
Context Consistency Regularization for Label Sparsity in Time Series

Yooju Shin 1 Susik Yoon 2 Hwanjun Song 3 Dongmin Park 1 Byunghyun Kim 4 Jae-Gil Lee 4 Byung Suk Lee 5

Abstract
Labels are typically sparse in real-world time se-
ries due to the high annotation cost. Recently,
consistency regularization techniques have been
used to generate artificial labels from unlabeled
augmented instances. To fully exploit the sequen-
tial characteristic of time series in consistency
regularization, we propose a novel method of
data augmentation called context-attached aug-
mentation, which adds preceding and succeed-
ing instances to a target instance to form its aug-
mented instance. Unlike the existing augmen-
tation techniques that modify a target instance
by directly perturbing its attributes, the context-
attached augmentation generates instances aug-
mented with varying contexts while maintaining
the target instance. Based on our augmentation
method, we propose a context consistency regu-
larization framework, which first adds different
contexts to a target instance sampled from a given
time series and then shares unitary reliability-
based cross-window labels across the augmented
instances to maintain consistency. We demon-
strate that the proposed framework outperforms
the existing state-of-the-art consistency regular-
ization frameworks through comprehensive exper-
iments on real-world time-series datasets.

1 Introduction
A time series is a collection of consecutive data points, often
annotated with temporally coherent timestamp labels. As
the boundaries of coherent labels are unknown in practice,
a classifier is trained to predict the label of each times-
tamp (Farha & Gall, 2019). However, due to the length
of and complexity in a time series, labeling every times-

1Graduate School of Data Science, KAIST, Korea 2Department
of Computer Science, University of Illinois at Urbana-Champaign,
USA 3AWS AI Labs, USA 4School of Computing, KAIST, Korea
5Department of Computer Science, University of Vermont, USA.
Correspondence to: Jae-Gil Lee <jaegil@kaist.ac.kr>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

tamp in the time series requires prohibitively high cost, and
therefore, in reality, a lot of time series are only sparsely
labeled (Moltisanti et al., 2019; Ma et al., 2020; Yoon et al.,
2021; Shin et al., 2022). In this regard, consistency regu-
larization is used as a promising way to train a model from
sparse labels, by leveraging the model’s output to infer new
labels for unlabeled data points (Laine & Aila, 2017; Rizve
et al., 2021). Consistency regularization enforces the consis-
tency among the outputs of a model for a pair of augmented
data instances, and thus data augmentation plays a key role
in consistency regularization. Recent state-of-the-art consis-
tency regularization methods, mostly developed for image
data, necessitate domain-specific data augmentation such as
color transformation and image rotation (Cubuk et al., 2020;
Sohn et al., 2020; Zhang et al., 2021; Kim & Lee, 2022).

Such conventional data augmentation generates multiple
different instances from a target instance (i.e., an instance
for pseudo-labeling) by way of data perturbation. If data
instances are independent of one another as in image data,
there is no other way than to perturb the target instance itself.
In contrast, using the sequential nature of time series, where
data instances (segments or data points) are temporally cor-
related, it is feasible to generate multiple different instances
from a target instance without perturbing it but by attaching
its surrounding sequence (i.e., context). As shown in Figure
1(a), given a target instance in a time series, contexts of vary-
ing lengths are attached to the target instance to generate
different pairs of “augmented” instances. We call this type
of data augmentation the context-attached augmentation.

The key property of context-attached augmentation is to
achieve the effect of data augmentation without perturbing
a target instance. Being free of data perturbation brings
several benefits. First, consistency between augmented
instances can be enforced more reliably because a target
instance itself is exactly the same among its augmented
instances. Second, a sufficient number of augmented in-
stances can be easily obtained by varying contexts. Third,
it is computationally inexpensive, only requiring the re-
trieval of a sub-sequence from a time series. Moreover,
context-attached augmentation can be used together with
conventional data augmentation such as jittering and scaling.
Thus, the novel concept of context-attached augmentation
opens a new direction of context consistency regularization.

1

Context Consistency Regularization for Label Sparsity in Time Series

Target instance

𝑋𝑋left 𝑋𝑋right

Cross-window soft labels �𝒀𝒀 𝑙𝑙𝑢𝑢 𝑓𝑓𝜃𝜃 𝑋𝑋left , 𝑓𝑓𝜃𝜃 𝑋𝑋right , �𝑌𝑌

Context Target Target Context

Context-Attached Augmentation

A true label

Add

Pairs of augmented instances

Replicate

Sampled window

…

Context Context

Add

Varying
contexts

Timestamps

Softmax probabilities

Timestamps
+𝑓𝑓𝜃𝜃 𝑋𝑋left 𝑓𝑓𝜃𝜃 𝑋𝑋right

True labels 𝑌𝑌 𝑙𝑙 𝑓𝑓𝜃𝜃 𝑋𝑋left ,𝑓𝑓𝜃𝜃 𝑋𝑋right ,𝑌𝑌

Model 𝑓𝑓𝜃𝜃

Reliability-Weighted Mixing

M
od

el
 u

pd
at

e

Model 𝑓𝑓𝜃𝜃 Shared

(a) Context-attached augmentation. (b) Model update with cross-window soft labels.

Figure 1. Key technique and overall procedure of CrossMatch.

Despite its time-series-savvy concept and big benefits, ap-
plying context-attached augmentation for consistency regu-
larization is challenging. First, it requires determining the
proper number and length of contexts based on the trade-off
between the expected performance improvement and train-
ing cost. Note that varying the context length in augmented
instances incurs different complexity for a downstream task;
intuitively, compared with the conventional data augmenta-
tion, a short context gives weak augmentation and a long
context gives strong augmentation considering the intensity
of perturbation. Second, a new consistency regularization
method is needed to fully benefit from context-attached aug-
mentation which does not perturb a target instance unlike
the conventional data augmentation.

In this work, we propose a novel context consistency regu-
larization framework with context-attached augmentation
for time series, called CrossMatch. Given a target instance,
CrossMatch generates a pair of augmented instances by
attaching contexts to the preceding and succeeding posi-
tions of the target instance, respectively (Figure 1(a)). We
theoretically and empirically show that such a minimal
context-attached augmentation is sufficient to take a full
advantage of the context consistency regularization. Then,
CrossMatch conducts reliability-weighted mixing to gener-
ate cross-window soft labels from the augmented instances
for regularizing the inference of the target instance (Figure
1(b)). In existing consistency regularization methods such
as MixMatch (Berthelot et al., 2019) and FixMatch (Sohn
et al., 2020), an artificial label is created as a form of a hard
label; because the model’s outputs for augmented instances
could be biased by the perturbation of the target instance,
the most confident label is chosen by averaging and sharpen-
ing in MixMatch and weak augmentation and thresholding
in FixMatch. In CrossMatch, on the other hand, the model’s

outputs from the two augmented instances are crossed in the
form of a soft label; due to its target-preserving property, the
outputs with different contexts can be considered equally
meaningful. As shown in Figure 1(b), a pair of augmented
instances generated from a target instance is fed to a model
to get the two softmax outputs of the target instance. Then,
a single set of cross-window soft labels is derived and en-
forced to each output for consistency regularization. These
augmentation and regularization procedures are repeated in
each training iteration.

Overall, the main contributions are summarized as follows:

• Proposing a novel context consistency regularization
framework equipped with context-attached augmentation;

• Analyzing the impact of varying contexts theoretically
and empirically to explain why CrossMatch works;

• Achieving higher classification accuracy than existing
state-of-the-art methods (the FixMatch-style methods
with jittering and scaling) by up to 23 percentage points.

2 Related Work
2.1 Data Augmentation

Data augmentation perturbs given data instances to gener-
ate diverse and sufficient data instances to prevent overfit-
ting (Shorten & Khoshgoftaar, 2019). The techniques used
in data augmentation usually manipulate features and can
be classified into two categories: (1) inner-augmentation
that changes the features within a data instance and (2) inter-
augmentation that exploits features across multiple data
instances. Rotation, flipping, scaling, cutout, and random
erasing are the examples of inner-augmentation (DeVries
& Taylor, 2017; Cubuk et al., 2019). Mix-up, cut-mix, and
copy-paste are the representatives of inter-augmentation that
mixes two full or partial images (Zhang et al., 2018; Yun

2

Context Consistency Regularization for Label Sparsity in Time Series

et al., 2019; Ghiasi et al., 2021). However, these studies
have not considered context-additive augmentation because
they deal with independent data instances such as images.

Time-series augmentation techniques have been devised in
recent literature (Wen et al., 2021). They include jittering,
scaling, window warping, window cropping, and the Fourier
transform specialized in the time and frequency domains,
and belong to the inner-augmentation category (Um et al.,
2017; Eldele et al., 2021; Yue et al., 2022; Chen et al.,
2022). The inter-augmentation category is considered to
be ineffective because temporal patterns could be lost after
mixing two time-series segments (Iwana & Uchida, 2021).
These studies also consider a set of already segmented time
series as candidate augmentation targets and assume that the
instances in each segment have the same labels. Thus, they
are not directly applicable to a single continuous time series
with sparse labels, which is a more practical and challenging
setting. Moreover, all of them perturb the target instances,
following the common trend of existing data augmentation,
whereas our method preserves the target instances.

2.2 Semi-Supervised Learning Based on
Augmentations

Semi-supervised learning (SSL) trains a model with both
labeled and unlabeled data instances (Van Engelen & Hoos,
2020). Unlabeled data instances are harnessed by two popu-
lar approaches: (1) self-supervised learning which is mostly
based on contrastive learning or pretext tasks (Chen et al.,
2020; Grill et al., 2020; Singh et al., 2021; Yoon et al., 2023)
and (2) self-training which produces artificial labels for un-
labeled data instances from model predictions (Lee, 2013;
Chen et al., 2018; Xie et al., 2020; Pham et al., 2021). We fo-
cus on self-training owing to its simplicity and effectiveness
demonstrated in recent studies (Yang et al., 2022).

State-of-the-art self-training methods, usually based on con-
sistency regularization, force consistency in model predic-
tions from multiple augmentations of a data instance. Mix-
Match (Berthelot et al., 2019) averages out the predictions
from multiple augmentations and sharpens the averaged
prediction to reduce the entropy in the pseudo-label. ReMix-
Match (Berthelot et al., 2020) generates a sharpened pseudo-
label from a weak augmentation and matches it against
the predictions from multiple strong augmentations. Fix-
Match (Sohn et al., 2020) generates a one-hot pseudo-label
by choosing a single class above a fixed confidence thresh-
old. FlexMatch (Zhang et al., 2021) is a variation of Fix-
Match, which uses a dynamic confidence threshold to adapt
to different learning speeds among different classes. Prop-
agation regularizer (Kim & Lee, 2022) also reduces confi-
dence in incorrect predictions to make FixMatch robust to
a more sparse label setting. However, all these methods
heavily rely on domain-specific augmentation and lack for
consideration of time series.

There are several time-series semi-supervised learning meth-
ods in the literature, but most of them are based on self-
supervised learning. In their settings, a model is first
pre-trained with time-series self-supervision and then fine-
tuned with initial labels. The examples of time-series self-
supervisions are (1) pretext tasks such as forecasting and
temporal relation prediction (Jawed et al., 2020; Fan et al.,
2021), (2) contrastive learning with the aforementioned
time-series augmentation techniques (Singh et al., 2021;
Xiao et al., 2022), and (3) clustering results (Singhania et al.,
2022). These methods target an already-segmented time
series, which cannot deal with continuous time series with
sparse labels (Ma et al., 2021; Xu et al., 2022).

3 CrossMatch: Cross-Window Consistency
Regularization

3.1 Preliminaries and Problem Setting

Dataset and Model: Let D = X ×Y = {(xt, yt) | t ∈ T }
be a time series, where T is an index set of timestamps,
xt ∈ Rd is a d-dimensional data point at timestamp t, and
yt is a corresponding class label if xt is labeled or null
otherwise. Let TL be the index set of labeled timestamps and
TU be the index set of unlabeled timestamps, where TL ∪
TU = T and |TL|≪|TU |. Here, TL is sparse, meaning that
its members are few and scattered. In this work, multiple
consecutive timestamps, referred to as a segment instance
(simply, an instance), are processed in a batch. An instance
X={xt | t∈ [m−w : m+w)} is a list of consecutive 2w
data points (timestamps) centered at timestamp m, where
[m−w : m+w) represents an integer interval from m−w
through m+w−1. Likewise, Y = {yt | t ∈ [m−w :
m+w)} is a set of the corresponding class labels, where
yt∈{1, . . . ,K} and K is the number of classes. A model
fθ predicts the sequential softmax probabilities of X , i.e.,
fθ(X) ∈ [0, 1]2w×K . The classification loss for training the
model given X and Y is formulated as

ℓ(X,Y) =
1

2w

∑
t

1yt ̸=nullH(fθ(X)t,:, yt), (1)

where H(·, ·) is sparse categorical cross-entropy and ·t,:
means indexing at timestamp t.

Pseudo-Labeling: For each instance X , using the max-
imum softmax probabilities conditioned on a confidence
threshold τ , a pseudo-label ŷt at each timestamp t ∈ [m−w :
m+w) is derived by

ŷt =

{
argmaxk∈{1,...,K}fθ(X)t,k if fθ(X)t,k > τ

null otherwise.
(2)

A set Ŷ = {ŷt | t∈ [m−w : m+w)} of the pseudo-labels for
X is constructed by Equation (2). Then, the classification

3

Context Consistency Regularization for Label Sparsity in Time Series

Augmented instance, 𝒜𝒜𝑖𝑖 �̇�𝑋Target instance, �̇�𝑋

Embedding space of 𝑓𝑓𝜃𝜃 � 𝑡𝑡

𝒜𝒜0 �̇�𝑋 𝑡𝑡

Inference Embedding 𝒛𝒛𝑖𝑖

GradientsCenter

𝒜𝒜𝑖𝑖 �̇�𝑋 𝒜𝒜𝑐𝑐 �̇�𝑋

Figure 2. Intuition of the context-attached augmentation.

loss for an instance X and its set Ŷ of the pseudo-labels ob-
tained is formulated as ℓ(X, Ŷ) with Equation (1). Note that
the pseudo-labels are discarded once the model is updated
with the losses calculated from the sampled instances.

Consistency Regularization: Recent consistency regu-
larization methods force consistency between the model
outputs of augmentations assuming that the class infor-
mation is preserved across augmentations. For exam-
ple, FixMatch (Sohn et al., 2020) matches the pseudo-
label from a weak augmentation against the predic-
tion from a strong augmentation. That is, ℓ(X, Ŷ) =
1
2w

∑
t 1maxk fθ(α(X))t,k>τH(fθ(A(X))t, ŷt), where ŷt =

argmaxkfθ(α(X))t,k, and α and A represent weak and
strong augmentations, respectively. The goal of consis-
tency regularization is to offer informative supervision to
update the model by diverse augmentations and reliable
pseudo-labels. In FixMatch, pseudo-labels from weak aug-
mentations are reliable due to weak perturbation, and strong
augmentations become diverse due to strong perturbation.

3.2 Context-Attached Augmentation

We first define the context-attached augmentation in Defini-
tion 3.1 and then discuss its design principle.

Definition 3.1. (CONTEXT-ATTACHED AUGMENTATION)
A c-length context-attached augmentation A of a target
instance Ẋ = {xt| t ∈ [m−w : m+w)} is attaching c
surrounding data points of Ẋ such that Ai(Ẋ)= {xt| t ∈
[m−w−c+i : m+w+i)}, where i ∈ [0 : c].

There are c+1 possible choices of context-attached augmen-
tation according to where we put the context (see Figure
2). Choosing augmented instances with a larger difference
in the embedding space induces stronger supervision by
consistency regularization (Wang et al., 2022; Jiang et al.,
2022). Thus, it is preferable to have two augmented in-
stances whose pairwise distance is the farthest in the em-
bedding space. In Theorem 3.2, we show that a pair of
augmented instances is more likely to have a larger dis-
tance in the embedding space if they have a less number of
overlapping data points under the martingale assumption.

Theorem 3.2. (EMBEDDING DISTANCE) Let zi denote an
embedding of Ai(Ẋ) at a certain timestamp t ∈ [m−w :
m+w). Under the martingale embedding with a bounded
difference assumption, as the overlap between Ai(Ẋ) and
Aj(Ẋ) (i > j) decreases, i.e., (i− j) increases, the upper-
bound of the probability of the Euclidean distance between
zi and zj being farther than ϵ increases. Formally,

Pr[∥zi − zj∥2 ≥ ϵ] ≤ 2e2e−ϵ2/2s2(i−j), (3)

where 0≤j<i≤c, and ϵ and s are positive real constants.

Proof. Under the martingale embedding with a bounded
difference assumption, Equation (3) is simply derived by
Azuma’s inequality (Hayes, 2005). Refer to Appendix A for
the complete proof.

Corollary 3.3. (MAXIMUM DIFFERENCE) Given a context
length c, picking the pair of A0(Ẋ) and Ac(Ẋ) maximizes
the upperbound of the probability of the Euclidean distance
between their embeddings being farther than ϵ, among all
possible pairs of Aj(Ẋ) and Ai(Ẋ) (0≤j<i≤c).

Proof. When j = 0 and i= c, (i−j) becomes the largest.
Then, Equation (3) in Theorem 3.2 concludes the proof.

By Corollary 3.3, the consistency regularization between
the furthest embeddings z0 and zc would make the whole
embedding space shrink toward its center of a class max-
imally, compared to other pairs (Van Engelen & Hoos,
2020). Therefore, the effect of consistency regularization
can be maximized by picking two augmented instances
A0(Ẋ) and Ac(Ẋ). Accordingly, a context of length
c is attached on the left and right sides of a target in-
stance, respectively, and thus the two augmented instances,
A0(Ẋ) = X left = {xt|t ∈ [m − w − c : m + w)} and
Ac(Ẋ) = X right = {xt|t ∈ [m − w : m + w + c)}, are
generated as shown in Figure 3. Each augmented instance
is fed to a model, and pseudo-labels are generated from
every timestamp of only the target instance (i.e., the overlap
between the two augmented instances) by Equation (2). As
a result, two pseudo-label sets Ŷ left and Ŷ right for the left
and right augmented instances are obtained. Reliability-
weighted mixing will be introduced in Section 3.3 to merge
Ŷ left and Ŷ right while considering the reliability of each
pseudo-label based on the left and right side lengths.

Another important factor is the context length c, which
directly affects the supervision quality of consistency regu-
larization. If c is too short, then two augmented instances
become too similar so that the model barely changes after
matching the embeddings of augmented instances (Wang
et al., 2022). On the other hand, if c is too long, the embed-
dings diverge so that the matching would weld the represen-
tation of instances from different classes. We empirically
study this trade-off and suggest a heuristic in Section 4.4.

4

Context Consistency Regularization for Label Sparsity in Time Series

𝑛𝑛𝑡𝑡
left,−𝑛𝑛𝑡𝑡

left,+

𝑛𝑛𝑡𝑡
right,+ 𝑛𝑛𝑡𝑡

right,−

𝑋𝑋left

𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚 − 𝑤𝑤 − 𝑐𝑐

𝑋𝑋right

𝑚𝑚 + 𝑤𝑤 𝑚𝑚 + 𝑤𝑤 + 𝑐𝑐𝑡𝑡

Figure 3. A target instance (yellow) and its context (blue).

3.3 Reliability-Weighted Mixing

Though all pseudo-labels generated for a target instance
satisfy the confidence threshold in Equation (2), we treat
them differently based on the reliability of a pseudo-label.
Our rationale is that the pseudo-label becomes more reliable
if (1) the model fθ receives more data points on the left and
right sides of the pseudo-label and (2) the number of data
points is balanced between the two sides so that the predic-
tion is not biased to the preceding or succeeding interval.
We design a reliability function that follows our rationale
and compute reliability of each pseudo-label. Using the
reliability as a weight, we mix the pseudo-labels into a sin-
gle cross-window label, which will be matched against two
softmax probabilities from both of augmentations.

Let’s consider two pseudo-labels ŷleft
t and ŷright

t generated
from fθ(X

left)t and fθ(X
right)t shown in Figure 3. For each

timestamp t ∈ [m−w : m+w) of a target instance, the length
nloc,+
t of the left side and the length nloc,−

t of the right side
along each augmented instance are easily calculated by

nloc,+
t =

{
t−m+w+c if loc = left
t−m+w if loc = right

(4)

nloc,−
t =

{
m+w−t if loc = left
m+w+c−t if loc = right,

(5)

where loc indicates the location of context attachment—
either left or right.

𝑝

2

1

1

𝑟(𝑝)

Figure 4. Visualization
of Equation (6).

Per our design rationale, the reliabil-
ity score becomes higher as nloc,+

t

and nloc,−
t are larger and nloc,+

t

and nloc,−
t are more similar with

each other. This requirement can be
achieved by exploiting a bell-shaped
function,

r(p)=
√
2p− p2+

√
1− p2, (6)

where 0 ≤ p ≤ 1. Here, p is
a normalization of nloc,+

t with re-
spect to the full length of an augmented instance, i.e.,
ploc(t) = nloc,+/(2w + c). That is, using Equation (6),

we obtain two reliability scores r(pleft(t)) and r(pright(t))
for each pseudo-label from the two augmented instances
Xleft and Xright. Due to the bell shape in Figure 4, a times-
tamp with a sufficiently long side length on both sides has
an adequately high reliability in an augmented instance. If
a side length on either side is too long (i.e., biased to one
side), the side length on the other side is too short, and the
reliability score is too low. Overall, the reliability score is
maximized at the center of a given augmented instance.

Last, in order to treat each pseudo-label differently based
on the reliability scores on the two sides, r(pleft(t)) and
r(pright(t)), the weight of each pseudo-label is assigned as
βloc
t = r(ploc(t))/(r(pleft(t))+r(pright(t))) by normalizing

the two reliability scores. The final cross-window soft label
for the target instances in the left and right instances is

ȳt = βleft
t · onehot(ŷleft

t) + βright
t · onehot(ŷright

t), (7)

where the onehot function converts a scalar to one-hot
encoded vector. In other words, reliability-weighted mixing
generates a soft label by adding the two weighted pseudo-
labels. Using the cross-window label set and two target
instance outputs, the classification loss ℓu(X left, X right, Ȳ)
is computed as

1

4w

∑
t

1ȳt ̸=null

(
h(zleft

t , ȳt) + h(zright
t , ȳt)

)
, (8)

where z = fθ(X)t,:, h is soft cross-entropy, and Ȳ =
{ȳt|t ∈ [m−w : m+w)}. By matching a single cross-
window soft label to both augmented instances, we can
reduce the variance of the label to be predicted, leading to
better consistency regularization (Wang et al., 2022). In
addition, consistency regularization with soft labeling is
more effective than with hard labeling since soft labeling
can be robust to erroneous pseudo-labels when at least one
pseudo-label is correct (Müller et al., 2019).

3.4 Overall Procedure of CrossMatch

Figure 1 summarizes the overall procedure of Cross-
Match using context-attached augmentation and reliability-
weighted mixing. Given a time series, CrossMatch first
takes a target instance sampled from the time series as an
input and generates a pair of augmented instances with
context-attached augmentation (see Figure 1(a)). Then, a
model fθ infers the pair of augmented instances X left and
X right to produce two independent softmax probabilities.
The pseudo-labels respectively generated from the two soft-
max probabilities are merged (

⊕
) to give cross-window

soft labels Ȳ with reliability-weighted mixing. Finally, the
cross-entropy losses are computed from the cross-window
soft labels Ȳ as well as the true labels Y and used to update
the model fθ (see Figure 1(b)). These steps are repeated for
randomly sampled target instances with varying c until I
iterations. CrossMatch in Appendix B details each step.

5

Context Consistency Regularization for Label Sparsity in Time Series

Table 1. Datasets and configurations.

|T | Length #class d w cmax v I

HAPT 408K 967 6 6 512 256 0.1% 25K

mHealth 343K 2933 12 23 384 256 1.0% 50K

Opportunity 190K 109 17 113 512 64 1.0% 30K

4 Evaluation

4.1 Experiment Setting

Datasets: We use three widely-used benchmark datasets
in Table 1. HAPT is a sensor time-series dataset tracking
human movements in a laboratory sampled with the fre-
quency of 50Hz (Anguita et al., 2013). mHealth is a similar
action recognition dataset recorded with more wearable sen-
sors, such as 3D accelerometers, 3D gyroscopes, 3D mag-
netometers, and electrodes, whose sampling frequency is
50Hz (Banos et al., 2014). Opportunity is a collection of sen-
sor recordings at 100Hz capturing daily natural human ac-
tivities with wearable, object, and ambient sensors (Roggen
et al., 2010). For each originally fully-labeled dataset, we
randomly sample the same number of timestamps for each
class and drop the labels from the rest of the timestamps
to generate a sparsely-labeled time series, leaving multiple
labeled time spans located randomly. The sampled times-
tamps become a labeled timestamp set TL for the given ratio
of labeled timestamps v = |TL|/|T |. Table 1 summarizes
the statistics of datasets and the data-specific parameters,
specifying the number of timestamps, the average length of
a segment with a single class, the number of classes, the
dimensionality of a data point, the half length of a target
instance w, the maximum context length cmax, the default
ratio of labeled timestamps v, and the maximum number
of iterations I . In particular, cmax is set to be sufficiently
smaller than the average length of a segment.

The value of w, half of the length of a target instance, needs
to be carefully chosen for each data set. Too large w may
include semantically irrelevant data points, while too small
w may not give enough temporal information for prediction.
Either way leads to incorrect pseudo-labels and ultimately
degrades the performance. Thus, we set 2w, the length of a
target instance, as a value lower than the mean length of a
label-coherent segment, which could be known in advance
or estimated by a given set TL of labeled timestamps.

Implementation Details: We use a widely-used multi-stage
temporal convolutional network named MS-TCN (Farha &
Gall, 2019), which is applicable to our problem setting
because it gives softmax probabilities for each timestamp
in an instance X . We follow the same hyperparameter and
configuration in the original MS-TCN, except the learning
rate and an optimizer adjusted for consistency regularization
with sparse labels. See Appendix C for more details.

For CrossMatch, we set the confidence threshold τ to 0.95
and the weight of the unlabeled loss λ to 1. The model is
first trained without any pseudo-labels, i.e., only using the
labeled batches. We start to update a model with pseudo-
labels after the number of pseudo-labels in each class for
a batch is balanced. Formally, this condition is satisfied
when the entropy of the numbers of pseudo-labels per class
is above 0.99 for the last 100 iterations; it is enforced to
prevent early confirmation bias in consistency regulariza-
tion (Kim & Lee, 2022). If a data point xt in an instance
X has a true label (i.e., t ∈ TL), CrossMatch uses the true
label instead of the generated pseudo-label.

For every experiment, we use Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz and NVIDIA RTX 3090. The
source code is provided at https://github.com/
kaist-dmlab/CrossMatch.

Evaluation Metrics: We measure timestamp accuracy and
segmental F1 score with five-fold cross validation and report
the average value with standard deviation of five runs. For
sequential classifiers such as MS-TCN, timestamp accuracy
(denoted as TS accuracy) and segmental F1 score (denoted
as F1@25) measure the performance of classification at each
timestamp and segment respectively (Li et al., 2021; Kumar
et al., 2022). To evaluate pseudo-labeling performance, we
report pseudo-label F1 score (denoted as PLF) as well. We
define each metric in detail in Appendix D.

Baselines: We compare CrossMatch with three state-of-the-
art consistency regularization methods: FixMatch (Sohn
et al., 2020), FlexMatch (Zhang et al., 2021), and Pro-
pReg (Kim & Lee, 2022). As discussed in Section 2,
these methods require inner-instance augmentation for con-
sistency regularization. We use two popular time-series
augmentations: jittering and scaling, where weak aug-
mentation α(X) = jittering(X) and strong augmentation
A(X) = jittering(scaling(X)) (Um et al., 2017). Through-
out the experiments, we use the same hyperparameters for
all methods except the instance length due to the context-
attached augmentation. We also compare CrossMatch with
the variants of the compared methods supported by our
context-attached augmentation.

4.2 Comparison with State-of-the-Art Methods

Overall Comparison: Table 2 shows the timestamp ac-
curacy and F1@25 score on three datasets with varying
label ratios; each value is obtained by averaging over the
last 20 iterations for reliable results. Compared with other
methods, CrossMatch achieves the best classification per-
formance with a statistical significance of 0.05 using in-
dependent (unpaired) t-test for all datasets except HAPT
10×. This is mainly because consistency regularization us-
ing context-attached augmentation is more informative than
inner-instance augmentation used in other consistency regu-

6

https://github.com/kaist-dmlab/CrossMatch
https://github.com/kaist-dmlab/CrossMatch

Context Consistency Regularization for Label Sparsity in Time Series

Table 2. Timestamp accuracy and F1@25 score averaged over the last 20 iterations with adjusting the label ratio v (1×, 5×, and 10× of a
default value). The best values are marked in bold.

Method Ratio
FixMatch FlexMatch PropReg CrossMatch

TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25

HAPT
1× 0.78 ± 0.01 0.55 ± 0.04 0.78 ± 0.01 0.54 ± 0.04 0.79 ± 0.01 0.52 ± 0.04 0.84 ± 0.01 0.75 ± 0.02
5× 0.85 ± 0.01 0.51 ± 0.04 0.84 ± 0.01 0.50 ± 0.04 0.82 ± 0.01 0.49 ± 0.04 0.88 ± 0.01 0.70 ± 0.02
10× 0.96 ± 0.00 0.87 ± 0.01 0.96 ± 0.00 0.90 ± 0.01 0.96 ± 0.00 0.89 ± 0.01 0.95 ± 0.01 0.84 ± 0.02

mHealth
1× 0.77 ± 0.01 0.23 ± 0.01 0.77 ± 0.01 0.13 ± 0.01 0.81 ± 0.01 0.43 ± 0.03 0.85 ± 0.01 0.45 ± 0.02
5× 0.91 ± 0.01 0.65 ± 0.02 0.91 ± 0.01 0.62 ± 0.03 0.91 ± 0.01 0.67 ± 0.03 0.94 ± 0.01 0.74 ± 0.03
10× 0.91 ± 0.00 0.70 ± 0.02 0.90 ± 0.00 0.66 ± 0.02 0.90 ± 0.01 0.70 ± 0.02 0.95 ± 0.01 0.84 ± 0.03

Opportunity
1× 0.61 ± 0.04 0.65 ± 0.05 0.59 ± 0.03 0.63 ± 0.05 0.63 ± 0.03 0.65 ± 0.05 0.67 ± 0.02 0.73 ± 0.04
5× 0.73 ± 0.03 0.73 ± 0.04 0.72 ± 0.03 0.75 ± 0.05 0.73 ± 0.03 0.74 ± 0.05 0.78 ± 0.02 0.82 ± 0.03
10× 0.75 ± 0.03 0.75 ± 0.04 0.73 ± 0.03 0.77 ± 0.04 0.75 ± 0.03 0.76 ± 0.04 0.83 ± 0.02 0.86 ± 0.02

CrossMatch FixMatch FlexMatch PropReg

0 12500 25000
Iteration

0.7

0.8

0.9

TS
 A

cc
ur

ac
y

0 25000 50000
Iteration

0.5

0.7

0.9

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.2

0.5

0.8

F1
@

25

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.0

0.4

0.8

PL
F

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.0

0.3

0.6

(a) HAPT. (b) mHealth. (c) Opportunity.

Figure 5. Training curve of the classification performance (the first two rows) and pseudo-labeling performance (the last row) over training
iterations in Algorithm 1. The full y-axis is shown in Figure 7 of Appendix E.

larization methods. In particular, CrossMatch exhibits much
better performance than others especially when the initial la-
bel ratio is low. For instance, with only 0.1% of the labeled
timestamps in HAPT, CrossMatch outperforms FixMatch
by 20 percentage points (%p), FlexMatch by 21%p, and Pro-
pReg by 23%p in F1@25 (see the first row in HAPT of Table
2). Therefore, the performance dominance of CrossMatch
indicates the context-attached augmentation with reliability-
weighted mixing indeed helps the model select more reliable
pseudo-labels even when softmax probabilities fluctuate due
to label scarcity and insufficient training.

Training Curve Analysis: Figure 5 shows the training
curves of classification and PLF over the entire training
iteration. Please refer to Appendix E for the same results

with standard deviation and other metrics related to pseudo-
labeling. CrossMatch shows much higher performance than
the other methods with respect to timestamp accuracy and
F1@25 even in the early stage of training, reaching the
highest performance in most cases (see the first two rows in
Figure 5). This is attributed to its robustness in reliability-
weighted mixing in the early stage of consistency regulariza-
tion and its credibility in enforcing consistency between two
augmented instances from context-attached augmentation.
For example, as shown in mHealth of Figure 5(b), other
methods suffer from the low-quality pseudo-labels at the
iteration of around 17, 000 when the warm-up period ends,
thereby showing a temporary drop in timestamp accuracy.
Although the accuracy recovers gradually, the final accuracy
is far behind the accuracy CrossMatch achieves.

7

Context Consistency Regularization for Label Sparsity in Time Series

Table 3. Timestamp accuracy and F1@25 score averaged over the last 20 iterations with varying context attachment for context-attached
augmentation (CAA). The best values are marked in bold.

Variations Metrics One-sided CAA Random-pair CAA Multiple-2 CAA Multiple-3 CAA Multiple-5 CAA Multiple-7 CAA

HAPT
TS Accuracy 0.72 ± 0.01 0.67 ± 0.02 0.84 ± 0.01 0.85 ± 0.01 0.85 ± 0.01 0.86 ± 0.01

F1@25 0.65 ± 0.03 0.44 ± 0.03 0.75 ± 0.02 0.70 ± 0.02 0.74 ± 0.02 0.75 ± 0.04

mHealth
TS Accuracy 0.77 ± 0.02 0.75 ± 0.01 0.85 ± 0.01 0.86 ± 0.02 0.86 ± 0.02 0.87 ± 0.01

F1@25 0.41 ± 0.04 0.21 ± 0.01 0.45 ± 0.02 0.40 ± 0.04 0.42 ± 0.04 0.44 ± 0.02

Opportunity
TS Accuracy 0.61 ± 0.07 0.61 ± 0.05 0.67 ± 0.02 0.67 ± 0.05 0.70 ± 0.04 0.69 ± 0.02

F1@25 0.64 ± 0.07 0.68 ± 0.03 0.73 ± 0.04 0.78 ± 0.08 0.77 ± 0.07 0.78 ± 0.03

Table 4. Timestamp accuracy and F1@25 score averaged over the last 20 iterations with varying context lengths using CrossMatch. The
best values are marked in bold.

cmax
0.25× 0.5× 1.00× 2.00× 4.00×

TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25 TS Accuracy F1@25

HAPT 0.65±0.01 0.46±0.02 0.74±0.01 0.63±0.02 0.84±0.01 0.75±0.02 0.79±0.02 0.65±0.03 0.81±0.01 0.70±0.02

mHealth 0.69±0.01 0.29±0.02 0.79±0.02 0.37±0.02 0.85±0.01 0.45±0.02 0.82±0.01 0.38±0.04 0.77±0.02 0.28±0.03

Opportunity 0.65±0.03 0.72±0.04 0.69±0.03 0.73±0.04 0.67±0.02 0.73±0.04 0.66±0.02 0.71±0.03 0.55±0.02 0.56±0.04

The effectiveness of CrossMatch is also supported by its
PLF computed from precision and recall (see the last row
in Figure 5 and also see Figure 8 in Appendix E). Precision
is the ratio of the number of correctly predicted timestamps
to the number of pseudo-labeled timestamps, while recall is
the ratio of the number of correctly predicted timestamps to
the length of a target instance (refer to Appendix D for more
details). We averaged PLF over the target instances in a
batch. CrossMatch reaches the highest PLF continuously in
most cases due to the reliability of our cross-window labels.

4.3 Analysis of Varying Context Attachment

We study the effect of varying the ways of context attach-
ment in the context-attached augmentation. Given all aug-
mented instance candidates, A0(Ẋ),A1(Ẋ), . . . ,Ac(Ẋ),
for consistency regularization, one-sided CAA picks either
A0(Ẋ) (i.e., X left) or Ac(Ẋ) (i.e., X right), Random-pair
CAA randomly picks two augmented instances, and Multiple-
N CAA includes both A0(Ẋ) and Ac(Ẋ) and randomly
picks N−2 augmented instances; that is, Multiple-2 CAA is
the default of CrossMatch. As shown in Table 3, one-sided
CAA and Random-pair CAA perform worse than Multiple-
N CAA, because of ineffective consistency regularization
caused by the lack of variations in their augmented instances.
While some cases Multiple-N>2 CAA variations achieve
higher performances than Multiple-2 CAA, the performance
gain is marginal, i.e., less than 5%p. This result indeed
demonstrates that our choice of context attachment in Sec-
tion 3.2 is practical, considering the computational cost for
preparing augmented instances.

4.4 Analysis of Varying Context Lengths

Table 4 summarizes the timestamp accuracy and F1@25
score of CrossMatch by adjusting the default context length

cmax (in Table 1) from 0.25× to 4.0×. If the context length
is too large, augmented instances bear too much perturbation
to generate high-quality cross-window labels. On the other
hand, if the context length is too small, informative con-
sistency regularization between two augmented instances
becomes trivial since they show high similarity. We found
out that the optimal context length is highly correlated with
the average segment length of each dataset. For instance,
the best timestamp accuracy of the Opportunity dataset is
achieved with a relatively smaller context length (i.e., 32)
than that of mHealth data (i.e., 256) because Opportunity
has a much shorter mean segment length; as can be seen in
Table 1, Opportunity and mHealth exhibit the shortest and
the longest mean segment length among the three datasets.
Therefore, the best timestamp accuracy and F1@25 score
of each dataset are achieved with different context lengths.
Our heuristic to find the best cmax is selecting cmax within
1/5 and 1/2 of the average length of segments. The average
length of segments in a specific dataset is often available.

4.5 Extensions with Additional Augmentations

We further investigate three possible extensions: (1) Cross-
Match to combine the two inner-instance augmentations
(+IA) of jittering and scaling, (2) the variant of existing con-
sistency regularization methods to combine our proposed
context-attached augmentation (+CAA), and (3) the variant
of existing consistency regularization methods to use the
cut-based augmentation (+CUT). For the first variant, we
perform jittering and scaling before applying the context-
attached augmentation. For the second variant, we modify
the existing methods in support of the context-attached aug-
mentation. The two augmented instances (the left and right
instances in Figure 3) are respectively treated as weakly and
strongly augmented instances; the instance with a higher

8

Context Consistency Regularization for Label Sparsity in Time Series

Table 5. Timestamp accuracy and F1@25 score of CrossMatch and the compared methods with various augmentation methods. The best
values are marked in bold.

Variations Metrics
CrossMatch FixMatch FlexMatch PropReg

+IA +CAA +CUT +CAA +CUT +CAA +CUT

HAPT
TS Accuracy 0.88 ± 0.01 0.62 ± 0.02 0.78 ± 0.01 0.64 ± 0.02 0.81 ± 0.01 0.68 ± 0.01 0.81 ± 0.01

F1@25 0.77 ± 0.02 0.39 ± 0.03 0.66 ± 0.02 0.49 ± 0.03 0.67 ± 0.02 0.45 ± 0.02 0.69 ± 0.02

mHealth
TS Accuracy 0.89 ± 0.01 0.76 ± 0.04 0.74 ± 0.02 0.82 ± 0.01 0.76 ± 0.02 0.77 ± 0.03 0.75 ± 0.02

F1@25 0.67 ± 0.03 0.35 ± 0.04 0.42 ± 0.04 0.31 ± 0.03 0.38 ± 0.03 0.30 ± 0.03 0.47 ± 0.04

Opportunity
TS Accuracy 0.75 ± 0.02 0.49 ± 0.02 0.35 ± 0.01 0.36 ± 0.01 0.34 ± 0.02 0.45 ± 0.01 0.39 ± 0.02

F1@25 0.85 ± 0.03 0.53 ± 0.03 0.43 ± 0.01 0.37 ± 0.02 0.40 ± 0.02 0.45 ± 0.02 0.42 ± 0.01

reliability score becomes the weakly augmented instance,
and that with a lower reliability score becomes the strongly
augmented instance. For the third variant, weak augmen-
tation eliminates 1% of data points in an instance, while
strong augmentation eliminates 10%.

Table 5 summarizes the performances of the extensions
of compared methods for all datasets. Note that we use
the default label ratios of 0.1%, 1.0%, and 1.0% for the
datasets, respectively. The extension of CrossMatch (+IA)
shows additional performance gains of 4–8%p in times-
tamp accuracy and 2–22%p in F1@25 compared with the
original CrossMatch. However, in general, the extensions
of existing methods (+CAA) rather suffer from a signifi-
cant performance drop because they failed to reliably deal
with diverse augmented instances. The cut-based augmen-
tation (+CUT) also does not improve existing consistency
regularization methods in most cases, which reaffirms that
inner-instance augmentation alone is not suitable for time-
series. This result demonstrates that CrossMatch can be fur-
ther enhanced with additional inner-instance augmentation
techniques (e.g., jittering and scaling) under the proposed
consistency regularization framework.

4.6 Discussion on Versatility and Validity

Context-attached augmentation in CrossMatch can be ap-
plied to any recent, popular architectures such as temporal
convolutional networks and Transformers, where informa-
tion is conveyed bidirectionally and output sequential soft-
max probabilities (Farha & Gall, 2019; Chen et al., 2022).
If a model is unidirectional (e.g., from left to right as in the
vanilla RNN and WaveNet), the context attached to the left
side of a target instance would be only meaningful (Oord
et al., 2016); thus, CrossMatch needs to consider a target in-
stance and its augmented instance with only the left context
in order to accommodate a unidirectional model.

One may argue that our augmentation will not work when a
context has different labels than the target instance. How-
ever, such cases may occur very infrequently (i.e., only 6.4%
of the target instances in the mHealth dataset) with a proper
setting of the hyper-parameter cmax, the maximum length

of a context, because of temporal coherence inherent in
time series. Even though a context contains different labels,
our augmentation will work well in general. It is known
that a set of transition patterns tend to appear repeatedly
in many time-series datasets (Roggen et al., 2010; Stein &
McKenna, 2013; Banos et al., 2014); for example, suppose
that a transition pattern, standing up −→ walking, repeats
in a human activity recognition dataset. Then, a different
label (e.g., standing up) in the context is definitely helpful
to predict the label (e.g., walking) in the target instance. Al-
though the transition patterns do not repeat, there is a safety
net, where pseudo-labels are not generated for uncertain
target instances by confidence thresholding in CrossMatch.
Therefore, CrossMatch hardly suffers from such transition
between a target instance and its context.

5 Conclusion

In this paper, we propose CrossMatch, a novel consistency
regularization framework with context-attached augmenta-
tion, for classifying time series with sparse labels. Cross-
Match adds contexts to a target instance on either its left
or right sides to generate two augmented instances with
a maximal difference. Then, the inference of the target
instance is regularized by reliability-weighted mixing of
the two pseudo-labels from the two augmented instances.
Our extensive experiments demonstrate that CrossMatch
achieves considerably higher accuracy than state-of-the-art
consistency regularization methods—by up to 23p% even
with only 0.1% of labels. CrossMatch introduces a new di-
rection of data augmentation for sequential data and has the
potential to be applied to various time-series applications.

Acknowledgements

This work was partly supported by Samsung Electronics
Co., Ltd. (IO201211-08051-01) and Institute of Informa-
tion & Communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government (MSIT)
(No. 2020-0-00862, DB4DL: High-Usability and Perfor-
mance In-Memory Distributed DBMS for Deep Learning).

9

Context Consistency Regularization for Label Sparsity in Time Series

References
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz,

J. L., et al. A public domain dataset for human activity
recognition using smartphones. In ESANN, pp. 437–442,
2013.

Banos, O., Garcia, R., Holgado-Terriza, J. A., Damas, M.,
Pomares, H., Rojas, I., Saez, A., and Villalonga, C.
mHealthDroid: A novel framework for agile develop-
ment of mobile health applications. In AAL Workshop,
pp. 91–98, 2014.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. A. Mixmatch: A holistic ap-
proach to semi-supervised learning. In NeurIPS, 2019.

Berthelot, D., Carlini, N., Cubuk, E. D., Kurakin, A., Sohn,
K., Zhang, H., and Raffel, C. Remixmatch: Semi-
supervised learning with distribution matching and aug-
mentation anchoring. In ICLR, 2020.

Chen, D.-D., Wang, W., Gao, W., and Zhou, Z.-H. Tri-net
for semi-supervised deep learning. In IJCAI, pp. 2014–
2020, 2018.

Chen, M., Wei, F., Li, C., and Cai, D. Frame-wise action
representations for long videos via sequence contrastive
learning. In CVPR, pp. 13801–13810, 2022.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. E. Big self-supervised models are strong
semi-supervised learners. In NeurIPS, pp. 22243–22255,
2020.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. AutoAugment: Learning augmentation strategies
from data. In CVPR, 2019.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. RandAug-
ment: Practical automated data augmentation with a re-
duced search space. In NeurIPS, pp. 18613–18624, 2020.

DeVries, T. and Taylor, G. W. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017.

Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C. K., Li,
X., and Guan, C. Time-series representation learning
via temporal and contextual contrasting. In IJCAI, pp.
2352–2359, 2021.

Fan, H., Zhang, F., Wang, R., Huang, X., and Li, Z. Semi-
supervised time series classification by temporal relation
prediction. In ICASSP, pp. 3545–3549, 2021.

Farha, Y. A. and Gall, J. MS-TCN: Multi-stage temporal
convolutional network for action segmentation. In CVPR,
pp. 3575–3584, 2019.

Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.-Y., Cubuk,
E. D., Le, Q. V., and Zoph, B. Simple copy-paste is a
strong data augmentation method for instance segmenta-
tion. In CVPR, pp. 2918–2928, 2021.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M., et al. Bootstrap your own latent –
a new approach to self-supervised learning. In NeurIPS,
pp. 21271–21284, 2020.

Hansen, L. P., Roberds, W., and Sargent, T. J. Time se-
ries implications of present value budget balance and of
martingale models of consumption and taxes. In Ratio-
nal Expectations Econometrics, pp. 121–161. CRC Press,
2019.

Hayes, T. P. A large-deviation inequality for vector-valued
martingales. Combinatorics, Probability and Computing,
2005.

Ho, S.-S. A martingale framework for concept change
detection in time-varying data streams. In ICML, pp.
321–327, 2005.

Iwana, B. K. and Uchida, S. An empirical survey of data
augmentation for time series classification with neural
networks. Plos One, 16(7):e0254841, 2021.

Jawed, S., Grabocka, J., and Schmidt-Thieme, L. Self-
supervised learning for semi-supervised time series clas-
sification. In PAKDD, pp. 499–511, 2020.

Jiang, Y., Li, X., Chen, Y., He, Y., Xu, Q., Yang, Z., Cao, X.,
and Huang, Q. Maxmatch: Semi-supervised learning with
worst-case consistency. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Kim, N.-r. and Lee, J.-H. Propagation regularizer for semi-
supervised learning with extremely scarce labeled sam-
ples. In CVPR, pp. 14401–14410, 2022.

Kumar, S., Haresh, S., Ahmed, A., Konin, A., Zia, M. Z.,
and Tran, Q.-H. Unsupervised action segmentation by
joint representation learning and online clustering. In
CVPR, pp. 20174–20185, 2022.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. In ICLR, 2017.

Lee, D.-H. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In
ICML Workshop, pp. 896, 2013.

Li, Z., Abu Farha, Y., and Gall, J. Temporal action seg-
mentation from timestamp supervision. In CVPR, pp.
8365–8374, 2021.

10

Context Consistency Regularization for Label Sparsity in Time Series

Ma, F., Zhu, L., Yang, Y., Zha, S., Kundu, G., Feiszli,
M., and Shou, Z. SF-Net: Single-frame supervision for
temporal action localization. In ECCV, pp. 420–437,
2020.

Ma, Q., Zheng, Z., Zheng, J., Li, S., Zhuang, W., and Cot-
trell, G. W. Joint-label learning by dual augmentation for
time series classification. In AAAI, pp. 8847–8855, 2021.

Moltisanti, D., Fidler, S., and Damen, D. Action recognition
from single timestamp supervision in untrimmed videos.
In CVPR, pp. 9915–9924, 2019.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In NeurIPS, pp. 4694–4703, 2019.

Neufeld, A. and Sester, J. A deep learning approach to
data-driven model-free pricing and to martingale optimal
transport. IEEE Transactions on Information Theory,
2022.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. WaveNet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Park, J. Y. and Whang, Y.-J. A test of the martingale hypoth-
esis. Studies in Nonlinear Dynamics & Econometrics, 9
(2), 2005.

Pham, H., Dai, Z., Xie, Q., and Le, Q. V. Meta pseudo
labels. In CVPR, pp. 11557–11568, 2021.

Rizve, M. N., Duarte, K., Rawat, Y. S., and Shah, M. In de-
fense of pseudo-labeling: An uncertainty-aware pseudo-
label selection framework for semi-supervised learning.
In ICLR, 2021.

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster,
K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G.,
Ferscha, A., et al. Collecting complex activity datasets in
highly rich networked sensor environments. In INSS, pp.
233–240, 2010.

Shin, Y., Yoon, S., Kim, S., Song, H., Lee, J.-G., and Lee,
B. S. Coherence-based label propagation over time series
for accelerated active learning. In ICLR, 2022.

Shorten, C. and Khoshgoftaar, T. M. A survey on image
data augmentation for deep learning. Journal of Big Data,
6(1):1–48, 2019.

Singh, A., Chakraborty, O., Varshney, A., Panda, R., Feris,
R., Saenko, K., and Das, A. Semi-supervised action
recognition with temporal contrastive learning. In CVPR,
pp. 10389–10399, 2021.

Singhania, D., Rahaman, R., and Yao, A. Iterative contrast-
classify for semi-supervised temporal action segmenta-
tion. In AAAI, pp. 2262–2270, 2022.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In NeurIPS, pp. 596–608,
2020.

Stein, S. and McKenna, S. J. Combining embedded ac-
celerometers with computer vision for recognizing food
preparation activities. In UbiComp, pp. 729–738, 2013.

Um, T. T., Pfister, F. M., Pichler, D., Endo, S., Lang, M.,
Hirche, S., Fietzek, U., and Kulić, D. Data augmentation
of wearable sensor data for parkinson’s disease monitor-
ing using convolutional neural networks. In ICMI, pp.
216–220, 2017.

Van Engelen, J. E. and Hoos, H. H. A survey on semi-
supervised learning. Machine Learning, 109(2):373–440,
2020.

Wang, X., Fan, H., Tian, Y., Kihara, D., and Chen, X. On
the importance of asymmetry for siamese representation
learning. In CVPR, pp. 16570–16579, 2022.

Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., and
Xu, H. Time series data augmentation for deep learning:
A survey. In IJCAI, pp. 4653–4660, 2021.

Xiao, J., Jing, L., Zhang, L., He, J., She, Q., Zhou, Z., Yuille,
A., and Li, Y. Learning from temporal gradient for semi-
supervised action recognition. In CVPR, pp. 3252–3262,
2022.

Xie, Q., Dai, Z., Hovy, E., Luong, T., and Le, Q. Unsu-
pervised data augmentation for consistency training. In
NeurIPS, pp. 6256–6268, 2020.

Xu, Y., Wei, F., Sun, X., Yang, C., Shen, Y., Dai, B., Zhou,
B., and Lin, S. Cross-model pseudo-labeling for semi-
supervised action recognition. In CVPR, pp. 2959–2968,
2022.

Yang, X., Song, Z., King, I., and Xu, Z. A survey on
deep semi-supervised learning. IEEE Transactions on
Knowledge and Data Engineering, pp. 1–20, 2022.

Yoon, S., Shin, Y., Lee, J.-G., and Lee, B. S. Multiple dy-
namic outlier-detection from a data stream by exploiting
duality of data and queries. In SIGMOD, pp. 2063–2075,
2021.

Yoon, S., Meng, Y., Lee, D., and Han, J. SCStory: Self-
supervised and continual online story discovery. In
TheWebConf, pp. 1853–1864, 2023.

11

Context Consistency Regularization for Label Sparsity in Time Series

Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y.,
and Xu, B. TS2Vec: Towards universal representation of
time series. In AAAI, pp. 8980–8987, 2022.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y.
CutMix: Regularization strategy to train strong classifiers
with localizable features. In ICCV, pp. 6023–6032, 2019.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. Flexmatch: Boosting semi-
supervised learning with curriculum pseudo labeling. In
NeurIPS, pp. 18408–18419, 2021.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond empirical risk minimization. In ICLR,
2018.

12

Context Consistency Regularization for Label Sparsity in Time Series

A Proof of Theorem 3.2

We prove Theorem 3.2 in Section 3.2. Let Ai(Ẋ) be the context-attached augmented instances from Definition 3.1. A
feature extractor fθ(·)t generates an embedding for a timestamp t within the target instance, i.e., zi = fθ(Ai(Ẋ))t, where
zi ∈ Rk and k is the dimensionality of the embedding.

Comparing zi and zi+1, their inputs share 2w+i−1 timestamps and differ only at the timestamp t = m+ w + i− 1. The
data point at that timestamp would not deviate from the previous data points used to infer zi due to temporal coherence.
Thus, the next embedding would change in the vicinity centered at the current embedding (if we know it in advance),
like a random walk, although the global distribution of embeddings is not known. This behavior leads to the martingale
assumption in the embedding sequence, which is frequently used in time-series analysis (Ho, 2005; Hansen et al., 2019;
Neufeld & Sester, 2022). In addition, the range of vicinity would also be limited because the change comes from only a
single input timestamp.

To justify the martingale embedding assumption, let us conduct a martingale hypothesis test (Park & Whang, 2005) on the
embedding sequence generated by a trained model of CrossMatch. The null hypothesis of the martingale hypothesis test for
a specific dimension of zi is

H0 : Pr(E[zi+1|zi] = zi) = 1 where zi ∈ R. (9)

A Kolmogorov-Smirnov type statistic is given by

KS(z) = sup
δ∈R

∣∣∣∣∣ 1√
c+ 1

c∑
i=0

(zi+1 − zi)1zi≤δ

∣∣∣∣∣ . (10)

The maximum value of KS(z) from every dimension of the softmax probabilities or penultimate layer output is 1.36, 1.45,
and 1.43 for the HAPT, mHealth, and Opportunity datasets, respectively, when δ is searched from −10 to 10 with a step
size of 0.001. With the significance level set to be 0.05, the critical value of KS(z) is 2.338 (Park & Whang, 2005), which
is much higher than these values that we computed. Therefore, we do not reject the null hypothesis for every dimension of
the embedding sequence, meaning that the embedding vector sequence is martingale.

When the embedding (vector) sequence is martingale and its consecutive differences are bounded, for a pair of consecutive
embeddings zi and zi+1, the following properties hold by definition: (1) E[zi+1|zi] = zi, and (2) ∥zi+1 − zi∥2 ≤ s, where
s is a sufficiently small positive real constant. Then, the following variant of Azuma’s inequality holds for 0 ≤ j < i ≤ c,
and see (Hayes, 2005) for the detailed derivation.

Pr[∥zi − zj∥2 ≥ ϵ] ≤ 2e2e−ϵ2/2s2(i−j). (11)

Equation (11) says that the upperbound for the probability that the Euclidean distance between two embeddings zi and zj

is larger than a positive real constant ϵ increases as the corresponding augmented instances Ai(Ẋ) and Aj(Ẋ) are more
distant in terms of (i−j).

B Overall Training Algorithm

Algorithm 1 describes how CrossMatch works in time-series consistency regularization. For each iteration, there are two steps
for batch initialization: center timestamp sampling from TL and TU (Line 2) and context length sampling from a uniform
distribution (Line 3). Note that we assign q as w + c after the sampling (Line 4). From labeled center timestamps, instances
are sliced from X with length 2q to construct a labeled batch, Xl and Yl, where X[m−q:m+q) = {xt | t ∈ [m−q : m+q)}
and Y[m−q:m+q) = {yt | t∈ [m−q : m+q)} (Line 6). The classification loss for a labeled batch Ll is computed and averaged
over the batch (Line 7). From unlabeled center timestamps, instances are sliced with context-attached augmentation that
generates a pair of instances whose length is w+q (Line 9). The target instance of each instance in an augmented unlabeled
batch Xu is then pseudo-labeled using a confidence threshold τ (Line 10). CrossMatch softens the pseudo-labels with
reliability weighting across two augmented instances with different contexts, transforming two pseudo-labels into a single
cross-window label shared across the instances (Line 11). The classification loss with cross-window labels is computed for
each pair of augmented instances and averaged over the batch (Line 12). Finally, the losses for labeled and unlabeled batches
are then integrated into a single loss L with a hyperparameter λ, and the model fθ is updated using its gradient (Line 13).

13

Context Consistency Regularization for Label Sparsity in Time Series

Algorithm 1 Time-series consistency regularization with CrossMatch
Input: A time series with initial labels D, labeled timestamp set TL, unlabeled timestamp set TU , labeled batch size Bl,

unlabeled batch size Bu, maximum number of iterations I, a model fθ, confidence threshold τ, loss weight λ,
learning rate η, half length of a target instance w, maximum context length cmax.

Output: Final model fθ.
1: for each iteration up to I do
2: Tl ← Sample Bl timestamps from TL; Tu ← Sample Bu timestamps from TU ;
3: c← Sample a context length from Uniform(2, cmax);
4: q ← w + c;
5: /** Loss computation for labeled batch **/
6: Xl ← {X[m−q:m+q),m ∈ Tl}; Yl ← {Y[m−q:m+q), t ∈ Tl};
7: Ll =

1
Bl

∑
X∈Xl,Y ∈Yl

ℓ(X,Y); // See Equation (1)
8: /** Loss computation for unlabeled batch **/
9: Xu ← {(X[m−q:m+w),X[m−w:m+q)),m ∈ Tu}; // See Section 3.2

10: Ŷu ← PSEUDOLABELING(Xu, fθ, τ); // See Equation (2)
11: Ȳ ← RELIABILITYWEIGHTING(Ŷu); // See Section 3.3
12: Lu = 1

Bu

∑
(X left,X right)∈Xu,Ȳ ∈Ȳ ℓu(X

left, X right, Ȳ);
13: L ← Ll + λLu; θ ← θ − η∇θL;
14: end for
15: return fθ;

C Detailed Training Setup
As described in implementation details of Section 4.1, we use MS-TCN as the backbone sequential classifier (Farha &
Gall, 2019). It can classify each data point in an instance X , generating sequential softmax probabilities at each timestamp.
MS-TCN has four stages, and each stage is composed of eleven dilated convolution layers and a softmax output layer. The
first stage takes a subsequence of the whole time series and outputs a softmax probability distribution at each timestamp.
After the first stage, every stage is fed with softmax probabilities and then outputs another softmax probabilities. For all
datasets, we use the same training hyperparameters and classifier as listed in Table 6. We set the labeled batch size as 4 and
the unlabeled batch size as 8, use an SGD optimizer with the momentum and Nesterov method. The initial learning rate
is 0.005 and is scheduled with a cosine decay function. In “Scheduling,” the symbol i denotes a current iteration during
training, and the symbol I denotes the total number of iterations.

Table 6. Training hyperparameters.

Stage Layer BL BU Optimizer Momentum Nesterov η Scheduling

4 11 4 8 SGD 0.9 True 0.005 cos(7πiI)

D Detailed Evaluation Metrics
Timestamp accuracy is the ratio of the number of timestamps with correctly predicted labels to the total number of timestamps
in a times series, which is computed as

TS accuracy =
1

|Ttest|
∑
t∈Ttest

1yt=ŷt
.

Segmental F1 score is a performance measure for judging whether a classifier outputs correct and coherent labels for
consecutive timestamps. First, segmental precision and segmental recall are computed by counting the number of correct
matches between a predicted segment set Ŷ and the true segment set Y with a Jaccard similarity threshold (e.g., 0.25),

Segmental Precision =
1

|Ŷ|

∑
Ŷ ∈Ŷ

∑
Y ∈Y

1Jaccard(Ŷ ,Y)>0.25 and Segmental Recall =
1

|Y|
∑
Ŷ ∈Ŷ

∑
Y ∈Y

1Jaccard(Ŷ ,Y)>0.25.

14

Context Consistency Regularization for Label Sparsity in Time Series

Then, segmental F1 score is computed as F1@25 = 2∗precision∗recall
precision+recall .

At each iteration, we measure pseudo-labeling precision and pseudo-labeling recall from each timestamp of the target
instances in a batch, which are computed as

PL Precision =
the number of correct PLs

the number of PLs
and PL Recall =

the number of correct PLs
the number of timestamps

.

To count the number of correct pseudo-labels, we examine whether a pseudo-label exists for each timestamp and, if
so, compare it with the true label. When there is no pseudo-label at any timestamp, we simply define the pseudo-
labeling precision as 0, because it is undefined otherwise due to division by zero. Likewise, pseudo-labeling F1 score
is PLF = 2∗PL precision∗PL recall

PL precision+PL recall . After a few iterations, the entire time series is expected to be used by pseudo-labeling the
sampled target instances.

E Detailed Experiment Results
Figure 6 is a detailed version of Figure 5, with standard deviation error bars added.

Figure 7 is an expanded version of Figure 5, containing the entire y-axis for TS accuracy and F1@25.

Figure 8 shows the pseudo-labeling metrics such as pseudo-labeling precision, pseudo-labeling recall, and the total number
of pseudo-labels.

Figure 9 shows the accuracy convergence trend when the context length is varied as a factor or multiple of a given length c,
illustrating the accuracy curves during the training iterations.

CrossMatch FixMatch FlexMatch PropReg

0 12500 25000
Iteration

0.7

0.8

0.9

TS
 A

cc
ur

ac
y

0 25000 50000
Iteration

0.5

0.7

0.9

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.2

0.5

0.8

F1
@

25

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.0

0.4

0.8

PL
F

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.0

0.3

0.6

(a) HAPT. (b) mHealth. (c) Opportunity.

Figure 6. Training curve of the classification performance (the first two rows) and pseudo-labeling performance (the last row) over training
iterations in Algorithm 1. Error bars represent the standard deviation of five runs.

15

Context Consistency Regularization for Label Sparsity in Time Series

CrossMatch FixMatch FlexMatch PropReg

0 12500 25000
Iteration

0.3

0.6

0.9

TS
 A

cc
ur

ac
y

0 25000 50000
Iteration

0.20

0.55

0.90

0 15000 30000
Iteration

0.0

0.4

0.8

0 12500 25000
Iteration

0.10

0.45

0.80

F1
@

25

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.0

0.4

0.8

(a) HAPT. (b) mHealth. (c) Opportunity.

Figure 7. Training curve of the classification performance over training iterations in Algorithm 1, showing the entire range of each metric.

CrossMatch FixMatch FlexMatch PropReg

0 12500 25000
Iteration

0.6

0.8

1.0

PL
 P

re
ci

si
on

0 25000 50000
Iteration

0.4

0.7

1.0

0 15000 30000
Iteration

0.6

0.8

1.0

0 12500 25000
Iteration

0.0

0.3

0.6

PL
 R

ec
al

l

0 25000 50000
Iteration

0.0

0.2

0.4

0 15000 30000
Iteration

0.0

0.2

0.4

0 12500 25000
Iteration

0

1e4

2e4

N
um

be
r o

f P
L

0 25000 50000
Iteration

0

1e4

2e4

0 15000 30000
Iteration

0

1e4

2e4

(a) HAPT. (b) mHealth. (c) Opportunity.

Figure 8. Pseudo-labeling precision, pseudo-labeling recall, and the number of pseudo-labels of CrossMatch compared with those of
FixMatch, FlexMatch, and PropReg.

16

Context Consistency Regularization for Label Sparsity in Time Series

0.25× 0.5× 1× 2× 4×

0 12500 25000
Iteration

0.7

0.8

0.9

TS
 A

cc
ur

ac
y

0 25000 50000
Iteration

0.5

0.7

0.9

0 15000 30000
Iteration

0.4

0.6

0.8

0 12500 25000
Iteration

0.3

0.6

0.9

F1
@

25

0 25000 50000
Iteration

0.0

0.3

0.6

0 15000 30000
Iteration

0.4

0.6

0.8

(a) HAPT. (b) mHealth. (c) Opportunity.

Figure 9. Classification accuracy of CrossMatch for varying the context lengthx× c.

17

