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Abstract

User embeddings (vectorized representations of
a user) are essential in recommendation systems.
Numerous approaches have been proposed to con-
struct a representation for the user in order to find
similar items for retrieval tasks, and they have
been proven effective in industrial recommenda-
tion systems. Recently people have discovered
the power of using multiple embeddings to rep-
resent a user, with the hope that each embedding
represents the user’s interest in a certain topic.
With multi-interest representation, it’s important
to model the user’s preference over the differ-
ent topics and how the preference changes with
time. However, existing approaches either fail
to estimate the user’s affinity to each interest or
unreasonably assume every interest of every user
fades at an equal rate with time, thus hurting the
performance of candidate retrieval. In this paper,
we propose the Multi-Interest Preference (MIP)
model, an approach that not only produces multi-
interest for users by using the user’s sequential
engagement more effectively but also automati-
cally learns a set of weights to represent the prefer-
ence over each embedding so that the candidates
can be retrieved from each interest proportionally.
Extensive experiments have been done on vari-
ous industrial-scale datasets to demonstrate the
effectiveness of our approach. !
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1. Introduction

Today, the recommendation system is widely used in online
platforms to help users discover relevant items and deliver
a positive user experience. In industrial recommendation
systems, there are usually billions of entries in the item cat-
alog, which makes it impossible to calculate the similarity
between a user and every item. The common approach is,
illustrated in Figure 1, retrieving only hundreds or thou-
sands of candidate items based on their similarity to the user
embedding on an approximate level (e.g. inverted indexes,
locality-sensitive hashing) without consuming too much
computational power, and then sending the retrieved candi-
dates to the more nuanced ranking models. Thus, finding
effective user embedding is fundamental to the recommen-
dation quality.

The user representations learned from the neural networks
are proven to work well on large-scale online platforms,
such as Google (Cheng et al., 2016), YouTube (Covington
et al., 2016), and Alibaba (Wang et al., 2018). Mostly, the
user embeddings are learned by aggregating the item em-
beddings from the user engagement history, via sequential
models (Hidasi et al., 2015; Quadrana et al., 2017; Kang
& McAuley, 2018; You et al., 2019). These works usually
rely on the sequential model, e.g. a Recurrent Neural Net-
work (RNN) model or an attention mechanism, to produce
a single embedding that summarizes the user’s one or more
interests from recent and former actions.

Recently researchers (Epasto & Perozzi, 2019; Weston et al.,
2013; Pal et al., 2020; Li et al., 2005) have discovered the
importance of having multiple embeddings for an individual,
especially in the retrieval phase, with the hope that they can
capture a user’s multiple interests. The intuition is quite
clear: if multiple interests of a user are collapsed into a
single embedding, though this embedding could be similar
to and can be decoded to all the true interests of the user,
directly using the single collapsed embedding to retrieve the
closest items might result in items that the user is not quite
interested in, as illustrated in Figure 1.

Though, conventional sequential models like RNN or the
Transformer network do not naturally produce multiple
sequence-level embeddings as desired in the multi-interest
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Figure 1. Mis-representation with single user embedding in the retrieve-then-rank framework.

user representation. Existing solutions fall into two direc-
tions: 1) split-by-cluster approaches first cluster the items
in the user engagement history by category labels (Li et al.,
2019) or item embedding vectors (Pal et al., 2020) and then
compute a representation embedding per cluster; 2) split-by-
attention models adopt transformer-like architecture with
two modifications. The query vectors in the attention are
learnable vectors instead of the projections from the input
and the results of each attention head are directly taken as
multiple embeddings (Zhuang et al., 2020; Cen et al., 2020).
The limitations of the two approaches are obvious: the split-
by-cluster method works best with dense item feature (Xue
et al., 2005); and split-by-attention models bias towards the
popular categories owing to its shared query vector among
all the users and are inflexible to adjust the number of inter-
ests, which is fixed in the training phase as the number of
attention heads.

Moreover, the existing multi-interest works ignore one im-
portant aspect: the weights of each embedding. In the
retrieval stage, given the limited number of items to return,
retrieving items from each embedding uniformly will cause
a recall problem when the user clearly indicates a high affin-
ity towards one or two categories. Some existing approaches,
e.g. PinnerSage (Pal et al., 2020), use exponentially decayed
weights to assign a higher score to interests that have more
frequent and recent engagements. However, the methods
still assume that in the same period, regardless of whether
the interest is enduring or ephemeral, the level of interest
decays equally for any user. Furthermore, these works also
assume the number of embeddings to be fixed across all
users. Not only is this hyperparameter costly to find, but
also the assumption that all users have the same number of
interests is questionable. Some dormant users can be well
represented using one or two vectors, while others might
have a far more diverse set of niche interests that requires
tens of embeddings to represent.

In this paper, we propose Multi-Interest Preference (MIP)
model that learns user embeddings on multiple interest
dimensions with personalized and context-aware interest
weights. The MIP model consists of a clustering-enhanced
multi-head attention module to compute multiple interests
and a feed-forward network to predict the weights for each
embedding from the interest embedding as well as the tem-
poral patterns of the interest. The clustering-enhanced at-

tention overcomes the aforementioned shortcomings from
two aspects: the query, key, and value vectors are projected
from the user’s engaged items, thus the output of the atten-
tion is personalized and minimized the bias toward globally
popular categories; moreover, the clustering module can be
applied before or after the multi-head attention, releasing
the assumption that item features are pre-computed or the
item-category labels are available. The main contribution of
this paper and the experimental evidence can be summarized
as follows:

* We propose a multi-interest user representation model
that minimizes the bias towards popular categories and
is applicable no matter if the item embeddings are pre-
computed. MIP is successful in various industry-scale
datasets (Section 4.1, 4.2); Appendix A.1 reveals the
bias resulting from the global query vector and the
error resulting from a fixed number of clusters in the
split-by-attention approaches, in comparison to MIP.

¢ In addition to the multi-facet vector representations of
a user, MIP assigns weights to each embedding, which
are automatically customized for each user interest.
This approach improves the recall of candidate gen-
eration by retrieving more candidates from the most
representative embedding. (Section 4.3).

* Although if the clustering algorithms require, MIP
still asks for a number of clusters during the training
phase, the number of clusters in MIP in the inference
phase can be trivially increased or decreased without
re-training of the model. And the experimental results
(Appendix A.2) show that re-configuring the number
of clusters has an insignificant impact on the retrieval
performance, thus allowing the system to trade off the
storage and computation cost for better performance.
Thus, MIP does not require prior knowledge of the
number of interests of users during the model training
phase.

2. Related Work

This work relates to two important aspects of existing recom-
mendation systems: sequential models and the multi-interest
framework.

Sequential models. A basic consensus in the recommenda-
tion system is that user embeddings should be inferred from
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Name User Sequential Additional Preference
Embedding Model Input Weight
GRU4Rec (Hidasi et al., 2015) single RNN interaction session N/A
TiSASRec (Li et al., 2020) single time-aware self-attention timestamps N/A
BERT4Rec (Sun et al., 2019) single self-attention - N/A
MIND(Li et al., 2019) multiple label-aware self-attention category labels X
ComiRec (Cen et al., 2020) multiple global-query attention - X
PinText2 (Zhuang et al., 2020) multiple shared global-query attention - X
PinnerSage (Pal et al., 2020) multiple N/A - heuristic
MIP multiple time-aware self-attention timestamps learned

Table 1.

the user’s historical behavior, and thus the sequential models
have been at the heart of recommendation models. A typical
and classical sequential model is the Markov Chain (Rendle
et al., 2010; He & McAuley, 2016). While Markov Chain
captures short-term patterns of engagement sequence well,
it fails to make the recommendation that requires memoriz-
ing long sequences. With stronger representation power on
long sequences, Recurrent Neural Networks (RNNs) have
been adopted for learning user embedding from arbitrarily
long sequences, e.g. GRU4Rec (Hidasi et al., 2015) and
others (Xu et al., 2019; Devooght & Bersini, 2017). Besides
the standard RNN models, specialized recurrent units are
proposed to meet the special need of incorporating certain
information, e.g. user demographic information (Donkers
et al., 2017), global context (Xia et al., 2017), interest drifts
with time (Chen et al., 2019), and interaction session (Hi-
dasi et al., 2015). Recently, the success of the Transformer
network (Vaswani et al., 2017) has brought revolution to se-
quential modeling tasks(Shi et al., 2022; Pérez et al., 2019)
and has been soon adapted to the recommendation mod-
els, e.g. ComiRec (Cen et al., 2020), BERT4Rec (Sun
et al., 2019), TiSASRec (Li et al., 2020), SASRec (Kang &
McAuley, 2018), MIND (Li et al., 2019), PinText2 (Zhuang
et al., 2020), and also our MIP.

Multi-interest user representation. Representing users
by multiple embeddings greatly improves the recommenda-
tion quality, but not every existing recommendation model
can easily extend to a multi-interest framework. Classical
collaborative filtering and matrix factorization methods do
not naturally produce multiple user embeddings, and so do
RNNSs and attention-based models. To discover multiple
interests from user engagement history, heuristic methods
(Jiang et al., 2020; Yue & Xiang, 2012) and unsupervised
learning methods like clustering (Pal et al., 2020; Wand-
abwa et al., 2020) and community mining (Wang, 2007; Yu,
2008) have been adopted. Besides, researchers have made
efforts to modify the existing neural networks to produce
multiple results, for instance, the capsule network (Li et al.,
2019; Sabour et al., 2017; Cen et al., 2020) and multi-head
attention models (Li et al., 2020; Cen et al., 2020; Zhou

Comparison of MIP to existing recommendation models.

et al., 2018). However, they require an estimation of the
number of interests of users as a hyperparameter and do not
learn the weight of interests. Therefore, unlike MIP, they
produce an equal number of clusters for every user and treat
each interest with uniform importance.

Relationship to previous works. The motivation of MIP
is to acquire weighted multiple user embeddings with stan-
dard self-attention but without explicit item-category labels.
ComiRec and PinText2 use global-query attention to pro-
duce multiple embeddings, which introduces a bias toward
frequent items or popular categories and the phenomenon is
shown in Appendix A.1. Furthermore, they also predefine a
number of interests that is uniform for all the users. TiSAS-
Rec and BERT4Rec adopt self-attention but can not learn
multiple embeddings. MIND relies on the category labels to
produce multiple embeddings from self-attention and cap-
sule networks. However the category labels are sometimes
unavailable or vague in other applications, e.g. YouTube
and Pinterest. PinnerSage produces multiple embeddings
without category labels, but requires pre-computed item
embeddings. The comparison are summarized in Table 1.

3. Methodology

In this section, we formulate the recommendation problem
and the neural architecture to model the multiple user inter-
ests with preference weights in detail.

3.1. Problem Statement

Let 7 denote the collection of items and I/ denote the set
of users. The interaction sequence of a user u € U is repre-
sented as S* with a list of item IDs (vg!, vy, ..., vy, ) and
timestamps (t%, t4, ...,tﬁu|). Each item v} € T is associ-
ated with an item embedding p? € R? and [,, is the length
of the interaction sequence.

The objective is to learn a set of user embeddings z} € R¢
and their weights w§ (A = 1, ..., A) for each user u. Since
the user representation is learned only from the history of
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Figure 2. An overview of MIP architecture. The input is the user engagement history containing item embeddings [p; ...p:]), temporal
encoding [71...71], and positional encoding ([p1...p:]). The multi-interest user embedding module produces A embeddings, where A is
decided by the clustering method or as a hyperparameter. With clustering and multi-interest representation, the cluster weight module will
then estimate the cluster weights for each cluster. Finally, the multi-interest embeddings with corresponding weights are combined to
predict the user’s interest in an unseen item p. The processes with item metadata absent/present are shown with different arrows.

Notations | Description
.U Item set and user set
S Abbreviation of user engagement history S*
l Abbreviation of [,,, length of S
d The item embedding dimension
Amodel Projected key/query vector dimension
h Attention head superscript
P An item embedding, p € R¢
Dj,t; Short form of the p}f] and t7
Wk, bk Query projection weights and bias
WZ7 b% Key projection weights and bias
M Attention mask matrix
A Maximum number of interests per user
c Cluster assignment, C € R,
Clj = Aif i-th item belongs to A-th cluster
L, The set of indices of items in the A-th cluster.
2y, 4 User embedding vector(s)
Liconq) 1 if cond is true, O otherwise
T(m] m-th digit in the vector T
[;] Vector concatenation operator

Table 2. Notations

that user, hereinafter, we omit the superscript for u in both
the input and output sides for simplicity. Notations are
summarized in Table 2.

Item embedding p; can be either represented by item meta-
data features or treated as model parameters and learned
from the data. When items have dense metadata features
(e.g. text embeddings), we will use them as the item embed-
ding and focus on learning the user representation. When
items are only represented by an ID and do not have other
metadata, we will learn the item embedding table. Our
model is able to handle both cases and eventually learn
users’ multi-interest embeddings and their weights.

3.2. Multi-Interest User Modeling

Item Representation. For the j-th item in the user engage-
ment history, we represent the item by p; and it’s either
learned (when item metadata is absent) or copied from the
item metadata feature (when item metadata is present). In
addition to p;, the sequential order and relative timestamps
of the interactions are represented by positional encoding
and temporal encoding respectively as p and 7. Following
Vaswani et al. (2017), the odd digits (2m + 1) and even
digits (2m) on the encoding vectors are given by:

Tiom) (t5) = sin(t; / (Tmaz)>™ ™)
T[2m+l] (t]) = COoS (t]‘/(Tmaz)Q’m/’mt)
pizm)(7) = sin(j/(pmaz)*™' ™)

Pzm+1)(7) = c0s(j/(pmaz)>"""")

6]

The hyper-parameters are set as Tyqp = Pmaz = 1 X 104,
and m; = m, = 1. The timestamps unit is day. In the
Section 4.4, other encodings forms are compared, and show
that the design used in Equation 1 has a slight advantage.

Finally, item ID embedding is concatenated with the posi-
tional and temporal encodings to produce the final represen-
tation of an interaction:

ej = [p;;7(t;); p(J)] )

User Representation. Our user representation is built upon
the multi-head self-attention module (Vaswani et al., 2017).
Using the interaction embedding as above, for each attention
head h, we define the attention weight between interaction ¢
and j as

h EXP(S?, i)

ally = o) 3)
! 22:1 eXp(S?,k)
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where sf ; 1s the dot product between the projected query of
7 and the projected key of i:

SZJ = ((W;Leﬂ + bfZL)T : (W}?@i + bZ))/ V dmodel (4)

In order to build the user’s multi-interest embedding, we
need to cluster the items in the user sequence. When we
use item metadata features as p, we pre-compute the item
clusters L1, --- , Lx where each L) is the set of item IDs
that belong to A-th cluster. Let C denote the mapping from
item ID to cluster assignment, i.e. C[j} = \ifj € L. Given
the cluster information, we have the advantage of summariz-
ing similar items into a single representation. Specifically,
when the context vector only attends to items within the
same cluster as the current item, we force that vector to con-
tain only the information from that cluster. Naturally, a mask
is introduced to enforce such constraint: let M € {0, 1}!*!
be the mask matrix where M; ; = ]l[cm =cy)) (and O other-
wise). Each attention head h produces the context vector at
position j by aggregating the sequence as:

l
o) = al;Mi;pi (5)
=1

To process the context vector from all attention heads, a
dropout layer and a feed-forward network (FFN) are applied,
and the output vector is computed as

¢; = FFN(Dropout([¢}; ..; 61']), j=1,---,1 (6

The FFN () consists of two fully-connected linear layers
with a hyperbolic tangent activation function after the first
layer, i.e. FFN(z) = W (tanh(W'z +V')) + b.

When item metadata is absent and p need to be learned, the
mask M will be an all-ones matrix, and output vectors are
still computed according to Equation 5 and 6. Then the item
clusters are computed from ¢ instead of from p. We still
use C to represent such cluster assignment, and it will be
used to define the user’s multi-interest embedding as below.

So far, the multi-head attention module has produced [ vec-
tors ¢1, ..., @, and each ¢; uses p; as the (unprojected)
query. We will build the multi-interest user embedding by
selecting the A context vectors that represent each cluster.
Denote the position of the last item in each cluster A as p
(i.e. px = argmax;(Cp;; = A)), we will take context vector
at that position to represent the A-th user embedding. In
sum, the multi-interest user embedding is

7 = [le;...;zX] = [‘ﬁ;ﬁ ...;(bIA] € R @)
Each z, attends to only items that belong to the same cluster
as the item on position fi ).
3.3. Cluster Weight Modeling

Besides the multi-interest user embedding, it’s also likely
that a user favors each interest unequally. As mentioned ear-

lier, ranking these interests correctly can greatly benefit the
candidate generation task given its limited budget. Pinner-
Sage (Pal et al., 2020) uses an exponential-decay heuristic
function to represent the weight for a cluster, following the
assumption that more recent interactions should contribute
more to the cluster weight. While we believe that the in-
tuition is generally true, it would be best for the model to
automatically learn the role of timestamps from the data.
We also incorporate the user embeddings on that cluster’s
dimension (z)) into cluster weight modeling, since certain
categories of interest can have different impacts on the clus-
ter weights as well. Therefore we design the cluster weights
to be a function of the recency of the interaction and user
embeddings. We model the weight of cluster A as

wHy = FFN([ZA; ]].[Cm:)\] S T1y e ]1[0[1]:[,)\] . TZD (8)

The first part inside the F'F'N is the user’s embedding on
cluster A. The second part inside the F'F'N serves as a mask
that retains only the timestamps of relevant items that belong
to cluster A. We will discuss how to learn these weights in
the next subsection.

3.4. User-Item Interaction Modeling

On the item level, intuitively, a user will engage with an
item as long as the item matches at least one of his/her
interests (not all). For example, a user who is interested
in both running and home decor purchased a lawn mower,
and this behavior will be explained by the user’s embedding
of the “home decor” cluster (i.e. Zpome) and has noth-
ing to do with the embedding of the “running” cluster (i.e.
Zrunning)- 1n other words, the similarity of zjy,. and
Plawn mower Should be high, and the similarity of 2,,nning
and Pjawn mower should not even matter. Therefore, when
measuring the user-item affinity, we should consider the one
user embedding that is the most similar (e.g. highest cosine
similarity) to the item.

On the cluster level, we need another factor to explain a
user’s behavior towards different clusters. This can no
longer be represented simply by the semantic similarity
in the embedding space any more. When the user purchases
20 items in the “home decor” cluster and 5 items in the
“running” cluster, it does not indicate that the similarities
between zp,me and these 20 items are higher than the simi-
larities between 2,ynning and these 5 items (in fact, all of
the similarities should be as high as possible). Therefore,
we will multiply the user-item affinity by the cluster weight
here to represent a user’s intensity towards different clusters.

Considering the arguments above, we propose the likelihood
that a user (represented by Z = [z ;...;z}]) interacts with
an item (represented by p) as follow:

Yy = max{wA . (Z)\ . p)}i\:1 (9)
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Amazon MovieLens Taobao
# Items 425,582 15,243 823,971
# Interactions 5IM 20M 100M
# Training Seq 57,165 127,212 343,171
# Test Seq 5,000 5,000 10,000
# Validation Seq 5,000 5,000 10,000

Table 3. Dataset statistics.

Given the set of items with positive label ({ZY}yeur)
and negative label ({Z* }, <), the negative log-likelihood
(NLL) loss of our model can be written as:

et (Sprers 108() + X, ez log(1 = ut))
S eu (121 + 22)

10)

4. Experiments

We conduct an exhaustive analysis to demonstrate the ef-
fectiveness of MIP on the data from Pinterest, one of the
largest online content discovery platforms, and a few public
datasets. We will divide our discussions to two categories:
(1) learning item ID embeddings (Section 4.1) and (2) us-
ing item metadata features as is (Section 4.2). Finally, an
ablation study is done on different components of the model
(Section 4.3).

4.1. Learning Item ID Embeddings

We first evaluate MIP on learning from collaborative filter-
ing datasets, where the item features are absent and will be
learned from the user-item interactions.

Dataset. Three public datasets are used: Amazon-book >
(hereinafter, Amazon), Taobao?, and MovieLens*. We adopt
a 10-core setting as previous works (Li et al., 2020; Wang
et al., 2019) and filter out items that appear less than 10
times in the dataset. We then split each user’s engagement
history to non-overlapping sequences of length 100, and
use the first 50 items to learn the user embeddings and
the last 50 items as labels (as used in Cen et al. (2020)).
Any sequence shorter than this threshold are discarded. For
each sequence, another 50 negative samples are uniformly
sampled at random from the items that the user does not
interact with. Our goal is to rank the positive items (that
users have actually interacted with) higher than the negative
items (random). The dataset statistics are listed in Table 3.

Baseline and model configuration. We compare several
open-sourced baseline models with MIP. For fair compar-
ison, we set up the configurations as follow: (1) item and

*https://jmcauley.ucsd.edu/data/amazon/
*https://tianchi.aliyun.com/dataset/dataDetail ?datald=649
“https://www.kaggle.com/grouplens/movielens-20m-dataset

user embedding vectors have the same size (d = 32); (2) the
number of attention heads is the same (H = &) if the model
includes a multi-head attention module; (3) the baseline
models should have similar or more parameters than MIP.
We let the hidden size in GRU4Rec (Hidasi et al., 2015)
be 128, the key and query projected dimension (d,;,ode; in
Equation 3) is labeled in place with the results, and if the
model contains a position-wise FFN (Equation 6), it will be
a two-layered fully-connected structure with a hidden size
of 32 each. The BERT4Rec model (Sun et al., 2019) is origi-
nally proposed to predict the item directly as a classification
task, so we take its last BERT output as the user embed-
ding to compute the similarity between user and item, and
train with the NLL loss. We disabled the session-parallel
mini-batch in these models since the session information
is absent. We also replace the text encoder in the PinText2
(Zhuang et al., 2020) with an item embedding layer since
the inputs in our experiments are items instead of texts.

Training setup. All the models are trained for 100 epochs
on a NVIDIA Tesla T4 GPU with an early stop strategy that
stops the training when validation AUC does not improve
for 20 epochs. The clustering method used in MIP is the
Ward clustering algorithm Ward Jr (1963).> We compare
other clustering methods in Appendix A.2.

Training strategy. We adopt a two-stage setting in the
model training in order to enhance the model performance.
In the first stage, we fix all the cluster weights to be 1 and
train the remaining parameters. After the model converges,
we no longer freeze the cluster weights and all parameters
are trained until converge. Table 5 summarizes the model
performance of two-stage training vs. joint training, and we
can clearly see that this strategy is working really well in
practice. The rationale behind this is the cluster weights tend
to converge too quickly before clusters emerge, therefore
we deliberately let the clusters form first before learning
the cluster weights. We want to point out this maneuver in
our training and hope it can benefit the implementation of
similar models.

Results and analysis. The performance is summarized in
Table 4. MIP has a better performance on Amazon and
Taobao datasets and is trivially worse than GRU4Rec and
ComiRec in AUC on MovieLens. Intuitively, the purchase
behavior on e-commerce websites (Amazon, Taobao) can
be largely explained by the user’s interest in multiple cate-
gories or brands, while movie-watching is driven more by
a movie’s popularity and quality rather than the category.
Since all models have very close performance, MIP is still a
competitive approach in applications that do not support the

SWe adopted the scikit-learn implementation. https://
scikit-learn.org/stable/modules/generated/
sklearn.cluster.AgglomerativeClustering.
html, with n_cluster=5, and other default arguments.
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Model Params Config Amazon Taobao MovieLens Latency

" | layers  dpoder | AUC  recall nDCG | AUC recall nDCG | AUC recall nDCG (ms)

GRU4Rec 66338 1 - 0.682 0.635 0.678 | 0.816 0.745 0.794 | 0.961 0.903 0.934 1.15
BERT4Rec | 50242 1 64 0.681 0.632 0.678 | 0.815 0.745 0.794 | 0.960 0.901 0.928 38.34
BERT4Rec | 55426 2 32 0.721 0.665 0.698 | 0.815 0.745 0.794 | 0.960 0.902 0.941 57.53
PinText2 69634 1 256 0.558 0.541 0.608 | 0.716 0.669 0.691 | 0.883 0.817 0.782 14.46
TiSASRec | 67586 2 64 0.721 0.667 0.704 | 0.815 0.744 0.794 | 0.960 0.902 0.928 14.54
ComiRec 67586 1 256 0.717 0.674 0.704 | 0.709 0.656 0.698 | 0.963 0.907 0.979 14.61
MIP 49347 1 32 0.805 0.789 0.781 | 0.885 0.884 0.909 | 0.930 0.933 0.954 40.05

Table 4. Performance on public datasets. Params excludes the parameters in the item embedding table. Recall and nDCG are measured at

top-50 items. See Appendix A.3 for latency measure details.

MIP Amazon Taobao MovieLens
Model Epoch AUC recall@50 | Epoch AUC recall@50 | Epoch AUC recall@50
After the first stage 22 0.731 0.667 4 0.821 0.749 34 0.960 0.901
After the second stage 6 0.806 0.789 4 0.885 0.884 6 0.930 0.933
Joint training 18 0.576 0.570 28 0.803 0.802 14 0.924 0.937

Table 5. Comparison of training strategy and the performance of MIP. The columns Epoch shows the training epochs when the best

validation AUC is achieved.

strong multi-interest assumption.

4.2. Using Item Metadata Features

Dataset. The dataset contains user engagement history col-
lected from Pinterest, an image-sharing and social media
service that allows users to share and discover visual content
(images and videos). The interactions between a user and an
item (also referred to as a pin) are categorized into impres-
sion (pin is shown to the user), clickthrough (user clicks the
pin), re-pin (user saves the pin into their board collection),
and hide (user manually hides the pin). In total, there are 38
million interactions from 510 thousand users during three
weeks of time. Each pin is represented as a 256-dimension
feature extracted by the PinSage model (Ying et al., 2018).

User’s engagement sequences are processed in a similar
way as the public datasets, except that we enforce a one-
day gap between the inputs and labels, because adjacent
user engagements are usually very similar which makes the
prediction task easy. Intuitively, we can use clickthrough
and re-pin as the positive label, and hide (which is less often)
and impression (without click or re-pin) as the negative label,
but since impressions are also recommended to the user at
some point, they are likely to be relevant to the user as well,
and thus correlate with the positive data. In order to alleviate
this bias, we introduce the random negative data where pins
are sampled from the whole set of pins. The entire negative
dataset will consist of 50% observed negative data (hide and
impression), and 50% random negative data.

Baselines and model configuration. We compare the multi-
interest models PinnerSage and ComiRec, and the single-
embedding model TiSASRec with the same setting as in

precision@20 recall@20 AUC NLL
PinnerSage 0.740 0.296 0.815 1.033
TiSASRec 0.798 0.312 0.850 0.478
ComiRec 0.864 0.345 0.875 0.407
MIP 0.882 0.353 0.893 0.377

Table 6. Performance on the Pinterest dataset.

Section 4.1.

Results and analysis. As shown in Table 6, MIP outper-
forms all the state-of-the-art multi-interest sequential mod-
els.

* PinnerSage shares the same clustering algorithm with
MIP, but differs in that 1) each cluster embedding is
represented by the medoid of all of its item embed-
dings; and 2) the cluster weights are heuristic-based
(not learned from the model). Instead, MIP learns the
cluster representations and weights collectively from
data, and thus has a clear advantage over PinnerSage.

* TiSASRec has a similar attention module as MIP, ex-

cept only using the single last attention output as the

user embedding. The comparison confirms the neces-
sity of multi-interest representation, as in ComiRec and

MIP.

Compared to ComiRec, MIP interestingly shows that

self-attention has stronger representation power than

attention with global query. In Appendix A.1, we fur-
ther use synthetic data to illustrate the fundamental
difference between the two types of models.
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Triplet Triplet Triplet
NLL (a =0.2) (a =0.5) (a =0.8)
AUC R@50 | AUC R@50 | AUC R@50 | AUC R@50
0.930 0.933 | 0.885 0.882 | 0.903 0.901 | 0.906 0.906

Table 7. MIP on MovieLens with different loss functions.

4.3. Ablation Study

This section focuses on the claim that 1) the user’s pref-
erence should be dynamically learned from the temporal
pattern by demonstrating the effectiveness of the learned
personalized cluster weights module of MIP; 2) The NLL
loss is sufficient to reach good performance without the
need to sweep the hyperparameters required in other losses,
e.g. triplet loss; 3) effectiveness of positional and temporal
encoding (Section 4.4). We refer the readers to Appendix
for a comprehensive ablation study on attention mechanism
(A.1), re-configuration and comparison of the clustering
method post-training (A.2). We will focus on the ablation
study on interest weights and loss function in this section.

Interest weights. To validate the assumption that the pref-
erence trends (weights of multiple interests) change from
user to user, we compare the MIP with two variants that
disable the cluster weight module. The first one (referred to
as MIP (Equal Weight)) constantly assigns 1 to the cluster
weights, leading to an equally weighted multi-interest user
representation. Another one (referred to as MIP (Exp De-
cay)) uses an exponential-decay heuristic weights given by
wy = Zi:cie,\ exp(—€(tnow — t;))(Pal et al., 2020). We
let 2,4, be the last user engagement time ¢;45;_jtem. SINCE
in practice it’s unrealistic to update the weights in real-time.
According to Pal et al. (2020), we also set ¢ = 0.01, which
balances well between emphasizing recently engaged items
and accentuating frequently engaged categories. We let the
number of clusters be A = 5. We calculate performance
on these model variants and show the relative percentage
difference from the best baseline model in Figure 3. Note
that smaller NLL means better performance. In all experi-

ments, the AUC and recall can benefit from learning cluster
weights (MIP). The second best variant is usually having an
equal weight for all clusters.

Loss function. Beside the NLL loss function in Equa-
tion 10, triplet loss is also widely used in recommendation
system and contrastive learning. Let the y™ be the similarity
prediction between the user representation and a positive
item, and y~ be the predicted similarity between user rep-
resentation and a negative item. The triplet loss is given
by:

Lo=Y (" =y +a)ueu )
where « is a hyperparameter of the positive-negative margin.
With triplet loss, we added a linear factor 3 (learned) in
Equation 9, (i.e. y = maz{Bwy - (2 - p) }A_,) to re-scale
the similarity since y is unbounded and makes the choice
of a to be hard. We let the MIP train on the MovieLens
dataset to investigate the impact on the performance of loss
function choice. The results in Table 7 illustrate that the
triplet loss marginally underperforms the NLL loss we used.

4.4. Positional and Temporal Encoding

In Equation 2, the sequential (positional) and temporal in-
formation are encoded and included in the self-attention
module to produce the multi-interest representations. The
motivation is that given items from the same category, the
recent ones might better represent the user’s current interest
than the obsolete items. We verify 1) if the incorporation
of positional and temporal encoding is critical to the perfor-
mance; 2) how the encoding (Equation 1) method affects
the performance.

Configuration. The MIP are configured on the two set of
choices: the Equation 2 can be configured alternatively:

* item embedding only: e; = p;.

* + positional: e; = [p;; p(j)], where p(j) is given by
Equation 1.
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Dataset Configuration AUC Recall
item embedding | 76.34  73.75

Amazon +positional 76.19  74.28
+temporal 78.59 76.94

+both 79.31 78.22

item embedding | 82.06 81.75

Taobao +positional 86.54  86.22
+temporal 86.72  86.56

+both 86.59 85.83

item embedding | 95.26 94.45

. +positional 95.01 94.31
MovieLens +It)emp0ral 94.96  94.19
+ both 94.61 94.12

Table 8. Ablation study on the positional and temporal encoding
on public datasets. (in 1072)

* + temporal: e; = [p;; 7(t;)], where T(t;) is given by
Equation 1.
* + positional and temporal: Equation 2 and Equation 1

and there are several other choices of temporal encodings
other than the sinusoidal form in the Equation 1:

* One-hot (Zhou et al., 2018): Create exponential buck-
ets [0,b), [b,b?), - -+, [b*~1, 00) with base b, and en-
code the timestamp as an one-hot vector, i.e. 7; =
lookup(buckets(t)).

* Two-hot (Shi et al., 2021): Similarly create exponential
boundaries {0, b, b2, ---, b*~1, 0o}, and encode the
timestamp as 7; = logp(t) —iand 7,41 = i + 1 —
logy(t), where b* < t < bF1,

Dataset and Results. The options to include positional
and temporal information are evaluated on all the dataset
(Table 8), and the encodings methods are compared exhaus-
tively on Pinterest dataset (Table 9).

Analysis. Two conclusions can be made from Table 8 and
Table 9: 1) including both temporal and positional infor-
mation is a safe option, which has the best performance
on Amazon and Pinterest and marginally (< 0.01) worse
performance on Taobao and MovieLens; and 2) the model
is insensitive to encoding methods.

5. Conclusions

In this paper, we study the problem of multi-interest user
embedding for recommendation systems. We follow the
recent findings on representing users with multiple embed-
dings, which has been proven helpful over the single user
representation. In addition, we illustrate that in industrial
recommendation systems, it is important to have a set of
weights for these multiple embeddings for a more efficient
candidate generation process due to its budget on the num-

Configuration AUC NLL
item embedding 0.8923  0.377
+ positional 0.8846 0.386
+ temporal (one-hot) | 0.8850 0.388
+ temporal (two-hot) | 0.8846 0.385
+ temporal (sinusoid) | 0.8921 0.377
+ both (one-hot) 0.8861 0.382
+ both (two-hot) 0.8852 0.387
+ both (sinusoid) 0.8926 0.377

Table 9. Influence of temporal and positional encoding in attention
on the performance in MIP

ber of items returned. More specifically, we define the
likelihood of an engagement based on the closest user em-
bedding to the item embedding and update the weight for the
corresponding cluster. Moreover, the case studies on mul-
tiple real-world datasets have demonstrated our advantage
over state-of-the-art approaches. Finally, the ablation study
on the cluster weight module demonstrated our intuition
that simple heuristic does not work as well as personalized
model-learned interest weights. We refer readers to the
appendix for extensive study on other model design choices.
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Model Non-shafr}(la(c)lbal ‘quer)éhare q Self-attention
Key vector k; (Wlp; +b")

Query vector q" \ q q} = W}p; + b}
q shared between sequences Yes No

q shared between att. heads No Yes No
Dot-product e =q"" K [l =q" K| el =q!T K]

Table 10. Variations of multi-head attention.

A. Appendix
A.1. Variants of Attention Mechanism

To interpret the performance improvement of our models against other attention models that have been applied in the recom-
mendation system, we further construct a synthetic dataset and visualize the internal attention and the user representations
aggregated from different attentions.

Synthetic dataset. Without loss of generality, we assume there are G global clusters in the corpus, representing different
global categories, each of which is a d-dimensional Gaussian distribution. Each user is interested in up to k (< () categories,
referred to as user clusters. We generate the oracle user interest model by sampling no more than & clusters from G global
clusters following a multinomial distribution. Then each of the items in the user engagement history is sampled in two steps:
uniformly sample one cluster from user clusters, then sample from the d-dimensional Gaussian distribution. Note that in the
synthetic model, the item-to-cluster affinity is measured in Euclidean distance, while in the recommendation model, the
affinity is decided by cosine distance. To eliminate this discrepancy, we force the Gaussian distributions to center on the unit
sphere, so that the rankings by cosine distance and Euclidean distance are consistent.

We use a 2D dataset (d = 2) for visualization purposes and another high-dimensional dataset for quantitative evaluation. For
the 2D dataset, we set a relatively small G = 8 and k = 4 in order to have a clear boundary between clusters. Since there
are only 162 distinct subsets® with G = 8, k = 4, we use 100 of them for training, 31 for validation, and the remaining 31
for testing. For the high-dimensional dataset, we set G = 1024 and k = §, and let d = 16, 32, 64, 128. We generate 10000
users for training, 1000 for validation, and another 1000 for testing.

Attention models. We focus on comparing our attention model (i.e. self-attention), the attention model utilized in ComiRec
(i.e. Non-shared query), and the one used in PinText2 (i.e. Shared query). The comparison of the attentions is in Table 10.

For simplicity, we remove the temporal and positional encoding from the computation of attentions, skip the Ward clustering
step from MIP, and directly represent user as Equation 7. Also, the dropout layer is removed in order to eliminate randomness
in visualization.

Metrics. We visualize the intermediate results and user representations learned from the 2D dataset for qualitative evaluation.
For high-dimensional data, we evaluate the performance by AUC and normalized discounted cumulative gain (nDCG).

Qualitative results and interpretations. Figure 4 shows the learned user representations given the engagement history.
There are three observations. 1) When H = 1, global query attention fails to capture all the user interests, while the
self-attention model is free from the limitation. 2) Viewing from the third row, the self-attention model is more accurate
in learning cluster representations than global query models. The latter is systematically biased due to the global query
as shown in global query models in Figure 6. 3) All the models learn super-clusters, depending on the bias in the dataset.
For the example shown in Figure 4, the two adjacent clusters on the top side of the unit circle are often represented to be a
super-cluster.

We also visualize the internal attention scores and self-attention models (Figure 5). Some attention heads show highly similar
attention patterns because their queries are close to each other, which can be verified from Figure 6. Figure 5 compares the
ground truth attention model with the learned attention. The learned attention shows clear boundaries between clusters in the
heatmap. Note that the ground truth ignores the adjacency of clusters but the self-attention model considers the similarity
between clusters, so Figure 5(a) is block diagonal while Figure 5(b-d) has dark blocks off the diagonal.

Number of ways to select no more than 4 clusters from a pool of 8 clusters: 162 = (3) + (3) + () + ()

12
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Figure 5. Learned attention scores in self-attention model. Darker
color represents higher values. (a) the indicator function 1 [c;=C;]>
(b-d) a;,;. The input sequence is re-ordered for better visualiza-
tion.

Figure 4. Learned user representations with different attention
mechanisms. Non-shared and shared global query results might
miss some user interest or are close to the negative categories,
while self-attention results are comprehensive and accurate.

Quantitative results. Previous results show the intuitive comparison between global query models and the self-attention
model, and the quantitative results further confirm the consistency of performance gain of self-attention. Experiments are
repeated on the dataset for feature dimension d = 16, 32, 64, 128 and number of attention heads H = 4, 8. Figure 7 shows
that the MIP model constantly and significantly outperforms global query models. As illustrated in the 2D dataset, the
performance gain benefits from the personalized user representation, rather than matching to the globally popular clusters.
Another observation from the result is that for global query models, H = 4 under-performs H = 8 models, as the number
of attention heads decides the number of global clusters the model can learn; however, for self-attention model, H = 4
performs even better than H = 8. The explanation is that the self-attention model does not require a growing number of
attention heads with respect to the number of global clusters, and H = 4 could be already enough for capturing user interest
but easier than H = 8 to train.

A.2. Clustering Options

The Ward’s algorithm is applied to MIP considering its success in PinnerSage(Pal et al., 2020), it’s beneficial to explore the
selection of the clustering algorithm and the number of clusters on the collaborative filtering dataset. To illustrate the impact,
we evaluate MIP with a wide range of clustering algorithms.

Model Configuration and training: MIP models are configured with an attention module that takes both positional and
temporal encoding. For unweighted MIP, no clustering method is applied to the encoded user engagement history {z.}
(computed from Eq. 6) in the training stage. For weighted MIP, Ward’s algorithm is applied to {z.} and the number of
clusters is set to 5. To keep the MIP fully differentiable, the cluster embedding is the encoding of the last item in each
cluster, instead of the medoid.

Inference: The choice of clustering in the inference phase is independent of its configuration during the training. We explore
the inference options on the pre-trained models. Different types of clustering methods are compared:

e Ward: hierarchical clustering method that minimizes the sum of squared distances within all clusters.
* K-Means: an iterative method also minimizes the sum of in-cluster summed squared distances.
» Spectral(Shi & Malik, 2000): performs clustering on the projection of the normalized Laplacian computed from the

13
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Figure 7. Performance comparison on high dimensional synthetic
The dataset. d denotes the feature dimension and H is the number of

Figure 6. Learned global interests in global query models. X
attention heads.

query vector is reversely projected and normalized.

affinity matrix.

* BIRCH(Zhang et al., 1996): another hierarchical method that clusters the points by building the Clustering Feature
Tree.

* DBSCAN(Ester et al., 1996): a density-based clustering method that does not require specifying the number of clusters.

The number of clusters is set to 5, 8, and 10 when required. Note that during training, the number of clusters is fixed to 5,
however, after training, MIP can produce other numbers of embeddings per user, which gives the system huge flexibility to
trade-off between storage/computation cost and recommendation performance.

Result and analysis: There are two observations from Table 11. 1) the choice of clustering algorithm has a marginal impact
on the performance. While PinnerSage reported that Ward’s algorithm outperforms the K-Means, their result does not
conflict with our observation here. Recall that for PinnerSage and our experiment on the Pinterest dataset, the clustering
method is applied to the exogenous item embeddings, thus the clustering methods can be influenced by the non-flat geometry
and outliers. However, with the collaborative filtering dataset, the clustering method is applied to the encodings produced by
multi-head self-attention layers which average the embedding of the items and all other items (Eq. 3). The encodings after
the multi-head self-attention should be smoothly distributed, and as a result, any clustering methods work almost equally
well on that. 2) Selecting the number of clusters is a non-trivial trade-off. The motivation to decrease the number of clusters
is the storage and computation cost which grow linearly as the number of clusters increases. For unweighted MIP, though
the non-clustering (each item is a cluster) settings have the best AUC, decreasing the number of user embedding from 50
(non-clustering) to 10 is still acceptable. For weighted MIP, since it’s impossible to learn the clustering weights without
applying a clustering method, the trade-off can be more complicated: besides the storage concern, when the number of
clusters increases the average information to learn the weights of each cluster decreases, and consequently may hurt the
overall performance; on the other hand, 10-cluster settings are better than the 5-cluster settings for all the dataset.

A.3. Model Latency Comparison

Seeing the performance gain, another prominent question will be what is the time cost of the performance increase. In
this section, we profiled the model latency on a desktop computer with a 12-core Intel i7-8700k CPU, and a single Nvidia
GeForce RTX 2080 Ti GPU. The neural network training and inference are on the GPU with vanilla PyTorch framework
(version 1.12) without any further optimization on the computation. The clustering algorithm in MIP is performed by CPU
with Python’s scikit-learn package. We set the batch size to 1 and the dataset to Amazon, then measure and summarize the
training and inference latency in Table 12.

There are a few observations from Table 12. First, compared to the neural network inference latency, the clustering step
time cost is trivial. PinText2, ComiRec, and TiSASRec has similar training and inference latency, while the performance of

14



Everyone’s Preference Changes Differently: A Weighted Multi-Interest Model for Retrieval

Clustering | Inference Unweighted MIP Weighted MIP
Method Clusters | Amazon Taobao MovieLens | Amazon Taobao MovieLens
None - 73.11 82.09 95.97 - - -
5 71.56 80.58 95.53 79.31 86.49 94.61
Ward 8 71.99 80.99 95.72 80.47 87.85 95.25
10 72.16 81.20 95.78 80.84 88.42 95.25
5 71.58 80.62 95.53 79.26 86.18 94.86
K-Means 8 71.95 81.03 95.71 80.66 88.02 95.17
10 72.14 81.22 95.77 80.62 88.61 95.10
5 72.28 80.72 95.54 78.99 85.84 94.46
Spectral 8 72.37 81.08 95.73 80.79 87.61 94.81
10 72.64 81.26 95.78 81.19 88.40 95.07
5 71.98 80.63 95.52 79.39 86.29 94.61
BIRCH 8 72.03 81.02 95.71 80.65 88.03 95.25
10 72.44 81.21 95.78 80.91 88.53 95.25
DBSCAN - 71.98 80.63 95.52 70.05 75.58 89.63

Table 11. Comparison of clustering options in AUC (in 10~2). Note that the number of inference clusters is independent of training,
i.e. changing the number of inference clusters does not require the re-training of the model. With the same number of clusters, the best

performances are bold.

Latency/ BERT4Rec | BERT4Rec . . . MIP MIP
Recali] GRU4Rec (L=1) (L =2) PinText2 | TiSASRec | ComiRec (total) | (clustering)
Train 218.57 925.36 1058.34 555.79 452.94 479.59 998.62 5.86
(std) (0.81) (108.96) (733.33) (76.96) (67.07) (67.50) (56.31) (0.76)

Inference 1.15 38.34 57.53 14.46 14.54 14.61 40.05 5.93
(std) (0.20) (56.60) (56.23) (54.99) (56.34) (55.70) (27.08) (0.72)
R@50 63.50 63.15 66.52 54.13 66.67 67.36 78.85 -

Table 12. Latency and performance comparison of the models. Training and inference latencies are measured in ms, and brackets show
the standard deviations.

them is worse than MIP. BERT4Rec has similar latency as MIP since our sequential model architecture is similar, while
the BERT4Rec has worse performance. GRU4Rec has the least inference time. Notice that the standard deviations of the
inference latency of PinText2, TiSASRec, and ComiRec are large. It indicates, though on average the three models are faster
in inference, MIP inference latency is less possible to be very large while the other latency might be several times longer
than average.

Conclusively, MIP, as well as other baselines compared, can all satisfy the latency requirement when applying online, even
without further optimization on the computation and serving. MIP has a higher time cost compared to some of the baselines,
but the performance increase is also appealing.
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