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Abstract
In their seminal work, Nayyar et al. (2013)
showed that imperfect information can be ab-
stracted away from common-payoff games by
having players publicly announce their policies
as they play. This insight underpins sound
solvers and decision-time planning algorithms for
common-payoff games. Unfortunately, a naive
application of the same insight to two-player zero-
sum games fails because Nash equilibria of the
game with public policy announcements may not
correspond to Nash equilibria of the original game.
As a consequence, existing sound decision-time
planning algorithms require complicated addi-
tional mechanisms that have unappealing prop-
erties. The main contribution of this work is
showing that certain regularized equilibria do not
possess the aforementioned non-correspondence
problem—thus, computing them can be treated as
perfect-information problems. Because these reg-
ularized equilibria can be made arbitrarily close to
Nash equilibria, our result opens the door to a new
perspective to solving two-player zero-sum games
and yields a simplified framework for decision-
time planning in two-player zero-sum games, void
of the unappealing properties that plague existing
decision-time planning approaches.

1. Introduction
In single-agent settings, dynamic programming (Bertsekas,
2000) is the bedrock for reinforcement learning (Sutton &
Barto, 2018), justifying approximating optimal policies by
backward induction and facilitating a simple framework for
decision-time planning. One might hope that dynamic pro-
gramming could provide similar grounding in multi-agent
settings for well-defined notions of optimality, like optimal
joint policies in common-payoff games, Nash equilibria
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in two-player zero-sum (2p0s) games, and team correlated
equilibria in two-team zero-sum (2t0s) games. Unfortu-
nately, this is not straightforwardly the case when there is
imperfect information—a term that we use to refer to games
in which one player has knowledge that another does not
or two players act simultaneously. This difficulty arises
from two causes, which we call the backward dependence
problem and the non-correspondence problem.

The backward dependence problem is that computing the
expected return starting from a decision point generally re-
quires knowledge about policies that were played up until
now, in addition to the policies that will be played going
forward. This is in stark contrast to perfect information set-
tings, in which the expected return starting from a decision
point is independent of the policy played before arriving at
the decision point. As a result of this bidirectional temporal
dependence, backward induction arguments that work in
perfect information settings fail in imperfect information
settings.

In their seminal work, Nayyar et al. (2013) showed that
the backward dependence problem can be resolved by hav-
ing players publicly announce their policies as they play.
Using this insight, a common-payoff game can be trans-
formed into a Markov decision process (MDP) that we call
the public belief Markov decision processes (PuB-MDP).
Importantly, deterministic optimal policies in the PuB-MDP
can be mapped back to optimal joint policies of the original
common-payoff game.

Having players publicly announce their policies can also
be used to transform 2p0s games into alternating Markov
games (AMGs) with public belief states (Wiggers et al.,
2016; Nayyar & Gupta, 2017; Brown et al., 2020; Buffet
et al., 2020; Delage et al., 2021; Kartik & Nayyar, 2021),
which we call public belief alternating Markov games (PuB-
AMGs). AMGs are fully-observable turn-based games (like
Go and chess)1 and, therefore, are amenable to dynamic
programming-based approaches (Littman, 1996). Unfortu-
nately, computing Nash equilibria of PuB-AMGs carries
little value because these Nash equilibria may not corre-

1Formally, the board states of Go and chess are technically not
actually Markov because of rules like the threefold repetition rule.
Nevertheless, they capture the spirit of fully-observable turn-based
games.
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Figure 1. Our main contribution in the context of related work, at an abstract level. Solid lines denote reductions; the dashed line denotes
a reduction that holds under a class of regularized objectives.

spond with Nash equilibria in the original game (Burch
et al., 2014; Ganzfried & Sandholm, 2015; Brown et al.,
2020; Sustr et al., 2021). Indeed, as we will show, they may
correspond with arbitrarily exploitable policies. We call this
problem the non-correspondence problem.

The main contribution of this work is showing that regular-
ized minimax objectives that guarantee unique equilibria
in subgames do not suffer from the non-correspondence
problem. In other words, computing these uniqueness-
guaranteeing equilibria can be reduced to computing the
associated equilibria in the PuB-AMG. Because uniqueness
can be guaranteed using arbitrarily small amounts of en-
tropy regularization (Perolat et al., 2021), our reduction is
straightforward to apply in practice and yields solutions that
can be made arbitrarily close to Nash equilibria.

We highlight three points regarding this reduction:

1. It is the first reduction of its kind in literature; specifically,
it is the first equilibrium preserving transformation from
imperfect information 2p0s games to perfect information
2p0s games.

2. It yields a simple framework for decision-time plan-
ning in 2p0s games with desirable continuity proper-
ties. In contrast, existing approaches (Brown & Sand-
holm, 2017a;b; Moravčı́k et al., 2017; Brown et al., 2020;
Schmid et al., 2021) are hampered by a number of com-
plications that involve undesirable aspects, including
discontinuous functions.

3. It can be applied across the whole class of 2t0s games
(as depicted by Figure 1) because of the recent results of
Carminati et al. (2022a); Zhang et al. (2022a); Carminati
et al. (2022b), who showed that 2t0s games can be cast
as 2p0s games.

2. Notation
We introduce two sets of formalisms. The first, which we
call finite-horizon sequential games, describes settings in
which players act one-at-a-time and in which the game
terminates after a fixed number of steps. This setting is
equivalent to perfect recall timeable (Jakobsen et al., 2016)
extensive form games—see, for example, Kovarı́k et al.
(2019) for more details.

The second formalism, which we call finite-horizon fully-
observable sequential games, captures a special case of the
previous setting in which there is a Markov state that is
observable to all players. We use this formalism to express
games with public policy announcements.

2.1. Finite-Horizon Sequential Games

Symbolically, we say a setting is a finite-horizon sequential
game if it can be described by a tuple

⟨A, [Oi],Opub, [Hi],Hpub,H, µ, [Oi],Opub, [Ri], T , T ⟩,

where
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• i ranges from 0 to N − 1 and ι denotes the acting player.2

• A is the set of actions.

• Oi is the set of private observations for player i.

• Opub is the set of public observations (i.e., observations
that are immediate common knowledge among players).

• Hi = ∪T−1
t=0 (Opub×Oi)

t×Opub×Oi is player i’s action-
observation histories (AOHs).

• Hpub = ∪T−1
t=0 Ot

pub is the set of public histories.

• H ⊂ H0 × · · · ×HN−1 is the set of histories.

• µ ∈ ∆(H(h0pub)) is the initial history distribution.

• Oi : H→ Oi is player i’s observation function.3

• Opub : H→ Opub is the public observation function.

• Ri : H× A→ R is the player i’s reward function.

• T : H× A→ ∆(H) is the transition function.

• T is the time horizon at which the game terminates.

For a given hpub ∈ Hpub, we use Hi(hpub) to denote the
set of AOHs for player i that are consistent with hpub and
H(hpub) to denote the set of histories that are consistent with
hpub. Also, for a history h, we use hι to denote the AOH for
the acting player at history h. We use capitals of the same
letters to denote random variables of the same types. We use
π : ∪i Hi → ∆(A) to denote the joint policy of the players
and πi : Hi → ∆(A) to denote player i’s policy. We use −i
to denote “all players except player i”.

Special Cases This work will make use of the following
special cases.

• Two team zero sum: Games in which {0, . . . , N − 1}
is a disjoint union of two blocks, where ∀i, j,Ri = Rj

if i, j belong to the same block and Ri = −Rj if i, j
belong to opposite blocks.

• Common payoff: Games in which ∀i, j,Ri = Rj .

• Two player zero sum: Games in which N = 2 and
R0 = −R1.

In these special cases, the reward of all players is uniquely
determined by the reward of any individual player. Thus,
we will drop the player index i on the reward function and
useR = R0.

2Our usage of ι is informal but unambiguous in context.
3We assume that, if i acts a time t, i’s action is included in its

private observation at time t+ 1

Subgames For a given finite-horizon sequential game,
we use the term subgame to refer to a game that begins
with initial history distribution µ ∈ ∆(H(hpub)) for some
particular hpub reflecting public information revealed so far
and is otherwise the same as the original game.

2.2. Finite-Horizon Fully-Observable Sequential Games

We use the terminology finite-horizon fully-observable se-
quential game to describe tuples

⟨A,S, s0, [Ri], T , T ⟩,

where

• S is the set of states.

• s0 ∈ S is the initial state.

• Ri : S× A→ R is the player i’s reward function.

• T : S× A→ ∆(S) is the transition function.

• i, ι, A, and T are defined as they were in the finite-horizon
sequential game formalism.

We use π : S → ∆(A) to denote the joint policy and πi to
denote player i’s policy.

Special Cases In the fully-observable context, we are in-
terested in the following settings.

• Markov decision processes (MDPs): Games in which
N = 1.

• Alternating Markov games (AMGs): Games that are
two player zero sum.

As before, we will useR = R0 for conciseness.

Subgames For a given finite-horizon fully-observable se-
quential game, we use the term subgame to refer to a game
that begins with initial state s0 = s for some particular s
and otherwise proceeds by the same rules of the original
game.

3. Background
The Backward Dependence Problem To illustrate the
presence of the backward dependence problem in even very
simple settings, we show a cooperative matching pennies
game in Figure 2. The goal of the game is for the blue player
and the red player to select the same side of a coin. The blue
player moves first; then, without observing the blue player’s
choice, the red player moves second. Because the red player
does not observe the blue player’s choice (as denoted by the
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Figure 2. The best action for the red player depends on the blue
player’s policy.

dotted line between the two nodes), it must make the same
decision at both nodes.

Now, let us consider the value for the red player. In perfect-
information settings, because the red player is at a penul-
timate node, such a value would be equal to the expected
return for the best action, independent of any prior events.
However, here, with imperfect information, the expected
return for the best action is equal to max(p, 1− p) where p
is the probability that the blue player selects heads. If the
blue player’s policy is unknown, there is no way to compute
this value, illustrating that the backward induction approach
to learning in perfect information settings fails in imperfect
information settings.

The Public Belief Markov Decision Process In their
seminal work, Nayyar et al. (2013) described a reduction
for turning common-payoff games into partially observable
Markov decision processes (POMDPs) in such a way that
circumvents the backward dependence problem. This re-
duction can be chained with the well-known belief-state
reduction from POMDPs to MDPs to construct public belief
state MDPs (PuB-MDPs). We describe the composition of
these reductions.

Let

⟨A, [Oi],Opub, [Hi],Hpub,H, µ, [Oi],Opub,R, T , T ⟩,

be a finite-horizon common-payoff game. Then we define
the associated PuB-MDP as the following finite-horizon
fully-observable sequential game

⟨Ã, S̃, s̃0, R̃, T̃ , T̃ ⟩,

where

• i = ι = 0.

• Ã = {ã | ã : Hι(hpub) → A, hpub ∈ Hpub} is the set of
prescriptions.

• S̃ = ∪hpub∆(H(hpub)) is the set of public belief states
(PBSs).

• s̃0 = µ is the initial PBS.

• R̃ : s̃, ã 7→ EH∼s̃R(H, ã(Hι)).

• T̃ (s̃ot+1
pub
| s̃t, ã) = EHt∼s̃tP(ot+1

pub | Ht, ã(Ht
ι ))

where the PBS s̃ot+1
pub

is defined by

s̃ot+1
pub

(ht+1)=EHt∼s̃tP(ht+1 | Ht, ã(Ht
ι ), o

t+1
pub )

• T̃ = T .

Nayyar et al. (2013) showed that optimal deterministic poli-
cies in the PuB-MDP correspond with optimal joint policies
for the common payoff game. Indeed, for the matching
pennies game described in Figure 2, we can see that the
PuB-MDP perspective resolves the backward dependence
problem because the red player observes the blue player’s
prescription. If the blue player’s prescription maps to heads,
the red player can determine that playing heads has a value
of 1 whereas playing tails has a value of 0 (and vice versa
if the blue player’s prescriptions maps to tails). Thus, the
players can arrive at an optimal joint policy of the original
game.

For a more detailed discussion on the PuB-MDP, see, e.g.,
(Sokota, 2020; Sokota et al., 2021).

4. The Public Belief Alternating Markov Game
It is also possible to map 2p0s games to symmetric-
information 2p0s games using Nayyar et al. (2013)’s reduc-
tion (Nayyar & Gupta, 2017; Kartik & Nayyar, 2021).4 This
mapping can be chained with a belief-state transformation
to construct public belief AMGs (PuB-AMGs) (Wiggers
et al., 2016; Nayyar & Gupta, 2017; Brown et al., 2020;
Buffet et al., 2020; Delage et al., 2021; Kartik & Nayyar,
2021). In the main body below, we describe the composition
of these reductions; we provide a brief discussion on these
reductions as separate entities in Section D of the appendix.

Let

⟨A, [Oi],Opub, [Hi],Hpub,H, µ, [Oi],Opub, [Ri], T , T ⟩,

be a finite-horizon 2p0s sequential game. Then we define
the associated PuB-AMG as the following finite-horizon
fully-observable sequential game

⟨Ã, S̃, s̃0, R̃, T̃ , T̃ ⟩,

where
4A symmetric-information game is one in which all players

receive identical observations.
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Figure 3. A perturbed variant of rock-paper-scissors.

• i ranges from 0 to 1 and ι ∈ {0, 1} is the acting player.

• Ã = {ã | ã : Hι(hpub) → ∆(A), hpub ∈ Hpub} is the
set of public decision rules (or decision rules, for short).
Note that public decision rules differ from prescriptions
in that they map to a distributions over actions, rather than
actions.

• S̃ = ∪hpub∆(H(hpub)) is the set of public belief states
(PBSs).

• s̃0 = µ is the initial PBS.

• R̃ : s̃, ã 7→ EH∼s̃EA∼ã(Hι)R(H,A).

• T̃ (s̃ot+1
pub
| s̃t, ã) = EHt∼s̃tEAt∼ã(Ht

ι )
P(ot+1

pub | Ht, At)

where the PBS s̃ot+1
pub

is defined by

s̃ot+1
pub

(ht+1)=EHt∼s̃tEAt∼ã(Ht
ι )
P(ht+1|Ht, At, ot+1

pub ).

• T̃ = T .

Notice that the PuB-AMG closely resembles the PuB-MDP
in structure, differing only in the number of players, the
structure of the actions, and that an additional expectation
is required in the reward and transition functions.

The Correspondence Mapping As mentioned earlier, a
Nash equilibrium in the PuB-AMG may be undesirable
because it does not necessarily correspond to a Nash equilib-
rium in the original game. Here, we make this notion precise
by defining a correspondence function Π↓ that maps public
belief joint policies to joint policies of the original game.
Given a PuB-AMG joint policy π̃, Π↓(π̃) is the joint policy
that, for each AOH hι, plays actions with the probability
that π̃ would at hι, assuming that hι was reached using π̃.
(See Section A for a more rigorous definition.) Importantly,
Π↓(π̃)i can be implemented in practice by running π̃i un-
der the assumption that the opponent is playing according
to π̃−i.

The Non-Correspondence Problem We can now discuss
non correspondence more rigorously. To illustrate, we show
the perturbed variant of rock-paper-scissors described in

(Brown et al., 2020) in Figure 3. The game is perturbed
in the sense that the payouts are doubled if either player
plays scissors. The unique Nash equilibrium of the game is
(R,P, S) 7→ (0.4, 0.4, 0.2).

Similarly to before, the red player can compute the asso-
ciated value for each of the blue player’s decision rules in
the PuB-AMG. Thus, the blue player can determine that
the Nash equilibrium policy maximizes its value. It is at
this point that the non-correspondence problem becomes
apparent. Because the red player is conditioning on the blue
player’s decision rule, it achieves the optimal value by play-
ing any best response to the blue player. In the perturbed
rock-paper-scissors game, all policies are best responses to
the Nash equilibrium. Thus, there is nothing constraining
the red player to the Nash equilibrium policy of the original
game.

A similar argument, detailed in Section B.1, leads to the
following disappointing result.

Proposition 4.1. A PuB-AMG Nash equilibrium π̃ may
correspond with a joint policy Π↓(π̃) that is maximally
exploitable.

At an intuitive level, the non-correspondence problem arises
because there is an important distinction between the public
belief game and the original game. Specifically, in the public
belief game, players acting earlier are forced to reveal their
decision rules to players acting later. As a result, later
acting players are able to “slack off” without losing any
value because the earlier acting players cannot deviate to
punish them. In common-payoff games, this is a non issue
because the interests of every player are aligned. However,
in 2p0s games, where there are adversarial interests, this
distinction changes the strategic nature of the game in a
more fundamental sense.

5. Uniqueness-Guaranteeing Objectives
To address the non-correspondence problem discussed in
the previous section, we introduce a class of objectives
that we call uniqueness guaranteeing (UG). UG objectives
are a kind of regularized objective, of the form defined
below, that generalize the expected return objective in that
it includes objectives that may have dependence on policies
beyond the actions they select.

Definition 5.1. We use the term regularized minimax ob-
jective (or objective for short) to refer to mappings of the
form

J : π0, π1 7→ E

[
T−1∑
t=0

R(Ht, At, π(Ht
ι )) | π0, π1

]

where R is a real-valued function. Every regularized min-
imax objectives J possesses a PuB-AMG analog J̃ that is
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equivalent to J in the sense that J̃(π̃) = J(Π↓(π̃)) that is
defined by

J̃ : π̃0, π̃1 7→ E

[
T−1∑
t=0

R̃(S̃t, Ãt) | π̃0, π̃1

]
,

where

R̃ : (s̃, ã) 7→ EH∼s̃EA∼ã(Hι)R(H,A, ã(Hι)).

UG objectives are regularized minimax objectives that are
guaranteed to produce unique equilibria.

Definition 5.2. For a particular game, we say a minimax
objective J is UG if

max
π0

min
π1

J(π0, π1)

is guaranteed to have a unique solution π∗ for every subgame
of that game.

5.1. Correspondence of Uniqueness-Guaranteeing
Equilibria

We can now state our main result—that the non-
correspondence problem does not exist for equilibria in-
duced by UG objectives.

Theorem 5.3. If π̃ is an equilibrium of a PuB-AMG under
a UG objective, then its corresponding joint policy Π↓(π̃)
is the equilibrium in the original game under the same UG
objective.

Proof. (Sketch) The first decision rule of any PuB-AMG
equilibrium must correspond to the first decision rule of
an equilibrium of the original game. Furthermore, if the
objective is UG, subgame equilibria must be restrictions
of the equilibrium of the whole game. Thus, by forward
induction, PuB-AMG equilibria must correspond to the
equilibrium of the original game.

We detail the proof for Theorem 5.3 in Section B.2. Due to
recent work, Theorem 5.3 can be generalized to the entire
class of 2t0s games.

Corollary 5.4. Computing team-correlated equilibria of
2t0s games under UG objectives can be reduced to com-
puting an equilibrium of a PuB-AMG under the same UG
objectives.

This follows from combining the results of Carminati et al.
(2022a); Zhang et al. (2022a); Carminati et al. (2022b), who
provide a reduction from 2t0s games to 2p0s games via
intra-team public policy announcements, with Theorem 5.3.

5.2. Continuity in the PuB-AMG with
Uniqueness-Guaranteeing Objectives

Theorem 5.3 shows that UG equilibria do not suffer from
the non-correspondence problem, meaning that computing
UG equilibria in the PuB-AMG induces equilibria in the
original game. Here, we show that these equilibria are
also continuous, a desirable condition for amenability to
function approximation, under the mild assumption that R
is continuous.

Definition 5.5. In a perfect information game, a subgame
perfect equilibrium is an equilibrium whose restriction to
any subgame is an equilibrium of that subgame.

Definition 5.6. The PuB-AMG subgame perfect equilib-
rium value function is defined by

ṽ∗ : s̃
t 7→ max

π̃0

min
π̃1

E

[
T−1∑
t′=t

R̃(S̃t′ , Ãt′) | π̃0, π̃1, S̃t = s̃t

]
.

Theorem 5.7. Let J guarantee the existence of an equilib-
rium in all subgames. Then the PuB-AMG subgame perfect
equilibrium value function is a continuous function from the
space of PBSs to real values.

Note that Theorem 5.7 holds even if J is not UG.

Theorem 5.8. Let J be a UG objective be induced by a
continuous R. Then the PuB-AMG subgame perfect equilib-
rium induced by J is a continuous function from the space
of PBSs to the space of public decision rules.

The proofs for Theorem 5.7 and Theorem 5.8 are detailed
in Section B.3.

5.3. Sufficient Conditions for Uniqueness Guaranteeing

In aggregate, the previous two sections show that UG PuB-
AMG equilibria are continuous under mild assumptions
and correspond with UG equilibria in the original game.
While these results are positive, it is important to realize
that the relevancy of these results hinges on the existence of
UG objectives with desirable solutions. Fortunately, as we
discuss below, such objectives exist.

Definition 5.9. We call the objective J induced by

R : (h, a, δ) 7→

{
R(h, a)− αKL(δ, ρ(hι)) ι = 0

R(h, a) + αKL(δ, ρ(hι)) ι = 1,

for some reference policy ρ, a MiniMaxKL objective.

Definition 5.10. We call the objective J induced by

R : (h, a, δ) 7→

{
R(h, a) + αH(δ) ι = 0

R(h, a)− αH(δ) ι = 1,

a MiniMaxEnt objective.
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Remark 5.11. MiniMaxEnt is the special case of Mini-
MaxKL in which ρ is uniform.

To our knowledge, MiniMaxKL objectives were introduced
by Perolat et al. (2021), who showed the following result.

Theorem 5.12 (Perolat et al. (2021)). MiniMaxKL objec-
tives are UG for interior ρ for any α > 0.

Importantly, beyond being UG, MiniMaxKL objectives can
achieve arbitrarily small exploitabilities, as is formalized
by the proposition below. In aggregate, these results mean
that it is possible to compute policies with arbitrarily small
exploitabilities via computing the equilibria of MiniMaxKL
objectives in the PuB-AMG.

Proposition 5.13. Let J be a MiniMaxKL objective parame-
terized by a reference policy ρ, placing at least ϵ probability
on every action, and regularization parameter α. Then the
exploitability of the MiniMaxKL equilibrium is bounded by
αT | log ϵ|, where T is the horizon of the game.

The proof of Proposition 5.13 is detailed in Section B.4.

While the MiniMaxKL equilibrium is likely the most useful
UG equilibrium concept, it is conceivable that other UG
concepts may be useful. Thus, we provide a generalization
to a larger class of regularized objectives in Theorem B.9 in
Section B.4.

6. Discussion
Use Cases There are at least three main ways to approach
solving regularized PuB-AMGs. The first is to adapt heuris-
tic search value iteration (Smith & Simmons, 2004) into
a tabular regularized PuB-AMG solver. Encouragingly,
this has already been done for PuB-MDPs (Dibangoye
et al., 2013a) and for unregularized Pub-AMGs (Horák &
Bošanský, 2019; Buffet et al., 2020; Delage et al., 2021).

The second is to use the regularized PuB-AMG as a building
block for model-free deep reinforcement learning agents.
This approach would look similar to BAD (Foerster et al.,
2019), which is a policy gradient method that was applied
to an approximate PuB-MDP in Hanabi (Bard et al., 2020).
We believe that it is possible that a BAD-like approach in
regularized PuB-AMG would be better suited to a game
like poker, where it is convenient to tabularly track the PBS,
than it was to Hanabi, where Foerster et al. (2019) required
complicated posterior approximation techniques.

The third is to use the regularized PuB-AMG as a building
block for expert iteration (Anthony et al., 2017; Anthony,
2021) with function approximation. This approach would
look almost identical to ReBeL (Brown et al., 2020) but
have a few key differences: i) It would use a regularized
objective, rather than an unregularized one as ReBeL does;
ii) It would use the beliefs induced by its own policy at

test time, rather than the fictitious beliefs that ReBeL uses;
iii) It would (optionally) be able to perform re-planning
(e.g., wherein a multi-ply search is only used to make the
immediate decision), whereas ReBeL must play its search
policy until the end of the subgame that was searched over,
iv) It would (optionally) be able to perform additional search
iterations at test-time, whereas ReBeL is required to use the
same number of search iterations as it did during training.

On the Role of Regularization One possible set of con-
cerns regarding these proposed use cases is that: i) to achieve
good performance in these use cases, it may be necessary to
approximate equilibria of objectives having small amounts
of regularization; ii) approximating equilibria with small
amounts of regularization may be too difficult. In tabular
settings, i) may be true if the goal is to achieve competi-
tive performance with methods not based on regularization,
such as counterfactual regret minimization (CFR) (Zinke-
vich et al., 2007); however, Sokota et al. (2023) recently
showed that regularization-based methods can be made com-
petitive with CFR in tabular settings by slowly annealing
the amount of regularization, suggesting that ii) may be
false. On the other hand, in larger settings in which func-
tion approximation is necessary, ii) may be true; however,
Sokota et al. (2023) also showed that deep reinforcement
learning approaches with substantial amounts of regulariza-
tion can achieve good performance in terms of approximate
exploitability, suggesting that i) may be false.

7. Experiments
We perform two experiments in which we naively tabularly
solve small PuB-AMGs under regularized objectives using
magnetic mirror descent (Sokota et al., 2023) to offer further
evidence for our results. We show the results for perturbed
rock-paper-scissors Figure 4 and include results for Kuhn
poker, as well as the details of our solving procedures, in
Section C.

On the far left, we show exploitability in the PuB-AMG.
The iterates of the unregularized objective (blue) trend and
the iterates of the objective with annealed regularization
(orange) both trend toward zero. The iterates of the objective
with constant regularization converge to a constant positive
exploitability.

On the middle left, we show the regularized exploitability
(i.e., exploitability under the regularized objective) in the
PuB-AMG of the objective associated for the iterate. We
observe that all objectives induce iterates that converge to
zero, as intended.

On the middle right, we show the exploitability in the origi-
nal game. Because the non-correspondence problem exists
for the second-moving player, the exploitabilities of the it-
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Iterations

Regularized ExploitabilityExploitability
PuB-AMG 

Regularized Exploitability
PuB-AMG 

Exploitability

Figure 4. Results for perturbed rock-paper-scissors.

erates from the unregularized objective (blue) remain high,
despite that exploitability is going to zero in the PuB-AMG.
The objectives with fixed regularization (green, red) induce
iterates that converge to lower, but non-zero, exploitability
values. The objective with annealed regularization (orange)
induces iterates that converge to zero in exploitability.

On the far right, we show the regularized exploitability
in the original game. We observe that, as expected, the
approaches with non-zero regularization that converge
to zero regularized exploitability in the PuB-AMG also
converge to zero regularized exploitability in the original
game. In contrast, the unregularized approach does not
converge, despite converging in the PuB-AMG.

8. Related Work
Public Belief States in Common-Payoff Games In the
sense of providing reductions for multi-agent problems us-
ing PBSs, our work is similar to those of Nayyar et al.
(2013), Dibangoye et al. (2013a), and Oliehoek (2013). As
discussed in the background, Nayyar et al. (2013) provided
a reduction from solving common-payoff games to solving
belief MDPs; independently, Dibangoye et al. (2013a) and
Oliehoek (2013) discovered similar reductions. These ideas
have been leveraged in a large body of work in decentralized
control literature (Lessard & Nayyar, 2013; Nayyar et al.,
2014; Arabneydi & Mahajan, 2014; Ouyang et al., 2015;
Vasconcelos & Martins, 2016; Tavafoghi et al., 2016; Af-
shari & Mahajan, 2018; Gagrani & Nayyar, 2018; Tavafoghi
et al., 2018; Zhang et al., 2019; Gupta, 2021) and machine
learning literature (Dibangoye et al., 2013b; MacDermed
& Isbell, 2013; Dibangoye et al., 2014a;b; Dibangoye &
Buffet, 2018; Foerster et al., 2019; Lerer et al., 2020; Sokota
et al., 2021; Fickinger et al., 2021; Sokota et al., 2022; Kao
et al., 2022). Use cases include game solving (Dibangoye
et al., 2013a) and decision-time planning (Lerer et al., 2020;
Fickinger et al., 2021; Sokota et al., 2022).

Public Belief States in Two-Player Zero-Sum Games
PBSs have also been used in many works in the context

of 2p0s games. For our purposes, we taxonomize these
into those concerned with studying the PuB-AMG (Wiggers
et al., 2016; Nayyar & Gupta, 2017; Horák & Bošanský,
2019; Buffet et al., 2020; Delage et al., 2021; Kartik & Nay-
yar, 2021) and those concerned with sound decision-time
planning and expert iteration (Burch et al., 2014; Moravcik
et al., 2016; Brown & Sandholm, 2017a;b; Moravčı́k et al.,
2017; Brown et al., 2018; Zarick et al., 2020; Brown et al.,
2020; Schmid et al., 2021).

Most of the former group is concerned with analyzing the
structure of the PuB-AMG and using HSVI (Smith & Sim-
mons, 2004) to compute the equilibrium value of the game.5

Our work is complementary in the sense that it shows that
solving a regularized PuB-AMG would yield a regularized
equilibrium in the original game.

The latter group can be broken down into two subgroups,
those that use opt-out values to circumvent the non-
correspondence problem (Brown & Sandholm, 2017a;b;
Moravčı́k et al., 2017; Schmid et al., 2021) and that
which uses no-regret learning to circumvent the non-
correspondence problem (Brown et al., 2020). Both possess
substantial downsides. For the opt-out value approach: i) the
policy and value are discontinuous functions of the opt-out
values6, and ii) the opt-values must be approximated sepa-
rately from self play. For the no-regret learning approach:
i) the search policy must be played for the entire subgame
that was searched over (i.e., re-planning is not allowed), ii)
the search algorithm must be no regret, iii) the policy is a
discontinuous function of the PBS, and iv) the same number
of search iterations must be used at test time as were used
during training. In contrast, decision-time planning using a
regularized objective in the PuB-AMG involves no opt-out
values, involves no discontinuities, allows for re-planning, is
search-algorithm agnostic, and can use an arbitrary number

5In concurrent work, Delage et al. (2022) show how an ϵ-Nash
equilibrium of the original game can be extracted from a variant
of this approach without requiring UG objectives.

6Though Schmid et al. (2021) show that certain approximate
value functions can be made continuous.
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of search iterations at test time.

MiniMaxKL Objectives in Two-Player Zero-Sum Games
A number of recent prior works have made use of MiniMax-
Ent and MiniMaxKL objectives for the purpose of inducing
last iterate convergence (Perolat et al., 2021; Cen et al.,
2021; Zeng et al., 2022; Sokota et al., 2023; Perolat et al.,
2022). While we also make use of these objectives, our use
case (eliminating the non-correspondence problem) differs
substantially.

Public Belief States in Two-Team Zero-Sum Games As
articulated in the introduction and Corollary 5.4, our work
is related to a recent body of literature (Carminati et al.,
2022a; Zhang et al., 2022a; Carminati et al., 2022b) showing
that solving 2t0s games can be reduced to solving a 2p0s
game by using intra-team policy announcements. There has
also been recent work leveraging this reduction to perform
decision-time planning (Zhang et al., 2022b).

Stackelberg Games Public belief games with two time
steps are closely related to Stackelberg games (von Stackel-
berg, 1934; Schelling, 1960; Gibbons, 1992). A Stackelberg
game is one in which a distinguished leader publicly com-
mits to a strategy and a follower best responds to it, resulting
in a bilevel optimization problem. As with a public belief
game, when a Stackelberg game is two player zero sum,
Stackelberg equilibrium coincides with Nash equilibrium
for the leader, but the follower’s best response is generally
highly exploitable in the game without public commitments.
While there exist tie-breaking procedures in Stackelberg lit-
erature (e.g., strong or weak Stackelberg equilibrium), they
do not resolve the non-correspondence issue.

9. Conclusion and Future Work
In this work, we provided a reduction from computing regu-
larized equilibria of 2p0s games to computing regularized
equilibria of PuB-AMGs. We see this contribution as resolv-
ing an important gap in literature between common-payoff
games and 2p0s games.

We see numerous impactful directions for future work. The
first involves comparing a high performance implementa-
tion of a regularized-objective-in-the-PuB-AMG approach
to expert iteration (Anthony et al., 2017; Anthony, 2021) to
those of existing approaches (Brown et al., 2020; Schmid
et al., 2021); while we have shown here that a regularized-
objective-in-the-PuB-AMG approach possesses favorable
properties in comparison to ReBeL (Brown et al., 2020)
and Player of Games (Schmid et al., 2021), verifying that
these advantages manifest in practice would be a valuable
contribution. The second involves benchmarking a high
performance implementation of a BAD-like (Foerster et al.,

2019) approach to learning in the regularized PuB-AMG;
because our results open the door for the first time to such
an approach, it is unknown how the performance of such
an approach would compare against that of non-PBS-based
model-free algorithms. Third, by providing a simpler ap-
proach to working with PBSs in 2p0s games, our work
provides further motivation for developing new approaches
for approximating PBSs at scale; while Sokota et al. (2022)
recently made progress in this direction by showing that
fine-tuning can effectively approximate PBSs, amortized
approximation of PBSs remains an open problem. Finally, it
may be possible to extend some weaker form of the results
from our work to general-sum settings.
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A. Definitions
First, we formalize our definition of the correspondence mapping Π↓ in Algorithm 1 below.

Algorithm 1 Correspondence Mapping Π↓

Input: π̃
queue← [s̃0]
π ← {}
while len(queue) > 0 do
s̃← queue.pop()
ã← π̃(s̃) # Assume π̃ is deterministic.7

for h ∈ supp(s̃) do
π(hι) = ã(hι)

end for
for s̃′ ∈ supp(T̃ (s̃, ã)) do

queue.append(s̃′)
end for

end while
for untouched hι do

Set π(hι) arbitrarily. # AOH is unreachable.
end for
return π

Next, we define a canonical choice function Π↑, which maps each joint policy to a corresponding PuB-AMG policy.

Algorithm 2 Canonical Choice Mapping Π↑

1: Input:π
2: π̃ ← {}
3: for all s̃ do
4: ã← {}
5: for h ∈ supp(s̃) do
6: ã(hι) = π(hι) # Ignore the belief and do what π does at hι.
7: end for
8: π̃(s̃) = ã
9: end for

10: return π̃

In short, Algorithm 2 yields a PuB-AMG policy in which the agents play according to π irrespective of the public belief.
Therefore, we have that R(π) = R̃(Π↑(π)). Note that, in contrast to the correspondence mapping, the canonical choice
mapping is invariant to opponent policy. Thus, we also allow Π↑ to be applied directly to individual player policies.

We also introduce some additional definitions.

Definition A.1. For a minimax objective J, the value of the game under J is maxπ′
0
minπ′

1
J(π′

0, π
′
1) =

minπ′
1
maxπ′

0
J(π′

0, π
′
1).

Remark A.2. UG objectives guarantee a well-defined value. This follows immediately from the fact that both players can
guarantee the unique equilibrium value.

Definition A.3. For a minimax objective J, the best response value to π0 under J is minπ′
1
J(π0, π

′
1); analogously, the best

response value to π1 under J is maxπ′
0
J(π′

0, π1). We denote the best response to πi as BR(πi). A policy is part of a Nash
equilibrium if it achieves the value of the game against a best response.

7This assumption is not required, but makes for cleaner presentation.
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Definition A.4. For a minimax objective J, the exploitability π under J is defined as:

expl(π) =
−minπ′

1
J(π0, π

′
1) + maxπ′

0
J(π′

0, π1)

2
.

A joint policy is a Nash equilibrium if it has exploitability zero.

Definition A.5. For a minimax objective J induced by

R : (h, a, δ) 7→

{
R(h, a)− ψ(δ, hι) ι = 0

R(h, a) + ψ(δ, hι) ι = 1,

the action value for action a at AOH htι under joint policy π is

Q(hι, a) = (−1)I[ι=1]Eπ

[
R(Ht, At, a 7→ I[at = a]) +

T∑
t′>t

R(Ht′ , At′ , π(At′)) | htι, at
]
.

In words, it is the expected future value to the acting player for taking a at ht
′

ι assuming that both players have played
according to π up until now and will continue to play according to π hereinafter.

B. Theory
We now detail the proofs of our theoretical results.

B.1. Non-Correspondence of Nash Equilibria

1, -1 -1, 1

Tails Heads

Tails Heads

-1, 1 1, -1

Tails Heads

0, 0

Opt Out

-1, 1

Tails Heads

-1, 1 0, 0

Opt Out

Fair Game Unfair Game

Figure 5. A rigged and adversarial variant of matching pennies.

Proposition 4.1 A PuB-AMG Nash equilibrium π̃ may correspond with a joint policy Π↓(π̃) that is maximally exploitable.

Proof. We show that this worst case can be realized in the 2p0s rigged adversarial matching pennies game depicted in Figure
5. The game starts with two options for the red player: it can either decide to make the game fair or to rig the game. Then,
without having observed the red player’s decision, the blue player decides whether to opt out of the game altogether, in
which case both players receive a payout of 0, or to play adversarial matching pennies. If the blue player opts in and the
game is rigged, the red player receives a payout of 1 independent of the blue player’s selection. If the blue player opts in and
the game is not rigged, the blue player receives a payout of 1 if the players select the same side of the coin; otherwise, if the
players selected opposite sides of the coin, the red player receives a payout of 1.

In the game, the blue player’s only Nash equilibrium strategy is to opt out with probability one. The red player’s Nash
equilibria strategies require at least one of i) rigging the game with probability one and ii) mixing 50-50 between tails and
heads.

Now, consider the following PuB-AMG policy, where superscript denotes time step within the game:
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• π̃0(∅) = (Fair,Unfair) 7→ (1, 0).

• π̃1(π̃0) =

{
(Tails,Heads,Out) 7→ (1/2, 1/2, 0) π̃0(Fair) = 1

(Tails,Heads,Out) 7→ (0, 0, 1) otherwise.

• π̃2(π̃0, π̃1) =

{
(Tails,Heads) 7→ (0, 1) π̃1(Tails) ≥ 1/2

(Tails,Heads) 7→ (1, 0) otherwise.

We claim that π̃ is a PuB-AMG Nash equilibrium. To see this, first consider that the expected return is 0: the red player
always opts in, the blue player mixes evenly between heads and tails, and the red player always selects tails. Next consider
that the red player has no incentive to deviate to an unfair game, because the blue player will opt out, yielding an expected
return of zero. Also consider the blue player has no incentive to place additional mass on opting out, as it yields an expected
return of zero. Furthermore, the blue player has no incentive to select a different mixture of heads and tails, as doing so will
decrease its expected return since the red player best responds at the final time step. Lastly, consider that the red player is
best responding at the final time step and, therefore, has no incentive to deviate.

Then, consider that the corresponding policy π = Π↓(π̃) is as follows:

• π0 : (Fair,Unfair) 7→ (1, 0).

• π1 : (Tails,Heads,Out) 7→ (1/2, 1/2, 0).

• π2 : (Tails,Heads) 7→ (0, 1).

We claim that this policy is maximally exploitable. To see this, consider that a red player that always rigs the game achieves
an expected return of one against the blue player’s policy, and consider that a blue player that always selects heads achieves
an expected return of one against the red player’s policy.

B.2. Correspondence of Uniqueness-Guaranteeing Equilibria

To prove Theorem 5.3, we first require some lemmas. We note that Corollary B.3 was originally shown by Nayyar & Gupta
(2017); we provide a self-contained proof for completeness.

Lemma B.1. The best response value to πi in the original game is equal to the best response value of Π↑(πi) in PuB-AMG.

Proof. This follows because player −i has no mechanism to exploit Π↑(πi) beyond that of the original game, since Π↑(πi)
ignores belief information.

More formally, consider

min
π̃′
1

J̃(Π↑(π0), π̃
′
1) = J̃(Π↑(π0),BR(Π↑(π0)))

= J(Π↓(Π↑(π0),BR(Π↑(π0))))

= J(Π↓(Π↑(π0),BR(Π↑(π0))))0,Π
↓(Π↑(π0),BR(Π↑(π0))))1)

= J(π0,Π
↓(Π↑(π0),BR(Π↑(π0))))1)

≥ J(π0,BR(π0))
= min

π′
1

J(π0, π
′
1).

The first equality follows by definition of the best response function BR. The second equality because Π↓ preserves expected
return. The third equality is notational expansion. The fourth equality follows because π0 and Π↓(Π↑(π0),BR(Π↑(π0))))0
can only differ at AOHs that are not reached when playing against Π↓(Π↑(π0),BR(Π↑(π0))))1. The inequality and final
equality follow by definition of best response.

16



Abstracting Imperfect Information Away from Two-Player Zero-Sum Games

Also, consider

min
π′
1

J(π0, π
′
1) = J(π0,BR(π0))

= J̃(Π↑(π0),Π
↑(BR(π0)))

≥ J̃(Π↑(π0),BR(Π↑(π0)))

= min
π̃′
1

J̃(Π↑(π0), π̃1).

The first equality follows by definition of the best response function BR. The second equality follows because Π↑ preserves
expected return. The inequality and final equality follows by definition of best response.

These two inequalities can only be true if minπ′
1
J̃(Π↑(π0), π

′
1) = minπ′

1
J(π0, π

′
1). An analogous argument shows the

same result for π1.

Corollary B.2. The exploitability of π in the original game is equal to the exploitability of Π↑(π) in PuB-AMG.

Proof. This follows immediately from Lemma B.1 and the fact that exploitability is defined in terms of best response
values.

Corollary B.3 (Nayyar & Gupta (2017)). The value of the PuB-AMG is well defined and equal to that of the original game.

Proof. Note that it suffices to show that PuB-AMGs are guaranteed to have an equilibrium with the same expected return as
the equilibrium of the original game. Then consider π̃ = Π↑(π), where π is an equilibrium. Then, since π is an equilibrium
and, per Corollary B.2, Π↑ preserves exploitability, π̃ is an equilibrium. Additionally, since Π↑ preserves expected return,
the original game and the PuB-AMG possess equilibria π and π̃, respectively, that yield the same expected return.

We are now ready to prove our two main lemmas.

Lemma B.4. Let π be the equilibrium of a UG objective. Let s̃ define a subgame of the original game induced by playing
π for some number of steps. Then the unique equilibrium πs̃ of the subgame, considered as an independent game, is the
restriction π|s̃ of π to the subgame.

Proof. If π|s̃ is not an equilibrium of the subgame, then it must be exploitable in the subgame. This means that either

min
π′
1

Js̃(π
|s̃
0 , π

′
1) < Js̃(π

|s̃
0 , π

|s̃
1 ) or Js̃(π

|s̃
0 , π

|s̃
1 ) < max

π′
0

Js̃(π′
0, π

|s̃
1 )

Without loss of generality, assume the former. Let πbr
1 = argminπ′

1
Js̃(π|s̃, π′

1); let Pπ(s̃) represent the probability of
reaching s̃ using policy π; let t be the time step corresponding to s̃ and let J<t denote the expected return prior to time t.
Further, let s̃′ ̸= s̃ range over the possible subgames entered at time t if s̃ is not entered. Then

J(π0, π1) = J<t(π0, π1) + Pπ(s̃)Js̃(π
|s̃
0 , π

|s̃
1 ) +

∑
s̃′ ̸=s̃

Pπ(s̃′)Js̃
′
(π

|s̃′
0 , π

|s̃′
1 )

> J<t(π0, π1) + Pπ(s̃)Js̃(π
|s̃
0 , π

br
1 ) +

∑
s̃′ ̸=s̃

Pπ(s̃′)Js̃
′
(π

|s̃′
0 , π

|s̃′
1 )

= J(π0, [π
br
1 , π

|−s̃
1 ]).

Here, the first line decomposes the expected return into 1) that which is accrued prior to time t, 2) that which is accrued in
subgame s̃, and 3) that which is accrued after time t outside of subgame s̃. The second line invokes our assumption that π|s̃

1

does not achieve the best response value against π|s̃
0 and Pπ(s̃) > 0. The third line re-assembles the expected return, where

we use [πbr
1 , π

|−s̃
1 ] to denote a policy that plays π1 outside s̃ and πbr

1 inside s̃.

In total, we have shown that if π|s̃ is not an equilibrium in the subgame induced by s̃, then π is not an equilibrium because
π1 is not a best response. Thus, π|s̃ must be an equilibrium of the subgame. Therefore, because J is UG, we must have
πs̃ = π|s̃.
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Lemma B.5. If π̃ is an equilibrium of the PuB-AMG, then the decision rule for the first time step Π↓(π̃)0 must be part of an
equilibrium policy in the original game.

Proof. Without loss of generality, assume that ι = 0 at the first time step. Also, use π−0
0 to denote the part of π0 that is

relevant after the first time step. Also, let [π′0, π′−0
0 ] denote a policy for i = 0 that plays according to π′0 at the first time

step and π′−0
0 otherwise. Let π̃ be an equilibrium of the PuB-AMG. Then observe

max
π′
0

min
π′
1

J(π′
0, π

′
1) = max

π̃′
0

min
π̃′
1

J̃(π̃′
0, π̃

′
1) (1)

= max
π̃′−0
0

min
π̃′
1

J̃([π̃0, π̃′−0
0 ], π̃1) (2)

= max
π̃′−0
0

min
π̃′
1

J(Π↓([π̃0, π̃′−0
0 ], π̃′

1)) (3)

= max
π̃′−0
0

min
π̃′
1

J([Π↓(π̃)0,Π↓([π̃0, π̃′−0
0 ], π̃′

1)
−0
0 ],Π↓([π̃0, π̃′−0

0 ], π̃′
1)1) (4)

= max
π′−0
0

min
π′
1

J([Π↓(π̃)0, π′−0
0 ], π′

1) (5)

= min
π′
1

J([Π↓(π̃)0, arg maxπ′−0
0

min
π′′
1

J([Π↓(π̃)0, π′−0
0 ], π′′

1 )], π
′
1). (6)

Here, the first equality follows by Corollary B.3; the second equality follows because π̃0 is part of an equilibrium; the third
equality follows because J̃(π̃′) = J(Π↓(π̃′)); the fourth line equality follows because the image of the correspondence
mapping for the first time step is invariant to the PuB-AMG policy at later time steps; the fifth line follows because each
player can express any policy in the original game through Π↓, up to reachability, and because changes over unreachable
AOHs do not change the expected return; the sixth line follows because the evaluation of an argmax is equal to the max.

This chain of equalities shows that the best response value to

[Π↓(π̃)0, arg maxπ′−0
0

min
π′′
1

J([Π↓(π̃)0, π′−0
0 ], π′′

1 )]

is equal to the value of the game. Thus, Π↓(π̃)0 is part of an equilibrium.

Theorem 5.3 If π̃ is an equilibrium of the PuB-AMG induced by a UG objective, then its corresponding policy Π↓(π̃) is an
equilibrium in the original game.

Proof. Lemma B.5 shows this to be true for the first time step. Now assume this is true up to time step t and consider time
step t + 1. Then, for a particular reachable s̃t+1, the PuB-AMG subgame starting at this point is the PuB-AMG of the
subgame of the original game starting from s̃t+1. Thus, the PuB-AMG strategy for s̃t+1 must correspond to an equilibrium
of the subgame of the original game, as per Lemma B.5. Furthermore, because the minimax objective is UG, the equilibrium
strategy of the subgame of the original game must the unique restriction of the equilibrium of the original game to that
subgame, as per Lemma B.4.

B.3. Continuity in the PuB-AMG with Uniqueness-Guaranteeing Objectives

Lemma B.6. Let f1, f2 be real-valued continuous functions with shared compact domain X × Y . Furthermore, assume
their max-min values are attained and the following inequality holds for any (x, y) ∈ X × Y:

|f1(x, y)− f2(x, y)| < ϵ.

Then it follows that
|[max
x∈X

min
y∈Y

f1(x, y)]− [max
x∈X

min
y∈Y

f2(x, y)]| < ϵ.

Proof. Note that by assumption we have for all (x, y) within the domains of f1, f2 it holds

f1(x, y) ≤ f2(x, y) + ϵ, (7)
f2(x, y) ≤ f1(x, y) + ϵ. (8)
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Therefore,

max
x∈X

min
y∈Y

f1(x, y) = min
y∈Y

f1(x∗, y) for x∗ ∈ argmax
x∈X

min
y∈Y

f1(x, y)

≤ min
y∈Y

f2(x∗, y) + ϵ

≤ max
x∈X

min
y∈Y

f2(x, y) + ϵ.

Where the first inequality is due to taking the min of both sides of (7). Following the same steps starting with f2 and using
(8) gives

max
x∈X

min
y∈Y

f2(x, y) ≤ max
x∈X

min
y∈Y

f1(x, y) + ϵ.

These two inequalities together yield the result.

Theorem 5.7. Let J guarantee the existence of an equilibrium in all subgames. Then the PuB-AMG subgame perfect
equilibrium value function is a continuous function from the space of PBSs to real values.

Proof. Fix ϵ > 0. Let b and b′ differ in total variation distance by less than

δ =
ϵ

2M
.

Then observe that, for a joint policy π, we have that

|vπ(b)− vπ(b′)| = |
∑
h

b(h)vπ(h)− b′(h)vπ(h)|

≤
∑
h

|b(h)vπ(h)− b′(h)vπ(h)|

= M
∑
h

|b(h)− b′(h)|

< 2Mδ

= ϵ,

where vπ(b) is the expected return under J to playing π starting from the subgame defined by b.

Then

|ṽ∗(b)− ṽ∗(b′)| = |[max
π̃0

min
π̃1

ṽπ̃(b)]− [max
π̃0

min
π̃1

ṽπ̃(b
′)]|

= |[max
π0

min
π1

vπ(b)]− [max
π0

min
π1

vπ(b
′)]|

< ϵ.

The first equality follows by definition of ṽ∗. The second equality follows from Corollary B.3. The third equality follows
from Lemma B.6.

Remark B.7. Theorem 5.7 shows that continuous objectives yield continuous value functions in the PuB-AMG, even if the
objective is not UG.

Next, we prove the continuity of the equilibrium policy mapping under UG objectives.

Theorem 5.8. Let J be a UG objective be induced by a continuous R. Then the PuB-AMG subgame perfect equilibrium
induced by J is a continuous function from the space of PBSs to the space of public decision rules.

Proof. Consider that q∗ : s̃, ã 7→ R̃(s̃, ã)+ES̃′∼T̃ (s̃,ã)ṽ∗(S̃
′) is continuous because R̃ is continuous (since R is continuous),

T̃ is continuous by construction, and ṽ∗ is continuous by Theorem 5.7. Then the maximum theorem states that π∗ : s̃ 7→
arg maxã′q∗(s̃, ã

′) is an upper hemicontinuous function. Finally, because J is UG, we have that π∗ is single valued. The
result follows from the fact that single-valued upper hemicontinuous functions are continuous.
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1, -1 -1, 1 -1, 1 1, -1

Tails Heads

Tails Heads Tails Heads

Figure 6. An adversarial variant of the game matching pennies.

In contrast, for non-UG objectives, equilibrium policy mapping is not necessarily continuous.

Proposition B.8. Let J be an objective be induced by the unregularized rewardR. Then the PuB-AMG subgame perfect
equilibrium is not generally continuous.

Proof. Consider the adversarial variant of matching pennies described in Figure 6. Let p denote the probability with which
the blue player selected heads. Let q denote the probability with which the red player selects heads. Then the red player’s
equilibrium policy is:

• If p > 1/2, q = 0

• If p = 1/2, q ∈ [0, 1].

• If p < 1/2, q = 1.

The result follows from the fact that the mapping from p to q is not continuous.

B.4. Sufficient Conditions for Uniqueness Guaranteeing

Proposition 5.13. Let J be a MiniMaxKL objective parameterized by a reference policy ρ, placing at least ϵ probability
on every action, and regularization parameter α. Then the exploitability of the MiniMaxKL equilibrium is bounded by
αT | log ϵ|, where T is the horizon of the game.
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Proof. Consider that, at each time step, the component of a player’s reward arising from the KL term is at most

max
δ∈∆(A)

αKL(δ, ρ(hι)) = max
δ∈∆(A)

α(H(δ, ρ(hι))−H(δ))

≤ max
δ∈∆(A)

αH(δ, ρ(hι))

= max
δ∈∆(A)

−α
∑
a

δ(a) log ρ(hι, a)

= max
δ∈∆(A)

|α
∑
a

δ(a) log ρ(hι, a)|

= max
a
|α log ρ(hι, a)|

≤ α| log ϵ|.

Here, the first line follows from the fact that KL divergence can be decomposed into a sum of cross-entropy and entropy;
the second line follows because entropy is positive; the third line is definitional; the fourth line follows because taking the
absolute value of a negative number is equivalent to multiplying by negative one; the fifth line follows because weighted
sums are maximized by placing all the weight on the largest value; the sixth line follows by assumption.

Because the length of the game is bounded by T , the expected return under the regularized objective can differ from the
expected return by no more than Tα| log ϵ|. Now, let π∗ be the equilibrium under the regularized objective and let π′ be a
best response under the unregularized objective. Then we have

expl(π∗) =
−J (π∗

0 , π
′
1) + J (π′

0, π
∗
1)

2

≤ −J(π
∗
0 , π

′
1) + J(π′

0, π
∗
1)

2
+ αT | log ϵ|

≤ αT | log ϵ|,

where the second inequality follows because the regularized equilibrium is unexploitable under the regularized objective.

Theorem B.9. Consider an objective J induced by

R : (h, a, δ) 7→

{
R(h, a)− ψ(δ, hι) ι = 0

R(h, a) + ψ(δ, hι) ι = 1

and define a policy greedification function

g : [−M,M]|A| ×Hι → ∆(A)

where M ∈ R is the maximum of the absolute values of the expected returns of J and where

g : q, hι 7→ arg maxδ∈∆(A)⟨δ, q⟩ − ψ(δ, hι).

In words, for each AOH at which a player acts hι, g maps possible regularized action values q to the policy that is greedy
with respect to the regularized objective under those regularized action values.

If, for all hι, ψ(·, hι) is continuous and g(·, hι) is i) well defined, ii) continuous, and iii) has an interior image, then the
objective J is UG.

Proof. First, we show that such an equilibrium is guaranteed to exist. Let F : [−M,M]|Hι||A| → [−M,M]|Hι||A| be a
function that maps each vector [qhι

]hι
to the action-value vector for the joint policy dictated by the application of g to

[(qhι
, hι)]hι

. Note that F is well defined—i.e., the ensuant action values are always well defined—because g maps to the
interior, so every history is reached with positive probability. Also note that this function is continuous, by the continuity of
g and ψ, and single valued because g is single valued. Thus, because [−M,M]|Hι||A| is compact and convex, by Brouwer’s
fixed point theorem, a fixed point must exist. The policy corresponding to these fixed-point action values is an equilibrium.
This follows because, by backward induction, each player is optimally responding to the other, holding the other fixed.
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Now we show that there is a unique equilibrium. Note that, for any fixed opponent, the optimal policy at any decision point
reached with positive probability must be full support because g’s image is within the interior. By forward induction, this
means that every equilibrium must be full support at every decision point. Now, note that, by backward induction, the best
responses to full support policies are unique because g is single valued with an interior image. In aggregate, these two
things show that any equilibrium is strict—i.e., the only best response to one part of the equilibrium is the other part of the
equilibrium. Now, assume there exist two distinct equilibria π and π′. Without loss of generality, assume that π0 performs at
least as well as π′

0 against π1. If π0 performs equally well, there is a contradiction because π′
0 is not the unique best response.

If π0 outperforms π′, there is a contradiction because π′ is not at equilibrium. Thus, the equilibrium must be unique.

The result follows because this proof also holds for every subgame of the original game.

Remark B.10. The premises of Theorem B.9 are satisfied if ψ(·, hι) is bounded and is strictly convex and differentiable on
its interior with limδ→δ′ ||∇δψ(δ, hι)|| = +∞ for δ′ on the boundary of ∆(A).
Remark B.11. One example of an objective covered by Theorem B.9, but not by Theorem 5.12, is that which is induced by
setting ψ(·, hι) to a sum of a KL divergence to an interior point and a bounded differentiable convex function.
Remark B.12. The equilibria of objectives satisfying the premises of Theorem B.9 can achieve arbitrarily low exploitabilities
by similar reasoning as Proposition 5.13.

C. Experiments
C.1. Magnetic Mirror Descent

In our experiments, we use magnetic mirror descent (MMD) (Sokota et al., 2023) as our game solver. In the instance of
MMD we use, updates are of the form

πt+1 = argmaxπEA∼πqπt
(A) + αH(π)− 1

η
KL(π, πt) (9)

where πt is the current policy and qπt
is the MiniMaxEnt Q-value vector for time t. This update possesses the closed form

πt+1 ∝ [πte
ηqπt ]

1
1+αη . (10)

The fixed point of equation (10) is a policy satisfying

π∗ = arg maxπEA∼πqπ∗(A) + αH(π) ∝ eqπ∗/α. (11)

C.2. Tabular PuB-AMG Policies

In PuB-AMGs, the state space is continuous. Thus, it may not be possible to express a fully specified PuB-AMG policy
in tabular form. We describe how we handle this issue for perturbed rock-paper-scissors and Kuhn poker, respectively, in
subsequent subsections.

In both settings, we solve the games using full feedback, meaning that we compute exact Q-values and update the policy for
every AOH.

C.2.1. PERTURBED ROCK-PAPER-SCISSORS

In perturbed rock-paper-scissors, the first moving player’s state space is trivial; thus, its policy can be expressed exactly.
Also, the (regularized) best response of the second player can be computed in closed form using equation (11). We update
the first-moving player’s policy using equation (10) where qπt is the feedback induced by the second-moving player’s
(regularized) PuB-AMG Nash equilibrium policy.

C.2.2. KUHN POKER

We also investigate MiniMaxEnt objectives in an extensive-form game—Kuhn poker. In Kuhn poker, there are up to three
time steps. For the third time step, we use the (regularized) PuB-AMG Nash equilibrium policy induced by equation (11).
For the first time step, at each iteration, we update the policy at each information state using MMD on the feedback from
the previous time step. For the second time step, at iteration t, holding fixed the iteration t decision rule for the first time
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Figure 7. Results for Kuhn poker.

step, we use the policy induced by performing
√
t iterations of MMD against the (regularized) PuB-AMG Nash equilibrium

policy of the third time step. As
√
t grows large, we expect the decision rules for the second time step to approximate a

PuB-AMG best response.

We show the results for the original game in Figure 7.8 Qualitatively, they are analogous to those from the perturbed
rock-paper-scissors game. The unregularized objective induces high exploitability iterates (blue) that do not converge in
the original game; the objectives with fixed regularization (purple, red, greed) converge to constant exploitability and zero
exploitability in the regularized game; the objective with annealed regularization converges to zero exploitability and zero
regularized exploitability.

D. Discussion on Reduction to Alternating Symmetric-Information Games
In the the main body, we discussed a direct reduction from imperfect-information 2p0s games to PuB-AMGs. In this section,
we give a brief discussion on the intermediate reduction to alternating symmetric-information games, where symmetric
information is meant as defined below.

Definition D.1. A symmetric-information game is a game in which all players receive identical observations.

This intermediate reduction is visualized in Figure 8.

D.1. Finite-Horizon Symmetric-Information Sequential Games

Symbolically, we say a setting is a finite-horizon symmetric-information sequential game if it can be described by a tuple

⟨A,O,S,H, µ,O, [Ri], T , T ⟩,

where

• i ranges from 0 to N − 1 and ι denotes the acting player.

• A is the set of actions. The actions of all players are assumed to be observable.

8We omit PuB-AMG (regularized) exploitability, as it is difficult to compute exactly in this case.
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Figure 8. Our main contribution in the context of related work, at an abstract level. Solid lines denote reductions; the dashed line denotes
a reduction that holds under a class of regularized objectives.

• O is the set of observations.

• S is the set of Markov states.

• H = ∪t(O× A)t ×O is the set of histories. Because actions are observable and observations are identical, the history of
the game is equal to each player’s AOH.

• µ ∈ ∆(S) is the initial state distribution.

• O : S→ O is the observation function.

• Ri : S× A→ R is the player i’s reward function.

• T : S× A→ ∆(S) is the transition function.

• T is the time horizon at which the game terminates.

D.2. The Public Alternating Symmetric-Information Game

Let
⟨A, [Oi],Opub, [Hi],Hpub,H, µ, [Oi],Opub, [Ri], T , T ⟩,

be a finite-horizon 2p0s sequential game. Then we define the associated public alternating symmetric-information game as
the following finite-horizon fully-observable sequential game

⟨Ã, Õ, S̃, H̃, µ̃, Õ, [R̃i], T̃ , T̃ ⟩,

where

• i ranges from 0 to 1 and ι ∈ {0, 1} is the acting player.

• Ã = {ã | ã : Hι(hpub)→ ∆(A), hpub ∈ Hpub} is the set of public decision rules.

• Õ = Opub is the set of observations.

• S̃ = H is the set of Markov states.

• H̃ = ∪t(Õ× Ã)t × Õ is the set of histories.

• µ̃ = µ is the initial state distribution.
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• Õ : s̃ 7→ Opub(s̃) is the observation function.

• R̃i : (s̃, ã) 7→ EA∼ã(s̃)Ri(s̃, A) is player i’s reward function.

• T̃ (s̃′ | s̃, ã) = EA∼ã(s̃)T (s̃′ | s̃, A) is the transition function.

• T̃ = T .

As with POMDPs and MDPs, alternating symmetric-information games can be reduced to AMGs by either:

1. Treating the (publicly-observable) history h̃ ∈ H̃ as the state.

2. Treating the posterior P(S̃ | h̃) over the state (i.e., the history of the original game) given the (publicly observable)
history as the state.

The latter of these two conversions yields the PuB-AMG discussed in the main body.
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