3. In all the instantiations of the BCS-Detector within
Section 5, the width of the CS at a

√
(log log(t) + log(1/α)/t

rate. Hence, by Theorem 13, we expect the detection delay to have
an inverse quadratic dependence on the magnitude of change (∆).
The figure above verifies this claim empirically. In particular,
the solid lines plot the average detection delay computed using
250 trails, against 1/∆2, where ∆ is the change magnitude (i.e.,
d(θ1, θ0) for each problem. The dashed lines of the same color
represent the best linear fit between the observed detection delay
and 1/∆2. The good agreement between these two lines for each
problem validates the prediction of Theorem 13.

γt ≤ dMMD(P,Q) ≤ dMMD(P̂t, Q̂t) + 2κt} where κt =√(
log((1 ∨ log2(t))

2π2/6) + log(4/α)
)
/t, and γt =(

4
√
2/

√
t
) (

1 +
√
log (3.54e(1 ∨ log2 t)

3) + log(2/α)
)
.

For this instantiation, Theorem 13 implies the following.

Corollary 23. With Xt denoting the pair (Ut, Vt) on X ×
X , suppose that X1, . . . , XT are drawn i.i.d. from θ0 =
PU × PV , and XT+1, XT+2, . . . are drawn i.i.d. from a
distribution θ1 = QU × QV . Then, with ∆ > 0 denoting
d(θ0, θ1) = |dMMD(PU , PV ) − dMMD(QU , QV )|, we have
the following upper bound on the expected detection delay
of our BCS-detector based on the CS described above:

E
[
(τ − T )+|E

]
= O

(
log(1/α) + log log(1/∆)

∆2

)
,

where E denotes the ‘good’ event {dMMD(PU , PV ) ∈ Ct :
t ≤ T − 1} associated with the forward CS {Ct : t ≥ 1}.

Remark 24. Consider the special case mentioned earlier,
where PU = PV = QU = P for some distribution P , and
QY = Q ̸= P for some other distribution. Furthermore,
assume that it is known that prior to changepoint PU =
PV (that is, the event E is a probability one event). Then,
the above result in this case implies an upper bound on the
expected detection delay of O

(
log(1/α)+log log(1/∆)

∆2

)
, with

∆ = dMMD(P,Q). This matches existing results, such as
the kernel CuSum scheme of Wei and Xie (2022).

Remark 25. We focused on the case of the kernel-MMD
metric mainly due to its generality (it is applicable to dis-
tributions over arbitrary spaces on which positive definite
kernels can be defined). However, the same ideas are appli-
cable to any statistical distance measure that is convex in its
arguments, by using the reverse submartingale based confi-
dence sequence construction of Manole and Ramdas (2021).
This family includes all popular statistical distances, such
as Wasserstein metrics, f -divergences and general integral
probability metrics.

Remark 26. The overall computational cost of our scheme
is O(τ3), as our scheme involves constructing a new back-
ward CS, with O(t2) cost, every round. In practice, this
complexity can be reduced, either by using linear or block-
MMD statistics, and/or by computing a new backward CS
less frequently (instead of doing so every round).

Empirical Verification. We study the performance of our
scheme on a stream of paired multivariate Gaussian observa-
tions in p = 5 dimensions. The pre-change distributions, PU

and PV both have zero mean and identity covariance; while
for the post change distributions we have QU = PU , and
QY has a mean δ1, and a diagonal covariance matrix with
randomly chosen values. In Figure 8 in Appendix E, we plot
the performance of our changepoint detection scheme for a
fixed problem instance with ∆ = dMMD(QU , QV ) ≈ 0.33,
and T = 800, while the inverse quadratic dependence of the
average detection delay with ∆ is verified in Figure 3.

5.5. Detecting Harmful Distribution Shifts

As a final application, consider the task of detecting ‘harm-
ful’ changes between train and test distributions of a ma-
chine learning (ML) model. Following Podkopaev and Ram-
das (2021), we are interested in detecting only those distri-
bution changes that lead to a sufficiently large increase in
the risk (i.e., expected loss) of the trained ML model.

Formally, suppose a machine learning model, denoted by h,
is trained on a dataset drawn i.i.d. from a source distribution
PS taking values on some space X . For some bounded
loss function, ϕ, we let θ0 denote the expected training loss
of this model; θ0 = EPS

[ϕ(X,h)]. Next, we assume that
the model h is deployed on a stream of test data, denoted
by X1, X2, . . ., drawn from the source (or training) distri-
bution PS for t < T ; and from some other distribution
PT ̸= PS with PT ̸= PS . Our goal is to detect post-
change distributions PT that are ‘harmful’ to the trained
model; that is, they result in an increase in expected loss:
θ1 := EPT

[ϕ(h,X)] > θ0 (see Figure 10 in Appendix E).

For bounded loss functions ϕ, this problem fits into the
nonparametric change of mean detection framework of Sec-
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tion 5.2. Since we are only interested in one-sided changes,
we can modify the strategy of Section 5.2 to use only upper
CS in the forward direction, and lower CSs in the backward
direction. As in Proposition 19, for this strategy, we can
show that the expected detection delay of the scheme will
depend inversely on how ‘harmful’ the target distribution is
(i.e., the gap θ1 − θ0).

Empirical Verification. To illustrate the ideas discussed
above, we consider a simple binary classification problem
with linear classifiers and 2-dimensional features (see Ap-
pendix E for details). We plot the performance of our
scheme on a specific problem with ∆ ≈ 0.16 in Figure 9
in Appendix E, and also verify the inverse quadratic depen-
dence of average detection delay on ∆ in Figure 3.

5.6. Other change detection tasks

We have illustrated the generality of our BCS-Detector
strategy by instantiating it for five different scenarios in this
section. For simplicity, we focused mainly on univariate
observations (with the exception of Section 5.4). However,
we note that the same ideas used in the previous instantia-
tions also carry over easily to more general observations, or
under additional robustness or privacy constraints. We list
some such examples here, without going into the details of
analysis or practical implementations:
(i) Exponential family. In this case, the observations
X1, X2, . . . lie in X = Rp, and the pre- and post-
change distributions (Pθ0 and Pθ1 ) are chosen from a finite-
dimensional exponential family with Θ = Rm for some
m < ∞. Here, we can use the BCS-Detector with the
CSs derived by Chowdhury et al. (2022).
(ii) Covariance matrix. Again, we assume that X = Rp,
but now we assume that at the change point T , the covari-
ance matrix of the observations changes from θ0 ∈ Rp×p

to some θ1 ̸= θ0. For this problem, we can instantiate the
BCS-Detector with the CS for covariance matrices de-
rived by Howard et al. (2021, § 4.3).
(iii) Nonparametric regression. Suppose U1, U2, . . . de-
note i.i.d. uniform draws from U = [0, 1]p, for some p ≥ 1.
Let Θ denote an RKHS (with kernel k) of functions from
U to R. Then, for any θ ∈ Θ, define the random vari-
able Yt ≡ Yt(θ) = θ(Ut) + ηt, where {ηt : t ≥ 1} are
an i.i.d. sequence of 1-sub-Gaussian noise. Clearly, the
joint distribution of (Ut, Yt) is parametrized by θ. Con-
sider the SCD problem, where θ = θ0 prior to change-
point T , and θ = θ1 after that, with ∥θ0 − θ1∥k > 0. Our
BCS-Detector strategy is easily applicable to this sce-
nario, with an infinite-dimensional index set Θ, using the
CS constructed by Chowdhury and Gopalan (2017).
(iv) Robust SCD. An interesting variant of the SCD problem
involves detecting changepoints under adversarial contam-
ination (Li and Yu, 2021). Our BCS-Detector strategy
readily extends to such scenarios, by exploiting recent ro-

bust confidence sequence constructions, such as those by
Wang and Ramdas (2023).
(v) Private SCD. Privacy is an important concern in many
applications, especially involving personal data, and is often
ensured by revealing only randomized versions of the actual
data to the analyst. This adds another layer of complexity
to the usual SCD task (Cummings et al., 2018). However,
our BCS-Detector framework can easily handle this,
building upon the recent advances in private CS construc-
tion (Waudby-Smith et al., 2022).

6. Conclusion
We proposed a general strategy (BCS-Detector) for de-
signing sequential changepoint detection (SCD) schemes
by carefully combining confidence sequences (CSs), and
backward CSs — a novel variant of CSs, that we introduced
in this paper. Under very mild, and natural requirements on
the CSs, we showed that BCS-Detector provides tight
control over the ARL and the detection delay. Leveraging
the recent progress in constructing CSs, we instantiated our
strategy for a wide range of SCD problems (both parametric,
and nonparametric), and empirically verified the theoretical
claims via some small-scale numerical experiments.

Our work opens up several directions for future work:
(i) Constructing a new backward CS in every round can be
computationally costly, and in most cases results in an over-
all quadratic (or even cubic) complexity. An interesting di-
rection to pursue is to investigate if we can achieve the same
performance by updating the backward CS fewer times. (ii)
In Remark 16 we defined estimators of the changepoint (T ),
and the change magnitude (∆), which performed well em-
pirically as shown in Figure 2 and Appendix E. Establishing
theoretical guarantees for them is another interesting ques-
tion for future work.
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A. Additional Background
CS for non-i.i.d. observations. As mentioned in Remark 4, we can also define CSs for non-i.i.d. observations, as follows.

Definition 27. Suppose X1, X2, . . . , denote an independent stream of observations on X , with Xt ∼ Pϑt for ϑt ∈ Θ.
Assuming Θ is a vector space, we say that {Ct ⊂ Θ : t ≥ 1} is a level (1− α) CS for the running average of parameters if
P
(
{∀t ≥ 1 : (1/t)

∑
i = 1tϑt ∈ Ct}

)
≥ 1− α.

The same definition of pointwise width introduced in Definition 5 is still applicable to the above CS. However, for defining
the uniform width, we need to take the supremum over the sequence of parameters, instead of a fixed parameter (θ). More
specifically, the pointwise and uniform widths for the above CS is defined as

w(t, θt1, α) = sup
θ′,θ′′∈Ct

d(θ′, θ′′), and w(t,Θ, α) = sup
θt
1∈Θ⊗t

w(t, θt1, α).

We show a simple illustration of the CS introduced in Example 6 with time varying parameters in Figure 4.

Figure 4. An example of the CS introduced in Example 6 for the running (conditional) mean of independent Gaussian processes with a
time-varying mean function, variance fixed at 1.

Implementing backward CSs. If we know how to construct forward CSs, we can use that directly to construct backward
CSs in the following steps:

• At the end of round n, we have observed X1, . . . , Xn. Introduce the time-reversed version of the observations
Ys = Xn+1−s for s ∈ [n] := {1, . . . , n}.

• Construct a new level-(1 − α) CS using {Ys : s ∈ [n]}, denoted by {B̄(n)
s : s ∈ [n]}. Note that B̄(n)

s is
σ(Y1, . . . , Ys) = σ(Xn, Xn−1, . . . , Xn−s+1) measurable for all s ∈ [n].

• Finally, we again reverse the index of the CS, to obtain {B(n)
t : t ∈ [n]}, where B(n)

t = B̄
(n)
n+1−s. Note that by virtue

of being a CS, we have P∞
(
∀t ∈ [n] : θ0 ∈ B

(n)
t

)
≥ 1− α. The superscript (n) serves as a reminder that there is only

one forward CS, but there is a different backward CS constructed afresh at each time n.

The kernel-MMD metric. In Section 5.4, we constructed a scheme for detecting changes the pairwise kernel-MMD
distance between the distributions generating a stream of paired observations. Here, we recall the its definition.

We assume that k : X × X → R denotes a uniformly-bounded positive-definite kernel, and let Hk denote the reproducing
kernel Hilbert space (RKHS) associated with k.

12
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Definition 28. Given a positive definite kernel k : X ×X → R, the kernel-MMD distance between two-distributions P and
Q on X is defined as

dMMD(P,Q) = sup
g∈Hk:∥g∥k≤1

EP [g(X)]− EQ[g(Y )].

The kernel-MMD distance defined above is an instance of a class of statistical distances called integral probability
metrics (IPMs). For a class of kernels, called characteristic kernels, it is known that dMMD is a distance metric on the space
of probability distributions.

B. Proof of Proposition 8
Proof of the bound on probability of false alarm. Recall that the stopping time is defined as the first time, τ , at which
we have the condition ∩τ

t=1Ct = ∅. Now, consider the ‘good’ event of the CS under the null: E = ∩∞
t=1{θ0 ∈ Ct},

which satisfies P∞(E) ≥ 1 − α by definition. Hence, under this event {θ0} ⊂ ∩∞
t=1 ̸= ∅, which in turn implies that

P∞(τ = ∞) ≥ 1− α, as required.

Proof of the bound on detection delay. Let w(t) ≡ w(t,Θ, α) denote the width of the confidence Ct after t observations.
By assumption, T is large enough to ensure that under the ‘good’ event E = ∩∞

t=1

{
1
tϑt ∈ Ct

}
, we have that θ1 ̸∈ CT at the

changepoint. Note that in the definition of E , we have ϑt = θ01t≤T + θ11t>T .

Under the event E , we know that θ0 ∈ CT . For any t > T , introduce the terms λt = T/t and λ̄t = 1 − λt. Then, by
definition of confidence sequences, we have λtθ0 + λ̄tθ1 ∈ Ct for all t > T under the event E . The width of the set Ct at
t > T is no larger than w(t) ≡ w(t,Θ, α). Hence, a sufficient condition for stopping prior to t > T is if the sum of the
widths of Ct and CT , that is w(t) + w(T ), is smaller than d

(
θ0, λtθ0 + λ̄tθ1

)
.

Informal calculations for Remark 9. As mentioned in Remark 9, in many cases, the stopping time τ satisfies: τ ≈
min{t ≥ T : 1/

√
t+ 1/

√
T ≤ ((t− T )/t)∆}, where ∆ = d(θ0, θ1). We now consider the behavior of the delay, τ − T ,

in two different regimes of the changepoint T .

First we consider the case where T is ‘small’; that is T ≈ 1/∆2. For concreteness, assume that T = 9/∆2. Then, it is easy
to check that with τ ≤ 4T , since for t = 4τ

1√
t
+

1√
T

=
∆

4
+

∆

8
≤ 3∆

4
=
t− T

t
∆.

Next, we consider the case where ∆ is fixed, but T → ∞. In this case, we have τ − T = O
(√

T
)

. To see this, consider
t = T + u, with u = o(T ). Then, we have

1√
t
+

1√
T

≈ 2√
T
, and

t− T

t
∆ ≈ u

T
∆.

Thus, this implies that the appropriate order of growth of the detection delay is u = O(
√
T/∆), as T → ∞ with ∆ fixed.

C. Proof of Theorem 13
Proof of the ARL control. To prove this result, note that for us to stop under the null at some time τ , either the forward or
the backward CS (or both) must be miscovering and failing to contain θ0. In other words,

{τ = N,T = ∞} =⇒ {CN miscovers} ∨ {B(N)
1 miscovers}.

{τ ≤ N,T = ∞} =⇒ {(Ct)
N
t=1 miscovers} ∨

N⋃
t=1

{B(t)
1 miscovers}.

In both the above implications, we have used the property of nested CSs to define the miscovering events. Now, using the
fact that the forward CS and each backward CS is a (1− α)-CS, we have by a simple union bound that for any fixed time N ,

Pr∞(τ ≤ N) ≤ min{(N + 1)α, 1}.

13
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Figure 5. The plots show the variation of the delay of SCD scheme introduced in Section 3, under the conditions of Remark 9. When the
changepoint T ≈ 1/∆2, the delay has a linear dependence on T , while in the regime where T → ∞ with ∆ fixed, the delay behaves
≈

√
T .

Rephrasing, we have P∞(τ > N) ≥ (1− α(N + 1)) ∨ 0, and thus

E∞τ =

∞∑
N=1

Pr∞(τ > N) ≥
1/α−1∑
N=1

(1− α− αN)

= (1/α− 1)(1− α)− α

1/α−1∑
N=1

N

= 1/α− 2 + α− α
(1/α− 1)(1/α)

2

=
1

2α
− 3/2 + α.

As we alluded to earlier in Remark 1, we did not need to know θ0 or θ1 or the ‘direction’ of the changepoint. The
aforementioned argument goes through for any indexed family of distributions. Furthermore, the above guarantee does not
require the width of the CSs (forward of backward) to decay to zero; it only uses the coverage property of CSs.

Proof of the detection delay bound. We next obtain the upper bound on the average detection delay conditioned on the
event E := {θ0 ∈ Ct : 1 ≤ t ≤ T}, stated in Theorem 13. Since, (τ − T )+ = max{0, τ − T} is a non-negative random

14
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variable, we have

ET [(τ − T )+|E ] =
∞∑
t=0

PT

(
(τ − T )+ ≥ t|E

)
≤

t′−1∑
t=0

1 +
∑
t≥t′

PT

(
(τ − T )+ ≥ t′|E

)
=

t′−1∑
t=0

1 +
∑
t≥t′

PT (τ > T + t′|E)

= t′ +
∑
t≥t′

PT (τ > T + t′|E) , for any t′ ≥ 1. (1)

Recall that u0 ≡ u0(θ0, θ1, T ) := min{t− T : w(T, θ0, α) +w(t− T, θ1, α) < d(θ0, θ1)} was introduced in the statement
of Theorem 13, and it represents an upper bound on the smallest time after T at which the backward CS must stop intersecting
with the forward CS (assuming none of the CSs miscover). For any integer i ≥ 1, consider the event {τ > T + iu0}, and
note that it satisfies the following inclusion:

{τ > T + iu0} ∩ E ⊂
(
∩i
j=1

{
CT ∩B(T+ju0)

T ̸= ∅
})

∩ E

⊂
(
∩i
j=1

{
CT ∩B(T+ju0)

T+(j−1)u0
̸= ∅
})

∩ E (2)

⊂
(
∩i
j=1

{
θ1 ̸∈ B

(T+ju0)
T+(j−1)u0

})
∩ E . (3)

In the display above, (2) uses the fact that B(n)
s ⊂ B

(n)
s′ for any s′ > s. The inclusion (3) is the crucial observation for our

proof. It relies on the fact that if for some j ≥ 1, the BCS {B(T+ju0)
s s ∈ [T + ju0]} does not miscover, then the B(T+ju0)

s

contains θ1 for all s ∈ {T, . . . , T + ju0}, and in particular at s = T + (j − 1)u0. Also note that the diameter of CT is
smaller than w(T, θ0, α), and that of BT+(j−1)u0

is smaller than w(u0, θ1, α). Finally, the definition of u0 implies that
w(T, θ0, α) +w(u0, θ1, α) < d(θ0, θ1) — implying that CT and B(T+ju0)

T+(j−1)u0
are contained in two disjoint balls, and hence

are disjoint. Thus, if CT ∩B(T+ju0)
T+(j−1)u0

̸= ∅, then the backward CS at T + ju0 must miscover.

Next, we make the following two observations:

(I) For j ̸= j′, the events Ej := {θ1 ̸∈ B
(T+ju0)
T+(j−1)u0

} and Ej′ := {θ1 ̸∈ B
(T+j′u0)
T+(j′−1)u0

} are independent.

(II) For all 1 ≤ j ≤ i, the event Ej (introduced above) is independent of E .

The statement (I) follows from the observation that the event Ej lies in the sigma-algebra
σ ({Xk : T + (j − 1)u0 ≤ k < T + ju0}), while Ej′ lies in σ ({Xk : T + (j′ − 1)u0 ≤ k < T + j′u0}); which
are independent. Similarly, the second statement (II) uses the fact that E lies in σ ({Xk : 1 ≤ k < T}), which is independent
of σ ({Xk : T + (j − 1)u0 ≤ k < T + ju0}) for all 1 ≤ j ≤ i.

Based on the above observations, we conclude that

PT (τ > T + iu0|E) = PT ({τ > T + iu0} ∩ E) /PT (E)

≤ PT

((
∩i
j=1{θ1 ̸∈ B

(T+ju0)
T+(j−1)u0

}
)
∩ E
)
/PT (E)

= PT

(
∩i
j=1{θ1 ̸∈ B

(T+ju0)
T+(j−1)u0

}
)

(4)

≤ αi, for all i ≥ 1. (5)

In the above display, (4) follows from (II), and (5) uses (I). Now, we return to (1), and set t′ to i0 × u0 for some integer i0
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to be specified later. We then note that

ET [(τ − T )+|E ] ≤ i0u0 +

∞∑
i=i0

(i+1)u0−1∑
t=iu0

PT (τ > T + t|E)

≤ i0u0 +

∞∑
i=i0

u0PT (τ > T + iu0|E)

≤ i0u0 + u0
αi0

1− α
= u0

(
i0 +

αi0

1− α

)
. (6)

The inequality in (6) uses the fact that PT (τ > T + iu0) ≤ αi derived in (5). The final result, as stated in Theorem 13, then
follows by selecting i0 = ⌈log(1/1− α)/ log(1/α)⌉. Note that when α < 0.5, we have i0 = 1.

D. Deferred proofs from Section 5
D.1. Proofs of Corollary 17, Corollary 22, Corollary 23

All these three results can be obtained as a direct consequence of the following proposition.

Proposition 29. For some ∆ > 0, define the time t0 as

t0 = min

{
t ≥ 1 : c

√
log log t+ log(1/α)

t
≤ ∆

2

}
,

where c > 0 is some constant. Then, we have

t0 = O
(
c2

log log(c/∆) + log(1/α)

∆2

)
.

Proof. Without loss of generality, we assume that c = 1; or equivalently, we can replace ∆ with ∆/c. Now, note that we
can upper bound t0 ≤ t1 + t2, where

t1 = min{t ≥ 1 :
√
log log(t)/t ≤ ∆/4}, and t2 = min{t ≥ 1 :

√
log(1/α)/t ≤ ∆/4}.

By a simple calculation, we can obtain t2 = O
(
log(1/α)/∆2

)
. Hence to complete the proof, we will show that t1 =

O
(
log log(1/∆)/∆2

)
. We proceed in two steps: (i) first we show that t1 ≤ 32/∆3, and (ii) using this, we refine the result

to show that t1 = O
(
log log(1/∆)/∆2

)
.

Let t3 = 32/∆3 for ∆ ≤ 1. Then, observe that 4

∆

√
log log(t3)

t3

2

=
16

∆2
× ∆3 log log(32/∆3)

32
=

1

2

log log(32/∆2)

1/∆
≤ 0.63 < 1.

The last inequality, along with the definition of t1 implies that t1 ≤ t3.

Hence, log log(t1) ≤ log log(t3) = log log(32/∆3) ≤ 2.35 + log log(1/∆). Thus, we have

log log(t1)

t1
≤ 2.35 + log log(1/∆)

t1
,

which implies that t1 ≤ 16
∆2 (2.35 + log log(1/∆)) = O

(
log log(1/∆)/∆2

)
. Combining this bound on t1, with the

previously obtained upper bound on t2; and using the fact that t0 ≤ t1 + t2, we get the required result.

D.2. Proof of Proposition 19

To prove the variance adaptive bound on the expected detection delay, we first show the following result for the width of the
CS derived by Waudby-Smith and Ramdas (2023).
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Proposition 30. We can modify the backward CS used instantiating the BCS-Detector in Section 5.2, to obtian a level
(1− 2α)-backward CS (for every n ≥ T ), denoted by {B(n)

t : 1 ≤ t ≤ n}, such that the width of B(n)
t satisfies

w(t, θ1, α) = O
(
σ1√
t

(√
log(1/α) +

√
log t

))
, for all T ≤ t ≤ n.

Remark 31. The main benefit of this result is that it characterizes the width of the backward CS (for n ≥ T ) explicitly in
terms of the standard deviation (σ1) of the post-change distribution Pθ1 , unlike the original CS described in Section 5.2,
whose width depends on empirical estimates of σ1. As a consequence of this result, we obtain Proposition 19 by first
appealing to Corollary 14, and then repeating the calculations used to obtain Proposition 29.

Proof. Since we are only interested in characterizing the order with which the width of the CS decays (and not the exact
constants), we will not track the constants in our argument for this proof. In particular, we will use A ≲ B to indicate that
by A/B = O(1), and A ≈ B to indicate that A ≲ B and B ≲ A.

We proceed in the following steps:

• First, we show that we can construct a level-(1− α) confidence sequence for the empirical variance based on samples
from the post-change distribution. In particular, let σ̂2

n = ( 14 +
∑n

t=1(Xt − µ̂t)
2)/(n+ 1), with X1, X2, . . . ∼ Pθ1

i.i.d.. Then, we have the following:

P (E1) ≥ 1− α, where E1 := ∩n≥1

{
|σ̂2

n − σ2
1 | = O

(√
log log n+ log(1/α)

n

)}
. (7)

Thus, using this event, for any n ≥ T , we can modify the backward CS to get a level-(1− 2α) Backward CS, in which
σ̂ is replaced by σ1 (plus a small approximation error term) for T ≤ t ≤ n. In the next two steps, we characterize the
width of these level-(1− 2α) CSs.

• Next, we show that under the event E1, we have

n∑
i=1

viψE(λi) ≈ log(σ2
1n). (8)

• Under the same event, we then show that

1√
n

n∑
t=1

λi ≈

√
2 log(2/α)

σ2
1

. (9)

Combining these results, we get that the width of the CS is of the order

wn ≈ 1√
n

log(2/α) +
∑n

t=1 vtψE(t)
1√
n

∑n
t=1 λt

≈ σ1√
n

(√
log(2/α) +

√
log(n)

)
,

as required. Thus, it remains to prove (7), (8), and (9).

Proof of (7). To prove this, we first introduce the usual unbiased estimate of the variance: σ̃2
n =

1
n(n−1)

∑n
i=1

∑
j ̸=i

(Xi−Xj)
2

2 . Since the observations X1, X2, . . . ∼ Pθ1 are bounded, and lie in [0, 1], it is easy to
verify that |σ̂2

n − σ̃2
n| = O(1/n), and hence σ̂2

n ≈ σ̃2
n.

Since, σ̃2
n is an instance of a U-statistic, and hence the process {σ̃2 : n ≥ 1} is a reverse-martingale, adapted to the

exchangeable filtration. Using this fact, along with the boundedness (and hence sub-Gaussianity) of the random variable
σ̃2 for all n ≥ 1, we can use Manole and Ramdas (2021, Corollary 8), to conclude the time-uniform concentration result:
P
(
∀n ≥ 1 : |σ̃2 − σ2

1 | = O(rn)
)
≥ 1− α, where rn =

√
(log log n+ log(1/α)) /n.
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Proof of (8). To show this, we recall the fact that ψE(λ)/(λ
2/8) → 1 as λ→ 0. Hence, we have the following:

n∑
i=1

viψE(λi) =
4

log(2/α)

n∑
i=1

(Xi − µ̂i)
2ψE(λi) ≈

4

log(2/α)

n∑
i=1

(Xi − µ̂i)
2λ

2
i

8

≲
1

log(2/α)

n∑
i=1

(Xi − µ̂i)
2 log(2/α)

iσ̂2
i−1

≲
1

log(2/α)

n∑
i=1

(Xi − µ̂i)
2 log(2/α)

iσ̂2
i−1

≈
n∑

i=1

(Xi − µ̂i−1)
2∑i

j=1(Xj − µ̂j−1)2

≤ log

(
n∑

i=1

(Xi − µ̂i−1)
2

)
(10)

≈ log
(
nσ̃2

n

)
≈ log

(
nσ2

1

)
.

In the above display, (10) follows by an application of the following lemma with f(x) = 1/x.

Lemma 32 (Orabona (2019), Lemma 4.13). Let ai ≥ 0 for all i, and f : [0,∞) → [0,∞) be an increasing function. Then

T∑
t=1

atf(a0 +

t∑
i=1

ai) ≤
∫ ∑T

t=0 at

a0

f(x)dx.

This concludes the proof of (8).

Proof of (9). We proceed as follows with ri =
√(

log log i+ log(1/α)
)
/i

1√
n

n∑
i=1

λi =
1√
n

n∑
i=1

√
2 log(2/α)

σ̂2
i i

≳

√
2 log(2/α)

n

n∑
i=1

1√
iσ2

1(1 + ri)

≳

√
2 log(2/α)

σ2
1 n

(
n∑

i=1

1√
i
−

n∑
i=1

ri√
i

)

≈

√
2 log(2/α)

σ2
1 n

×
√
n =

√
2 log(2/α)

σ2
1

.

This completes the proof of Proposition 30.

E. Details of Experiments
Details of the bounded source with a specified mean (Section 5.2). For testing the performance of the SCD scheme
described in Section 5.2, we constructed a probability distribution, Pθ, over X = [0, 1] with a specified mean θ ∈ [0, 1] by
appropriately mixing two uniform distributions. In particular, we define Pθ = (1−θ)U1+θU2, where U1 ∼ Uniform([0, θ])
and U2 ∼ Uniform([θ, 1]).

Details of the CDF change detection experiment. (Section 5.3). For this experiment, we used univariate t-distributions
with 3 degrees-of-freedom. For the pre-change distribution, we set the mean to 0, and the scale parameter to 1. For the
post-change distribution, we set the mean to some value ∆ > 0, and the scale parameter to 2.

Details of the Binary classification source (Section 5.5) We consider feature-label pairs (Zi, Li) ∈ R2 × {0, 1}, with a
source distribution PS = PL × PZ|L. We assume that the label L is drawn uniformly on the set {0, 1}, and the features are
drawn from a bivariate normal conditioned on the labels: PZ|L = N(µL, I2), with µL = (2L− 1)[1, 0]T ∈ R2. For this
problem we will consider linear classifiers parameterized by a weight vector w ∈ R2, of the form hw(z) = 1⟨w,z⟩≥0. For
the 0-1 loss function, ϕ(z, l, hw) = 1hw(z)̸=l, it is easy to check that the Bayes-optimal classifier for the source distribution
is h∗ ≡ hw∗ , with w∗ ∝ [1, 0]T . For the post change distributions, we rotate the mean of the features by an angle γ; that is,
µL = (2L− 1)[cos γ, sin γ]T .
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Figure 6. The figures show the performance of our changepoint detection scheme with independent bounded observations whose mean
changes from p0 = 0.4 to p1 = 0.6 at the time T = 800. The first plot shows the forward and backward CSs at time of detection (τ = 863)
in one of the trials, with the shaded gray region being the points at which the two CSs disagree. The next three plots show the empirical
distribution of the detection delay, the estimated changepoint location, and the estimated changepoint magnitude over 250 trials of the
experiment with the same value of ∆ = 0.2 and α = 0.01.
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Figure 7. The figures show the performance of our changepoint detection scheme with observations drawn from univariate t-distributions (3
degrees of freedom) whose mean changes from 0 to 1.0 at the time T = 800. The first plot shows the forward and backward CSs around
the empirical CDFs, at time of detection in one of the trials. The next three plots show the empirical distribution of the detection delay, the
estimated changepoint location, and the estimated changepoint magnitude over 250 trials of the experiment.

F. Repeated sequential test interpretation
Our scheme as repeated sequential tests. Due to the equivalence between sequential hypothesis tests and confidence
sequences, we can also motivate our general strategy (Definition 12) in the language of sequential hypothesis testing. In
particular, our approach can be informally described as follows, due to the time-uniform coverage guarantees of CSs: in
each round t ≥ 2, we run a new sequential hypothesis test for every 1 ≤ s ≤ t− 1 to decide whether (X1, . . . , Xs) and
(Xs+1, . . . , Xt) are drawn from the same distribution, or not. As soon as we find a t for which a partition of the observations
are sufficiently distinct, we can stop and declare the existence of a changepoint. As we saw in Section 4, this idea can
be implemented in an elegant manner by combining a single forward CS (similar to Section 3) with a succession of CSs
constructed on reversed versions of the data, that we called ‘backward CSs’.

Connections to CuSum. We now demonstrate that we can also interpret the popular parametric SCD scheme, CuSum, as
also performing repeated sequential tests. Let f0 and f1 denote two density functions on some observation space X . Let
{Xt : t ≥ 1} denote a sequence of independent observations, and consider a changepoint detection problem with f0 and f1
as the pre- and post-change distributions respectively.

Definition 33 (CuSum). The cumulative sum (CuSum) method proceeds as follows:

τc = min{n ≥ 1 :Wn ≥ bα}, where

W1 = 0, and Wn = max
1≤t≤n

n∏
i=t+1

f1(Xi)

f0(Xi)
, for t ≥ 2.

The term bα is selected to ensure that the ARL is at least 1/α for a given α ∈ (0, 1).
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Figure 8. The figures show the performance of our changepoint detection scheme with independent paired multivariate-Gaussian observa-
tions whose kernel-MMD distance changes from a pre-change value of 0 to ∆ ≈ 0.33 at the time T = 800.
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Figure 9. The figures show the performance of our scheme for detecting harmful changes in test distribution for two-dimensional feature
vectors, as described in Section 5.5. In these plots, there is a change with magnitude ∆ ≈ 0.16 at the time T = 800.
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Figure 10. The first plot shows the samples corresponding to the two labels (L = 0 and L = 1), as well as the optimal linear classifier
h∗ for this problem (the dashed black line). In the second plot, the distributions are more separated, and the same classifier h∗ is also
Bayes-optimal for this problem, with a smaller risk. Finally, in the third figure, we have an example of a harmful distribution shift. In this
case, the feature distributions for the two labels are rotated anti-clockwise by 45 degrees, which makes h∗ a suboptimal classifier for this
problem. The new Bayes-optimal classifier is shown by the red dotted line.
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Observe that the CuSum procedure can also be interpreted as a sequence of repeated sequential (power-one) tests in the
backward direction, testing the null f0 against the alternative f1. These are power-one tests (as opposed to the usual SPRT)
because they only stop when the likelihood ratio process is large, and not when it is small.

We now introduce an alternative version of CuSum. In this definition, we use the convention that the infimum or minimum
over an empty set is infinity, that is, inf{x : x ∈ ∅} = ∞.

Definition 34 (CuSum-II). For any n ≥ 1, and 1 ≤ t ≤ n, define the backward sequential test, τ back
n , as follows:

τ back
n = min{1 ≤ t ≤ n : Ln

t ≥ bα}, where Ln
t =

n∏
s=n−t+1

f1(Xs)

f0(Xs)
.

Then, we can define the modified CuSum stopping time as

τ ′c := inf{n : τ back
n <∞}.

Proposition 35. The two tests defined in Definition 33 and Definition 34 are the same.

Proof. We show that for any N ∈ N, the sets {τc = N} and {τ ′c = N} are equal.

{τc = N} = {WN ≥ bα} ∩
(
∩N−1
n=1 {Wn < bα}

)
= {∃t ∈ [N ] : LN

t ≥ bα} ∩
(
∩N−1
n=1 {Ln

t < bα, ∀t ∈ [n]}
)

= {τ back
N <∞} ∩

(
∩N−1
n=1 {τ back

n = ∞}
)

= {τ ′c = N}.

F.1. CuSum as an instance of the BCS-Detector

We now discuss how the CuSum test for simple pre- and post-change distributions can be considered an instance of our
general BCS-Detector method. To do this, we need to identify a quantity for which we can construct forward and
backward CSs. Define θ0 and θ1 as follows:

θ0 = Ef0

[
f1(X)

f0(X)

]
= 1, and θ1 = Ef1

[
f1(X)

f0(X)

]
= Ef0

[(
f1(X)

f0(X)

)2
]
= 1 + dχ2(f0, f1) ≥ 1.

• Since the pre-change distribution is known, we set the forward CS simply equal to θ0. That is, we have Ct = {1} for
all t ≥ 1.

• For any n ≥ 1, we can construct a betting based backward CS consisting of subsets of Θ = {θ0, θ1} = {1, θ1}. To do
this, we introduce the following terms, with ϱ : R → [−1, 1] denoting an odd sigmoid function:

W
(n)
t (θ1) =

n∏
i=n−t

(
1 + ϱ

(
f1(Xi)

f0(Xi)
− θ1

))
, and W

(n)
t (1) =

n∏
i=n−t

f1(Xi)

f0(Xi)
.

B
(n)
t = {a ∈ Θ :Wt(a) < 1/α}

• Since Ct = {1} for all t ≥ 1, the BCS-Detector stops for the first time n, at which the backward CS rejects the
point 1. In other words, we can define the stopping time, τ , as follows:

τ := min{n ≥ 1 : ∃t ∈ [n],W
(n)
t (1) ≥ 1/α}

= min

{
n ≥ 1 : max

t∈[n]
W

(n)
t (1) ≥ 1/α

}
The above stopping time is the same as the original CuSum with bα = 1/α.

21



Sequential Changepoint Detection via Backward Confidence Sequences

G. Details for the Gaussian mean change detection problem
Setup. Recall that in this problem, we are given a stream of real-valued observations, X1, X2, . . ., drawn independently
according to the distribution N(µt, 1), with µt = θ0 for t < T , and µt = θ1 for t ≥ T . Here θ0 ̸= θ1 are two unknown
parameters, belonging to the parameter set Θ = R endowed with the distance metric d(θ, θ′) = |θ − θ′|.

Confidence Sequences. To instantiate both of our schemes (the FCS-Detector of Section 3, and the BCS-Detector
of Section 4), we need to construct confidence sequences. A suitable closed-form CS for the mean of an independent
Gaussian process was derived by Howard et al. (2021), and can be directly employed as the ‘forward CS’ in both of our
schemes.

Ct = [X̄t ± wt], where wt =

√
3.4 log log(2t) + 0.72 log(10.4/α)

t
.

The same CS can also be used in the definition of the new backward CS in every round n, as follows:

B
(n)
t =

[(
1

n− t+ 1

t∑
i=1

Xn−i+1

)
± wn−t+1

]
.

Note that the width of the (forward) CS decays uniformly to 0 as the number of observations grows, and thus the conditions
of both, Proposition 8 and Theorem 13, are satisfied.

Performance Guarantees for FCS-Detector. For the SCD scheme obtained by using the above CS in the
FCS-Detector method, we can claim the following as a consequence of Proposition 8:

• If there is no changepoint, then the probability that the FCS-Detector ever stops is equal to the probability that the
running intersection of the CS {Ct : t ≥ 1} ever becomes empty. This is upper bounded by α by the definition of CSs.

• Suppose the changepoint occurs at some time T ≥ 1. For detection to be possible by FCS-Detector, we require
the changepoint to satisfy T ≥ T1, where T1 := min{t ≥ 1 : wt < d(θ0, θ1)}. Without this requirement, we do not
have enough pre-change observations (relative to the change magnitude d(θ0, θ1)) to estimate the pre-change mean
parameter (θ0) sufficiently well. Assuming this requirement holds, Proposition 8 implies that the following upper
bound on the detection delay holds with probability at least 1− α:

τ − T ≤ min

{
t− τ : w(t) + w(T ) ≤

(
1− T

t

)
|θ0 − θ1|

}
.

As we discussed in Appendix B, this detection delay is O(T ) when T ≈ log log(1/∆)
∆2 , and O(

√
T ) when T → ∞. In

both cases, the detection delay can be made arbitrarily large by making the changepoint T large.

Hence, the FCS-Detector provides a very strong control of false positives at the cost of weak detection guarantees. We
now show how a better trade-off is achieved by the BCS-Detector.

Performance Guarantees for BCS-Detector. By specializing the general result of Theorem 13 to our problem, we
get the following performance guarantees:

• Instead of a high probability bound on false alarm rate, the BCS-Detector provides a guarantee on the average run
length (ARL): E0[τ ] ≥ 1

2α − 3/2. In other words, it guarantees that when there is no change, the BCS-Detector
will raise an alarm roughly every 1

2α − 3/2 steps.

• When there is a change in distribution at some finite time T , then the scheme guarantees the following upper bound on
the detection delay, as we showed in Corollary 17:

E[(τ − T )+|E ] = O
(
log log(1/∆) + log(1/α)

∆2

)
, where∆ = |θ0 − θ1|,

and E is the ‘good event’ of probability at least 1− α, associated with the forward CS.
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• Finally, note that if the pre-change mean parameter θ0 is known, then the event E has probability 1. Hence, we can
get an unconditional version of the above statement in this case. Furthermore, since for Gaussian distributions with
unit variance, dKL(Pθ1 , Pθ0) =

1
2∆

2, the expected detection delay is O
(

log log(1/dKL(Pθ1
,Pθ0

)+log(1/α)

dKL(Pθ1
,Pθ0

)

)
, which as we

discussed in Remark 18, is asymptotically near-optimal.

H. Additional Experiments
In this section, we compare the performance of our SCD scheme with the kernel-CUSUM strategy of Flynn and Yoo (2019),
on the problem of testing for homogeneity in a stream of paired observations (Section 5.4). We consider the following
datasets for binary classification from the UCI Machine learning repository: Higgs, Banknote, and Occupancy.

The kernel-CUSUM test proposed by Flynn and Yoo (2019) declares a detection the first time a running estimate of the
kernel-MMD distance between the two streams exceeds a threshold a. That is,

τ = min{n ≥ 1 : Lt ≥ a}, where
L0 = 0, L2n = L2n−2 + k(U2n−1, U2n) + k(V2n−1, V2n)− k(U2n−1, V2n)− k(U2n, V2n−1)− δ.

Here k denotes a positive definite kernel, and δ is a lower bound on the change magnitude that is assumed to be known apriori.
In many problems, a large volume of pre-change data is available, Flynn and Yoo (2019) suggest selecting the rejection
threshold a as the smallest value that results in the ARL (computed on historical pre-change data) exceeding a required
value. We followed this approach for calibrating the kernel-CuSum test and our proposed SCD scheme of Section 5.4, with
a target ARL of 500 on all the three datasets. The results are tabulated in Table 1.

Dataset ARL (BCS) ARL (K-CuSum) Delay (BCS) Delay (K-CuSum)

Higgs 547.85 569.20 251.45 440.63
Banknote 601.68 594.96 38.47 61.92
Occupancy 505.25 521.80 22.75 58.60

Table 1. Comparison of the performance of our BCS detector for detecting changes in homogeneity with the kernel-CUSUM method
of Flynn and Yoo (2019). Both the methods were calibrated to ensure an ARL of at least 500. The results indicate that our BCS detector
can achieve a smaller detection delay than the kernel-CuSum while maintaining the required ARL.
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