
Differentiable Tree Operations Promote Compositional Generalization

Paul Soulos 1 † Edward Hu 2 † Kate McCurdy 3 † Yunmo Chen 4 † Roland Fernandez 5 Paul Smolensky 1 5

Jianfeng Gao 5

Abstract
In the context of structure-to-structure transfor-
mation tasks, learning sequences of discrete sym-
bolic operations poses significant challenges due
to their non-differentiability. To facilitate the
learning of these symbolic sequences, we intro-
duce a differentiable tree interpreter that compiles
high-level symbolic tree operations into subsym-
bolic matrix operations on tensors. We present
a novel Differentiable Tree Machine (DTM) ar-
chitecture that integrates our interpreter with an
external memory and an agent that learns to se-
quentially select tree operations to execute the
target transformation in an end-to-end manner.
With respect to out-of-distribution compositional
generalization on synthetic semantic parsing and
language generation tasks, DTM achieves 100%
while existing baselines such as Transformer,
Tree Transformer, LSTM, and Tree2Tree LSTM
achieve less than 30%. DTM remains highly in-
terpretable in addition to its perfect performance.

1. Introduction
Symbolic manipulation is a hallmark of human reasoning
(Newell, 1980; 1982). Reasoning within the symbolic space
through discrete symbolic operations can lead to improved
out-of-distribution (OOD) generalization and enhanced in-
terpretability. Despite the significant advances in represen-
tation learning made by modern deep learning, learning to
directly manipulate discrete symbolic structures remains a
challenge. One key issue is the non-differentiability of dis-
crete symbolic operations, which makes them incompatible

1Department of Cognitive Science, Johns Hopkins University,
Baltimore, MD, USA 2Mila, Université de Montreal, Montreal,
CA 3School of Informatics, University of Edinburgh, Edinburgh,
UK 4Department of Computer Science, Johns Hopkins Univer-
sity, Baltimore, MD, USA 5Microsoft Research, Redmond, WA,
USA. †Work partially carried out while at Microsoft Research.
Correspondence to: Paul Soulos <psoulos1@jhu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Differentiable Tree Machine (DTM)

Neural
Tree

Agent

Differentiable
Tree

Interpreter

Tree
Memory

Figure 1. A high level overview of our model which consists of
three modules. The Neural Tree Agent is a learnable component
which, at each step of processing, selects the operation to perform
and the arguments over which to operate. The Differentiable Tree
Interpreter is a closed-form function precomputed at initialization
which compiles high level symbolic operations into subsymbolic
matrix operations on tensors. The output of the interpreter is a
blended tree that is written to Tree Memory, which functions as a
working memory to hold various partial and candidate trees. The
final tree written to memory is the output tree. Blue represents
the component with learnable parameters, and green represents
components that operate in tree space.

with gradient-based learning methods. Continuous repre-
sentations offer greater learning capacity, but often at the
expense of interpretability and compositional generaliza-
tion.

Tensor Product Representation (TPR) provides a general
encoding of structured symbolic objects in vector space
(Smolensky, 1990). TPR decomposes a symbolic object
into a set of role-filler pairs, such as a position in a tree (the
role) and the label for that position (the filler of that role).
The role and filler in each pair are represented by vectors
and bound together using the tensor product operation.

In this work, we focus on binary trees and three Lisp oper-
ators: car, cdr, and cons (Steele, 1990) (also known as
left-child, right-child, and construct new tree). Examples of
these operations are shown in Figure 2. Crucially, within

1

Differentiable Tree Operations Promote Compositional Generalization

the TPR space, these symbolic operators on discrete objects
become linear operators on continuous vectors (§3). Unlike
normal symbolic structures, the vector space nature of TPRs
allows blending multiple symbolic structures as interpola-
tions between classic discrete structures. We restrict pro-
cessing over our TPR encodings to the interpretable linear
operations implementing the three Lisp operators and their
interpolations, making the computation differentiable and
accessible to backpropagation. Gradients can flow through
our differentiable tree operations, allowing us to optimize
the sequencing and blending of linear operations using non-
linear deep learning models to parameterize the decision
space.

Employing TPRs to represent binary trees, we design a novel
Differentiable Tree Machine architecture, DTM1 (§4), capa-
ble of systematically manipulating binary trees (overview
shown in Figure 1). At each step of computation, DTM
soft-selects a binary tree to read from an external mem-
ory, soft-selects a linear operator to apply to the tree, and
then writes the resulting tree to a new memory slot. Soft-
selecting among a set S of n elements in a vector space
entails computing a vector w ∈ Rn of non-negative weights
that sum to one and returning the sum of the elements in
S weighted by w (i.e., w · S). As learning progresses, our
experiments show that, without explicit pressure to do so,
the weights on the operators tend to become 1-hot, and the
continuous blends of trees become more discrete as we con-
verge to a discrete sequence of operations for each sample.
We validate our proposal empirically on a series of synthetic
tree-to-tree datasets that test a model’s ability to generalize
compositionally (§5).

The DTM architecture achieves near-perfect out-of-
distribution generalization for the examined synthetic tree-
transduction tasks, on which previous models such as Trans-
formers, LSTMs, and their tree variants exhibit weak or no
out-of-distribution generalization.

In summary, our contributions include:

• A novel DTM architecture for interpretable, continuous
manipulation of blended binary trees.

• A dataset with four tasks to test out-of-distribution
generalization on binary tree-to-tree tasks.

• Empirical comparison of DTM and baselines on these
datasets which demonstrates the unique advantages
of DTM in terms of compositional generalization and
interpretability.

• Ablation experiments showing how different aspects
of DTM contribute to its success.

1Code available at https://github.com/psoulos/
dtm.

DET

my

N

dog

R

NP

DET

my

N

dog

NP

DET

my

N

dog

NP

DET

my

N

dog

conscdrcar

left
argument

right
argument

R

root
symbol

Figure 2. An example showing the output of our three operations.

2. Related Work
2.1. Compositional Generalization

Research on compositional generalization has been one of
the core issues in Machine Learning since its inception. De-
spite improvements in architectures and scalability (Csordás
et al., 2021), neural network models still struggle with out-
of-distribution generalization (Kim et al., 2022). The lack
of robust compositional generalization has been a central
argument against neural networks as models of cognition for
almost half a century by proponents of GOFAI systems that
leverage symbolic structures (e.g., Fodor & Pylyshyn, 1988;
Marcus, 2003). These symbolic systems are brittle and
face scalability problems because their nondifferentiability
makes them incompatible with gradient learning methods.
Our work attempts to bridge the neural network-symbolic
divide by situating symbolic systems in vector space, where
a first-order gradient can be derived as a learning signal.

In practice, the term “compositional generalization” has
been associated with a range of different tasks (Hupkes
et al., 2020). Kim & Linzen (2020) identify a key distinc-
tion relevant to natural language: lexical versus structural
generalization. Lexical generalization is required when a
model encounters a primitive (e.g., a word) in a structural
environment (e.g., a position in a tree) where it has not been
seen during training. Structural generalization is required
when a model encounters a structure that was not seen dur-
ing training, such as a longer sentence or a syntactic tree
with new nodes. Kim et al. (2022) demonstrate that struc-
tural and lexical generalization remain unsolved: pretrained
language models still do not consistently generalize fully
to novel lexical items and structural positions. The tasks
we study below explicitly test both types of compositional

2

https://github.com/psoulos/dtm
https://github.com/psoulos/dtm

Differentiable Tree Operations Promote Compositional Generalization

generalization (§5.1).

Our proposed DTM model encodes and manipulates data
exclusively in the form of Tensor Product Representations
(TPRs; §2.2). This formalism inherently supports com-
position and decomposition through symbol-role bindings,
creating an inductive bias toward symbolic operations. Lex-
ical generalization is straightforward when syntactic trees
are encoded as TPRs: a novel symbol can easily bind to
any role. Structural generalization is possible through our
linear representation of the car, cdr, and cons functions,
as these operators are not sensitive to the size or structure
of the trees they take as arguments. We evaluate DTM’s
capacity for both types of compositional generalization in
§5.3.

2.2. Tensor Product Representations (TPRs)

Tensor Product Representations have been used to enhance
performance and interpretability across textual question-
answering (Schlag & Schmidhuber, 2018; Palangi et al.,
2018), natural-language-to-program-generation (Chen et al.,
2020), math problem solving (Schlag et al., 2019), synthetic
sequence tasks (McCoy et al., 2019; Soulos et al., 2020),
summarization (Jiang et al., 2021), and translation (Soulos
et al., 2021). While previous work has focused on using
TPRs to structure and interpret representations, the process-
ing over these representations was done using black-box
neural networks. In this work, we predefine structural oper-
ations to process TPRs and use black-box neural networks
to parameterize the information flow and decision making
in our network.

2.3. Vector Symbolic Architectures

Vector Symbolic Architecture (VSA) (Gayler, 2003; Plate,
2003; Kanerva, 2009) is a computing framework for realiz-
ing classic symbolic algorithms in vector space. Our work
bridges VSAs and Deep Learning by using black-box neural
networks to write differentiable vector-symbolic programs.
For a recent survey on VSAs, see Kleyko et al. (2022), and
for VSAs with spiking neurons see Eliasmith et al. (2012).

2.4. Differentiable Computing

One approach to integrating neural computation and GO-
FAI systems is Differentiable Computing. In this approach,
components of symbolic computing are re-derived in a con-
tinuous and fully differentiable manner to faciliate learning
with backpropagation. In particular, neural networks that
utilize an external memory have received considerable atten-
tion (Graves et al., 2014; 2016; Weston et al., 2014; Kurach
et al., 2016).

Another significant aspect of Differentiable Computing in-
volves integrating structured computation graphs into neural

networks. Tree-LSTMs (Tai et al., 2015; Dong & Lapata,
2016; Chen et al., 2018) use parse trees to encode parent
nodes in a tree from their children’s representations or de-
code child nodes from their parent’s representations. Some
Transformer architectures modify standard multi-headed
attention to integrate tree information (Wang et al., 2019;
Sartran et al., 2022), while other Transformer architectures
integrate tree information in the positional embeddings
(Shiv & Quirk, 2019). Neural Module Networks (Andreas
et al., 2015) represent a separate differentiable computing
paradigm, where functions in a symbolic program are re-
placed with black-box neural networks.

A few works have explored using differentiable interpreters
to learn subfunctions from program sketches and datasets
(Bošnjak et al., 2017; Reed & de Freitas, 2015). Most simi-
lar to our work, Joulin & Mikolov (2015) and Grefenstette
et al. (2015) learn RNNs capable of leveraging a stack with
discrete push and pop operations in a differentiable manner.
While they use a structured object to aid computation, the
operations they perform involve read/write operations over
unstructured vectors, whereas the operations we deploy in
this work consist of structured operations over vectors with
embedded structure.

3. Differentiable Tree Operations
A completely general formalization of compositional struc-
ture is defined by a set of roles, and an instance of a struc-
ture results from assigning these roles to particular fillers
(Newell, 1980). Intuitively, a role characterizes a position in
the structure, and its filler is the substructure that occupies
that position.

In this work, we use a lossless encoding for structure in
vector space. Given a tree depth limit of depth D, the
total number of tree nodes is N = (bD+1 − 1)/(b − 1)
where b is the branching factor. We generate a set of N
orthonormal role vectors of dimension dr = N . For a
particular position ri in a tree, a filler fi is assigned to this
role by taking the outer product of the embedding vectors
for the filler and the role: fi ⊗ ri. The embedding of the
entire structure is the sum over the individual filler-role
combinations T =

∑N
i=1 fi ⊗ ri. Since the role vectors

are orthonormal, a filler fi can be recovered from T by the
inner product between T and ri, fi = Tri.

Moving forward, we will focus on the case of binary trees
(b = 2), which serve as the foundation for a substantial
amount of symbolic AI research. From the orthonormal role
set, we can generate matrices to perform the Lisp operators
car, cdr, and cons. For a tree node reached from the
root by following the path x, denote its role vector by rx;
e.g., r011 is the role vector reached by descending from the
root to the left (0th) child, then the right (1st) child, then the

3

Differentiable Tree Operations Promote Compositional Generalization

right (1st) child. Let P = {rx∥ |x| < D} be the roles for
all paths from the root down to a depth less than D.

In order to extract the subtree which is the left child of the
root (Lisp car), we need to zero out the root node and
the right child subtree while moving each filler in the left
subtree up one level. Extracting the right subtree (Lisp cdr)
is a symmetrical process. This can be accomplished by:

car(T)=D0T ; cdr(T)=D1T ; Dc=IF ⊗
∑

x∈P rxr
⊤
cx

where I is the identity matrix on filler space.

Lisp cons constructs a new binary tree given two trees to
embed as the left- and right-child. In order to add a subtree
as the cth child of a new root node, we define Ec to add c to
the top of the path-from-the-root for each position:

cons(T0, T1) = E0T0 + E1T1; Ec = IF ⊗
∑

x∈P rcxr
⊤
x

When performing cons, a new filler s can be placed at
the parent node of the two subtrees T0 and T1 by adding
s ⊗ rroot to the output of cons. Our model uses linear
combination to blend the results of applying the three Lisp
operations. The output of step l ∈ 1 : L, when operating on
the arguments T⃗ (l) = (T

(l)
car, T

(l)
cdr, T

(l)
cons0, T

(l)
cons1), is

O(l)(w⃗(l), T⃗ (l), s(l)) = w(l)
carcar(T

(l)
car) + w

(l)
cdrcdr(T

(l)
cdr)

+w(l)
cons

(
cons(T (l)

cons0, T
(l)
cons1) + s(l) ⊗ rroot

)
(1)

The three operations are weighted by the level-specific
weights w⃗(l) = (w

(l)
car, w

(l)
car, w

(l)
cons), which sum to 1.

4. Differentiable Tree Machine (DTM)
Architecture for Binary Tree
Transformation

In order to actualize the theory described in Section 3, we
introduce the Differentiable Tree Machine (DTM), a model
that is capable of learning how to perform operations over
binary trees. Since the primitive functions car, cdr, and
cons are precomputed at initialization from the orthogo-
nally generated role vectors, this learning problem reduces
to learning which operations to perform on which trees in
Tree Memory to arrive at a correct output. A high-level
overview of our model is given in Figure 1. DTM consists
of a learned component (Neural Tree Agent), a differen-
tiable pre-designed tree interpreter described in Equation 1,
and an external Tree Memory for storing trees.

At a given timestep l, our agent selects the inputs to Equation
1: the tree arguments for the operations (T⃗ (l)), the new root
symbol for cons (s(l)) and how much to weight the output
of each operation (w⃗(l)). To select T⃗ (l), DTM produces coef-

ficients over the trees in Tree Memory, where the coefficients
across trees in T⃗ (l) sum to 1. For example, if Tree Memory
contains only T0 & T1, weights a⃗

(l)
car = (a

(l)
car,0, a

(l)
car,1)

are computed to define the argument to car: T
(l)
car =

a
(l)
car,0T0 + a

(l)
car,1T1, and similarly for cdr and the two

arguments of cons. a⃗
(l)
T = (⃗a

(l)
car; a⃗

(l)
cdr; a⃗

(l)
cons0; a⃗

(l)
cons1)

denotes all such weights.

These decisions are computed within the Neural Tree
Agent module of DTM using a standard Transformer layer
(Vaswani et al., 2017) consisting of multiheaded self-
attention, a feedforward network, residual connections, and
layer norm. Figure 3 shows the computation in a single
step of DTM. When a binary tree is read from Tree Mem-
ory, it is compressed from the TPR dimension dtpr to the
Transformer input dimension dmodel using a linear trans-
formation Wshrink ∈ Rdtpr×dmodel . We also feed in two
special tokens to encode the operation-weighting coeffi-
cients and the new root-symbol prediction. In addition to
the standard parameters in a Transformer layer, our model in-
cludes three additional weight matrices Wop ∈ Rdmodel×3,
Wroot ∈ Rdmodel×dsymbol , and Warg ∈ Rdmodel×4. Wop

projects the operation token encoding into logits for the
three operations which are then normalized via softmax.
Wroot projects the root symbol token encoding into the new
root symbol. Warg projects the encoding of each TPR in
memory to logits for the four tree arguments, the input to
car, cdr, and cons left and right. The arguments for
each operator are a linear combination of all the TPRs in
memory, weighted by the softmax of the computed logits.
These values are used to create the output for this step as de-
scribed in equation 1 and the output TPR is written into Tree
Memory at the next sequential slot. For the beginning of the
next step, the contents of the Tree Memory are encoded to
model dimension by Wshrink and appended to the Neural
Tree Agent Transformer input sequence. The input to the
Neural Tree Agent grows by one compressed tree encoding
at each time step to incorporate the newly produced tree, as
shown in Figure 4.

The tree produced by the final step of our network is used as
the output (predicted tree). We minimize the mean-squared
error between the predicted symbol at each node in the
predicted tree and the target tree for all non-empty nodes in
the target tree. We penalize the norm of filled nodes in the
predicted tree that are empty in the target tree. Additional
training details can be found in Section A.1.

4

Differentiable Tree Operations Promote Compositional Generalization

cdr

car

Append

Tree 2

Differentiable
Tree
Interpreter

Multihead Attention(1)

Feedforward(1)

From previous Transformer layer

To next Transformer layer

Neural
Tree
Agent

St
ep

 1

Softmax

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Root Symbol
Encoding1

Operation
Encoding1

Tree 1
Encoding1

Tree 0
Encoding1

Root Symbol
Encoding2

Operation
Encoding2

Tree 1
Encoding2

Tree 0
Encoding2

Tree 2
Encoding2

Tree Memory

Tree 0

Tree 1

cons

Operation x Tree Arg LogitsOperation
Logits

Softmax

Figure 3. Step 1 of the DTM architecture is expanded to show the information flow. The yellow boxes identify the parameters that are
learnable. The blue box highlights the Neural Tree Agent, and the green boxes highlight components in tree space: the Differentiable
Tree Interpreter (Eq 1) and Tree Memory. The left side of the Neural Tree Agent is a standard transformer layer with self-attention and a
feedforward network. Residual connections and layer norm are not shown.

5. Empirical Validation
5.1. Datasets

We introduce the Basic Sentence Transforms dataset for
testing tree-to-tree transformations.2 It contains various syn-
thetic tree-transform tasks, including a Lisp function inter-
preter task and several natural-language tasks inspired by se-
mantic parsing and language generation. This dataset is de-
signed to test compositional generalization in structure trans-
formations, as opposed to most existing compositionality-
related datasets, which focus on linear sequence transforma-
tions.

Each task in the dataset has five splits: train, validation,
test, out-of-distribution lexical (OOD-lexical), and out-of-
distribution structural (OOD-structural). The OOD-lexical
split tests a model’s ability to perform zero-shot lexical
generalization to new adjectives not seen during training.
The OOD-structural split tests a model’s structural gener-
alization by using longer adjective sequences and new tree
positions not encountered during training. The train split
has 10,000 samples, while the other splits have 1,250 sam-
ples each. Samples of these tasks are shown in Appendix

2Data available at https://huggingface.co/
datasets/rfernand/basic_sentence_transforms.

B.2 and additional information about the construction of the
dataset is in Appendix B.1. We focus our evaluation on the
following four tasks:

CAR-CDR-SEQ is a tree transformation task where the
source tree represents a template-generated English sen-
tence, and the target tree represents a subset of the source
tree. The target tree is formed from a sequence of Lisp
car and cdr operations on the source tree. The desired
sequence of operations is encoded into a single token in the
source tree root, and the transformation requires learning
how to interpret this root token and execute the associated
sequence of actions. Although its internal structure is not
accessible to the model, the token is formed according to the
Lisp convention for combining these operations into a single
symbol (starting with a c, followed by the second letter of
each operation, and terminated by an r, e.g., cdaadr de-
notes the operation sequence: cdr, car, car, cdr). This
task uses sequences of 1-4 car/cdr operations (resulting
in 30 unique functions).

Active↔Logical contains syntax trees in active voice and
logical form. Transforming from active voice into logical
form is similar to semantic parsing, and transducing from
logical form to active voice is common in natural language
generation. An example from this task is shown in Figure 1.

5

https://huggingface.co/datasets/rfernand/basic_sentence_transforms
https://huggingface.co/datasets/rfernand/basic_sentence_transforms

Differentiable Tree Operations Promote Compositional Generalization

DATA SET DTM TRANSFORMER LSTM TREE2TREE TREE TRANSFORMER

CAR CDR SEQ
-TRAIN .95 ± .04 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00
-TEST IID .95 ± .04 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00
-TEST OOD LEXICAL .94 ± .04 .66 ± .00 .66 ± .00 .66 ± .00 .66 ± .00
-TEST OOD STRUCTURAL .93 ± .04 .68 ± .01 .47 ± .03 .74 ± .02 .64 ± .01
ACTIVE↔LOGICAL
-TRAIN 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00
-TEST IID 1.0 ± .00 1.0 ± .00 1.0 ± .00 .99 ± .00 1.0 ± .00
-TEST OOD LEXICAL 1.0 ± .00 .00 ± .00 .00 ± .00 .00 ± .00 .00 ± .00
-TEST OOD STRUCTURAL 1.0 ± .00 .00 ± .00 .00 ± .00 .10 ± .03 .03 ± .01
PASSIVE↔LOGICAL
-TRAIN 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00
-TEST IID 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00
-TEST OOD LEXICAL 1.0 ± .00 .00 ± .00 .00 ± .00 .00 ± .00 .00 ± .00
-TEST OOD STRUCTURAL 1.0 ± .00 .00 ± .00 .00 ± .00 .19 ± .02 .00 ± .00
ACTIVE & PASSIVE→LOGICAL
-TRAIN 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00 1.0 ± .00
-TEST IID 1.0 ± .00 1.0 ± .00 1.0 ± .00 .99 ± .00 1.0 ± .00
-TEST OOD LEXICAL 1.0 ± .00 .00 ± .00 .00 ± .00 .00 ± .00 .00 ± .00
-TEST OOD STRUCTURAL 1.0 ± .00 .00 ± .00 .00 ± .00 .10 ± .01 .01 ± .00

Table 1. Mean accuracy and standard deviation across five random initializations on synthetic tree-to-tree transduction tasks using different
model architectures. Test sets include in-distribution and out-of-distribution splits.

Tree 0
Encoding0

Root
Symbol

Encoding0

Operation
Encoding0

Tree 0
Encoding1

Root
Symbol

Encoding1

Operation
Encoding1

Tree 0
Encoding2

Root
Symbol

Encoding2

Operation
Encoding2

Tree 0
Encoding3

Root
Symbol

Encoding3

Operation
Encoding3

Tree 1
Encoding1

Tree 2
Encoding2

Tree 3
Encoding3

Tree 2
Encoding3

Tree 1
Encoding3

Tree 1
Encoding2

Step 0

Step 1

Step 2

Step 3

Figure 4. Inputs to the Neural Tree Agent at each step of processing.
The length of the input grows by one token each step to incorporate
the output of the previous step.

Passive↔Logical contains syntax trees in passive voice
and logical form. This task is similar to the one above
but is more difficult and requires more operations. The
passive form also contains words that are not present in
logical form, so unlike Active↔Logical, the network needs
to insert additional nodes. At first glance, this does not seem
possible with car, cdr, and cons; we will show how our

network manages to solve this problem in an interpretable
manner in §5.5. An example from this task is shown in
Figure 5.

Active & Passive→Logical contains input trees in either
active or passive voice and output trees in logical form. This
tests whether a model can learn to simultaneously parse
different types of trees, distinguished by their structures,
into a shared logical form.

5.2. Baseline Architectures

We compare against standard seq2seq (Sutskever et al.,
2014) models and tree2tree models as our baselines. For
seq2seq models, we linearize our trees by coding them as
left-to-right sequences with parentheses to mark the tree
structure. Our seq2seq models are an Encoder-Decoder
Transformer (Vaswani et al., 2017) and an LSTM (Hochre-
iter & Schmidhuber, 1997). We test two tree2tree models:
Tree2Tree LSTM (Chen et al., 2018) and Tree Transformer
Shiv & Quirk (2019). Tree2Tree LSTM combines a Tree-
LSTM encoder (Tai et al., 2015) and a Tree-LSTM decoder
(Dong & Lapata, 2016). Tree Transformer encodes tree
information in relative positional embeddings as the path
from one node to another. Training details for the baselines
can be found in Appendix A.

6

Differentiable Tree Operations Promote Compositional Generalization

5.3. Results

The results for DTM and the baselines can be seen in Ta-
ble 1. DTM achieves 100% accuracy across all splits for
three of the four tasks, and for some of the runs in the
CAR CDR SEQ task. While the baselines perform sim-
ilarly to DTM when compared on train and test IID, the
results are drastically different when comparing the results
across OOD splits. Across all tasks, DTM generalizes simi-
larly regardless of the split, whereas the baselines struggle
with lexical generalization and fail completely at structural
generalization.

The baseline models perform the best on CAR CDR SEQ,
whereas this is the most difficult task for DTM. We sus-
pect that tuning the hyperparameters for DTM directly on
this task would alleviate the less-than-perfect performance.
Despite performing less than perfectly, DTM performance
on the OOD splits of CAR CDR SEQ outperforms all of
the baselines. Whereas CAR CDR SEQ involves identi-
fying a subtree (or subsequence for the baselines) within
the input, the other four tasks involve reorganizing the in-
put and potentially adding additional tokens in the case of
Passive↔Logical. On these linguistically-motivated tasks,
the baselines mostly achieve 0% OOD generalization, with
a maximum of 19%.

DTM can be compared against the other tree models to see
the effects of structured processing in vector space. While
the Tree2Tree LSTM and Tree Transformer are both capable
of representing trees, the processing that occurs over these
trees is still black-box nonlinear transformations. DTM
isolates black-box nonlinear transformations to the Neural
Tree Agent, while the processing over trees is factorized
into interpretable operations over tree structures with excel-
lent OOD generalization. This suggests that it is not the
tree encoding scheme itself that is critical, but rather the
processing that occurs over the trees.

5.4. Ablations

In order to examine how the components of our model come
together to achieve compositional generalization, we run
several ablation experiments on Active↔Logical.

5.4.1. PRE-DEFINED STRUCTURAL OPERATIONS

What purpose do the car, cdr, and cons equations de-
fined in Section 3 play in our network’s success? Instead
of defining the transformations with the equations, we can
randomly initialize the D and E matrices and allow them
to be learned during training. The results of learning the
D and E matrices are shown in Table 2. Since the D and
E matrices, whether predefined or learned, operate only on
the role space, it is unsurprising that our model continues to
achieve perfect lexical generalization without the predefined

PREDEFINED
TRANSFORMATIONS

LEARNED
TRANSFORMATIONS

-TRAIN 1.0± .00 1.0± .00
-TEST IID 1.0± .00 .99± .02
-LEXICAL 1.0± .00 .99± .01
-STRUCTURAL 1.0± .00 .35± .08

Table 2. Accuracy on Active↔Logical across five random initial-
izations for models with predefined car, cdr and cons opera-
tions versus learned transformations. Lexical and structural are
test OOD splits.

equations for D and E. However, structural generalization
suffers dramatically when the D and E matrices are learned.
This result indicates that the predefined tree operations are
essential for our model to achieve structural generalization.

5.4.2. BLENDING VS. DISCRETE SELECTIONS

While our model converges to one-hot solutions where it
chooses a single operation over a single tree in memory, it is
not constrained to do so, and it deploys heavy blending prior
to final convergence. There are two sources of blending:
the input arguments to each operation can be a blend of
trees in memory, and the output written to memory is a
weighted blend of the three operations. We can explore the
importance of blending by restricting our model to make
discrete decisions using the Gumbel-Softmax distribution
(Jang et al., 2017; Maddison et al., 2017). Table 3 shows the
results of models trained with (blend-producing) softmax
or (discrete) Gumbel-Softmax for argument and operation
selection. We observe that the use of Gumbel-Softmax in
either operation or argument sampling leads to a complete
breakdown in performance. This demonstrates that blending
is an essential component of our model, and that our network
is not capable of learning the task without it.

5.5. Interpreting Inference as Programs

The output of the Neural Tree Agent at each timestep can
be interpreted as routing data and performing a predefined
operation. At convergence, we find that the path from the in-
put tree to the output tree is defined by interpretable one-hot
softmax distributions. For the CAR-CDR-SEQ task, our
model learns to act as a program interpreter and performs
the correct sequence (∼94% accuracy) of operations on sub-
sequent trees throughout computation. For the language
tasks, we can trace the program execution to see how the
input tree is transformed into the output tree. An example
of our model’s behavior over 28 steps on Logical→Passive
can be seen in Figure 5. In particular, we were excited to
find an emergent operation in our model’s behavior. Trans-
ducing from Logical→Passive not only requires rearranging
nodes but also inserting new words into the tree, “was” and
“by”. At first glance, car, cdr, and cons do not appear to

7

Differentiable Tree Operations Promote Compositional Generalization

ACTIVE↔LOGICAL OP (SOFTMAX)
ARG (SOFTMAX)

OP (SOFTMAX)
ARG (GUMBEL)

OP (GUMBEL)
ARG (SOFTMAX)

OP (GUMBEL)
ARG (GUMBEL)

-TRAIN 1.00± 0.00 .086± .172 0.00± 0.00 0.00± 0.00
-TEST IID 1.00± 0.00 .088± .176 0.00± 0.00 0.00± 0.00
-TEST OOD LEXICAL 1.00± 0.00 .094± .188 0.00± 0.00 0.00± 0.00
-TEST OOD STRUCTURAL 1.00± 0.00 .068± .136 0.00± 0.00 0.00± 0.00

Table 3. Accuracy on Active↔Logical across five random initializations for models which use varying combinations of softmax and
Gumbel-Softax for operation and argument selection.

support adding a new node to memory. The model learns
that taking cdr of a tree with only a single child returns an
empty tree (Step 2 in Figure 5); the empty tree can then be
used as the inputs to cons in order to write a new word as
the root node with no children on the left or right (Step 3).
The programmatic nature of our network at convergence —
the fact that the weighting coefficients w⃗, a⃗ become 1-hot
— makes it trivial to discover how an undefined operation
emerged during training.

6. Conclusions, Limitations, and Future Work
We introduce DTM, an architecture for leveraging differen-
tiable tree operations and an external memory to achieve
compositional generalization. Our trees are embedded in
vector space as TPRs which allow us to perform symbolic
operations as differentiable linear transformations. DTM
achieves 100% out-of-distribution generalization for both
lexical and structural distributional shifts across a variety of
synthetic tree-to-tree tasks and is highly interpretable.

The major limitation of DTM is that the input and output
must be structured as trees. Future work will focus on al-
lowing DTM to take in unstructured data, generate a tree,
and then perform the operations we described. This will
allow DTM to be evaluated on a larger variety of datasets.
Our hope is that DTM will be able to scale to language mod-
eling and other large pretraining tasks. Our model is also
restricted to tree transformations where the input and output
languages share the same vocabulary. While these sorts of
transformations are common in Computer Science and Nat-
ural Language Processing, many tasks involve translating
between vocabularies, and future work will investigate ways
to translate between different vocabularies.

Another hurdle for DTM is the size of trees that it can handle.
The encoding scheme we presented here requires the depth
of possible trees to be determined beforehand so that the
appropriate number of roles can be initialized. Additionally,
while the TPR dimension grows linearly with the number
of nodes in a tree, the number of nodes in a tree grows
exponentially with depth. The majority of DTM parame-
ters reside in Wshrink, the linear transformation from TPR
space to model space. This can cause memory issues when

representing deep trees. We leave methods for extending
to an unbounded depth and lossy compression of the role
space to future work.

Finally, while DTM reduces the operation space to individ-
ual transformations, it may be feasible for a model to learn
more expressive functions which combine multiple car,
cdr, and cons operations in a single step. Future work
will investigate other tree functions, such as Tree Adjoin-
ing, as well as other data structures. The sequences of all
possible operations define an infinite set of functions which
are linear transformations, and we hope that our work will
inspire further research into this space.

In conclusion, we believe that DTM represents a promising
direction for leveraging differentiable tree operations and
external memory to achieve compositional generalization.
Our model is interpretable, systematic, and has potential for
scaling to larger datasets and different data structures. We
hope that our work will inspire further research in this area
and facilitate progress towards building more powerful and
interpretable models for structured data.

7. Impact Statement
To our knowledge, the work presented here poses no societal
harms beyond the scope of general AI research. As with
all ML research, there is a risk that improvements in ML
technologies could be used for harmful purposes. We hope
that the interpretability offered by our method can contribute
to an understanding of neural network models to increase
controllability as well as improve and verify fairness.

Acknowledgements
We are grateful to the Johns Hopkins Neurocompositional
Computation group, the Microsoft Research Redmond Deep
Learning Group, and the anonymous reviewers for helpful
comments. We are also grateful for the feedback provided by
Colin Wilson, Ricky Loynd and Steven Piantadosi. Soulos
was partly supported by the Cognitive Science Department
at Johns Hopkins. Any errors remain our own.

8

Differentiable Tree Operations Promote Compositional Generalization

car

Tree Memory
St

ep
 0

S

cdr

cons

cons

St
ep

 1
St

ep
 2

7
St

ep
 3

St
ep

 2
Agent/
Interpreter

O
ut

pu
t

St
ep

 2
6

cons

VP

Figure 5. An interpretable transformation from logical form to
passive. For readability, trees are shown here symbolically, but
Tree Memory contains the vector embeddings (TPRs) of these
trees. At each step, all of the items in memory from previous steps
are available to the agent/interpreter. Reads are shown in green
and writes in blue. The interpretation is discussed in Section 5.5.

References
Andreas, J., Rohrbach, M., Darrell, T., and Klein, D. Neural

module networks. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 39–48, 2015.

Bošnjak, M., Rocktäschel, T., Naradowsky, J., and Riedel,
S. Programming with a differentiable forth interpreter.
In Precup, D. and Teh, Y. W. (eds.), Proceedings of
the 34th International Conference on Machine Learn-
ing, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 547–556. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
bosnjak17a.html.

Chen, K., Huang, Q., Palangi, H., Smolensky, P., Forbus,
K., and Gao, J. Mapping natural-language problems to
formal-language solutions using structured neural rep-
resentations. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1566–1575. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/chen20g.html.

Chen, X., Liu, C., and Song, D. Tree-to-tree neural networks
for program translation. Advances in neural information
processing systems, 31, 2018.

Csordás, R., Irie, K., and Schmidhuber, J. The devil is in the
detail: Simple tricks improve systematic generalization
of transformers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing,
pp. 619–634, 2021.

Dong, L. and Lapata, M. Language to logical form with neu-
ral attention. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 33–43, 2016.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T.,
DeWolf, T., Tang, Y., and Rasmussen, D. A
large-scale model of the functioning brain. Sci-
ence, 338(6111):1202–1205, 2012. doi: 10.1126/
science.1225266. URL https://www.science.
org/doi/abs/10.1126/science.1225266.

Fodor, J. A. and Pylyshyn, Z. W. Connectionism and cogni-
tive architecture: A critical analysis. Cognition, 28(1-2):
3–71, 1988.

Gayler, R. W. Vector symbolic architectures answer jackend-
off’s challenges for cognitive neuroscience. In Slezak, P.
(ed.), Proceedings of the ICCS/ASCS Joint International
Conference on Cognitive Science (ICCS/ASCS 2003), pp.
133–138, Sydney, NSW, AU, jul 2003. University of New
South Wales. URL http://arxiv.org/abs/cs/
0412059.

9

https://proceedings.mlr.press/v70/bosnjak17a.html
https://proceedings.mlr.press/v70/bosnjak17a.html
https://proceedings.mlr.press/v119/chen20g.html
https://proceedings.mlr.press/v119/chen20g.html
https://www.science.org/doi/abs/10.1126/science.1225266
https://www.science.org/doi/abs/10.1126/science.1225266
http://arxiv.org/abs/cs/0412059
http://arxiv.org/abs/cs/0412059

Differentiable Tree Operations Promote Compositional Generalization

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. ArXiv, abs/1410.5401, 2014.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwinska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J. P., Badia, A. P.,
Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King,
H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and
Hassabis, D. Hybrid computing using a neural network
with dynamic external memory. Nature, 538:471–476,
2016.

Grefenstette, E., Hermann, K. M., Suleyman, M., and Blun-
som, P. Learning to transduce with unbounded memory.
ArXiv, abs/1506.02516, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9:1735–1780, 1997.

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. Compo-
sitionality decomposed: How do neural networks gen-
eralise? Journal of Artificial Intelligence Research, 67:
757–795, 2020.

Jang, E., Gu, S., and Poole, B. Categorical reparameter-
ization with gumbel-softmax. In International Confer-
ence on Learning Representations, 2017. URL https:
//openreview.net/forum?id=rkE3y85ee.

Jiang, Y., Celikyilmaz, A., Smolensky, P., Soulos, P., Rao,
S., Palangi, H., Fernandez, R., Smith, C., Bansal, M., and
Gao, J. Enriching transformers with structured tensor-
product representations for abstractive summarization. In
Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 4780–4793,
2021.

Joulin, A. and Mikolov, T. Inferring algorithmic patterns
with stack-augmented recurrent nets. In NIPS, 2015.

Kanerva, P. Hyperdimensional computing: An introduc-
tion to computing in distributed representation with high-
dimensional random vectors. Cognitive computation, 1:
139–159, 2009.

Kim, N. and Linzen, T. COGS: A compositional general-
ization challenge based on semantic interpretation. In
Proceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 9087–
9105, Online, November 2020. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2020.emnlp-main.
731. URL https://aclanthology.org/2020.
emnlp-main.731.

Kim, N., Linzen, T., and Smolensky, P. Uncontrolled
lexical exposure leads to overestimation of composi-
tional generalization in pretrained models, 2022. URL
https://arxiv.org/abs/2212.10769.

Kleyko, D., Rachkovskij, D. A., Osipov, E., and Rahimi,
A. A survey on hyperdimensional computing aka vector
symbolic architectures, part i: Models and data transfor-
mations. ACM Comput. Surv., 55(6), dec 2022. ISSN
0360-0300. doi: 10.1145/3538531. URL https:
//doi.org/10.1145/3538531.

Kurach, K., Andrychowicz, M., and Sutskever, I. Neural
random access machines. ICLR, 2016. URL http:
//arxiv.org/abs/1511.06392.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete ran-
dom variables. In International Conference on Learning
Representations, 2017. URL https://openreview.
net/forum?id=S1jE5L5gl.

Marcus, G. F. The algebraic mind: Integrating connection-
ism and cognitive science. MIT press, 2003.

McCoy, R. T., Linzen, T., Dunbar, E., and Smolensky, P.
RNNs implicitly implement tensor-product representa-
tions. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/
forum?id=BJx0sjC5FX.

Newell, A. Physical symbol systems. Cogn. Sci., 4:135–183,
1980.

Newell, A. The knowledge level. Artificial intelligence, 18
(1):87–127, 1982.

Palangi, H., Smolensky, P., He, X., and Deng, L. Question-
answering with grammatically-interpretable representa-
tions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Plate, T. A. Holographic Reduced Representation: Dis-
tributed Representation for Cognitive Structures. CSLI
Publications, USA, 2003. ISBN 1575864290.

Reed, S. E. and de Freitas, N. Neural programmer-
interpreters. CoRR, abs/1511.06279, 2015.

Sartran, L., Barrett, S., Kuncoro, A., Stanojević, M., Blun-
som, P., and Dyer, C. Transformer grammars: Augment-
ing transformer language models with syntactic inductive
biases at scale. Transactions of the Association for Com-
putational Linguistics, 10:1423–1439, 2022.

Schlag, I. and Schmidhuber, J. Learning to reason with third
order tensor products. Advances in neural information
processing systems, 31, 2018.

Schlag, I., Smolensky, P., Fernandez, R., Jojic, N., Schmid-
huber, J., and Gao, J. Enhancing the transformer with
explicit relational encoding for math problem solving.
CoRR, abs/1910.06611, 2019. URL http://arxiv.
org/abs/1910.06611.

10

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://aclanthology.org/2020.emnlp-main.731
https://aclanthology.org/2020.emnlp-main.731
https://arxiv.org/abs/2212.10769
https://doi.org/10.1145/3538531
https://doi.org/10.1145/3538531
http://arxiv.org/abs/1511.06392
http://arxiv.org/abs/1511.06392
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=S1jE5L5gl
https://openreview.net/forum?id=BJx0sjC5FX
https://openreview.net/forum?id=BJx0sjC5FX
http://arxiv.org/abs/1910.06611
http://arxiv.org/abs/1910.06611

Differentiable Tree Operations Promote Compositional Generalization

Shiv, V. and Quirk, C. Novel positional encodings to enable
tree-based transformers. Advances in neural information
processing systems, 32, 2019.

Smolensky, P. Tensor product variable binding and the
representation of symbolic structures in connectionist
systems. Artif. Intell., 46:159–216, 1990.

Soulos, P., McCoy, R. T., Linzen, T., and Smolensky, P.
Discovering the compositional structure of vector repre-
sentations with role learning networks. In Proceedings of
the Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pp. 238–254, 2020.

Soulos, P., Rao, S., Smith, C., Rosen, E., Celikyilmaz, A.,
McCoy, R. T., Jiang, Y., Haley, C., Fernandez, R., Palangi,
H., et al. Structural biases for improving transformers on
translation into morphologically rich languages. Proceed-
ings of Machine Translation Summit XVIII, 2021.

Steele, G. Common LISP: the language. Elsevier, 1990.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence
to sequence learning with neural networks. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N., and Weinberger, K. (eds.), Advances in Neural
Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.
neurips.cc/paper/2014/file/
a14ac55a4f27472c5d894ec1c3c743d2-Paper.
pdf.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp.
1556–1566, Beijing, China, July 2015. Association for
Computational Linguistics. doi: 10.3115/v1/P15-1150.
URL https://aclanthology.org/P15-1150.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. Attention is all you need. In Guyon, I., Luxburg,
U. V., Bengio, S., Wallach, H., Fergus, R., Vish-
wanathan, S., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Wang, Y., Lee, H.-Y., and Chen, Y.-N. Tree transformer:
Integrating tree structures into self-attention. In Pro-
ceedings of the 2019 Conference on Empirical Methods

in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 1061–1070, Hong Kong, China,
November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1098. URL https:
//aclanthology.org/D19-1098.

Weston, J., Chopra, S., and Bordes, A. Memory networks.
CoRR, abs/1410.3916, 2014.

11

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://aclanthology.org/P15-1150
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/D19-1098
https://aclanthology.org/D19-1098

Differentiable Tree Operations Promote Compositional Generalization

A. Model Hyperparameter Selection
For all of the models we evaluated, the HP searching and training was done in 3 steps:

1. An optional exploratory random search over a wide range of HP values (using the Active↔Logical task)

2. A grid search (repeat factor=3) over the most promising HP values from step 1 (using the Active↔Logical task)

3. Training on the target tasks (repeat factor=5)

All of our models were trained on 1x V100 (16GB) virtual machines.

A.1. DTM

For the DTM models, we ran a 3x hyperparameter grid search over the following ranges. The best performing hyperparameter
values are marked in bold.

Computation Steps: [X+2, (X+2)*2] where X is the minimum number of steps required to complete a task
weight decay: [.1, .01]
Transformer model dimension: [32, 64]
Adam β2: [.98, .95]
Transformer dropout: [0, .1]

The following hyperparameters were set for all models

lr warmup: [10000]
lr decay: [cosine]
training steps: [20000]
Transformer encoder layers per computation step: [1]
Transformer # of heads: [4]
Batch size: [16]
d symbol: # symbols in the dataset
d role: 2D+1 − 1 where D is the max depth in the dataset
Transformer non-linearity: gelu
Optimizer: Adam
Adam β1: .9
Gradient clipping: 1
Transformer hidden dimension: 4x Transformer model dimension

Notes:

• For the Passive↔Logical task, a batch size of 8 was used to reduce memory requirements.

• Training runs that didn’t achieve 90% training accuracy were excluded from evaluation

12

Differentiable Tree Operations Promote Compositional Generalization

A.2. Baselines

We search over model and training hyperparameters and choose the combination that has the highest (and in the case of ties,
quickest to train) mean validation accuracy on Active & Passive→Logical. The best hyperparameter setting for each model
was then used to train that model on all four of our tasks.

A.2.1. TRANSFORMER

The Transformer 1x exploratory random search operated on the following HP values:

lr: [.0001, .00005]
lr warmup: [0, 1000, 3000, 6000, 9000]
lr decay: [none, linear, factor, noam]
lr decay factor: [.9, .95, .99]
lr patience: [0, 5000]
stop patience: [0]
weight decay: [0, .001, .01]
hidden: [64, 96, 128, 256, 512, 768, 1024]
n encoder layers: [1, 2, 3, 4, 5, 6, 7, 8]
n decoder layers: [1, 2, 3, 4, 5, 6, 7, 8]
dropout: [0, .1, .2, .3, .4]
filter: [256, 512, 768, 1024, 2048, 3096, 4096]
n heads: [1, 2, 4, 8, 16]

The Transformer 3x grid search operated on the following HP values:

hidden: [768, 1024]
n encoder layers: [1, 4]
n decoder layers: [3, 4]
dropout: [0]
filter: [768, 1024]
n heads: [2, 4]

The Transformer 5x training on the target tasks was done with these final HP values:

13

Differentiable Tree Operations Promote Compositional Generalization

n steps: 30 000
log every: 100
eval every: 1000
batch size per gpu: 256
max tokens per gpu: 20 000
lr: .0001
lr warmup: 1000
lr decay: linear
lr decay factor: .95
lr patience: 5000
stop patience: 0
optimizer: adam
weight decay: 0
max abs grad norm: 1
grad accum steps: 1
greedy must match tf: 0
early stop perfect eval: 0
hidden: 1024
n encoder layers: 1
n decoder layers: 3
dropout: 0
filter: 1024
n heads: 2

14

Differentiable Tree Operations Promote Compositional Generalization

A.2.2. LSTM

The LSTM 1x exploratory random search operated on the following HP values:

weight decay: [0, .001, .01]
lr: [.0001, .00005]
lr warmup: [0, 1000, 3000, 6000, 9000]
lr decay: [none, linear, factor, noam]
lr decay factor: [.9, .95, .99]
lr patience: [0, 5000]
hidden: [64, 96, 128, 256, 512, 768, 1024]
n encoder layers: [1, 2, 3, 4, 5, 6]
n decoder layers: [1, 2, 3, 4, 5, 6]
dropout: [0, .05, .1, .15, .2]
bidir: [0, 1]
use attn: [0, 1]
rnn fold: [min, max, mean, sum, hadamard]
attn inputs: [0, 1]

The LSTM 3x grid search operated on the following HP values:

lr decay: [linear, noam]
hidden: [512, 768, 1024]
n encoder layers: [1, 6]
n decoder layers: [1, 2, 3]
attn inputs: [0, 1]

The LSTM 5x training on the target tasks was done with these final HP values:

n steps: 30 000
log every: 200
eval every: 1000
stop patience: 0
optimizer: adam
max abs grad norm: 1
grad accum steps: 1
greedy must match tf: 0
early stop perfect eval: 0
batch size per gpu: 256
max tokens per gpu: 20 000
weight decay: 0
lr: .0001
lr warmup: 1000
lr decay: noam
lr decay factor: .95
lr patience: 5000
hidden: 512
n encoder layers: 6
n decoder layers: 1
dropout: .1
bidir: 0
use attn: 1
rnn fold: max
attn inputs: 1

15

Differentiable Tree Operations Promote Compositional Generalization

A.2.3. TREE2TREE

The Tree2Tree 1x exploratory random search operated on the following HP values:

lr: [.01, .005, .001, .0005]
lr decay factor: [.8, .9, .95]
max abs grad norm: [1, 5]
hidden: [64, 128, 256, 512, 768]
dropout: [0, .1, .2, .4, .5, .6]
lr decay: [none, linear, factor, patience, noam]

The Tree2Tree 3x grid search operated on the following HP values:

dropout: [0, .6]
hidden: [512, 768]

The Tree2Tree 5x training on the target tasks was done with these final HP values:

n steps: [10 000]
stop patience: [0]
early stop perfect eval: [0]
lr: [.0005]
lr decay: [patience]
lr warmup: [1000]
lr patience: [500]
lr decay factor: [.95]
batch size per gpu: [256]
max tokens per gpu: null
optimizer: [adam]
weight decay: [0]
max abs grad norm: [1]
grad accum steps: [1]
n encoder layers: [1]
n decoder layers: [1]
dropout: [0]
hidden: [512]

16

Differentiable Tree Operations Promote Compositional Generalization

A.2.4. TREETRANSFORMER

The TreeTransformer 1x exploratory random search operated on the following HP values:

dropout rate: [0, .05, .1, .2]
batch size: [64, 128, 256]
learning rate: [.0001, .0005, .001, .00001]
optimizer: [adam, sgd, momentum, adagrad, adadelta, rmsprop]
max gradient norm: [0.0, .05, .1]
momentum: [0.0, .1, .5, .9]
d model: [128, 256]
d ff: [128, 256, 512, 1024]
encoder depth: [1, 2, 3, 4]
decoder depth: [2, 4, 6, 8]

The TreeTransformer 3x grid search operated on the following HP values:

optimizer: [adagrad, adadelta]
max gradient norm: [.05, .1]
momentum: [0.0, .5]
d model: [256]
d ff: [256]
encoder depth: [1, 2]
decoder depth: [2, 4]

The TreeTransformer 5x training on the target tasks was done with these final HP values:

train batches: [30 000]
max eval steps: [2000]
dropout rate: [0]
batch size: [256]
learning rate: [.0001]
optimizer: [adagrad]
max gradient norm: [.05]
momentum: [.5]
num heads: [2]
d model: [256]
d ff: [256]
encoder depth: [1]
decoder depth: [2]

17

Differentiable Tree Operations Promote Compositional Generalization

B. Basic Sentence Transforms
B.1. Dataset Construction

The Basic Sentence Transforms vocabulary size and tree depth are available below. The lexical splits are constructed by
using 1 set of adjectives for the Train, Dev, Test IID, and OOD Structural splits, and a disjoint set for the OOD Lexical split.
The structural splits are constructed by using 0-2 nested adjectives distributed randomly to the two noun phrases for train,
dev, and OOD Lexical splits, and 3-4 nested adjectives to the two noun phrases for the OOD Structural split. Adjective
phrases are nested within each other within a noun phrase, so each additional adjective increases the overall tree depth by 1.

Vocabulary Size

DATASET TRAIN/DEV/TEST TEST OOD LEXICAL TEST OOD STRUCTURAL

CAR CDR SEQ 142 153 142
ACTIVE↔LOGICAL 101 112 101
PASSIVE↔LOGICAL 107 118 107
ACTIVE & PASSIVE→LOGICAL 105 116 105

Tree Depth

DATASET TRAIN/DEV/TEST TEST OOD LEXICAL TEST OOD STRUCTURAL

CAR CDR SEQ 10 10 12
ACTIVE↔LOGICAL 8 8 10
PASSIVE↔LOGICAL 10 10 12
ACTIVE & PASSIVE→LOGICAL 10 10 12

B.2. Dataset Samples

This appendix contains samples of the 4 tasks that we used from the Basic Sentence Transforms Dataset.

B.2.1. CAR-CDR-SEQ SAMPLES

Source Tree:

(CDDDDR (NP (DET the) (AP (N goat))) (VP (AUXPS was) (VPPS (V bought) (PPPS (PPS by) (NP (DET
the) (AP (ADJ round) (AP (N rose))))))))

CDDDDR

NP

DET

the

AP

N

goat

VP

AUXPS

was

VPPS

V

bought

PPPS

PPS

by

NP

DET

the

AP

ADJ

round

AP

N

rose

18

Differentiable Tree Operations Promote Compositional Generalization

Target (Gold) Tree:

(NP (DET (the)) (AP (ADJ (round)) (AP (N (rose)))))

NP

DET

the

AP

ADJ

round

AP

N

rose

B.2.2. ACTIVE↔LOGICAL SAMPLES

Source Tree:

(S (NP (DET some) (AP (N crocodile))) (VP (V washed) (NP (DET our) (AP (ADJ happy) (AP (ADJ thin)
(AP (N donkey)))))))

S

NP

DET

some

AP

N

crocodile

VP

V

washed

NP

DET

our

AP

ADJ

happy

AP

ADJ

thin

AP

N

donkey

Target (Gold) Tree:

(LF (V washed) (ARGS (NP (DET some) (AP (N crocodile))) (NP (DET our) (AP (ADJ happy) (AP (ADJ
thin) (AP (N donkey)))))))

19

Differentiable Tree Operations Promote Compositional Generalization

LF

V

washed

ARGS

NP

DET

some

AP

N

crocodile

NP

DET

our

AP

ADJ

happy

AP

ADJ

thin

AP

N

donkey

B.2.3. PASSIVE↔LOGICAL SAMPLES

Source Tree: (S (NP (DET his) (AP (N tree))) (VP (AUXPS was) (VPPS (V touched) (PPPS (PPS by) (NP (
DET one) (AP (ADJ polka-dotted) (AP (N crocodile))))))))

S

NP

DET

his

AP

N

tree

VP

AUXPS

was

VPPS

V

touched

PPPS

PPS

by

NP

DET

one

AP

ADJ

polka-dotted

AP

N

crocodile

Target (Gold) Tree: (LF (V touched) (ARGS (NP (DET one) (AP (ADJ polka-dotted) (AP (N crocodile)))) (
NP (DET his) (AP (N tree)))))

20

Differentiable Tree Operations Promote Compositional Generalization

LF

V

touched

ARGS

NP

DET

one

AP

ADJ

polka-dotted

AP

N

crocodile

NP

DET

his

AP

N

tree

B.2.4. ACTIVE & PASSIVE→LOGICAL SAMPLES

Source Tree: (S (NP (DET a) (AP (N fox))) (VP (AUXPS was) (VPPS (V kissed) (PPPS (PPS by) (NP (
DET my) (AP (ADJ blue) (AP (N giraffe))))))))

S

NP

DET

a

AP

N

fox

VP

AUXPS

was

VPPS

V

kissed

PPPS

PPS

by

NP

DET

my

AP

ADJ

blue

AP

N

giraffe

Target (Gold) Tree: (LF (V kissed) (ARGS (NP (DET my) (AP (ADJ blue) (AP (N giraffe)))) (NP (DET a) (
AP (N fox)))))

21

Differentiable Tree Operations Promote Compositional Generalization

LF

V

kissed

ARGS

NP

DET

my

AP

ADJ

blue

AP

N

giraffe

NP

DET

a

AP

N

fox

22

