
MODeL: Memory Optimizations for Deep Learning

Benoit, Steiner 1 Mostafa, Elhoushi 2 Jacob, Kahn 2 James, Hegarty 3

Abstract

The size of deep neural networks has grown expo-
nentially in recent years. Unfortunately, hardware
devices have not kept pace with the rapidly in-
creasing memory requirements. To cope with this,
researchers have proposed various techniques in-
cluding spilling, recomputation, reduced preci-
sion training, model pruning, and so on. However,
these approaches suffer from various limitations:
they can increase training time, affect model ac-
curacy, or require extensive manual modifications
to the neural networks.

We present MODeL, an algorithm that optimizes
the lifetime and memory location of the tensors
used to train neural networks. Our method auto-
matically reduces the memory usage of existing
neural networks without any of the drawbacks of
other techniques.

We formulate the problem as a joint integer linear
program (ILP). We present several techniques to
simplify the encoding of the problem, and enable
our approach to scale to the size of state-of-the-art
neural networks using an off-the-shelf ILP solver.
We experimentally demonstrate that MODeL only
takes seconds to allow the training of neural net-
works using 30% less memory on average.

MODeL is an open-source project available at
https://github.com/facebookresearch/model opt.

1. Introduction
Scale is a major force behind the accuracy improvements of
machine-learning-based solutions (Bubeck & Sellke, 2021),
and both the depth and width of deep neural networks
(DNN) are expanding exponentially (Sevilla et al., 2022)
(Figure 1). This inflation in size increases the memory

1Anthropic, San Francisco, USA 2Meta, FAIR, Menlo Park,
USA 3Meta, Reality Labs, Seattle, USA. Correspondence to:
Benoit Steiner <benoit@anthropic.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Parameter count (in millions)

2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022

100 1000 10000 100000 1000000

Figure 1. The number of deep neural network parameters has in-
creased by 100,000 fold over the last 10 years, starting to grow
exponentially around 2016. The x-axis is plotted on a log scale.

needed to store the weights of the neural network and the
intermediate results (e.g., activations and gradients) gener-
ated during the training process. Compounding the problem,
researchers are training neural networks on larger inputs,
such as high-resolution images (Dong et al., 2016; Tai et al.,
2017), video (Feichtenhofer et al., 2019), three dimensional
point-clouds (Chen et al., 2017), long natural language se-
quences (Vaswani et al., 2017; Child et al., 2019; Devlin
et al., 2018), and using larger batch sizes to increase effi-
ciency (Smith et al., 2018).

Unfortunately, due to the slowing of Moore’s law, the mem-
ory capacity of hardware has only increased linearly over the
last decade (Figure 2). Thus, the amount of memory avail-
able on the hardware used to train DNNs has not kept pace
with the needs of deep learning. Furthermore, features pow-
ered by machine learning, such as automatic speech recog-
nition (Paulik et al., 2021) or keyboard suggestions (Hard
et al., 2018), are being personalized by fine tuning models
on-device. This means that model training is increasingly be-
ing pushed to even more memory constrained edge devices
such as smartphones. As a result, memory is increasingly be-
coming a bottleneck that hinders progress, and researchers
frequently mention memory scarcity as a limiting factor that
impacts their work (Krizhevsky et al., 2012; He et al., 2016;

1

https://github.com/facebookresearch/model_opt

MODeL: Memory Optimizations for Deep Learning

Memory (GB)

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

0 20 40 60 80

Figure 2. The memory capacity of NVidia datacenter GPUs (in
gigabytes) has only increased tenfold over the last decade, which
has not kept pace with the rapidly increasing size of deep neural
networks. The x-axis is plotted on a linear scale.

Chen et al., 2015; Dai et al., 2019; Child et al., 2019).

Popular deep learning frameworks such as PyTorch (Paszke
et al., 2019) and TensorFlow (Abadi et al., 2016) do not fully
utilize the limited memory available. Similar to traditional
dynamic memory allocators such as tcmalloc (Google) and
jemalloc (Evans), these frameworks maintain a pool of free
blocks of memory at runtime. To serve memory requests,
they look for a large enough memory block in the mem-
ory pool, or allocate it from the physical memory if none
is available. This results in memory fragmentation when
free memory blocks do not exactly match the size of an
allocation request, which occurs frequently.

Furthermore, DNN frameworks do not optimize tensor life-
times. PyTorch (Paszke et al., 2019) executes operations in
the order in which they are defined in the program. Tensor-
Flow (Abadi et al., 2016) keeps a queue of operators that
are ready to run, and executes them on a first-come, first-
served basis. As a result, tensors can be allocated earlier
than required, or freed later than necessary, wasting valuable
memory.

Our method overcomes these two limitations of existing
deep learning frameworks. We model the computations per-
formed to train a deep neural network as a dataflow graph
of operations. We analyze this graph to find a topological
ordering of the nodes that adjusts the lifetime of the tensors
generated by these operations to minimize the peak amount
of memory that needs to be allocated (Figure 3). Further-
more, we find an optimal packing of these tensors, which

minimizes memory fragmentation (Figure 4). We encode
these two objectives as an integer linear program (ILP) that
can be solved quickly by commodity solvers, and present
MODeL (Memory Optimizations for Deep Learning), our
algorithm for memory-optimal training of neural networks.

In addition to significantly reducing memory usage, our so-
lution has several key strengths. First, it does not impact
the accuracy of the predictions of the neural networks. Sec-
ond, it requires no modification to the neural network or the
training procedure. Third, it doesn’t increase training time.
Fourth, it is orthogonal to and can be combined with other
memory reductions techniques, such as the ones listed in
section 2, to further reduce the memory needs of a neural
network.

Our work makes the following novel contributions:

• We formulate the problem of finding the lifetime and
memory location of tensors that minimizes the peak
memory required to train neural networks as a joint
integer linear program.

• We demonstrate how to leverage domain knowledge to
simplify the ILP formulation, which enables off-the-
shelf solvers to quickly reduce the memory usage of
large DNNs.

• We study empirically the practicality and effectiveness
of our solution on a wide variety of DNNs, which
achieves average memory savings exceeding 30% in a
median time of less than 7 seconds.

• We provide an open source implementation of MODeL
at https://github.com/facebookresearch/model opt.

2. Related Work
Various approaches, complementary to ours, have been pro-
posed to break the “memory wall” and train larger networks.
The first technique distributes the computation for a sin-
gle forward-backward iteration over several hardware de-
vices, thus making more memory available overall. How-
ever, this approach, known as model parallelism (Karakus
et al., 2021), significantly increases the financial cost of
training deep neural networks since it requires access to ad-
ditional expensive compute accelerators and fast networks.
Furthermore, partitioning a deep neural network efficiently
to balance communication and computation remains an open
problem still actively researched (Gholami et al., 2018; Jia
et al., 2018; Mirhoseini et al., 2018).

In parallel, the research community has developed numerous
solutions to reduce the memory footprint of neural networks:

• Novel neural network architectures reduce the number
of parameters needed to achieve a given level of accu-

2

https://github.com/facebookresearch/model_opt

MODeL: Memory Optimizations for Deep Learning

racy (Iandola et al., 2017; Tan & Le, 2019). Further-
more, automated search techniques known as neural
architecture search (Tan et al., 2019) have been pro-
posed to automatically design memory efficient models.
The main drawbacks of these methods are that they are
time consuming to deploy, and fail to match the result
quality of state of the art DNNs.

• Model compression methods (Blalock et al., 2020)
prune (Louizos et al., 2018; Frankle & Carbin, 2018;
Molchanov et al., 2019; Elkerdawy et al., 2022; He
et al., 2020) or share (Dehghani et al., 2019) weights to
improve the efficiency of the model parameterization.
However, the majority of these techniques require train-
ing the unpruned neural network first, and are therefore
most useful for inference.

• Training using reduced precision arithmetic on 16-bit
floating point or even quantized representations (Wang
et al., 2018; Zhu et al., 2020; Kalamkar et al., 2019) sig-
nificantly reduces memory (Fan et al., 2020; Lin et al.,
2016). However, these techniques can compromise the
accuracy of the neural networks, make training unsta-
ble, and require careful implementation to be deployed
successfully (NVidia; Lin & Talathi, 2016).

Several efforts have looked at the problem from a systems
perspective, and presented solutions to reduce pressure on
the memory subsystem. These techniques encompass:

• In-memory tensor compression, which can result
in minimal accuracy loss in many DNN applica-
tions (Chen et al., 2021; Jain et al., 2018). However,
this comes with a runtime penalty, since the data must
be compressed and uncompressed on the fly.

• Rematerialization, also known as checkpointing, dis-
cards activations in the forward pass to save memory,
and recomputes those values as needed when com-
puting the gradients. Numerous strategies to identify
which activations to discard have been proposed (Jain
et al., 2020; Zheng et al., 2020; Chen et al., 2016;
Griewank & Walther, 2000; Shah et al., 2021). While
effective at reducing memory usage, these techniques
add extra computations, which increases the training
time.

• Paging, aka spilling, consists of moving data between
a small but high bandwidth and low latency memory
pool, and a large but slow external memory. This has
been demonstrated to effectively offload the data stored
on a GPU device onto the host memory (Peng et al.,
2020; Hildebrand et al., 2020; Meng et al., 2017), but
again increases training time due to extra memory trans-
fers.

• More recently, combining several of these techniques
has been proposed to increase their effectiveness and
mitigate their drawbacks (Beaumont et al., 2021; Patil
et al., 2022) without fully eliminating them.

Additionally, some techniques developed primarily to in-
crease execution speed are also beneficial for memory:

• Operator fusion can reduce memory footprint by avoid-
ing the need to materialize large intermediate buffers
and keep them around for backpropagation (Niu et al.,
2021).

• Machine learning frameworks such as PyTorch (Paszke
et al., 2019) and TensorFlow (Abadi et al., 2016) allow
some of their operators to store the data they gener-
ate in one of their input tensors, thus avoiding the
need to allocate an output tensor. This is known as in-
place-update, and saves memory. However, users must
manually modify their neural networks to leverage this
capability, and it can lead to correctness issues if used
indiscriminately (Paszke et al., 2017).

Optimizing the location of tensors in memory to reduce
fragmentation, also known as the dynamic storage alloca-
tion problem, is NP-hard (Garey & Johnson., 1979). This
problem has been studied in the context of deep learning by
other researchers (Sekiyama et al., 2018) who proposed an
exact formulation to minimize the memory fragmentation
of deep neural networks. However, their approach scaled
poorly and only succeeded in optimizing two small neural
networks in inference mode. As a result, they ultimately
advocated for a heuristics based approach.

Improving the lifetime of tensors has also been studied be-
fore. Liberis et al. (Liberis & Lane, 2020) and Serenity (Ahn
et al., 2020) looked for a memory-optimal execution sched-
ule by enumerating the topological orders of the DNN graph
and calculating their peak memory usage. To speed things
up, they both proposed dynamic programming based op-
timizations to prune the number of orderings they needed
to consider. However, the complexity of their algorithms
remains prohibitive at O(|V | ∗ 2|V |) in both cases, and they
only managed to make them work for inference on tiny
graphs. Lin et al. (Lin et al., 2022) also mentioned reorder-
ing computations as a way to enable operator fusion and
reduce the peak memory footprint while training. Unfortu-
nately, they didn’t describe the algorithm they used to find a
suitable node ordering.

3. Background
3.1. Representing Neural Networks as Dataflow Graphs

Deep neural networks can be represented using dataflow
graphs, as pioneered by TensorFlow (Abadi et al., 2016).

3

MODeL: Memory Optimizations for Deep Learning

The nodes of the graph encode the computations to be per-
formed (e.g. matrix multiplications, convolutions, activation
functions), while the edges represent the data (aka tensor or
array) that is produced by an operation and transferred to
consumer nodes.

Due to the producer-consumer relation between connected
nodes, edges are oriented. Each edge has exactly one source,
which is the operator that generated the corresponding ten-
sor. Since a tensor can be consumed by more than one node,
edges can have multiple sinks.

Operators can have multiple incoming (aka fanin) edges.
Typically, one of these incoming edges will be the tensor
generated by the previous layer, and another one will be a
weight tensor. Similarly, operators can have multiple out-
going (aka fanout) edges: while most operations generate a
single output tensor, some may create two or more. Opera-
tors with no fanout edges are used to model the final outputs
of the neural network. Operators without fanin edges can
model random number generators, constants, weights, or
initial inputs to the neural network.

In the remainder of this paper, we assume that the graphs
are acyclic. In practice, this is not a significant limitation
since recurrent neural networks such as LSTM (Hochreiter
& Schmidhuber, 1997) have been eclipsed by transform-
ers (Vaswani et al., 2017). Furthermore, their loops can be
unrolled to avoid the problem altogether.

3.2. Optimizing Tensor Lifetimes

For an operator to run, all its input tensors must be resident
in memory, and its output tensors must have been allocated
so that they can be written to while the node executes. Ad-
ditionally, to avoid recomputing tensors, once a tensor is
generated it must be preserved in memory until all its con-
sumers have been run.

We define the resident set RS(s) at a given step s in the
execution of a neural network as the set of tensors that need
to be kept in memory at that point in time. It comprises
the tensors in the fanin and fanout of the operator that is
scheduled for execution at step s, as well as all the other
tensors that were previously generated but need to be kept
in memory to be able to run subsequent operators. The peak
resident set is the largest resident set over the execution of
the network.

The order in which nodes are executed impacts the lifetime
of the tensors, and therefore the peak working set. Figure 3
illustrates a simple example in which changing the operator
ordering noticeably improves memory usage.

Among all possible node orderings, those prioritizing the
execution of nodes that free large amounts of data while gen-
erating little output data themselves, are likely to be more

v1

e1:10Mb v3

v2

v4

e2:10Mb

e3:20Mb

e4:30Mb
e6:10Mb

e5:5Mb

v1 e1, e2, e3 40Mb
v2 e2, e3, e4 60Mb
v3 e3, e4, e5 55Mb
v4 e4, e5, e6 45Mb

Order #1, Peak=60Mb
v1 e1, e2, e3 40Mb
v3 e2, e3, e5 35Mb
v2 e2, e4, e5 45Mb
v4 e4, e5, e6 45Mb

Order #2, Peak=45Mb
Resident Sets:

Figure 3. Node execution orders can impact peak memory usage.
Edges are annotated with the size of their corresponding tensors,
and the two feasible node orders are annotated with the set of
tensors resident in memory at each step. Running v3 before v2 is
significantly more memory efficient.

efficient. However, as demonstrated in prior works (Bern-
stein et al., 1989; Bruno & Sethi, 1976), finding an optimal
scheduling for a generic DAG is an NP-complete problem,
which cannot be solved with a simple greedy approach.

3.3. Optimizing Tensor Locations in Memory

Similar to malloc-style memory allocators, the tensor allo-
cation schemes used by typical deep learning frameworks
operate online and suffers from fragmentation. Indeed, free
memory is often segregated into small blocks and inter-
spersed by memory allocated to live tensors. As a result,
a significant fraction of the total memory is effectively un-
usable because it is divided into pieces that are not large
enough to fit a tensor. Figure 4 illustrates this phenomenon
and demonstrates how planning the location of each ten-
sor ahead of time can significantly reduce the overall peak
memory usage.

4. Formulation
We propose to take advantage of the predictability of neural
network computations to proactively optimize the lifetime
and location of tensors in memory.

We formulate the problem of optimizing the ordering of com-
putations (which determines the tensor lifetimes) and the
location of tensors in memory (which determines the amount
of memory fragmentation) of generic data-flow graphs, in-
cluding those used in neural network training. We encode
the problem as an integer linear program (Wikipedia, 2023)
and use an off-the-shelf ILP solver to find a solution that
minimizes the peak memory required to run the dataflow
graph.

We solve the ILP problem ahead of time, before the training

4

MODeL: Memory Optimizations for Deep Learning

Tensor A
Tensor B

Tensor C
Tensor D

Address Space

Input
Op 1
Op 2
Op 3
Out

Tensor A
Tensor B

Tensor C
Tensor D

Address Space

Input
Op 1
Op 2
Op 3
Out

Fails to
Fit!

Figure 4. Memory fragmentation can significantly increase the
memory needed to store tensors. A greedy allocator (top) would
not leave any room between tensors A and B, thus making it im-
possible to reuse the space left once tnsor A is freed to store tensor
C. MODeL (bottom) leaves a gap between tensor A and B to enable
the reuse of the memory freed by tensor A and fits all the tensors
in less memory.

process starts. This results in a small one-time initial cost,
which is negligible compared to the time it takes to train a
neural network (see section 5.3).

4.1. DNN representation

As mentioned in section 3.1, we model a neural network
as a directed acyclic graph G = (V, E) with n nodes
V = v1, ..., vn that represent the operators and the neu-
ral network, and m edges E = e1, ..., em that encode the
tensors exchanged by operators. The size in bytes of the
tensor represented by edge ei is denoted as Si. The source
vertex of edge e is denoted src(e). The set of sink vertices
of edge e is denoted snks(e).

The set of edges in the fanout of a node v is denoted fo(v),
while the set of edges in its fanin is represented as fi(v).
We will also denote fi(e) the set of edges in the fanin of the
source vertex of e. We represent by sib(e) the siblings to an
edge e, that is the collection of edges that are driven by the
same source vertex.

We model the execution of a neural network as a sequence
of discrete steps S = s1, ..., sn. At least one operator is
executed at each step, and therefore, we need at most n steps
to schedule a graph of n operators.

4.2. Encoding Tensor Lifetimes

We track which tensors are allocated and which tensors are
preserved in memory at each execution step. To do this, we
use two sets of binary variables:

• A variable labeled Ce, s ∈ {0, 1} indicates whether or
not the tensor e should be created (i.e. allocated) at

step s by running its source vertex.

• A variable named Pe, s ∈ {0, 1} reflects whether tensor
e needs to be preserved in memory at step s or whether
it can be freed.

We leverage a set of linear constraints to ensure that the se-
quence of tensor creations and preservations reflects a valid
execution sequence of the neural network corresponding to
a feasible topological ordering of the DAG.

First, a tensor e can either be created or preserved at each
step s, but not both (equation 1). Note that it’s possible
for both Ce, s and Pe, s to be false, which indicates that the
tensor does not reside in memory at this point in time.

∀e ∈ E, ∀s ∈ S Ce, s + Pe, s ≤ 1 (1)

Second, a tensor e can be preserved in memory at step s if
and only if it was created or preserved at the previous step
(equation 2).

∀e ∈ E, ∀s ∈ S Pe, s ≤ Pe, s−1 + Ce, s−1 (2)

Third, to ensure that the solver does not simply avoid run-
ning any of the operators, we force every tensor e to be
created once through equation 3.

∀e ∈ E
∑
s∈S

Ce, s = 1 (3)

Fourth, a tensor e can only be created by running its source
operator v. In order to do so, all the tensors in the fanin of v
must be present in memory (equation 4).

∀e ∈ E, ∀s ∈ S, ∀f ∈ fi(e) Ce, s ≤ Pf, s (4)

Last but not least, we also need to make sure that opera-
tors with multiple outputs create their output tensors at the
same time. We achieve this by tying the values of the Cf,s

variables for all the siblings f to a tensor e in equation 5.

∀e ∈ E, ∀s ∈ S, ∀f ∈ sib(e) Cf, s = Ce, s (5)

The combination of constraints 1 through 5 ensures that
all the feasible solutions to the ILP correspond to valid
schedules. They guarantee that the creation step of each
tensor corresponds to a topologically feasible ordering of the
vertices of the graph. Moreover, they force the preservation
in memory of each tensor from the time it is generated until
the last step in which it is consumed.

5

MODeL: Memory Optimizations for Deep Learning

4.3. Encoding Tensor Locations

To let our solver also optimize the placement of tensors in
memory, we assign an integer variable Ae ∈ [0,M] to each
tensor e that encodes its base address. Here, M =

∑
e Se,

which corresponds to the worst case scenario where all the
tensors reside concurrently in memory.

We also introduce two binary variables ai,j ∈ {0, 1} and
bi,j ∈ {0, 1} for each pair of tensors i and j. We constrain
them through equation 6 in such a way that either ai,j or bi,j
is equal to 1 if both tensors reside in memory concurrently
at any point in time, but can be 0 otherwise.

∀(i, j) ∈ E2 ai,j + bi,j ≤ 1

ai,j + bi,j ≥ livei,t + livej,t − 1

where livei,t = Ci,t + Pi,t

and livej,t = Cj,t + Pj,t

(6)

We use these variables to prevent the overlap of tensors that
reside in memory at the same time in equations 7a and 7b.

∀(i, j) ∈ E2 Ai + Si −Aj ≤ (1− ai,j) ∗M (7a)

∀(i, j) ∈ E2 Ai −Aj − Sj ≥ (bi,j − 1) ∗M (7b)

If ai,j takes the value 1, equation 7a degenerates into
Ai + Si ≤ Aj . This forces tensor i to reside below
tensor j in memory. Similarly, equation 7b degenerates into
Ai ≥ Aj + Sj when bi,j takes the value 1, which forces
tensor i to be placed above tensor j. On the other hand, if
ai,j and bi,j take the value 0, equations 7a and 7b hold for
any value of Ai and Aj in the range [0,M]. In other words,
they don’t impose further restrictions on the location of ei
and ej .

Put altogether, constraints 6, 7a, and 7b ensure that ten-
sors can share the same memory space if and only if their
lifetimes do not overlap.

4.4. Minimizing Peak Memory Usage

We track the peak memory usage by introducing a variable
peak mem that we constrain as follow:

∀e ∈ E Ae + Se ≤ peak mem (8)

We find the schedule of operators and memory location
of tensors that optimizes the memory usage of the neural
network by feeding program 9 to an ILP solver.

arg min
C,P,A

peak mem

subject to (1), (2), (3), (4), (5),

(6), (7a), (7b), (8)

(9)

4.5. Decoding the ILP Result

Given a feasible solution to our ILP, we generate an opti-
mized execution sequence of operations ES = (v1, ..., vn)
for the neural network using function 1.

Function 1 GenerateExecutionSequence(C)
▷ Converts the output of the ILP into an optimized
▷ execution sequence of operations seq.
seq = []
for s in S do

for e in E do
if Ce,s = 1 and src(e) not in seq then

add src(e) to seq
end if

end for
end for
return seq

Tensors are stored in a shared preallocated buffer B sized to
accommodate the peak memory usage. The value of each
Ae variable represents the offset location of tensor e in B.

We can map memory allocation requests to addresses over
multiple iterations of the training loop as follow. We’ll
assume that each operator generates a single output tensor
for the sake of simplicity, but our approach generalizes to
handle operators with multiple outputs. The kth memory
allocation request corresponds to the tensor generated by
the operator located at position k mod |V | in the execution
sequence ES. This tensor e is to be located at address AB +
Ae, where AB is the base address of buffer B. Memory
deallocation requests are no-ops.

5. Experiments
We measured the impact of MODeL on the memory usage of
DNN training. We tried to answer the following questions:

• How effective is our algorithm at reducing peak mem-
ory usage?

• How practical are our algorithms? Can they be applied
to large neural networks in a reasonable amount of
time?

• What are the respective contributions of our two strate-
gies of node reordering and address generation to the
overall memory reduction?

5.1. Experimental Setup

We implemented MODeL on top of PyTorch version
1.11 (Paszke et al., 2019) with torchtext 0.12 and torchvision
0.12. We leveraged torch.FX to convert neural networks into
executable sequences of operator calls, and reconstructed

6

MODeL: Memory Optimizations for Deep Learning

the computation graphs from the operator arguments. We
encoded and solved the memory optimizations problem
(equation 9) using Gurobi version 9.1.1 (Gurobi Optimiza-
tion, LLC, 2022). We translated the Gurobi results into
optimized execution sequences and memory locations as
described in section 4.5.

We leveraged several techniques to optimize the implemen-
tation of our approach. We describe the most impactful
optimizations in appendix A.

We ran all our experiments on a workstation featuring a Intel
Xeon Gold 6138 CPU running at 2.0 GHz and a NVidia
A100 GPU. We show how to integrate MODeL in a regular
training flow in appendix B.

5.2. Methodology

We evaluated MODeL on a comprehensive set of neural
networks. We included the ResNet (He et al., 2016) and
Transformer (Vaswani et al., 2017) models since they are
ubiquitous and used in many downstream tasks: the former
introduced the concept of residual connection, and the later
popularized the attention mechanism. We also included neu-
ral networks designed for specific tasks, such as computer
vision (AlexNet (Krizhevsky et al., 2012), VGG (Simonyan
& Zisserman, 2015), video understanding (ResNet3D (Tran
et al., 2018)), and large language models (BERT (Devlin
et al., 2018), XLM-R (Conneau et al., 2019)).

In addition to these models that were designed to run on
datacenter hardware, we also evaluated our approach on
MobileNet (Howard et al., 2017). This neural network was
tailored to run in resource constrained environments such as
edge devices. Additionally, we trained the neural networks
at batch size 1 and 32. Batch size 1 is commonly used
when training a model on devices with limited memory
capacity, while batch size 32 is used often when running in
datacenters.

To be representative of the evolution of DNN designs over
time, we made sure our models cover almost a decade of ma-
chine learning research, starting with AlexNet (Krizhevsky
et al., 2012) which was published back in 2012 and end-
ing with VIT (Dosovitskiy et al., 2020) which was released
in 2020. We also tested our approach on MNASNet (Tan
et al., 2019), a model designed by a computer using an au-
tomated process called neural architecture search (Elsken
et al., 2019).

To validate the scalability of our solution, we tested it on neu-
ral networks as small as Alexnet (Krizhevsky et al., 2012)
(118 operators) and as large as BERT (2116 operators).

5.3. Overall Memory Improvement

Optimizing for both operator ordering and the memory loca-
tion of tensors using equation 9 results in a reduction in peak
memory usage ranging from 8 to 45% at batch size 1, and
12 to 68% at batch size 32. The average saving was 31.4%
for batch size 1 and 32.8% for batch size 32 (Figure 5).

0%

20%

40%

60%

80%

Alex
Net

BERT

MNASNet

Mob
ile

Net

Res
Net

Res
Net3

D

Tran
sfo

rm
er

VGG VIT

XLM
-R

Batch Size 1 Batch Size 32

Figure 5. Total reduction in peak memory usage (in %) during
training at various batch sizes compared to PyTorch.

The memory optimization process takes an average of
7.4 ± 0.7 seconds. In the worst case, our algorithm needs
18.1 seconds to run, and the best case is 100 millisec-
onds (Figure 6). This process is run only once before train-
ing the model. It introduces a negligible overhead to the
total training time yet significantly reduces the peak memory
usage.

0

5

10

15

Alex
Net

BERT

MNASNet

Mob
ile

Net

Res
Net

Res
Net3

D

Tran
sfo

rm
er

VGG VIT

XLM
-R

Batch size 1 Batch size 32

Figure 6. Memory optimization times (in seconds) for training
graphs at batch sizes 1 and 32.

5.4. Impact of Address Generation

We define the fragmentation of a memory allocator as the
difference between the memory the allocator needs to re-
serve from the hardware MR and the size of the resident
set RS. We measure it when MR reaches its peak value
using the ratio (MR−RS)/MR.

7

MODeL: Memory Optimizations for Deep Learning

We measured the ability of our memory optimizer to reduce
memory fragmentation in two scenarios: first, when our
optimizer is free to reorder operators, and second when
it is forced to honor the PyTorch operator ordering. The
second scenario is implemented by constraining the values
of the Ce, s variables to be consistent with the PyTorch node
ordering. In both cases, we found that our address generator
was able to completely eliminate memory fragmentation on
all the models of our benchmark suite. By contrast, PyTorch
suffered from an average fragmentation of 7.8% at batch
size 1, and 21.3% at batch size 32 (Figure 7). The PyTorch
memory allocator uses a different strategy for small and
large objects, which could explain why fragmentation is
significantly worse for the larger batch size. However, it is
unclear whether it could be modified to better handle large
tensors without introducing other drawbacks.

0%

10%

20%

30%

40%

Alex
Net

BERT

MNASNet

Mob
ile

Net

Res
Net

Res
Net3

D

Tran
sfo

rm
e

VGG VIT

XLM
-R

Batch size 1 Batch size 32

Figure 7. PyTorch memory fragmentation (in %) during training at
various batch sizes. Our method fully eliminates fragmentation.

5.5. Impact of Operator Reordering

To evaluate the impact of our tensor lifetime optimization
on the overall result, we compared the ideal peak memory
necessary to run various neural networks when using the
PyTorch node ordering and the node ordering determined
by our algorithm. For these measurements, we eliminated
the impact of memory fragmentation by recording the peak
memory PyTorch operators need to request from the system
to run these models under both node orderings instead of
the memory actually used to run the models.

We find that optimizing the order in which operators are
run reduces peak memory usage by up to 38% compared
to PyTorch (Figure 8). On average, our solution achieves a
reduction of 23.9% at batch size 1 and 11.7% at batch size
32.

The activations generated during the forward pass are pre-
served in memory for the backward pass of the training. As a
result, MODeL has limited ability to decrease the memory us-
age of the forward pass. On the other hand, the order of the
computation and application of the gradients with respect to

0%

10%

20%

30%

Alex
Net

BERT

MNASNet

Mob
ile

Net

Res
Net

Res
Net3

D

Tran
sfo

rm
er

VGG VIT

XLM
-R

Batch size 1 Batch size 32

Figure 8. Reduction (in %) in ideal peak memory usage compared
to PyTorch as a result of our node reordering. Ideal memory usage
assumes that there is no fragmentation.

the weights offers a great deal of flexibility, which MODeL
leverages to decrease the memory usage of the backward
pass. However, the gradients with respect to the weights are
roughly smaller than the activations by a factor of batch size.
Therefore, at large batch sizes, a larger percentage of the
total memory is used to store activations, while at smaller
batch sizes these gradients represent a larger fraction of
the total. As a result operator reordering tends to be more
effective at small batch sizes.

6. Limitations
Our approach suffers from three main limitations. First, the
neural network we want to optimize must be representable
using a dataflow graph. This is the case for all the major
neural architectures, so we do not believe that this is a sig-
nificant drawback in practice. Second, the sizes of all the
tensors must be known ahead of time. In the case where
sizes are variable (for example, in the case of a language
model operating on sentences of variable length) one can op-
timize for the worst case scenario (e.g the longest sentence).
Third, our formulation assumes that tensors are stored in a
single contiguous memory space. It can be extended to sup-
port multiple memory spaces (for example, when multiple
devices are used to train a large neural network), but this is
beyond the scope of this paper.

7. Conclusion
The limited memory capacity of the hardware used by deep
learning practitioners is one of the main challenges to train
state-of-the art neural networks. This ”memory wall” lim-
its the size of the neural networks that can be trained, and
ultimately impacts the quality of their predictions. Further-
more, as memory needs increase much faster than memory
capacity, we expect this memory bottleneck to worsen over
time.

8

MODeL: Memory Optimizations for Deep Learning

To alleviate memory scarcity, we proposed to optimize both
the lifetime and location of tensors in memory and we pre-
sented an ILP formulation of the problem.

We tested our solution, MODeL, on a wide variety of neural
networks. We demonstrated experimentally that it can locate
tensors optimally in memory, thus eliminating the problem
of memory fragmentation. Furthermore, we showed that
it further decreases the peak memory usage of deep neural
networks by optimizing the lifetime of the tensors, and,
by combining these 2 techniques, MODeL reduced peak
memory usage by more than 30% on average.

We also emphasized the practicality of MODeL. We estab-
lished empirically that it scales well and can handle large
DNNs. We showed that it finds optimal memory plans in
just a few seconds.

8. Acknowledgements
We would like to thank Ana Klimovic and Foteini Strati,
whose insightful comments and feedback helped improve
the paper. We are also grateful to the paper reviewers for
their suggestions.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16), pp. 265–283,
2016.

Ahn, B. H., Lee, J., Lin, J. M., Cheng, H.-P., Hou, J., and Es-
maeilzadeh, H. Ordering chaos: Memory-aware schedul-
ing of irregularly wired neural networks for edge devices,
2020.

Baruch, Z. Scheduling algorithms for high-level synthesis.
ACAM Scientific Journal, 5(1-2):48–57, 1996.

Beaumont, O., Eyraud-Dubois, L., and Shilova, A. Ef-
ficient Combination of Rematerialization and Offload-
ing for Training DNNs. In NeurIPS 2021 - Thirty-fifth
Conference on Neural Information Processing Systems,
Virtual-only Conference, France, December 2021. URL
https://hal.inria.fr/hal-03359793.

Bernstein, D., Rodeh, M., and Gertner, I. On the complexity
of scheduling problems for parallel/pipelined machines.
IEEE Trans. Computers, 38:1308–1313, 1989.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J.
What is the state of neural network pruning? In Dhillon,
I., Papailiopoulos, D., and Sze, V. (eds.), Proceedings of
Machine Learning and Systems, volume 2, pp. 129–146,

2020. URL https://proceedings.mlsys.org/paper/2020/
file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf.

Bruno, J. and Sethi, R. Code generation for a one-register
machine. J. ACM, 23(3):502–510, jul 1976. ISSN 0004-
5411. doi: 10.1145/321958.321971. URL https://doi.org/
10.1145/321958.321971.

Bubeck, S. and Sellke, M. A universal law of robustness via
isoperimetry. In NeurIPS 2021, December 2021. URL
https://www.microsoft.com/en-us/research/publication/
a-universal-law-of-robustness-via-isoperimetry/.

Chen, J., Zheng, L., Yao, Z., Wang, D., Stoica, I., Ma-
honey, M., and Gonzalez, J. Actnn: Reducing training
memory footprint via 2-bit activation compressed train-
ing. In Meila, M. and Zhang, T. (eds.), Proceedings of
the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pp. 1803–1813. PMLR, 18–24 Jul 2021. URL
https://proceedings.mlr.press/v139/chen21z.html.

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K. P.,
and Yuille, A. L. Semantic image segmentation with
deep convolutional nets and fully connected crfs. CoRR,
abs/1412.7062, 2015.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training deep
nets with sublinear memory cost. ArXiv, abs/1604.06174,
2016.

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. Multi-
view 3d object detection network for autonomous driving.
2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6526–6534, 2017.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gener-
ating long sequences with sparse transformers. ArXiv,
abs/1904.10509, 2019.

Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V.,
Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer,
L., and Stoyanov, V. Unsupervised cross-lingual repre-
sentation learning at scale. CoRR, abs/1911.02116, 2019.
URL http://arxiv.org/abs/1911.02116.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context, 2019. URL https:
//arxiv.org/abs/1901.02860.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Łukasz Kaiser. Universal transformers, 2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2018. URL https://arxiv.org/abs/
1810.04805.

9

https://hal.inria.fr/hal-03359793
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://doi.org/10.1145/321958.321971
https://doi.org/10.1145/321958.321971
https://www.microsoft.com/en-us/research/publication/a-universal-law-of-robustness-via-isoperimetry/
https://www.microsoft.com/en-us/research/publication/a-universal-law-of-robustness-via-isoperimetry/
https://proceedings.mlr.press/v139/chen21z.html
http://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

MODeL: Memory Optimizations for Deep Learning

Dong, C., Loy, C. C., He, K., and Tang, X. Image super-
resolution using deep convolutional networks. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 38:295–307, 2016.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale, 2020. URL https://arxiv.org/
abs/2010.11929.

Elkerdawy, S., Elhoushi, M., Zhang, H., and Ray, N. Fire
together wire together: A dynamic pruning approach with
self-supervised mask prediction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2022.

Elsken, T., Metzen, J. H., and Hutter, F. Neural archi-
tecture search: A survey. Journal of Machine Learning
Research, 20(55):1–21, 2019. URL http://jmlr.org/papers/
v20/18-598.html.

Evans, J. jemalloc. https://github.com/jemalloc/jemalloc.

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R.,
Jegou, H., and Joulin, A. Training with quantization
noise for extreme model compression. arXiv preprint
arXiv:2004.07320, 2020.

Feichtenhofer, C., Fan, H., Malik, J., and He, K. Slowfast
networks for video recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Frankle, J. and Carbin, M. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks,
2018. URL http://arxiv.org/abs/1803.03635. cite
arxiv:1803.03635Comment: ICLR camera ready.

Garey, M. R. and Johnson., D. S. Computers and intractabil-
ity: A guide to the theory of np-completeness. Journal of
Symbolic Logic, 1979.

Gholami, A., Azad, A., Jin, P. H., Keutzer, K., and Buluç,
A. Integrated model, batch, and domain parallelism in
training neural networks. Proceedings of the 30th on Sym-
posium on Parallelism in Algorithms and Architectures,
2018.

Google. Tcmalloc. https://github.com/google/tcmalloc.

Griewank, A. and Walther, A. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or ad-
joint mode of computational differentiation. ACM Trans.
Math. Softw., 26:19–45, 2000.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2022. URL https://www.gurobi.com.

Hard, A., Rao, K., Mathews, R., Beaufays, F., Augenstein,
S., Eichner, H., Kiddon, C., and Ramage, D. Feder-
ated learning for mobile keyboard prediction. ArXiv,
abs/1811.03604, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

He, Y., Ding, Y., Liu, P., Zhu, L., Zhang, H., and Yang, Y.
Learning filter pruning criteria for deep convolutional
neural networks acceleration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Hildebrand, M., Khan, J., Trika, S., Lowe-Power, J., and
Akella, V. Autotm: Automatic tensor movement in het-
erogeneous memory systems using integer linear pro-
gramming. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’20,
pp. 875–890, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450371025. doi:
10.1145/3373376.3378465. URL https://doi.org/10.1145/
3373376.3378465.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. ArXiv, abs/1704.04861, 2017.

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K.,
Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-
level accuracy with 50x fewer parameters and <0.5MB
model size, 2017. URL https://openreview.net/forum?id=
S1xh5sYgx.

Jain, A., Phanishayee, A., Mars, J., Tang, L., and Pekhi-
menko, G. Gist: Efficient data encoding for deep neu-
ral network training. In Proceedings of the 45th An-
nual International Symposium on Computer Architec-
ture, ISCA ’18, pp. 776–789. IEEE Press, 2018. ISBN
9781538659847. doi: 10.1109/ISCA.2018.00070. URL
https://doi.org/10.1109/ISCA.2018.00070.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel,
P., Gonzalez, J., Keutzer, K., and Stoica, I. Check-
mate: Breaking the memory wall with optimal ten-
sor rematerialization. In Dhillon, I., Papailiopou-
los, D., and Sze, V. (eds.), Proceedings of Ma-
chine Learning and Systems, volume 2, pp. 497–511,
2020. URL https://proceedings.mlsys.org/paper/2020/
file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf.

10

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
https://github.com/jemalloc/jemalloc
http://arxiv.org/abs/1803.03635
https://github.com/google/tcmalloc
https://www.gurobi.com
https://doi.org/10.1145/3373376.3378465
https://doi.org/10.1145/3373376.3378465
https://openreview.net/forum?id=S1xh5sYgx
https://openreview.net/forum?id=S1xh5sYgx
https://doi.org/10.1109/ISCA.2018.00070
https://proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf

MODeL: Memory Optimizations for Deep Learning

Jia, Z., Lin, S., Qi, C. R., and Aiken, A. Exploring hid-
den dimensions in accelerating convolutional neural net-
works. In Dy, J. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Re-
search, pp. 2274–2283. PMLR, 10–15 Jul 2018. URL
https://proceedings.mlr.press/v80/jia18a.html.

Kalamkar, D. D., Mudigere, D., Mellempudi, N., Das, D.,
Banerjee, K., Avancha, S., Vooturi, D. T., Jammala-
madaka, N., Huang, J., Yuen, H., Yang, J., Park, J.,
Heinecke, A., Georganas, E., Srinivasan, S., Kundu,
A., Smelyanskiy, M., Kaul, B., and Dubey, P. A
study of BFLOAT16 for deep learning training. CoRR,
abs/1905.12322, 2019. URL http://arxiv.org/abs/1905.
12322.

Karakus, C., Huilgol, R., Wu, F., Subramanian, A., Daniel,
C., Çavdar, D., Xu, T., Chen, H., Rahnama, A., and
Quintela, L. Amazon sagemaker model parallelism: A
general and flexible framework for large model training.
CoRR, abs/2111.05972, 2021. URL https://arxiv.org/abs/
2111.05972.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Communications of the ACM, 60:84 – 90, 2012.

Liberis, E. and Lane, N. D. Neural networks on microcon-
trollers: saving memory at inference via operator reorder-
ing, 2020.

Lin, D., Talathi, S., and Annapureddy, S. Fixed point quan-
tization of deep convolutional networks. In International
conference on machine learning, pp. 2849–2858. PMLR,
2016.

Lin, D. D. and Talathi, S. S. Overcoming challenges in fixed
point training of deep convolutional networks. ArXiv,
abs/1607.02241, 2016.

Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., and
Han, S. On-device training under 256kb memory, 2022.
URL https://arxiv.org/abs/2206.15472.

Louizos, C., Welling, M., and Kingma, D. P. Learning
sparse neural networks through l0 regularization, 2018.

Meng, C., Sun, M., Yang, J., Qiu, M., and Gu, Y. Train-
ing deeper models by gpu memory optimization on
tensorflow. In NIPS 2017 Workshop on ML Systems,
2017. URL http://learningsys.org/nips17/assets/papers/
paper 18.pdf.

Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q. V.,
and Dean, J. A hierarchical model for device placement.
In ICLR, 2018.

Molchanov, P., Mallya, A., Tyree, S., Frosio, I., and Kautz,
J. Importance estimation for neural network pruning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019.

Niu, W., Guan, J., Wang, Y., Agrawal, G., and Ren, B.
Dnnfusion: Accelerating deep neural networks execu-
tion with advanced operator fusion. In Proceedings
of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementa-
tion, PLDI 2021, pp. 883–898, New York, NY, USA,
2021. Association for Computing Machinery. ISBN
9781450383912. doi: 10.1145/3453483.3454083. URL
https://doi.org/10.1145/3453483.3454083.

NVidia. Mixed precision training. https://docs.nvidia.com/
deeplearning/performance/mixed-precision-training/
index.html. [Online; accessed 13-Oct-2022].

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS 2017
Workshop on Autodiff, 2017. URL https://openreview.net/
forum?id=BJJsrmfCZ.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Patil, S. G., Jain, P., Dutta, P., Stoica, I., and Gonzalez, J.
POET: Training neural networks on tiny devices with in-
tegrated rematerialization and paging. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 17573–17583. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.press/v162/
patil22b.html.

Paulik, M., Seigel, M., Mason, H., Telaar, D., Kluivers,
J., van Dalen, R., Lau, C. W., Carlson, L., Granqvist,
F., Vandevelde, C., Agarwal, S., Freudiger, J., Byde, A.,
Bhowmick, A., Kapoor, G., Beaumont, S., Cahill, A.,
Hughes, D., Javidbakht, O., Dong, F., Rishi, R., and
Hung, S. Federated evaluation and tuning for on-device
personalization: System design and applications, 2021.
URL https://arxiv.org/abs/2102.08503.

Peng, X., Shi, X., Dai, H., Jin, H., Ma, W., Xiong, Q.,
Yang, F., and Qian, X. Capuchin: Tensor-based gpu
memory management for deep learning. In Proceedings

11

https://proceedings.mlr.press/v80/jia18a.html
http://arxiv.org/abs/1905.12322
http://arxiv.org/abs/1905.12322
https://arxiv.org/abs/2111.05972
https://arxiv.org/abs/2111.05972
https://arxiv.org/abs/2206.15472
http://learningsys.org/nips17/assets/papers/paper_18.pdf
http://learningsys.org/nips17/assets/papers/paper_18.pdf
https://doi.org/10.1145/3453483.3454083
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://openreview.net/forum?id=BJJsrmfCZ
https://openreview.net/forum?id=BJJsrmfCZ
https://proceedings.mlr.press/v162/patil22b.html
https://proceedings.mlr.press/v162/patil22b.html
https://arxiv.org/abs/2102.08503

MODeL: Memory Optimizations for Deep Learning

of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’20, pp. 891–905, New York,
NY, USA, 2020. Association for Computing Machinery.
ISBN 9781450371025. doi: 10.1145/3373376.3378505.
URL https://doi.org/10.1145/3373376.3378505.

Sekiyama, T., Imamichi, T., Imai, H., and Raymond, R.
Profile-guided memory optimization for deep neural net-
works, 2018. URL https://arxiv.org/abs/1804.10001.

Sevilla, J., Heim, L., Ho, A., Besiroglu, T., Hobbhahn,
M., and Villalobos, P. Compute trends across three
eras of machine learning. 2022 International Joint Con-
ference on Neural Networks (IJCNN), Jul 2022. doi:
10.1109/ijcnn55064.2022.9891914. URL http://dx.doi.
org/10.1109/IJCNN55064.2022.9891914.

Shah, A., Wu, C.-Y., Mohan, J., Chidambaram, V., and
Kraehenbuehl, P. Memory optimization for deep net-
works. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=
bnY0jm4l59.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Bengio,
Y. and LeCun, Y. (eds.), 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1409.1556.

Smith, S. L., Kindermans, P.-J., and Le, Q. V. Don’t decay
the learning rate, increase the batch size. In International
Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1Yy1BxCZ.

Tai, Y., Yang, J., and Liu, X. Image super-resolution via
deep recursive residual network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), July 2017.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model
scaling for convolutional neural networks. ArXiv,
abs/1905.11946, 2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M.,
Howard, A., and Le, Q. V. Mnasnet: Platform-aware
neural architecture search for mobile, 2019.

Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., and
Paluri, M. A closer look at spatiotemporal convolutions
for action recognition. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6450–
6459, 2018. doi: 10.1109/CVPR.2018.00675.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. At-
tention is all you need. In Guyon, I., Luxburg, U. V.,

Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wang, N., Choi, J., Brand, D., Chen, C.-Y., and Gopalakr-
ishnan, K. Training deep neural networks with 8-bit
floating point numbers. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper/2018/
file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf.

Wikipedia. Integer programming. https://en.wikipedia.org/
wiki/Integer programming, 2023. [Online; accessed 15-
Mar-2023].

Zheng, B., Vijaykumar, N., and Pekhimenko, G. Echo:
Compiler-based gpu memory footprint reduction for lstm
rnn training. In 2020 ACM/IEEE 47th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pp.
1089–1102, 2020. doi: 10.1109/ISCA45697.2020.00092.

Zhu, F., Gong, R., Yu, F., Liu, X., Wang, Y., Li, Z., Yang, X.,
and Yan, J. Towards unified int8 training for convolutional
neural network. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

12

https://doi.org/10.1145/3373376.3378505
https://arxiv.org/abs/1804.10001
http://dx.doi.org/10.1109/IJCNN55064.2022.9891914
http://dx.doi.org/10.1109/IJCNN55064.2022.9891914
https://openreview.net/forum?id=bnY0jm4l59
https://openreview.net/forum?id=bnY0jm4l59
http://arxiv.org/abs/1409.1556
https://openreview.net/forum?id=B1Yy1BxCZ
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://en.wikipedia.org/wiki/Integer_programming
https://en.wikipedia.org/wiki/Integer_programming

MODeL: Memory Optimizations for Deep Learning

A. Scaling to Large Neural Networks
Our formulation requires 2× |E| × |V |) binary variables since we have one C and one P variable per tensor per step, as
well as |E| integer variables to track tensor addresses. Additionally, we create O(|V | × |E|) constraints to encode tensor
precedence and life cycle requirements, and O(|V | × |E|2) constraints to ensure that tensors never overlap in memory.

We develop the following techniques to reduce the complexity of the ILP formulation and enable our approach to scale well.
This permits MODeL to optimize the memory usage of neural networks with complex tensor computation graphs comprised
of thousands of vertices and edges.

A.1. Bounding Lifetime Ranges

All of the input tensors of a node must reside in memory for it to run at a given step. This means that all the operators in
the immediate fanin of the node must have been run at least one step prior. As a result, we can identify the earliest step
ASAP (v) (“as soon as possible”) during which a node v can run. ASAP (v) is the longest distance from v to an input of
the neural network, which is computed in linear time using a simple depth first search traversal of the graph (Baruch, 1996).
Using the same approach, we can also identify the latest step ALAP (v) (“as late as possible”) at which a node v can run,
which is the longest distance from v to an output of the neural network.

A node v can only run within the span [ASAP (v), ALAP (v)]. Since tensors are created when their source node is run, a
variable Ce,s will always be false outside the span of their source node (Equation 10).

SPAN(v) = [ASAP (v), ALAP (v)]

∀e ∈ E, ∀s /∈ SPAN(src(e)) Ce,s = 0
(10)

Furthermore, a tensor only needs to be preserved in memory until all its sink operators have run. This enables us to define
the Maximum Useful Lifetime (MUL) range of a tensor, and set the variable Pe,s for a tensor e to false outside of this range
(Equation 11).

MUL(e) = [ASAP (src(e)), max
f∈snks(e)

ALAP (f)]

∀e ∈ E, ∀s /∈MUL(e) Pe,s = 0
(11)

Additionally, tensors must be preserved in memory from the time they are created until their last sink node has run. Therefore,
Pe,s must always be true from the last step at which e can be created until the earliest step at which its last sink can run
(Equation 12).

PRES(e) = [ALAP (src(e) + 1, max
f∈snks(e)

ASAP (f)]

∀e ∈ E, ∀s ∈ PRES(e) Pe,s = 1
(12)

This enables us to reduce the number of steps to track for each tensor. In the best case scenario, where a neural network
is a linear sequence of operators, the span of each node v is reduced to a single step, and we can derive the values of all
the Ce,s and Pe,s purely from the structure of the graph. However, in the opposite extreme case where a neural network
consists exclusively of operators that can run in parallel, we cannot infer any of the values of the Ce,s and Pe,s variables.
The structure of real neural networks lies somewhere between these two extremes.

A.2. Leveraging Precedence Constraints

We simplify our memory placement formulation by avoiding the need to create the variables and constraints from equations
6, 7a and 7b whenever we can determine that two tensors can never reside in memory at the same time. We exploit two
sufficient conditions to achieve this.

First, we leverage the Maximum Useful Lifetime ranges from our ASAP/ALAP analysis. If the MUL ranges of two tensors
do not overlap, they will never be present concurrently in memory.

13

MODeL: Memory Optimizations for Deep Learning

v1
e1

v3

v4

v2
e2

Figure 9. Edge precedence: e1 ≺prec e2 since the sinks v3 and v4 of e1 are both in the transitive fanin of the source node of e2, and e1
and e2 have no vertex in common.

We complement this first condition with a precedence analysis. If a vertex v2 is reachable from another vertex v1 (i.e. if
v1 is in the transitive fanin of v2), the corresponding operator v1 must be run before operator v2. Therefore, if all the sink
vertices of an edge e1 are in the transitive fanin of the source vertex of an edge e2, e1 and e2 can only be present in memory
if there is a vertex v such that e1 is one of the fanout edges of v and e2 is one of its fanin edges (Figure 9). We call this
condition ≺prec, and if either condition e1 ≺prec e2 or e2 ≺prec e1 holds e1 and e2 can never reside together in memory.

We use a simple depth-first search (Function 2) to determine whether a vertex v2 is reachable from a vertex v1. We leverage
memoization to ensure that answering the query for a pair (v1, v2) yields to constant time queries for all future queries
(v, v2) that involve a vertex v on a path from v1 to v2.

Function 2 IsInTransitiveFanin(v1, v2, cache)
▷ Returns true iff v2 can be reached from v1.
if (v1, v2) in cache then

returncache[(v1, v2)]
end if
for f in fi(v2) do

if src(f) = v1 then
cache[(v1, v2)]← true
return true

end if
if IsInTransitiveFanin(v1, src(f)) then
cache[(v1, v2)]← true
return true

end if
end for
cache[(v1, v2)]← false
return false

14

MODeL: Memory Optimizations for Deep Learning

B. Usage
MODeL can be integrated in a PyTorch training script with minimal effort. We demonstrate how to do this on a simple
example.

import model_opt
import torch, torchvision

def accuracy(output, target):
Computes the number of top-1 predictions that match the labels.
_, pred = torch.topk(output, 1)
correct = pred.eq(target)
return torch.sum(correct)

model = torchvision.models.resnet50().cuda()
sample_input = torch.rand(1, 3, 224, 224).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
loss_fn = torch.nn.CrossEntropyLoss()

model_trainer = model_opt.optimize(model, sample_input,
optimizer=optimizer, loss_fn=loss_fn)

train_loader = torch.utils.data.DataLoader(...)
correct = 0
for example, target in train_loader:

model_trainer encapsulates the forward pass, the backward pass,
and the weight update step
output = model_trainer(example)
correct += accuracy(output, target)

15

