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Abstract
The higher-order correlation clustering problem
is an expressive model, and recently, local search
heuristics have been proposed for several applica-
tions. Certifying optimality, however, is NP-hard
and practically hampered already by the complex-
ity of the problem statement. Here, we focus on
establishing partial optimality conditions for the
special case of complete graphs and cubic objec-
tive functions. In addition, we define and imple-
ment algorithms for testing these conditions and
examine their effect numerically, on two datasets.

1. Introduction
We study an optimization problem whose feasible solutions
are all partitions of a finite set S. Given a cost cp ∈ R for
every (unordered) pair p ∈

(
S
2
)

and a cost ct ∈ R for every
(unordered) triple t ∈

(
S
3
)
, the objective is to find a partition

Π of S so as to minimize the sum of the costs of those pairs
and triples whose elements all belong to the same set in Π:

Definition 1.1. The instance of the cubic set partition prob-
lem with respect to a finite set S, the set PS of all partitions
of S, and a function c :

(
S
3
)
∪
(
S
2
)
∪ {∅} → R is:

min
Π∈PS

∑
R∈Π

∑
t∈
(
R
3
) ct +

∑
R∈Π

∑
p∈
(
R
2
) cp + c∅

The cubic set partition problem is NP-hard, as it generalizes
the NP-hard clique partitioning problem for complete graphs
(Grötschel & Wakabayashi, 1989), specializing to the latter
in the case that ct = 0 for all t ∈

(
S
3
)
. Applications of

cubic set partitioning include the task of fitting equilateral
triangles to points in a plane (cf. Figure 1 and Section 6) and
subspace clustering as discussed by Levinkov et al. (2022).

In this article, we ask whether we can compute a partial so-
lution to the problem efficiently, i.e. to decide efficiently for
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Figure 1. In order to examine the effectiveness of partial optimality
conditions numerically, we implement algorithms for testing these
conditions and measure the fraction of fixed variables as a function
of an amount of noise, for (a) synthetic instances with four clusters
and noisy costs, and (b) instances for the task of finding equilateral
triangles in a noisy point cloud.

some pairs or triples whether their elements are in the same
set or distinct sets of an optimal partition. In order to find
such partial optimality, we characterize improving maps and
state efficiently verifiable sufficient conditions of their im-
provingness, a technique introduced by Shekhovtsov (2013);
see also (Shekhovtsov, 2014; Shekhovtsov et al., 2015). In
order to examine the effectiveness of these partial optimality
conditions numerically, we implement algorithms for testing
these. Moreover, we conduct experiments, cf. Figure 1. For
conciseness, all proofs are deferred to the appendix.

Related Work. We choose to state the cubic set partition
problem (Definition 1.1) in the form of a non-linear binary
program (Proposition 2.1), a special case of the higher-
order correlation clustering problem introduced by Kim
et al. (2014). Combinatorial optimization problems like this
involving higher-order objective functions have interesting
application as accurate models of intrinsically non-linear
tasks (Agarwal et al., 2005; Kappes et al., 2016; Kim et al.,
2014; Levinkov et al., 2022; Ochs & Brox, 2012; Purkait
et al., 2017). In particular, higher-order correlation clus-
tering has been used for subspace clustering in (Levinkov
et al., 2022, Section 5.1) by introducing negative costs for
points sufficiently close to a subspace.

Being able to efficiently fix some variables to an optimal
value and thus reducing the size of the problem can be
valuable in practice. Consequently, much effort has been
devoted to studying partial optimality for non-convex prob-
lems (Adams et al., 1998; Billionnet & Sutter, 1992; Ham-
mer et al., 1984; Kappes et al., 2013; Kohli et al., 2008;
Shekhovtsov, 2014; Shekhovtsov et al., 2015). Particularly
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impressive is an application of partial optimality conditions
to Potts models for image segmentation in which more than
95% of the variables can be fixed (Shekhovtsov et al., 2015,
Fig. 1). In contrast to the customary approach of consid-
ering a convex, usually linear, relaxation and establishing
partial optimality conditions regarding the variables in the
extended formulation, we study such conditions directly in
the original variable space. Unlike the above-mentioned
articles, we concentrate on taking advantage of the specific
structure of the cubic correlation clustering problem. To
this end, we build on the works of Alush & Goldberger
(2012) and Lange et al. (2018; 2019) who establish partial
optimality conditions for problems equivalent to correla-
tion clustering with a linear objective function. Regarding
their terminology, we remark that the correlation clustering
problem, the clique partitioning problem, and the multicut
problem are equivalent if the objective functions are lin-
ear. The correlation clustering problem keeps attracting
considerable attention by the community also in the context
of approximation algorithms (Veldt, 2022). The cubic set
partition problem we consider here generalizes the special-
ization to complete graphs of both the correlation clustering
problem and the multicut problem. Note that correlation
clustering for arbitrary, weighted graphs does not become
more specific by considering only complete graphs. Instead,
any such problem with respect to an arbitrary graph can be
stated as a problem with respect to a complete graph and
excessive edges having cost zero.

Here, we transfer all partial optimality conditions estab-
lished by Alush & Goldberger (2012) and Lange et al. (2018;
2019) for the correlation clustering problem and the multi-
cut problem to the cubic set partition problem. In addition,
we establish new results. Unlike in the work of Lange et al.
(2018), the algorithm we define does not exploit the sparsity
of edges with non-zero cost and, in this sense, is designed
for complete graphs. Moreover, we do not contribute persis-
tency conditions for the max cut problem.

2. Preliminaries
In order to establish partial optimality conditions for the
cubic set partition problem (Definition 1.1), we state this
problem in the form of the non-linear integer program intro-
duced by Kim et al. (2014):
Proposition 2.1. The instance of the cubic set partition
problem with respect to a finite set S and a function c :

(
S
3
)
∪(

S
2
)
∪ {∅} → R has the form of the cubic integer program

min
x:
(
S
2
)
→{0,1}

∑
pqr∈

(
S
3
) cpqrxpqxprxqr +

∑
pq∈

(
S
2
) cpqxpq + c∅

subject to ∀p ∈ S ∀q ∈ S \ {p} ∀r ∈ S \ {p, q}:

xpq + xqr − xpr ≤ 1

Below, we let SP3S,c denote this instance of the problem,
ϕc its objective function, and XS its feasible set, i.e. the set
of all x :

(
S
2
)
→ {0, 1} that satisfy the above inequalities.

Our main technique is the construction of improving maps
(Shekhovtsov, 2013), which is based on the following pre-
liminary notions.

Definition 2.2. Let X ̸= ∅, ϕ : X → R and σ : X → X . If
for every x ∈ X , we have ϕ(σ(x)) ≤ ϕ(x), then σ is called
improving for the problem minx∈X ϕ(x).

Proposition 2.3. Let X ̸= ∅, ϕ : X → R and σ : X → X
an improving map. Moreover, let Q ⊆ X . If, for every
x ∈ X , σ(x) ∈ Q, then there is an optimal solution x∗ to
minx∈X ϕ(x) such that x∗ ∈ Q.

Corollary 2.4. Let S ̸= ∅, X ⊆ {0, 1}S , ϕ : X → R and
σ : X → X an improving map. Moreover, let s ∈ S and
β ∈ {0, 1}. If for every x ∈ X , σ(x)s = β, then there is an
optimal solution x∗ to minx∈X ϕ(x) such that x∗

s = β.

Our construction starts from the elementary maps of Lange
et al. (2019), i.e. the map σδ(R) that cuts a set R ⊆ S
from its complement, and the map σR that joins all sets
intersecting with a set R ⊆ S:

Definition 2.5. For any finite, non-empty set S and R ⊆ S,
the elementary cut map σδ(R) : XS → XS is such that for
all x ∈ XS and all pq ∈

(
S
2
)
:

σδ(R)(x)pq :=

{
0 if |{p, q} ∩R| = 1
xpq otherwise

.

Definition 2.6. For any finite, non-empty set S and R ⊆ S,
the elementary join map σR : XS → XS is such that for all
x ∈ XS and all pq ∈

(
S
2
)
:

σR(x)pq :=


1 if pq ∈

(
R
2

)
1 if ∀p′ ∈ {p, q} \R ∃q′ ∈ R : xp′q′ = 1
xpq otherwise

.

3. Partial Optimality Conditions
In this section, we establish partial optimality conditions for
the cubic set partition problem by constructing improving
maps, starting from the elementary maps σδ(R) and σR

defined in Section 2.

For simplicity, we introduce some notation: For any r ∈ R,
let r± := max{0,±r}. For any function f : X → Y and
any X ′ ⊆ X , let f |X′ : X ′ → Y denote the restriction of f
to X ′. From here onwards, S will always denote a finite set.
For any non-empty set S and any R,R′, R′′ ⊆ S, let

δ(R,R′) :=
{
pq ∈

(
S
2
) ∣∣∣ p ∈ R ∧ q ∈ R′

}
δ(R) := δ(R,S \R)
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TRR′R′′ :=
{
pqr ∈

(
S
3
) ∣∣∣ p ∈ R ∧ q ∈ R′ ∧ r ∈ R′′

}
.

For IS :=
(
S
3
)
∪
(
S
2
)
∪ {∅} and any c : IS → R, let

P± :=
{
pq ∈

(
S
2
) ∣∣∣ cpq ≷ 0

}
T± :=

{
pqr ∈

(
S
3
) ∣∣∣ cpqr ≷ 0

}
TP ′ :=

{
pqr ∈

(
S
3
) ∣∣∣ P ′ ∩

(
pqr

2
)
̸= ∅

}
∀P ′ ⊆

(
S
2
)
.

3.1. Cut Conditions

Here, we establish partial optimality conditions that imply
the existence of an optimal solution x∗ to SP3S,c such that
x∗
ij = 0 for some ij ∈

(
S
2
)
, or such that x∗ ∈ {x ∈ XS |

xijxikxjk = 0} for some ijk ∈
(
S
3
)
.

The following Proposition 3.1 generalizes to cubic objective
functions the specialization for complete graphs of Theo-
rem 1 of Alush & Goldberger (2012). Intuitively, it says: If
there exists a subset R for which joining any pair or triple
that has some elements in R and some outside of R leads to
a penalty, then we can safely cut the whole set R from the
rest.

Proposition 3.1. Let S ̸= ∅, and let c ∈ RIS . If there exists
R ⊆ S such that

cpq ≥ 0 ∀pq ∈ δ(R) (1)
cpqr ≥ 0 ∀pqr ∈ Tδ(R) (2)

then there is an optimal solution x∗ to SP3S,c such that
x∗
ij = 0 for all ij ∈ δ(R).

In the proof, we show: The map that does not change vectors
x ∈ XS with x∗

ij = 0 for all ij ∈ δ(R) and applies σδ(R)
to the other vectors is improving if (1) and (2) are satisfied.

This condition can be exploited: When satisfied for a set
R, SP3S,c decomposes into two independent subproblems.
Firstly,

min
x∈XS

ϕc(x) = min
x∈XR

ϕc|IR
(x) + min

x∈XS\R
ϕc|IS\R

(x) .

Secondly, given solutions

x′ ∈ argmin
x∈XR

ϕc|IR
(x) , x′′ ∈ argmin

x∈XS\R

ϕc|IS\R
(x) ,

an optimal solution to the problem minx∈XS ϕc(x) is given
by the x ∈ XS such that xpq = x′

pq if pq ∈
(
R
2
)
, such

that xpq = x′′
pq if pq ∈

(
S\R

2
)
, and such that xpq = 0 if

pq ∈ δ(R).

The following Proposition 3.2, together with Proposition 3.4
further below, generalize to cubic objective functions the
specialization for complete graphs of Theorem 1 of Lange

et al. (2019). The idea behind this statement is this: If there
exists a pair ij and a subset R that cuts ij such that the
penalty we would have to pay if we were to join i and j is
so large that it is at least the best possible reward achieved
by joining R and its complement, then it is optimal to keep
i and j separated.
Proposition 3.2. Let S ̸= ∅, and let c ∈ RIS . Moreover,
let ij ∈

(
S
2
)
. If there exists R ⊆ S such that ij ∈ δ(R) and

c+
ij ≥

∑
pqr∈Tδ(R)

c−pqr +
∑

pq∈δ(R)

c−pq , (3)

then there is an optimal solution x∗ to SP3S,c such that
x∗
ij = 0.

In the proof, we apply σδ(R) to any x ∈ XS with xij = 1,
on the one hand, and apply the identity to the feasible vectors
with xij = 0, on the other hand. We prove that this is an
improving map under the assumption.

The following Proposition 3.3 establishes a partial optimal-
ity result that implies the existence of an optimal solution x∗

such that x∗
ijx

∗
ikx

∗
jk = 0 for some ijk ∈

(
S
3
)
. The intuition

is similar as for Proposition 3.2, except here it involves a
triple instead of a pair. Note also that one cannot conclude
here which of the variables x∗

ij , x∗
ik or x∗

jk equals zero.

Proposition 3.3. Let S ̸= ∅, and let c ∈ RIS . Moreover,
let ijk ∈

(
S
3
)

and R ⊆ S such that ij, ik ∈ δ(R). If

c+
ijk + c+

ij + c+
ik ≥

∑
pqr∈Tδ(R)

c−pqr +
∑

pq∈δ(R)

c−pq , (4)

there is an optimal solution x∗ to SP3S,c such that
x∗
ijx

∗
ikx

∗
jk = 0.

The map used in the proof is similar to the previous ones:
If we start from a feasible vector such that xijxikxjk = 0
already, we do not change it. Otherwise, we apply σδ(R).
Proposition 3.3, together with Proposition 3.5, is a novel
result that does not canonically extend prior work.

3.2. Join Conditions

Next, we establish partial optimality conditions that imply
the existence of an optimal solution x∗ to SP3S,c such that
x∗
ij = 1 for some ij ∈

(
S
2
)
. This property can be used to

simplify a given instance by joining the elements i and j.

Proposition 3.4 transfers to the cubic set partition problem a
result of Lange et al. (2019). In Proposition 3.4, Condition
(5) is rather restrictive. The idea behind it is this: If there
exists a subset R that cuts i and j, and the total potential
reward for joining i and j (meaning not only joining the pair
ij but also the triples that could end up together once i and
j are in the same cluster) is higher than the sum of rewards
and penalties incurred by joining R and its complement,
then it is optimal to put i and j together.
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Proposition 3.4. Let S ̸= ∅, and let c ∈ RIS . Moreover, let
ij ∈

(
S
2
)
. If there exists an R ⊆ S such that ij ∈ δ(R) and

2c−ij +
∑

pqr∈T{ij}

c−pqr ≥
∑

pqr∈Tδ(R)

|cpqr| +
∑

pq∈δ(R)

|cpq| , (5)

there is an optimal solution x∗ to SP3S,c such that x∗
ij = 1.

In the proof, we start from a feasible vector x ∈ XS . If x
satisfies our thesis already, we are done. Otherwise, we ap-
ply σij ◦ σδ(R) and show that this map is improving granted
that (5) is satisfied.

While Proposition 3.4 above considers the question whether
a pair ij of elements should end up together, Proposition 3.5
below considers the same question but for a triple ijk. The
statement is a bit more involved but the intuition is in line
with that of Proposition 3.4.

Proposition 3.5. Let S ̸= ∅, and let c ∈ RIS . Moreover,
let ijk ∈

(
S
3
)

and R ⊆ S such that ij, ik ∈ δ(R). If

2c−ijk + 2c−ij + 2c−ik + c−jk −
∑

pqr∈
(
S
3
)c+
pqr −

∑
pq∈

(
S
2
)c+
pq (6)

+ min
x∈Xijk

xijxikxjk=0

∑
pq∈

(
ijk
2
) cpqxpq ≥

∑
pqr∈Tδ(R)

c−pqr +
∑

pq∈δ(R)

c−pq ,

there exists an optimal solution x∗ to SP3S,c such that
x∗
ijx

∗
ikx

∗
jk = 1.

The map that we show to be improving in the proof follows
the actions described previously. It is constructed as σijk ◦
σδ(R).

The following Proposition 3.6 extends to the cubic set parti-
tion problem Corollary 1 of Lange et al. (2019). It considers
triplets ijk ∈

(
S
3
)

and states three requirements under which
joining the pair ik does not compromise optimality. Firstly,
(7) and (8) say there is a subset R ⊆ S such that the total
potential reward from joining i, j and k is greater than or
equal to the sum of rewards and penalties incurred by join-
ing R and its complement. Secondly, (9) states that the cost
of joining the triple ijk is at most the negative of the sum
of rewards incurred when joining ijk and its complement.
Under these assumptions, we can put i and k together.

Proposition 3.6. Let S ̸= ∅, and let c ∈ RIS . Moreover,
let ijk ∈

(
S
3
)

and R,R′ ⊆ S such that ij, ik ∈ δ(R) and
jk, ik ∈ δ(R′). If all of the following conditions hold, there
exists an optimal solution x∗ to SP3S,c such that x∗

ik = 1.

c−ijk + 2c−ij + 2c−ik +
∑

pqr∈T{ij,ik}

c−pqr

≥
∑

pqr∈Tδ(R)

|cpqr| +
∑

pq∈δ(R)

|cpq| (7)

a)

R

SH

i j

S

b)

R

i j

S

Figure 2. a) Proposition 3.7 compares the total penalty (blue, dot-
ted tuples) of cutting SH from its complement S \ SH to the total
cost (red, dotted tuples) of edges and triples lying within SH and
cut by R. b) Proposition 3.10 compares the total cost of separated
edges and triples lying within R (red, dotted) to the total cost of
edges and triples cut by R (blue, dotted), for any partition (black)
of the node set separating any two nodes i and j.

c−ijk + 2c−jk + 2c−ik +
∑

pqr∈T{jk,ik}

c−pqr

≥
∑

pqr∈Tδ(R′)

|cpqr| +
∑

pq∈δ(R′)

|cpq| (8)

cijk + cij + cik + cjk

≤ −
∑

pqr∈Tδ(ijk)∩T−

pqr ̸∈T{ij,ik,jk}

|cpqr| −
∑

pq∈δ(ijk)∩P−

|cpq| (9)

In the proof, we start by fixing x ∈ XS . Then, we distin-
guish four cases. Firstly, if xik = 1, we are good. Secondly,
if xik = xij = 0 and xjk = 1 and (7) is satisfied, we show
σik ◦ σδ(R) to be improving. Thirdly, if xik = xjk = 0 and
xij = 1 and (8) is satisfied, we prove that σik ◦σδ(R′) is im-
proving. Lastly, if xij = xjk = xik = 0 and (9) is satisfied,
we apply σijk ◦ σδ(ijk) and show that it is improving.

Next, we discuss a generalization of Theorem 2 of Lange
et al. (2019) in the context of instances on complete graphs
with a cubic objective function. To this end, let SH ⊆ S.
We define c′ ∈ RISH by the equations written below.

c′∅ = 1
2

∑
pqr∈

(
SH

3
)cpqr +

∑
pq∈

(
SH

2
)cpq (10)

∀pq ∈
(
SH

2
)

: c′pq = −cpq + 1
2

∑
r∈SH
r ̸=p,q

cpqr (11)

∀pqr ∈
(
SH

3
)

: c′pqr = −2cpqr (12)

Proposition 3.7 below studies subsets SH ⊆ S
such that 1(SH

2
) is a trivial solution to the problem

maxx∈XSH
ϕc′(x), i.e. maxx∈XSH

ϕc′(x) = 0. Here, we
compare the negative parts of the costs involved in cutting
SH from its complement with the total cost of any inner cut
of SH . See also Figure 2a.

Proposition 3.7. Let S ̸= ∅ and c ∈ RIS . Moreover, let
SH ⊆ S and ij ∈

(
SH

2
)
. We define c′ ∈ RISH as in (10),
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(11), (12). If maxx∈XSH
ϕc′(x) = 0 and for all R ⊆ SH

with i ∈ R and j ∈ SH \R we have∑
pq∈δ(SH)∩P−

cpq +
∑

pqr∈Tδ(SH )∩T−

cpqr (13)

≥
∑

pq∈δ(R,SH\R)

cpq +
∑

pqr∈Tδ(R,SH\R)∩
(
SH

3
) cpqr ,

there is an optimal solution x∗ to SP3S,c such that x∗
ij = 1.

In the proof, we apply σ = σSH ◦ σδ(SH) to any x ∈
XS with xij = 0 and show that σ is improving under the
assumptions of Proposition 3.7.

We are unaware of an efficient method for finding subsets
SH ⊆ S and R ⊆ S for which (13) are satisfied. For subsets
SH with |SH | ∈ {2, 3}, two corollaries of Proposition 3.7
provide efficiently-verifiable partial optimality conditions:

Corollary 3.8. Let S ̸= ∅, c ∈ RIS and ij ∈
(
S
2
)
. If

cij ≤
∑

pq∈δ(ij)∩P−

cpq +
∑

pqr∈Tδ(ij)∩T−

cpqr

there is an optimal solution x∗ to SP3S,c such that x∗
ij = 1.

Corollary 3.9. Let S ̸= ∅, c ∈ RIS and ijk ∈
(
S
3
)
. If

cij + cik ≤ 0 , cij + cjk ≤ 0 , cik + cjk ≤ 0

cij + cik + cjk ≤ 0 , cij + cik + cjk + 1
2
cijk ≤ 0

cij + cik + cijk ≤
∑

pq∈δ(ijk)∩P−

cpq +
∑

pqr∈Tδ(ijk)∩T−

cpqr

cjk + cik + cijk ≤
∑

pq∈δ(ijk)∩P−

cpq +
∑

pqr∈Tδ(ijk)∩T−

cpqr

there is an optimal solution x∗ to SP3S,c such that x∗
ik = 1.

We now present the last partial optimality condition of this
article. It observes that separating a whole subset R from
the rest and then joining everything in it does not worsen
the objective value if, for every pair ij ∈

(
R
2
)

and every
partition of S that separates i from j, the sum of costs of
separated pairs and triples within R is at most the sum of
costs of joined pairs and triples cut by R. See also Figure 2b.

Proposition 3.10. Let S ̸= ∅ and c ∈ RIS . Moreover, let
R ⊆ S. If for every ij ∈

(
R
2
)

we have

max
x∈XS
xij=0

{ ∑
pqr∈

(
R
3
)cpqr(1 − xpqxprxqr) +

∑
pq∈

(
R
2
) cpq(1 − xpq)

}

≤ min
x∈XS
xij=0

{ ∑
pqr∈Tδ(R)

cpqrxpqxprxqr +
∑

pq∈δ(R)

cpqxpq

}
(14)

then there is an optimal solution x∗ to SP3S,c such that
∀ij ∈

(
R
2
)

: x∗
ij = 1.

In the proof, we apply the identity to feasible vectors that
satisfy our claim, and apply σ = σR ◦ σδ(R) otherwise.

The above condition has been established independently of
prior work on the correlation clustering problem. We are
unaware of an efficient method for checking (14) for arbi-
trary subsets R ⊆ S and costs c ∈ RIS . Yet, Corollary 3.11
below describes one setting in which a suitable subset can
be searched for heuristically, in polynomial time. Specifi-
cally, the objective function c ∈ RIS needs to be such that
cpq ≤ 0 for all pq ∈

(
R
2
)

and such that cpqr ≤ 0 for all
pqr ∈

(
R
3
)
. An intuition for this corollary is this: For a

moment, let us consider a fixed subset R and all bipartitions
of R. Let us recall that the costs of all the triples and pairs
inside of R are non-positive. If the worst possible cost of
joining these two parts of R back together is still less than
or equal to the reward obtained by joining R with the rest,
then we can safely start by putting all the objects of R in the
same set and decide independently whether or not to join R
with other sets.

Corollary 3.11. Let S ̸= ∅ and c ∈ RIS . Moreover, let
R ⊆ S. If

cpq ≤ 0 ∀pq ∈
(
R
2
)

(15)

cpqr ≤ 0 ∀pqr ∈
(
R
3
)

(16)

and

max
R′⊂R
R′ ̸=∅

{ ∑
pqr∈Tδ(R′)∩

(
R
3
) cpqr +

∑
pq∈δ(R′,R\R′)

cpq
}

≤
∑

pqr∈Tδ(R)∩T−

cpqr +
∑

pq∈δ(R)∩P−

cpq , (17)

then there is an optimal solution x∗ to SP3S,c such that
x∗
ij = 1, ∀ij ∈

(
R
2
)
.

The previous corollary follows from the following two facts.
Let (15) and (16) be satisfied. First of all, for any ij ∈

(
R
2
)
,

we have that the left-hand side of (14) is equal to

max
R′⊊R
i∈R′

j ̸∈R′

∑
pqr∈Tδ(R′)∩

(
R
3
) cpqr +

∑
pq∈δ(R′,R\R′)

cpq .

I.e., the maximizer is given by a feasible x ∈ XS whose
restriction to

(
R
2
)

corresponds to a partition R of R into two
subsets. To see this, note for any ij ∈

(
R
2
)

that, instead
of maximizing the left-hand side of (14) over x ∈ XS

such that xij = 0, we can equivalently maximize over all
x′ ∈ XR such that x′

ij = 0. Now, let us assume there exists
ij ∈

(
R
2
)

such that the maximizer is given by a feasible
x′ ∈ XR corresponding to a partition R′ of R into more
than two subsets. Without loss of generality, let R1, R2 ∈
R′ such that i ∈ R1, j ∈ R2. Then, the vector x′′ ∈ XR
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corresponding to the partition R′′ =
{
R1,

⋃
R∈R′\{R1} R

}
has objective value at least the objective value of x′. This
follows from the facts that all the costs are non-positive and
that R′ is a refinement of R′′. Secondly, by using the trivial
lower bound of the right-hand side of (14), we have that it
is at least

∑
pqr∈Tδ(R)∩T− cpqr +

∑
pqr∈δ(R)∩P− cpq .

4. Efficient Testing of Partial Optimality
Next, we describe algorithms for testing all the partial op-
timality conditions introduced above. This includes exact
algorithms and heuristics, and we discuss their runtimes.
We start by examining Proposition 3.1. Algorithm 1 termi-
nates in O(|S|3) time and finds a subset R ⊆ S that satisfies
(1)–(2). Note that (1)–(2) hold in particular for the trivial
subset R = S. We formalize the correctness of Algorithm 1
in Proposition 4.1.

Proposition 4.1. Let S ̸= ∅, c ∈ RIS . Then, Algorithm 1
outputs a partition that contains a subset satisfying (1)–(2).
Moreover, if there exists a non-trivial R ⊆ S, namely R ̸=
∅, S, such that (1)–(2) are satisfied by R, then Algorithm 1
outputs a non-trivial partition.

Algorithm 1 Region Growing
1: Input: S ̸= ∅, c : IS → R
2: Initialize: R = {}, queue Q = S
3: repeat
4: p := Q.pop
5: R = {p}
6: Initialize noChange = true.
7: repeat
8: Set noChange = true
9: if ∃pq ∈ δ(R) : cpq < 0 then

10: R := R ∪ {p, q}
11: remove p, q from Q
12: set noChange = false
13: if ∃pqr ∈ Tδ(R) : cpqr < 0 then
14: R := R ∪ {p, q, r}
15: remove p, q, r from Q
16: set noChange = false
17: until noChange is true
18: Add R to R
19: until Q = ∅

Partial optimality according to Propositions 3.2–3.6 is condi-
tional to the existence of a pair ij ∈

(
S
2
)

or triple ijk ∈
(
S
3
)
,

together with a subset R ⊆ S, and in case of Proposition 3.6
a second subset R′ ⊆ S independent of R, such that specific
inequalities are satisfied, namely (3)–(9). For every triple,
we test (9) explicitly, in quadratic time. For every pair or
triple, we reduce the search for subsets R or R′ that satisfy
(3)–(8) with maximum margin to the min st-cut problem (in
Section 4.1). In order to test for partial optimality efficiently,

we solve the dual max st-flow problems by the implemen-
tation in the C++ library Boost (2022) of the push-relabel
algorithm of Goldberg & Tarjan (1988).

As mentioned already in Section 3.2, we are unaware of an
efficient method for finding subsets that satisfy the condi-
tions of Proposition 3.7 or 3.10. Regarding Proposition 3.7,
we resort to the special case of Corollary 3.8 that we test
for each pair in quadratic time, and to the special case of
Corollary 3.9 that we test for each triple in quadratic time.
Regarding Proposition 3.10, we employ the special case of
Corollary 3.11 and search heuristically for a witness R of
(17), as follows. In an outer loop, we iterate over all pairs
R = {i, j} with cij ≤ 0. For each of these initializations of
R, we add elements to R for which the costs of all pairs and
triples inside R is non-positive, greedily considering ones
for which the costs of newly considered pairs and triples is
minimal. Upon termination of this inner loop, we take R to
be a candidate. By construction of R, all coefficients on the
left-hand side of (17) are non-positive. By applying Propo-
sition 4.2 to the left-hand side of (17), this problem takes
the form of a min cut problem with non-negative capacities
that we solve exactly using the implementation in the C++
library Boost (2022) of the algorithm by Stoer & Wagner
(1997).

4.1. Reductions to Minimum Cut Problems

Here, we discuss how, for a given pair or triple, we reduce
the search for subsets R,R′ ⊆ S that satisfy (3)–(8) max-
imally to the min st-cut problem. In any of these cases,
we have S ̸= ∅ and c ∈ RIS such that cpqr ≥ 0 for all
pqr ∈

(
S
3
)
, and cpq ≥ 0 for all pq ∈

(
S
2
)
. Moreover, we

have i ∈ S, a pair or triple {i} ∪ S0 ⊆ S and a problem of
the form

min
R⊆S :
i∈R,

j ̸∈R,∀j∈S0

∑
pqr∈Tδ(R)

cpqr +
∑

pq∈δ(R)

cpq . (18)

To begin with, we move costs of triples to costs of pairs:

Proposition 4.2. Let S ̸= ∅, c ∈ RIS and R ⊆ S. Then∑
pqr∈Tδ(R)

cpqr = 1
2

∑
pq∈δ(R)

∑
r∈S\{p,q}

cpqr .

Consequently, (18) is equivalent to

min
R⊆S :
i∈R,

j ̸∈R,∀j∈S0

∑
pq∈δ(R)

c′pq, (19)

where c′pq = cpq + 1
2
∑

r∈S\{p,q} cpqr for all pq ∈
(
S
2
)
.

Next, we reduce (19) to a quadratic unconstrained binary
optimization problem, by applying the following proposi-
tion:

6
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Proposition 4.3. Let S ̸= ∅ and c ∈ R
(
S
2
)
. Moreover,

let i ∈ S and S0 ⊆ S \ {i}. Furthermore, let S′ = S \
(S0 ∪ {i}) and c′ :

(
S′

2
)
∪ S′ ∪ {∅} → R such that

c′p =
∑

q∈S\{p}

cpq − 2cpi ∀p ∈ S′

c′pq = −2cpq ∀pq ∈
(
S′

2
)

c′∅ =
∑

q∈S\{i}

cqi .

Then:

min
R⊆S :
i∈R,

j ̸∈R,∀j∈S0

∑
pq∈δ(R)

cpq

= min
y∈{0,1}S′

∑
pq∈

(
S′

2
) c′pqypyq +

∑
p∈S′

c′pyp + c′∅ . (20)

For the instances of (20) that arise from testing (3)–(8), we
have ∀pq ∈

(
S′

2
)

: c′pq ≤ 0. Thus, the right-hand side of (20)
is submodular and can be minimized in strongly polynomial
time (Boros et al., 2008; Kolmogorov & Zabin, 2004). For
completeness, we describe the reduction to an instance of
min st-cut in detail in Appendix A.2.

5. Combining Partial Optimality Conditions
Next, we discuss how we apply partial optimality conditions
iteratively and why this requires special attention. Let S ̸= ∅
and c ∈ RIS . Furthermore, let Q1, Q2 ⊆ XS . If there is an
optimal solution x∗

1 ∈ XS to SP3S,c such that x∗
1 ∈ Q1, and

an optimal solution x∗
2 ∈ XS to SP3S,c such that x∗

2 ∈ Q2,
then there is not necessarily an optimal solution x∗ ∈ XS

to SP3S,c such that x∗ ∈ Q1 ∩Q2. For example, consider
S = {1, 2, 3} and c ∈ RIS such that c123 = 5, c12 =
c13 = c23 = −2 and c∅ = 0. Then, minx∈XS ϕc(x) = −2.
Furthermore, let Q1 = {x ∈ XS | x12 = 1} and Q2 =
{x ∈ XS | x13 = 1}. It follows that Q1 ∩ Q2 = {x ∈
XS | x12 = 1, x13 = 1} = {(1, 1, 1)}. The set of optimal
solutions is the set of all x ∈ XS for which there is exactly
one pq ∈

(
S
2
)

with xpq = 1. Thus, the feasible x′ ∈ XS

such that x′
12 = x′

13 = x′
23 = 1 is not optimal.

5.1. Cut Conditions

For any T0 ⊆
(
S
3
)
, P0 ⊆

(
S
2
)
, we define XS |T0,P0 ⊆

XS such that x ∈ XS |T0,P0 if and only if ∀pqr ∈
T0 : xpqxprxqr = 0 and ∀pq ∈ P0 : xpq = 0. For any
R ⊆ S, we have that σδ(R) restricted to XS |T0,P0 has im-
age XS |T0,P0 . All our cut results use either σδ(R) for some
R ⊆ S or the identity. Furthermore, the cut conditions
do not change when applied to the restricted set XS |T0,P0 .

Therefore, we can apply all our cut conditions simultane-
ously. On the contrary, σR for some R ⊆ S restricted to
XS |T0,P0 does not necessarily have image XS |T0,P0 , e.g.
for the map σS we have σS(XS |T0,P0) = {1S}. Therefore,
we cannot expect partial optimality to hold when applying
conditions together that include at least one join condition.

5.2. Join Conditions

Let us assume the existence of an optimal solution x∗ to
SP3S,c such that x∗

ij = 1 for some ij ∈
(
S
2
)
. We define

XS |xij=1 = {x ∈ XS | xij = 1}. Then, we have

min
x∈XS

ϕc(x) = min
x∈XS |xij=1

ϕc(x) . (21)

Let S′ = S \ {j}. Now, we relate feasible vectors of
XS |xij=1 to feasible vectors of XS′ . We observe that for
any x ∈ XS |xij=1 we have ∀p ∈ S \{i, j} : xpi = xpj . We
define φij : XS |xij=1 → XS′ as

φij(x)pi = xpi ∀x ∈ XS |xij=1 ∀p ∈ S′ \ {i}

φij(x)pq = xpq ∀x ∈ XS |xij=1 ∀pq ∈
(
S′\{i}

2
)
.

It is easy to see that φij is bijective. Proposition 5.1 below
shows that solving the right-hand side of (21) is equivalent
to solving a smaller instance of the original problem.

Proposition 5.1. Let S ̸= ∅ and c ∈ RIS . Moreover, let
ij ∈

(
S
2
)

and S′ = S \ {j}, and let c′ ∈ RIS′ such that

c′pqr = cpqr ∀pqr ∈
(
S′\{i}

3
)

c′pqi = cpqi + cpqj ∀pq ∈
(
S′\{i}

2
)

c′pq = cpq ∀pq ∈
(
S′\{i}

2
)

c′pi = cpi + cpj + cpij ∀p ∈ S′ \ {i}
c′∅ = c0 + cij .

Furthermore, let φij : XS |xij=1 → XS′ be the map that re-
lates feasible vectors of XS |xij=1 to feasible vectors of XS′ .
Then, we have minx∈XS |xij=1 ϕc(x) = minx∈XS′ ϕc′(x).
Moreover, if x∗ ∈ argminx∈XS |xij=1

ϕc(x), then
φij(x∗) ∈ argminx∈XS′ ϕc′(x).

5.3. Mixing Cut and Join Conditions

Here, we describe how we apply the partial optimality prop-
erties recursively. As soon as a condition leads to a smaller
instance, we start the procedure again on the smaller set
(in case of a join) or sets (in case of a cut). Firstly, we
apply Proposition 3.1, which leaves us with independent
sub-problems. Secondly, we apply our join conditions until
we find a pair ij ∈

(
S
2
)

or triplet ijk ∈
(
S
3
)

to join, starting
from Corollary 3.11 and then moving on to Propositions 3.4
and 3.6, Corollaries 3.8 and 3.9 and Proposition 3.5, in
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Figure 3. We report above the percentage of fixed variables and
triples after applying all conditions jointly, as described in 5.3, as
well as the corresponding runtimes. (a) and (b) show these for the
partition dataset with respect to the parameters α and β and for 48
elements. (c) and (d) show these for the geometric dataset with
respect to the parameter σ and for 45 points.

this order. Thirdly, we apply the remaining cut conditions,
which can be applied jointly, as we have seen in Section 5.1.
The order in which we apply the join conditions is arbitrary
and possibly sub-optimal.

6. Numerical Experiments
Next, we examine the effectiveness of the algorithms empir-
ically, on two datasets. For both, we report the percentage
of fixed variables and triples, as well as the runtime. More
specifically, we report the median as well as lower and upper
quartile over 30 instances. We apply all partial optimality
conditions jointly, as described in Section 5.3, and we also
evaluate the effectiveness of each condition separately. All
algorithms are implemented in C++ and run on one core of
an Intel Core i5-6600 equipped with 16 GB of RAM.

Partition Dataset. We define one dataset with respect to
a partition R = {R1, R2, R3, R4} of |S| = 8n elements,
with |R1| = n, |R2| = |R3| = 2n and |R4| = 3n, where
n ∈ N is between 1 and 13. See also Figure 1a. With respect
to a parameter α ∈ [0, 1], we draw the costs of pairs and
triplets from two Gaussian distributions with means −1 +α
and 1 − α, depending on whether their elements belong to
the same set or distinct sets in the partition R, and with
standard deviation σ = σ0 + α(σ1 − σ0), with σ0 = 0.1
and σ1 = 0.4. With respect to a parameter β ∈ [0, 1], we
multiply the costs of pairs by 1 − β, and the costs of triples
by β. The higher α is, the harder the problem becomes. The
higher β is, the more important the costs of triples become.
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Figure 4. We report above the percentage of fixed variables and
triples after applying all conditions jointly, as described in Sec-
tion 5.3, as well as the corresponding runtimes. (a) and (b) show
these for the partition dataset with respect to the number of el-
ements and β = 0.5. (c) and (d) show these for the geometric
dataset with respect to the number of elements.

For this dataset, the percentage of pairs and triples fixed by
applying all conditions jointly, as described in Section 5.3,
is shown in Figure 3a. It can be seen from this figure that
the fraction of fixed variables decreases with increasing α.
As α rises, the runtime increases but remains below one
minute for all the instances; see Figure 3b. Varying β does
not affect the overall trend. However, the fraction of fixed
variables decreases as soon as triple costs are introduced.
The percentage of pairs and triples fixed by applying Propo-
sitions 3.1 to 3.3 and Corollary 3.11 separately is shown in
Figure 5. The other partial optimality conditions do not fix
any variables of these instances. While all cut conditions
settle the value of some variables, this is not the case for the
join statements. In fact, only one join condition provides
partial optimality in this case: Corollary 3.11. Interestingly,
this is the one statement that fixes the most variables for
almost all instances of this dataset. For β = 0.5 and with
respect the instance size, the runtime and percentage of
variables fixed by applying all conditions jointly are shown
in Figure 4a and b. It can be seen that, as the size of the
instance increases, the number of fixed variables decreases,
while the runtime increases. For α ∈ {0.4, 0.5, 0.65}, the
runtime roughly converges to O(n5.6).

Geometric Dataset. Next, we consider a dataset of in-
stances that arise from the geometric problem of finding
equilateral triangles in a noisy point cloud; see Figure 1b.
For this, we fix three equilateral triangles in the plane. For
each vertex a⃗ of a triangle, we draw a number of points from
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Figure 5. For the partition dataset with 48 elements, we report
above the percentage of fixed pairs and triples with respect to the
parameters α and β when applying Propositions 3.1 to 3.3, (a)–(c),
and Corollary 3.11, (d), separateley.

a Gaussian distribution with mean a⃗ and covariance matrix
σ2
1. For any three points a⃗p, a⃗q, a⃗r, let φp, φq, φr be the

interior angles of the triangle spanned by these points, and
let dmax

pqr and dmin
pqr be the maximum and minimum length of

edges in this triangle. If the three points are mutually close,
dmax
pqr ≤ 4σ, we reward solutions in which these belong to

the same set by letting cpqr = −1+ dmax
pqr

4σ . If only two points
are close, dmax

pqr > 4σ and dmin
pqr ≤ 4σ, we let cpqr = 0. If

the three points are mutually far apart, dmin
pqr > 4σ, we cal-

culate the sum of the deviations of the inner angles from
π
3 , δpqr =

∑
i |φi − π

3 |. If this quantity is below π
6 , we let

cpqr = −1 + 6δpqr
π . Otherwise, cpqr = 6

7
δpqr−π

6
π .

For this dataset, the percentage of pairs and triples fixed by
applying all conditions jointly, as described in Section 5.3, is
reported in Figure 3c. Here, the hardness of the instances is
embodied by σ. The number of points is 45. As σ increases,
the percentage of fixed variables decreases. The runtime in-
creases, as can be seen from Figure 3d, and stays below one
minute for all these instances. The percentage of pairs and
triples fixed by applying Propositions 3.1 to 3.3 and Corol-
lary 3.11 separately is shown in Figure 6. Also here, all
the cut conditions are effective whereas the only useful join
condition is Corollary 3.11. Moreover, Corollary 3.11 is
the most effective condition overall. The runtime and per-
centage of variables fixed by applying all conditions jointly
are shown with respect the size of the instance in Figure 4c
and d. As the size increases, the number of fixed variables
decreases while the runtime increases. For σ ∈ {0.06, 0.1},
the runtime roughly converges to O(n5.8).
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Figure 6. For the geometric dataset with 45 points, we report above
the percentage of fixed variables and triples with respect to the
parameter σ, when employing Propositions 3.1 to 3.3, (a)–(c), and
Corollary 3.11, (d), individually.

7. Conclusion
We establish partial optimality conditions for the cubic set
partition problem, which can be seen as the special case of
cubic correlation clustering for complete graphs. In particu-
lar, we generalize all such conditions known for correlation
clustering with a linear objective function to arbitrary cubic
objective functions. In addition, we establish new partial op-
timality conditions. Furthermore, we define and implement
exact algorithms and heuristics for testing all established
conditions efficiently. Lastly, we quantify the effect of these
algorithms on two datasets. Regarding these numerical ex-
periments, we note that all cut conditions are effective on
the tested datasets, whereas join conditions pose a bigger
challenge. In fact, Proposition 3.10, in its simplified form
of Corollary 3.11, is the only join property that is beneficial
in our numerical experiments. Yet, in almost all cases, it is
the one statement that fixes the most variables (Figures 5
and 6). We remark that Corollary 3.11 is one of the newly
proposed conditions. Perspectives for future work include
the exploitation of sparsity of non-zero cost coefficients,
as well as applications to subspace clustering and object
recognition.
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A. Appendices
A.1. Proofs

Proof of Proposition 2.1. For each partition Π of the set S and every distinct p, q ∈ S, let xpq = 1 if and only if p and q
are in the same set of Π. This establishes a one-to-one relation between the set PS of all partitions of S and the set XS

(Grötschel & Wakabayashi, 1989). Under this bijection, the objective functions of Definition 1.1 and Proposition 2.1 are
equivalent.

Proof of Proposition 2.3. Let x∗ be an optimal solution to minx∈X ϕ(x) such that x∗ ̸∈ Q. Then σ(x∗) is also an optimal
solution to minx∈X ϕ(x) and σ(x∗) ∈ Q.

Proof of Proposition 3.1. We define σ : XS → XS such that for all x ∈ XS we have that

σ(x) :=

{
x if xij = 0 ∀ij ∈ δ(R)
σδ(R)(x) otherwise

.

For any x ∈ XS , let x′ = σ(x). First, the map σ is such that x′
ij = 0 for all ij ∈ δ(R). Second, for any x ∈ XS such that

there exists ij ∈ δ(R) such that xij = 1, we have that

ϕc(x′) − ϕc(x) = −
∑

pqr∈Tδ(R)

cpqrxpqxprxqr −
∑

pq∈δ(R)

cpqxpq ≤ −
∑

pqr∈Tδ(R)∩T−

cpqr −
∑

pq∈δ(R)∩P−

cpq = 0.

The last equality is due to the fact that those sums vanish by assumptions (1) and (2). Applying Corollary 2.4 concludes the
proof.

Proof of Proposition 3.2. Let σ : XS → XS be constructed as

σ(x) :=

{
x if xij = 0
σδ(R)(x) otherwise

.

For any x ∈ XS , let x′ = σ(x). First of all, the map σ is such that x′
ij = 0 for all x ∈ XS . Next, for any x ∈ XS such that

xij = 1 we have that

ϕc(x′) − ϕc(x) = −cij −
∑

pqr∈Tδ(R)

cpqrxpqxprxqr −
∑

pq∈δ(R)
pq ̸=ij

cpqxpq

≤ −cij +
∑

pqr∈Tδ(R)

c−pqr +
∑

pq∈δ(R)
pq ̸=ij

c−pq = −c+
ij +

∑
pqr∈Tδ(R)

c−pqr +
∑

pq∈δ(R)

c−pq ≤ 0.

The last inequality follows from assumption (3). We conclude the proof by applying Corollary 2.4.

Proof of Proposition 3.3. We define σ : XS → XS as

σ(x) :=

{
x if xijxikxjk = 0
σδ(R)(x) otherwise

.

For any x ∈ XS , we denote σ(x) by x′. We observe that x′
ijx

′
ikx

′
jk = 0 for all x ∈ XS . Second, for any x ∈ XS such that

xijxikxjk = 1 it holds that

ϕc(x′) − ϕc(x) = −
∑

pqr∈Tδ(R)

cpqrxpqxprxqr −
∑

pq∈δ(R)

cpqxpq ≤ −cijk − cij − cik +
∑

pqr∈Tδ(R)
pqr ̸=ijk

c−pqr +
∑

pq∈δ(R)
pq ̸∈{ij,ik}

c−pq

= −c+
ijk − c+

ij − c+
ik +

∑
pqr∈Tδ(R)

c−pqr +
∑

pq∈δ(R)

c−pq ≤ 0.

The last inequality holds because of assumption (4). Applying Proposition 2.3 with Q = {x ∈ XS | xijxikxjk = 0}
concludes the proof.
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Proof of Proposition 3.4. Let σ : XS → XS be such that for all x ∈ XS it holds that

σ(x) :=

{
x if xij = 1(
σij ◦ σδ(R)

)
(x) otherwise

.

For any x ∈ XS , let x′ = σ(x). Firstly, the map σ is such that x′
ij = 1 for all x ∈ XS . We now show that σ is improving.

In particular, let x ∈ XS such that xij = 0. We observe that x′
pq = xpq for all pq ̸∈ δ(R). Therefore,

ϕc(x′) − ϕ(x) =
∑

pqr∈Tδ(R)

cpqr
(
x′
pqx

′
prx

′
qr − xpqxprxqr

)
+

∑
pq∈δ(R)

cpq
(
x′
pq − xpq

)
=

∑
pqr∈Tδ(R)\T{ij}

cpqr
(
x′
pqx

′
prx

′
qr − xpqxprxqr

)
+

∑
pqr∈T{ij}

cpqrx
′
pqx

′
prx

′
qr + cij

+
∑

pq∈δ(R)
pq ̸=ij

cpq
(
x′
pq − xpq

)
≤

∑
pqr∈Tδ(R)\T{ij}

|cpqr| +
∑

pqr∈T{ij}

c+
pqr + cij +

∑
pq∈δ(R)
pq ̸=ij

|cpq|

=
∑

pqr∈Tδ(R)

|cpqr| −
∑

pqr∈T{ij}

c−pqr − 2c−ij +
∑

pq∈δ(R)

|cpq| ≤ 0.

We remark that the last inequality is due to assumption (5).

Proof of Proposition 3.5. We construct σ : XS → XS as follows

σ(x) :=

{
x if xijxikxjk = 1(
σijk ◦ σδ(R)

)
(x) otherwise

.

For any x ∈ XS , let x′ = σ(x). First, the map σ is such that x′
ijx

′
ikx

′
jk = 1 for all x ∈ XS . Note that, for any x ∈ XS

such that xijxikxjk = 0, we have that x′
pq ≥ xpq for all pq ̸∈ δ(R). It follows that

ϕc(x′) − ϕ(x) =
∑

pqr∈Tδ(R)
pqr ̸=ijk

cpqr(x′
pqx

′
prx

′
qr − xpqxprxqr) + cijk +

∑
pqr ̸∈Tδ(R)

cpqr(x′
pqx

′
prx

′
qr − xpqxprxqr)

+
∑

pq∈{ij,ik,jk}

cpq(1 − xpq) +
∑

pq∈δ(R)
pq ̸∈{ij,ik}

cpq(x′
pq − xpq) +

∑
pq ̸∈δ(R)∪{jk}

cpq(x′
pq − xpq)

≤ cijk + max
x∈Xijk

xijxikxjk=0

∑
pq∈

(
ijk
2
) cpq(1 − xpq) +

∑
pqr∈Tδ(R)
pqr ̸=ijk

|cpqr| +
∑

pqr∈T+

pqr/∈Tδ(R)

cpqr

+
∑

pq∈δ(R)
pq/∈{ij,ik}

|cpq| +
∑

pq∈P+

pq/∈(δ(R)∪{jk})

cpq

= cijk + max
x∈Xijk

xijxikxjk=0

∑
pq∈

(
ijk
2
) cpq(1 − xpq) +

∑
pqr∈T+∪Tδ(R)

pqr ̸=ijk

|cpqr| +
∑

pq∈P+∪δ(R)
pq ̸∈{ij,ik,jk}

|cpq|

= −2c−ijk − 2c−ij − 2c−ik − c−jk − min
x∈Xijk

xijxikxjk=0

∑
pq∈

(
ijk
2
) cpqxpq

+
∑

pqr∈Tδ(R)

c−pqr +
∑

pqr∈
(
S
3
) c+

pqr +
∑

pq∈
(
S
2
) c+

pq +
∑

pq∈δ(R)

c−pq ≤ 0.

Assumption (6) provides the last inequality. We arrive at the thesis by applying Proposition 2.3 with Q = {x ∈ XS |
xijxikxjk = 1}.
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Proof of Proposition 3.6. Let σ : XS → XS be defined as

σ(x) :=


x if xik = 1
(σik ◦ σδ(R))(x) if xik = xij = 0, xjk = 1
(σik ◦ σδ(R′))(x) if xik = xjk = 0, xij = 1
(σijk ◦ σδ(ijk))(x) if xik = xij = xjk = 0

.

We use the notation x′ = σ(x) for all x ∈ X . We note that the map σ is such that x′
ik = 1 for all x ∈ XS . Second, for any

x ∈ XS such that xik = xij = 0 and xjk = 1, the map σik ◦ σδ(R) is such that x′
ij = x′

ik = x′
jk = 1 and x′

pq = xpq for
any pq ̸∈ δ(R). It holds that

ϕc(x′) − ϕc(x) = cijk + cij + cik +
∑

pqr∈T{ij,ik}
pqr ̸=ijk

cpqrx
′
pqx

′
prx

′
qr

+
∑

pqr∈Tδ(R)
pqr/∈T{ij,ik}

cpqr
(
x′
pqx

′
prx

′
qr − xpqxprxqr

)
+

∑
pq∈δ(R)

pq ̸∈{ij,ik}

cpq(x′
pq − xpq)

≤ cijk + cij + cik +
∑

pqr∈T{ij,ik}∩T+

pqr ̸=ijk

cpqr +
∑

pqr∈Tδ(R)
pqr/∈T{ij,ik}

|cpqr| +
∑

pq∈δ(R)
pq ̸∈{ij,ik}

|cpq|

= −c−ijk − 2c−ij − 2c−ik +
∑

pqr∈T{ij,ik}

c+
pqr +

∑
pqr∈Tδ(R)

|cpqr| −
∑

pqr∈T{ij,ik}

|cpqr| +
∑

pq∈δ(R)

|cpq|

= −c−ijk − 2c−ij − 2c−ik −
∑

pqr∈T{ij,ik}

c−pqr +
∑

pqr∈Tδ(R)

|cpqr| +
∑

pq∈δ(R)

|cpq| ≤ 0.

The last inequality follows from assumption (7). Third, for any x ∈ XS such that xik = xjk = 0 and xij = 1,
the map σik ◦ σδ(R′) is improving by analogous arguments and assumption (8). Finally, for any x ∈ XS such that
xik = xjk = xij = 0, the map σijk ◦ σδ(ijk) is such that

(σijk ◦ σδ(ijk))pq =


0 if pq ∈ δ(ijk)
1 if pq ∈ {ij, ik, jk}
xpq otherwise

.

Therefore,

ϕc(x′) − ϕc(x) = cijk + cij + cik + cjk −
∑

pqr∈Tδ(ijk)\T{ij,ik,jk}

cpqrxpqxprxqr −
∑

pq∈δ(ijk)

cpqxpq

≤ cijk + cij + cik + cjk +
∑

pqr∈Tδ(ijk)∩T−

pqr ̸∈T{ij,ik,jk}

|cpqr| +
∑

pq∈δ(ijk)∩P−

|cpq| ≤ 0.

The last inequality is true thanks to to assumption (9). Applying Corollary 2.4 concludes the proof.

Proof of Proposition 3.7. First, we prove a lemma that establishes a relation which will be needed at the end of this proof.

Lemma A.1. Let S ̸= ∅ and c ∈ RIS . We define c′ ∈ RIS as in (10), (11), (12) for SH = S. Then for any partition R of S
it holds that

ϕc′(xR) = 1
2

∑
pqr∈

(
S
3

) cpqr ∏
uv∈

(
pqr

2

)(1 − xR
uv) +

∑
pqr∈

(
S
3

) cpqr ∑
uv∈

(
pqr

2

)xR
uv

∏
u′v′∈

(
pqr

2

)
u′v′ ̸=uv

(1 − xR
u′v′)

+
∑

pq∈
(
S
2

) cpq(1 − xR
pq) (22)

13
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= 1
2

∑
RR′R′′∈

(R
3

) ∑
pqr∈TRR′R′′

cpqr +
∑

RR′∈
(R

2

) ∑
pq∈δ(R,R′)

cpq +
∑

RR′∈
(R

2

)
 ∑

pqr∈TRRR′

cpqr +
∑

pqr∈TRR′R′

cpqr

 , (23)

where xR denotes the feasible vector corresponding to the partition R of S.

Proof Lemma A.1. We use the fact that for any partition R of S and any pqr ∈
(
S
3
)

we have that xR
pqx

R
qr = xR

pqx
R
pr =

xR
prx

R
qr = xR

pqx
R
prx

R
qr. Expanding the inner products and the inner sums leads to∏

uv∈
(
pqr

3
) (1 − xR

uv

)
= 1 − xR

pq − xR
pr − xR

qr + 2xR
pqx

R
prx

R
qr,

∑
uv∈

(
pqr

2
)xR

uv

∏
u′v′∈

(
pqr

2
)

u′v′ /∈{uv}

(1 − xR
u′v′) = xR

pq + xR
pr + xR

qr − 3xR
pqx

R
qrx

R
pr.

By plugging in and collecting terms we conclude the proof for equality (22). Equality (23) follows instead from the following
observations: ∏

ab∈
(
pqr

3
) (1 − xR

ab

)
= 1 ⇔ ∃ RR′R′′ ∈

(R
3
)

: pqr ∈ TRR′R′′ ,

∑
ab∈

(
pqr

2
)xR

ab

∏
a′b′∈

(
pqr

2
)
\{ab}

(1 − xR
a′b′) = 1 ⇔ ∃ RR′ ∈

(R
2
)

: (pqr ∈ TRRR′ ∨ pqr ∈ TRR′R′) ,

1 − xR
pq = 1 ⇔ ∃ RR′ ∈

(R
2
)

: pq ∈ δ(R,R′).

This concludes the proof. ⋄

We define σ : XS → XS as

σ(x) :=

{
x if xij = 1
(σSH ◦ σδ(SH))(x) otherwise

.

Let x′ = σ(x) for any x ∈ XS . It is easy to see that x′
ij = 1 for all x ∈ XS . Similarly to before, we show that σ is an

improving map. For any x ∈ XS such that xij = 1 we have that ϕc(x′) − ϕc(x) = 0 by definition of x′. Now, we consider
x ∈ XS such that xij = 0. Let PH =

(
SH

2
)

and TH =
(
SH

3
)
. We denote the restriction of x containing only components

corresponding to elements in PH by x|PH . Let R be the partition of S such that x = xR, and let RH be the induced
partition of SH such that x|PH = xRH . Since xij = 0, there exist R1, R2 ∈ RH such that i ∈ R1, j ∈ R2. We have that

x′
pq =


1 if pq ∈ PH

0 if pq ∈ δ(SH)
xpq otherwise

.

Therefore, it follows that

ϕc(x′) − ϕc(x) =
∑

pq∈PH

cpq(1 − xpq) +
∑

pqr∈TH

cpqr(1 − xpqxprxqr) −
∑

pq∈δ(SH )

cpqxpq −
∑

pqr∈Tδ(SH )

cpqrxpqxprxqr. (24)

In order to find an upper bound for the sums over PH and TH , we show that there exists a subset R ⊂ SH with i ∈ R and
j ∈ SH \R such that∑

pq∈PH

cpq (1 − xpq) +
∑

pqr∈TH

cpqr(1 − xpqxprxqr) ≤
∑

pq∈δ(R,SH\R)

cpq +
∑

pqr∈Tδ(R,VH\R)∩TH

cpqr. (25)
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For the sake of contradiction, we assume that there is no such R ⊂ SH . For any R′ ⊂ RH let RR′ =
⋃

P ′∈R′ P ′.
Furthermore we define t :

(RH

2
)
∪
(RH

3
)
→ R and p :

(RH

2
)
→ R as

tRR′R′′ =
∑

pqr∈TRR′R′′

cpqr, ∀RR′R′′ ∈
(RH

3
)

tRR′ =
∑

pqr∈TRRR′∪TRR′R′

cpqr, ∀RR′ ∈
(RH

2
)

pRR′ =
∑

pq∈δ(R,R′)

cpq, ∀RR′ ∈
(RH

2
)
.

Therefore, let R′ ⊂ RH with R1 ∈ R′ and R2 ̸∈ R′. We observe that this implies that i ∈ RR′ and j /∈ RR′ , since RH is
a partition of H . It holds that∑

pq∈PH

cpq (1 − xpq) +
∑

pqr∈TH

cpqr(1 − xpqxprxqr) >
∑

pq∈δ(RR′ ,SH\RR′ )

cpq +
∑

pqr∈Tδ(RR′ ,SH\RR′ )∩TH

cpqr. (26)

We evaluate the terms in (26) one-by-one, and express them as sums over elements in R′ and RH \ R′. First, we observe
that for any pq ∈ PH we have that xpq = 0 if and only if there exist RR′ ∈

(RH

2
)

such that pq ∈ δ(R,R′). Therefore,∑
pq∈PH

cpq (1 − xpq) =
∑

RR′∈
(RH

2
) pRR′ ,

whereas ∑
pq∈δ(RR′ ,SH\RR′ )

cpq =
∑

R∈R′

∑
R′∈RH\R′

pRR′ .

For the first sum we use the decomposition(RH

2
)

=
(R′

2
)
∪ {RR′ | R ∈ R′ ∧R′ ∈ RH \ R′} ∪

(RH\R′

2
)
, (27)

where the subsets are mutually disjoint. Consequently, it holds that∑
pq∈PH

cpq (1 − xpq) −
∑

pq∈δ(WR′ ,VH\WR′ )

cpq =
∑

RR′∈
(R′

2
) pRR′ +

∑
RR′∈

(RH\R′

2
) pRR′ . (28)

Second, for any pqr ∈ TH we have that xpqxprxqr = 0 if and only if there exist RR′ ∈
(RH

2
)

such that pqr ∈
TRRR′ ∪ TRR′R′ or there exist RR′R′′ ∈

(RH

3
)

such that pqr ∈ TRR′R′′ . Therefore,∑
pqr∈TH

cpqr (1 − xpqxprxqr) =
∑

RR′R′′∈
(RH

3
) tRR′R′′ +

∑
RR′∈

(RH

2
) tRR′ ,

whereas ∑
pqr∈Tδ(RR′ ,SH\RR′ )∩TH

cpqr =
∑

RR′∈
(R′

2
)

∑
R′′∈RH\R′

tRR′R′′ +
∑
R∈R′

∑
R′R′′∈

(RH\R′

2
) tRR′R′′

+
∑
R∈R′

∑
R′∈RH\R′

tRR′ .

For the first sum we use the decomposition(RH
3

)
=

(R′

3

)
∪
{
RR′R′′ | RR′ ∈

(R′

2

)
∧R′′ ∈ RH \ R′

}
∪
{
RR′R′′ | R ∈ R′ ∧R′R′′ ∈

(RH\R′

2

)}
∪
(RH\R′

3

)
, (29)

where again the subsets are mutually disjoint. By (27) and (29) , it follows that∑
pqr∈TH

cpqr (1 − xpqxprxqr) −
∑

pqr∈Tδ(RR′ ,SH\RR′ )∩TH

cpqr =
∑

RR′R′′∈
(R′

3
) tRR′R′′ +

∑
RR′R′′∈

(RH\R′

3
) tRR′R′′

15
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+
∑

RR′∈
(R′

2
) tRR′ +

∑
RR′∈

(RH\R′

2
) tRR′ . (30)

Combining (26), (28) and (30) yields

0 <
∑

pq∈PH

cpq(1 − xpq) +
∑

pqr∈TH

cpqr(1 − xpqxprxqr) −
∑

pq∈δ(RR′ ,SH\RR′ )

cpq −
∑

pqr∈Tδ(RR′ ,SH\RR′ )∩TH

cpqr

=
∑

RR′∈
(R′

2
) pRR′ +

∑
RR′∈

(RH\R′

2
) pRR′ +

∑
RR′R′′∈

(R′

3
) tRR′R′′ +

∑
RR′R′′∈

(RH\R′

3
) tRR′R′′

+
∑

RR′∈
(R′

2
) tRR′ +

∑
RR′∈

(RH\R′

2
) tRR′ =: SR′ .

Let k = |RH |, and SR′ the right-hand side of the last inequality. Recall that R1, R2 ∈ RH , R1 ∈ R′, and R2 /∈ R′. As
SR′ > 0, it follows that at least one of the sums in its definition must not be vacuous. Moreover, since its sums are indexed
by pairs or triplets of subsets all belonging either to R′ or to RH \ R′, we observe that there must exist at least another
subset of elements in RH different from R1 and R2. Hence, k ≥ 3. We calculate

S =
∑

R′⊆RH :
R1∈R′,R2 ̸∈R′

SR′ .

We need this in order to contradict maxx∈XSH
ϕc′(x) = 0. For any RR′ ∈

(RH

2
)
\ {R1R2}, there are exactly 2k−3 subsets

R′ ⊆ RH such that pRR′ or tRR′ occurs in SR′ and R1 ∈ R′, R2 ̸∈ R′. There is no R′ ⊆ RH such that pR1R2 or tR1R2

occurs in SR′ with R1 ∈ R′, R2 ̸∈ R′. For any RR′R′′ ∈
(RH

3
)
\ {R1R2R | R ∈ RH \ {R1, R2}}, there are exactly

⌊2k−4⌋ subsets R′ ⊆ RH such that tRR′R′′ occurs in SR′ and R1 ∈ R′, R2 ̸∈ R′. There is no R′ ⊆ RH such that tR1R2R

occurs in SR′ for any R ∈ RH \ {R1, R2} for which R1 ∈ R′, R2 ̸∈ R′. Therefore,

0 < S = 2k−3
∑

RR′∈
(RH

2
) pRR′ − 2k−3pR1R2 + ⌊2k−4⌋

∑
RR′R′′∈

(RH

3
) tRR′R′′ − ⌊2k−4⌋

∑
R∈RH

R ̸∈{R1,R2}

tR1R2R

+ 2k−3
∑

RR′∈
(RH

2
) tRR′ − 2k−3tR1R2

= 2k−3
∑

RR′∈
(R′′

2
) pRR′ + ⌊2k−4⌋

∑
RR′R′′∈

(R′′

3
) tRR′R′′ + 2k−3

∑
RR′∈

(R′′

2
) tRR′ = 2k−3ϕc′(xR′′

),

where R′′ = (RH \ {R1, R2}) ∪ {R1 ∪ R2} is the partition obtained by merging R1 and R2. The last equality follows
from Lemma A.1. That contradicts maxx∈XSH

ϕc′(x) = 0. Therefore, this implies that there exists a subset R ⊂ SH with
i ∈ R and j ∈ SH \R such that inequality (25) is fulfilled.

Let R ⊂ SH be a subset such that (25) holds. Therefore, we have that

ϕc(x′) − ϕc(x) (24)=
∑

pq∈PH

cpq(1 − xpq) +
∑

pqr∈TH

cpqr(1 − xpqxprxqr) −
∑

pq∈δ(SH)

cpqxpq

−
∑

pqr∈Tδ(SH )

cpqrxpqxprxqr

(25)
≤

∑
pq∈δ(R,SH\R)

cpq +
∑

pqr∈Tδ(R,SH\R)∩TH

cpqr −
∑

pq∈δ(SH)∩P−

cpq

−
∑

pqr∈Tδ(SH )∩T−

cpqr
(13)
≤ 0.

Consequently, the map p is improving. By applying Corollary 2.4 we conclude the proof.
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Proof of Proposition 3.10. We define σ : XS → XS such that

σ(x) :=

{
x if xij = 1, ∀ij ∈

(
R
2
)(

σR ◦ σδ(R)
)

(x) otherwise
.

Let x′ = σ(x), for every x ∈ XS . First, it holds that x′
ij = 1, for every ij ∈

(
R
2
)
. Second, we show that σ is an improving

map. Let x ∈ XS such that xij = 1, for all ij ∈
(
R
2
)
. In this case, we have that ϕc(x′) = ϕc(x) by definition of x′. Now,

let us consider the complementary case, i.e. let x ∈ XS such that there exists ij ∈
(
R
2
)

for which xij = 0. Then,

x′
pq =


1 if pq ∈

(
R
2
)

0 if pq ∈ δ(R)
xpq otherwise

.

Therefore, it follows that

ϕc(x′) − ϕc(x) =
∑

pq∈
(
R
2
) cpq(1 − xpq) −

∑
pq∈δ(R)

cpqxpq +
∑

pqr∈
(
R
3
) cpqr(1 − xpqxprxqr)

−
∑

pqr∈Tδ(R)

cpqrxpqxprxqr

≤ max
x∈XS
xij=0

{ ∑
pqr∈

(
R
2
) cpqr(1 − xpqxprxqr) +

∑
pq∈

(
R
2
) cpq(1 − xpq)

}

− min
x∈XS
xij=0

{ ∑
pqr∈Tδ(R)

cpqrxpqxprxqr +
∑

pq∈δ(R)

cpqxpq

} (14)
≤ 0.

This concludes the proof.

Proof of Proposition 4.1. We start by observing that Algorithm 1 always terminates. If it returns a nontrivial partition R,
then R contains a subset R that satisfies (1)–(2) by construction. Therefore, let us assume that the output of Algorithm 1
is the trivial partition R = {S}. If indeed there exists no nontrivial subset of S for which (1)–(2) hold, then Algorithm 1
is returning the correct output. Next, we consider the case in which there exists a nontrivial subset of S that satisfies the
assumptions of Proposition 3.1, but Algorithm 1 still returns the trivial partition. We prove that this cannot happen. Let
R ⊆ S be a nontrivial subset of S for which (1)–(2) are satisfied. Note that such a set must exist by the assumptions of
this case. Moreover we have that both R and S \ R are not empty. Two cases can arise at this point: Algorithm 1 starts
either from an element of R or from an item of S \ R. Let Algorithm 1 start sampling from R. The fact that R = {S}
implies that ∃pq ∈ δ(R) such that cpq < 0 or ∃pqr ∈ Tδ(R) such that cpqr < 0 by definition of Algorithm 1. However, this
is in contradiction with the assumption that R satisfies (1)–(2). Since the second scenario is symmetrical, we again reach a
contradiction by applying an analogous reasoning. Therefore, we have showed that if there exists a nontrivial subset of S
that fulfills (1)–(2), then Algorithm 1 finds such a subset.

Proof of Proposition 4.2. Let R ⊆ S. Observe that∑
pqr∈Tδ(R)

cpqr =
∑

pq∈
(
R
2
) ∑
r∈S\R

cpqr +
∑

pq∈
(
S\R

2
)∑r∈R

cpqr

= 1
2
∑
p∈R

∑
q∈R\{p}

∑
r∈S\R

cpqr + 1
2

∑
p∈S\R

∑
q∈S\(R∪{p})

∑
r∈R

cpqr

= 1
2
∑
p∈R

∑
q∈S\R

 ∑
r∈R\{p}

cpqr +
∑

r∈S\(R∪{q})

cpqr

 = 1
2

∑
pq∈δ(R)

∑
r∈S\{p,q}

cpqr.

17



Partial Optimality in Cubic Correlation Clustering

Proof of Proposition 4.3. Let R ⊆ S such that i ∈ R and j ̸∈ R, ∀j ∈ S0. We define y ∈ {0, 1}S such that y = 1R. Then,
we have that yi = 1 and yj = 0, ∀j ∈ S0. Moreover, it follows that∑

pq∈δ(R)

cpq =
∑

pq∈
(
S
2
) cpq (yp(1 − yq) + yq(1 − yp)) =

∑
pq∈

(
S
2
) cpq (yp + yq − 2ypyq)

= −2
∑

pq∈
(
S
2
) cpqypyq +

∑
p,q∈S
p ̸=q

cpqyp

= −2
∑

pq∈
(
S′

2
) cpqypyq − 2

∑
p∈S′

cpiyp +
∑
p∈S′

∑
q∈S\{p}

cpqyp +
∑

q∈S\{i}

cqi

= −2
∑

pq∈
(
S′

2
) cpqypyq +

∑
p∈S′

−2cpi +
∑

q∈S\{p}

cpq

 yp +
∑

q∈S\{i}

cqi

=
∑

pq∈
(
S′

2
) c′pqypyq +

∑
p∈S′

c′pyp + c′∅.

This concludes the proof.

Proof of Proposition 5.1. Let x ∈ XS |xij=1. We show that ϕc(x) = ϕc′(φij(x)). Let x′ = φij(x). We use the fact that
xpi = xpj , ∀p ∈ S \ {i, j}, and xij = 1. It follows that

ϕc′(x′) =
∑

pqr∈
(
S′

3

) c′pqrx′
pqx

′
prx

′
qr +

∑
pq∈

(
S
2

) c′pqx′
pq + c′∅

=
∑

pq∈
(
S\{i,j}

2

) c′pqix′
pix

′
qix

′
pq +

∑
pqr∈

(
S\{i,j}

3

) c′pqrx′
pqx

′
prx

′
qr +

∑
p∈S\{i,j}

c′pix
′
pi +

∑
pq∈

(
V \{i,j}

2

) c′pqx′
pq + c′∅

=
∑

pq∈
(
S\{i,j}

2

)(cpqi + cpqj)xpixqixpq +
∑

pqr∈
(
S\{i,j}

3

) cpqrxpqxprxqr +
∑

pq∈
(
S\{i,j}

2

) cpqxpq

+
∑

p∈S\{i,j}

(cpi + cpj + cpij)xpi + c′∅

=
∑

pq∈
(
S\{i,j}

2

) cpqixpixqixpq +
∑

pq∈
(
S\{i,j}

2

) cpqjxpjxqjxpq +
∑

pqr∈
(
S\{i,j}

3

) cpqrxpqxprxqr

+
∑
p∈V

cpijxijxpixpj +
∑

pq∈
(
S\{i,j}

2

) cpqxpq +
∑

p∈V \{i,j}

cpixpi +
∑

p∈S\{i,j}

cpjxpj + cijxij + c∅

=
∑

pqr∈
(
S
3

) cpqrxpqxprxqr +
∑
pq∈S

cpqxpq + c∅ = ϕc(x).

Therefore we have that
min

x∈XS |xij=1
ϕc(x) = min

x∈XS |xij=1
ϕc′(φij(x)) = min

x∈XS′
ϕc′(x).

This concludes the proof.

A.2. Reduction of QPBO to Min-st-Cut

Lemma A.2. Let S ̸= ∅ and c ∈ RS∪
(
S
2
)
. We define c′ ∈ RS∪

(
S
2
)

as c′p = cp + 1
2
∑

q∈S\{p} cpq, for every p ∈ S,

c′pq = − 1
2cpq , for every pq ∈

(
S
2
)
. Then, for any y ∈ {0, 1}V we have that∑

pq∈
(
S
2
) cpqypyq +

∑
p∈S

cpyp =
∑
p∈S

∑
q∈S\{p}

c′pqyp(1 − xq) +
∑
p∈S
c′p>0

c′pyp −
∑
p∈S
c′p<0

c′p(1 − yp) +
∑
p∈S
c′p<0

c′p.
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Proof. Let y ∈ {0, 1}S . We have that∑
pq∈

(
S
2
) cpqypyq +

∑
p∈S

cpyp = 1
2
∑
p∈S

∑
q∈S\{p}

cpqypyq +
∑
p∈V

cpyp

= −1
2
∑
p∈S

∑
q∈S\{p}

cpqyp(1 − yq) + 1
2
∑
p∈S

∑
q∈S\{p}

cpqyp +
∑
p∈S

cpyp

= −1
2
∑
p∈S

∑
q∈S\{p}

cpqyp(1 − yq) +
∑
p∈S

cp + 1
2

∑
q∈S\{p}

cpq

 yp

=
∑
p∈S

∑
q∈S\{p}

c′pqyp(1 − yq) +
∑
p∈V

c′pyp =
∑
p∈S

∑
q∈S\{p}

c′pqyp(1 − yq)

+
∑
p∈V
c′p>0

c′pyp −
∑
p∈S
c′p<0

c′p(1 − yp) +
∑
p∈S
c′p<0

c′p.

We therefore reach the thesis.

We reduce this problem to solving an instance of min-st-cut. If cpq ≤ 0, pq ∈
(
S
2
)
, and therefore c′pq ≥ 0, ∀pq ∈

(
S
2
)
, in

Lemma A.2 the resulting instance can be solved efficiently.

Proposition A.3. Let S ̸= ∅ and c ∈ RS∪
(
S
2
)

. We define ϕc : {0, 1}S → R such that for all y ∈ {0, 1}S it holds that

ϕc(y) =
∑
p∈S

∑
q∈S\{p}

cpqyp(1 − yq) +
∑
p∈S
cp>0

cpyp −
∑
p∈S
cp<0

cp(1 − yp).

Furthermore, we define S′ = S ∪ {s, t}, P ′ ⊂ S′ × S′ such that

(s, p) ∈ P ′ ⇔ cp < 0, ∀p ∈ S,

(p, t) ∈ P ′ ⇔ cp > 0, ∀p ∈ S,

(p, q) ∈ P ′ ∧ (q, p) ∈ P ′, ∀pq ∈
(
S
2
)
,

and c′ ∈ RP ′
such that

c′(s,p) = −cp, ∀(s, p) ∈ P ′,

c′(p,t) = cp, ∀(p, t) ∈ P ′,

c′(p,q) = c′(q,p) = cpq, ∀pq ∈
(
S
2
)
.

Moreover, we define the function φc′ : {0, 1}S′ → R such that for all y ∈ {0, 1}S′
it holds that

φc′(y) =
∑

(p,q)∈P ′

c′(p,q)yp(1 − yq).

Then we have that
min

x∈{0,1}S
ϕc(x) = min

y∈{0,1}S′

ys=1
yt=0

φc′(y).

Proof. First, the map χ : {0, 1}S → {y ∈ {0, 1}S′ | ys = 1 ∧ yt = 0} such that χ(y)s = 1, χ(y)t = 0 and χ(y)p = yp
for any p ∈ S is bijective. Second, for any y ∈ {0, 1}S it holds that

φc′(χ(y)) =
∑

(p,q)∈P ′

c′pqχ(y)p(1 − χ(y)q) =
∑
p∈S

∑
q∈S\{p}

c′(p,q)yp(1 − yq) +
∑
p∈S
cp>0

c′(p,t)yp +
∑
p∈S
cp<0

c′(s,p)(1 − yp)
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=
∑
p∈S

∑
q∈V \{p}

cpqyp(1 − yq) +
∑
p∈S
cp>0

cpyp −
∑
p∈S
cp<0

cp(1 − yp) = ϕc(y)

This concludes the proof.
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