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Abstract

Segmentation models predominantly optimize
pixel-overlap-based loss, an objective that is actu-
ally inadequate for many segmentation tasks. In
recent years, their limitations fueled a growing
interest in topology-aware methods, which aim
to recover the topology of the segmented struc-
tures. However, so far, existing methods only
consider global topological properties, ignoring
the need to preserve topological features spatially,
which is crucial for accurate segmentation. We
introduce the concept of induced matchings from
persistent homology to achieve a spatially cor-
rect matching between persistence barcodes in
a segmentation setting. Based on this concept,
we define the Betti matching error as an inter-
pretable, topologically and feature-wise accurate
metric for image segmentations, which resolves
the limitations of the Betti number error. Our
Betti matching error is differentiable and efficient
to use as a loss function. We demonstrate that it
improves the topological performance of segmen-
tation networks significantly across six diverse
datasets while preserving the performance with
respect to traditional scores. Our code is publicly
available1.
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Figure 1: Exemplary segmentations of identical Dice scores from
models trained with Wasserstein loss (c) and Betti matching loss
(d). Dice and Betti number error (βerr) are indecisive between both
predictions. On the other hand, our Betti matching error (µerr)
favors the superior segmentation in (d).

1. Introduction
Topology studies properties of shapes that are related to their
connectivity and that remain unchanged under deformations,
translations, and twisting. Some topological concepts, such
as cubical complexes, homology, and Betti numbers (which
in dimenion 2 count connected components and holes), form
interpretable descriptions of shapes in space that can be effi-
ciently computed. Naturally, the topology of physical struc-
tures is highly relevant in machine learning tasks, where
the preservation of its connectivity is crucial, a prominent
example being image segmentation. Recently, a number of
methods have been proposed to improve topology preserva-
tion in image segmentation for a wide range of applications.

While spatial agreement between image and segmentation
is a critical aspect of segmentations, all existing topology-
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aware methods so far only consider the global topology but
ignore the spatial correspondence of features across images
(see Fig. 1).

Our contribution

In this work we overcome this key limitation by introducing
a rigorous framework for faithfully quantifying the preserva-
tion of local topological properties in the context of image
segmentation, see Fig. 1. Our method builds on induced
matchings between persistence barcodes, a concept from
algebraic topology introduced by (Bauer & Lesnick, 2015).
The introduction of these matchings to a machine learning
setting allows us to formalize precisely the spatial corre-
spondences between topological features of two grayscale
images, by embedding both images into a common compar-
ison image. Put in simple terms, our central contribution is
an efficient, differentiable solution for localized topological
error identification, which serves as:

• a topological loss to train segmentation networks,
which guarantees to correctly, in a spatial sense, em-
phasize and penalize the topological structures during
training (see Sec. 3.2);

• an interpretable topological metric for image segmen-
tation, which is not only sensitive to the number of
topological features but also to their location within
the respective images (see Sec. 3.3).

Experimentally, we demonstrate that using our Betti match-
ing loss function leads to vastly improved segmentations
across six diverse datasets.

1.1. Related work

Stability of persistence and induced matchings Several
proofs for the stability of persistence can be found in the
literature. In 2005, (Cohen-Steiner et al., 2005) established
a first stability result for persistent homology of real-valued
functions. The result states that the map sending a function
to the barcode of its sublevel sets is 1-Lipschitz with respect
to suitable metrics. In 2008 this result was generalized by
(Chazal et al., 2009b) and formulated in purely algebraic
terms, in what is now known as the algebraic stability the-
orem. It states that the existence of a δ-interleaving (a sort
of approximate isomorphism) between two pointwise finite-
dimensional persistence modules implies the existence of a
δ-matching between their respective barcodes. This theorem
provides the justification for the use of persistent homology
to study noisy data. In (Bauer & Lesnick, 2015), the authors
present a constructive proof of this theorem, which asso-
ciates to a given δ-interleaving between persistence modules
a specific δ-matching between their barcodes. For this pur-
pose, they introduce the notion of induced matchings, which

form the foundation of our proposed Betti matching frame-
work. Beyond their theoretical use in the proof of stability,
induced matchings have been utilized in a computational
setting for idenyifying corresponding topological features
(Reani & Bobrowski, 2022; Garcı́a-Redondo et al., 2022).

Topology aware segmentation Various publications have
highlighted the importance of topologically correct segmen-
tations in computer vision and image analysis applications.
Persistent homology is a popular framework from algebraic
topology that has been utilitzed in this context. A key pub-
lication by (Hu et al., 2019) proposes to improve image
segmentation using a loss function that we refer to as the
Wasserstein loss, based on a variation of the Wasserstein
distance between persistence diagrams (an alternative to
barcodes as descriptor of persistent homolgy). Specifically,
the authors propose to match features in the persistence dia-
grams of dimension 1 between ground truth and prediction
so as to minimize the squared distance of matched points.
However, this approach has a fundamental limitation, in that
it cannot guarantee that the matched structures are spatially
related in any sense (see Fig. 2 and App. A). Put succinctly,
the cycles are matched irrespective of the location within
the image, which frequently has an adverse impact during
training (see App. G). (Clough et al., 2020) follows a similar
approach, not computing the barcode of the ground truth
segmentation, but using only the Betti numbers it ought to
have. Furthermore, persistent homology has also been used
in other similar problems, in particular, for crowd localiza-
tion (Abousamra et al., 2021) and for reconstructing 3D cell
shapes from 2D images (Waibel et al., 2022).

Other topology-aware segmentation methods incorporate
pixel-overlaps of topologically relevant structures. For ex-
ample, the clDice score, introduced by (Shit et al., 2021),
targets the segmentation of tubular structures such as vas-
cular networks. It is a variant of the commonly used Dice
similarity coefficient (Dice, 1945), incorporating a skele-
ton for foreground and background in such a way that a
score of 0 guarantees topological equivalence of ground
truth and prediction. (Hu & Chen, 2021) and (Jain et al.,
2010) use homotopy warping to identify critical pixels and
measure the topological difference between grayscale im-
ages. (Hu et al., 2021) utilizes discrete Morse theory (see
(Delgado-Friedrichs et al., 2014)) to compare critical topo-
logical structures within prediction and ground truth. (Wang
et al., 2022) incorperate a marker loss, which is based on the
Dice loss between a predicted marker map and the ground
truth marker map, to improve fine antomical structure seg-
mentation topologically. Generally, these overlap-based
approaches are computationally efficient but do not explic-
itly guarantee the spatial correspondence of the topological
features. Other approaches aim at enforcing topologically
motivated priors, e.g., connectivity priors (Chen et al., 2011;
Sasaki et al., 2017; Wang & Jiang, 2018). (Mosinska et al.,
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CREMI Dataset Betti matching Wasserstein matching
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Figure 2: Comparison of our Betti matching and Wasserstein matching ((Hu et al., 2019)). We match cycles between label and prediction
for a CREMI image and highlight matched pairs in the same color. We visualize only six (randomly selected out of the total 23 matches for
both methods) matched pairs for presentation clarity. Note that Betti matching always matches spatially correctly while the Wasserstein
matching gets most matches wrong. For more examples please consider Figures 10-13 in the Appendix.

2018) applied task-specific pre-trained filters to improve
connected components. (Zhang & Lui, 2022) uses template
masks as an input to enforce the diffeomorphism of a spe-
cific shape. (Cheng et al., 2021) jointly models connectivity
and features based on iterative feedback learning. (Oner
et al., 2020) aims to improve the topological performance
by enforcing region separation of curvilinear structures.

2. Background on algebraic topology
We introduce the necessary concepts from algebraic topol-
ogy to describe the construction of induced matchings for
images. For the basic definitions, we refer to Appendix N.

2.1. Images as filtered cubical complexes

The topology of an image I ∈ Rm×n (e.g., a prediction
or ground truth segmentation) is best captured by filtered
cubical complexes. In order to filter a cubical complex
K we consider an order preserving function f : K → R.
Its sublevel sets D(f)r := f−1((−∞, r]) assemble to the
sublevel filtration D(f) = {D(f)r}r∈R of K. Since f
can only take finitely many values {f1 < . . . < fl}, the
filtered cubical complex K∗ given by Ki = D(f)fi for
i = 1, . . . , l, encodes all the information about the filtration.

We consider the cubical grid complex Km,n consisting
of all cubical cells contained in [1,m]× [1, n] ⊆ R2. The
filter function fI of I is defined on the vertices of Km,n by
the corresponding entry in I , and on all higher-dimensional
cubes as the maximum value of its vertices. Note that fI is
order preserving, so we can associate the sublevel filtration
of fI and its corresponding filtered cubical complex to the
image I and denote them by D(I) and K∗(I), respectively.
This construction is called the V-construction since pixels
are treated as vertices in the cubical complex, see Fig. 4b.
An alternative, the T-construction, considers pixels as top-
dimensional cells of a 2-dimensional cubical complex (see
(Heiss & Wagner, 2017)). We implemented both, V- and
T-construction, in Betti matching and encode them in the
ValueMap array inside the CubicalPersistence class

in Algo. 1.

2.2. Homology and induced maps

Homology is a powerful concept involving local computa-
tions to capture information about the global structure of a
topological space X . For each d ∈ N0 it assigns an abelian
Homology group Hd(X) to X , which encodes its topo-
logical features in dimension d. A feature in dimension 0
describes a connected component, and in dimension 1, it de-
scribes a hole. Considering coefficients in F2, these abelian
groups form F2-vector spaces and the dimension of Hd(X)
is called the dth Betti number of X , which is denoted by
βd(X).

Homology is a functor, i.e., it does not only act on spaces,
but also on maps between spaces. Therefor, a continuous
map g : X → Y (e.g., an inclusion) induces linear maps
Hd(g) : Hd(X) → Hd(Y ) in each dimension d ∈ N0,
which allow us to identify homological features of one space
as homological features of another space and the map g
induces the identification. For more details, we refer to
(Kaczynski et al., 2004) and App. N.2, where we recap the
homology of cubical complexes with coefficients in F2.

2.3. Persistent homology and its barcode

Persistent homology considers sublevel filtrations of spaces
and observes the lifetime of topological features within the
filtration in form of persistence modules. The basic premise
is that features that persist for a long time are significant,
whereas features with a short lifetime are likely to be caused
by noise.

(a) K1 (b) K2 (c) K3

Figure 3: A filtered cubical complex with varying homology in
degree 1. Adding the green 1-cell in (b) creates homology (birth)
and adding the red 2-cell in (c) turns homology trivial (death).
Together they form a persistence pair.
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The persistent homology Hd(f) of an order preserving
function f : K → R in dimension d ∈ N0 consists of
vector spaces Hd(f)r = Hd(D(f)r) and transition maps
Hd(f)r,s : Hd(D(f)r) → Hd(D(f)s) induced by the in-
clusions D(f)r ↪→ D(f)s for r ≤ s. Note that Hd(f)
is a pointwise finite-dimensional (p.f.d.) persistence mod-
ule, and by a result of (Crawley-Boevey, 2015), any p.f.d.
persistence module M is isomorphic to a direct sum of in-
terval modules C(I) : M ∼=

⊕
I∈B(M) C(I). Here, B(M)

denotes the barcode of M , given by a multiset of inter-
vals. Note that the persistent homology is continuous from
above: all intervals in the barcode are of the form [s, t).

Barcodes of Images For an image I ∈ Rm×n with as-
sociated filter function fI : K

m,n → R, we will refer to
the persistent homology of fI in dimension d as the persis-
tent homology of the image I in dimension d and denote
it by Hd(I). Its associated barcode in dimension d will be
denoted by Bd(I) and we call B(I) =

⋃
d∈N0

Bd(I) the
barcode of I .
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Figure 4: (a) shows an image I , (b) visualizes the V-construction
and (c) shows the associated barcode B(I). The sublevel filtration
squentially adds pixels in order of increasing value. By adding 1
and 2, two connected components (represented by the two bars
in dimension 0) are born. Adding 6 merges the two coonected
components ending the finite interval [2, 6). The other connected
component persists forever, which is represented by the essential
interval [1,∞). By adding 8 a hole is formed, which is filled by
adding 9. This is represented by the interval [8, 9) in dimension 1.

In order to compute the barcode B(I), we make use of
the reduction algorithm described in (Edelsbrunner et al.,
2008). It starts by sorting the cells of the associated fil-
tered cubical complex K∗(I) to obtain a compatible order-
ing c1, . . . , cl, which defines a cell-wise refinement L∗(I).
Here, compatible means that the cells in Ki preceed the
cells in K \ Ki, and the faces of a cell preceed the cell.
We encode this ordering in the IndexMap array inside the
CubicalPersistence class in Algo. 1. The algoritm
then performs a variant of Gaussian elimination on the
boundary matrix of Km,n, where rows and columns are
indexed with respect to the compatible ordering. Adding a
d-cell ck to the complex will either create new homology
classes in dimension d or turn homology classes trivial in
dimension d− 1 (see Figure 3). In the latter case, assuming
that the classes that become trivial have been created by
adding cell cj , we pair the cells cj and ck to a persistence

pair (cj , ck). The unpaired cells are called singletons. Each
pair (cj , ck) satisfying fI(cj)fI(ck) gives rise to a finite in-
terval [fI(cj), fI(ck)) ∈ B(I), and each singleton ci gives
rise to an essential interval [fI(ci),∞) ∈ B(I).

Note that a finite interval [fI(cj), fI(ck)) ∈ Bd(I) deter-
mines a refined (finite) interval [j, k) and an essential in-
terval [fI(ci),∞) ∈ Bd(I) determines a refined (essential)
interval [i,∞). Collectively, we call the set Bfine

d (I) consist-
ing of refined intervals in dimension d the refined barcode
in dimension d of I and Bfine(I) =

⋃
d∈N0

Bfine
d (I) the re-

fined barcode of I . Therefore, we can consider Hd(I) as
staggered persistence module, meaning that the intervals in
its barcode have unique endpoints.

2.4. Induced matchings between persistence barcodes

Following the idea of induced maps in homology (see sec-
tion 2.2), (Bauer & Lesnick, 2015) introduces the notion of
induced matchings of persistence barcodes, which allow us
to identify correspondances of intervals in the barcodes of
images and play a central role in our Betti matching. The
following theorem (paraphrased as a special case of the gen-
eral Theorem 4.2 in (Bauer & Lesnick, 2015)) is key to the
definition of induced matchings:

Theorem 2.1. Let Φ: M → N be a morphism of p.f.d.,
staggered persistence modules that are continuous from
above. Then there are unique injective maps B(imΦ) ↪→
B(M) and B(imΦ) ↪→ B(N), which map an interval
[b, c) ∈ B(imΦ) to an interval [b, d) ∈ B(M) with c ≤ d,
and to an interval [a, c) ∈ B(N) with a ≤ b, respectively.

Note that imΦ is a p.f.d. submodule of N , and we will refer
to its barcode as the image barcode of Φ. Obviously, the
injections in Theorem 2.1 determine matchings B(M)

σM−−→
B(imΦ)

σN−−→ B(N). The induced matching of Φ is then
given by the composition σ(Φ) = σN ◦ σM .

Induced matchings of images Let I,J ∈ Rm×n be im-
ages such that I ≥ J (entry-wise). Then the sublevel
sets of I form subcomplexes of the sublevel sets of J
and the inclusions D(I)r ↪→ D(J)r induce linear maps
Hd(I)r → Hd(J)r in homology. These assemble to a
morphism Φd(I,J) : Hd(I)→ Hd(J) between p.f.d. per-
sistence modules, which are continuous from above. Fur-
thermore, the refined barcodes Bfine

d (I),Bfine
d (J) allow us to

consider Hd(I) and Hd(J) as staggered persistence mod-
ules and apply Theorem 2.1.

In the following we will denote the image barcode of
Φd(I,J) by Bd(I,J). For the computation of the image
barcode, we follow the algorithm described in (Bauer &
Schmahl, 2022). It involves the reduction of the bound-
ary matrix of Km,n with rows indexed by the ordering
c1, . . . , cl in L∗(I) and columns indexed by the ordering
d1, . . . , dl in L∗(J). The resulting reduced matrix yields
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image persistence pairs (ci, dj), which satisfy fI(ci) <
fJ (dj) and correspond to finite intervals [fI(ci), fJ (dj)) ∈
Bd(I,J). Following the structure of the induced match-
ings obtained by Theorem 2.1, we match a refined interval
[h, i) ∈ Bfine

d (I) to a refined interval [j, k) ∈ Bfine
d (J) if

the pair (ch, dk) is an image persistence pair. This way
we obtain a matching σfine : Bfine(I) → Bfine(J) between
the refined barcodes, which yields the induced matching
σ(I,J) : B(I)→ B(J) by replacing refined intervals with
the corresponding intervals in B(I),B(J).0 1 2

7 39 3
6 5 4
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Figure 5: (a), (b) and (c) show images which satisfy I ≥ J1,J2.
(d) and (e) visualize the induced matchings. Red bars correspond
to the barcode of I , green bars to the barcodes of J1,J2 and gray
bars to the image barcodes B(I,J1),B(I,J2), which are used to
define the induced matchings σ(I,J1), σ(I,J2). The shaded gray
area indicates matched intervals (red and green bars) according to
the agreement of endpoints.

In the present work, we augment this induced matching
by additionally considering reverse persistence pairs, i.e.,
pairs (ci, dj), obtained by the reduction, that do not sat-
isfy fI(ci) < fJ (dj) (see Figure 5e). When this is the
case, we also match the corresponding intervals in Bfine(I)
and Bfine(J) according to Theorem 2.1. Note that this is a
slight variation of the induced matching defined in (Bauer &
Lesnick, 2015). This extension satisfies similar properties
and is a natural adaptation in this context.

3. Betti matching
In general, the structure of interest in segmentation tasks is
given by the foreground. Therefore, we consider superlevel
filtrations instead of sublevel filtrations in applications. For
simplicity, we stick to sublevel filtrations to describe the the-
oretical background. Throughout this section, we denote by
L ∈ [0, 1]m×n a likelihood map predicted by a deep neural
network, by P ∈ {0, 1}m×n the binarized prediction of L,
and by G ∈ {0, 1}m×n the ground truth segmentation.

3.1. Matching by comparison in ambient space

In order to visualize that two objects in two different images
are at the same location, we can simply move one image
ontop of the other one and observe that the locations of the

objects now agree. Thereby, we are constructing a common
ambient space for both images which allows us to identify
locations. Following this idea, in order to find a matching
between B(L) and B(G) that takes the location of repre-
sented topological features into account, we are looking for
a common ambient filtration of Km,n, which is

(a) big enough to contain the sublevel sets of L and G;

(b) fine enough to capture the topologies of L and G.

Here, (a) guarantees that we can compute induced match-
ings of the respective inclusions and (b) guarantees that the
identification of features by the induced matchings are non-
trivial (discriminative). The most natural candidate which
comes into mind is given by the union D(L)r ∪ D(G)r
of sublevel sets. Therefore, we introduce the compari-
son image C = min(L,G) (entry-wise minimum) and
observe that D(C)r = D(L)r ∪ D(G)r. By construc-
tion, we have C ≤ L,G and obtain induced matchings
σ(L,C) : B(L) → B(C) and σ(G,C) : B(G) → B(C)
(see Sec. 2.4). The Betti matching µ(L,G) : B(L) →
B(G) is then given by the composition

µ(L,G) = σ(G,C)−1 ◦ σ(L,C), (1)

where σ(G,C)−1 denotes the inverse of the matching
σ(G,C). Working with superlevel sets yields an anal-
ogous construction. In the superlevel-setting we choose
C = max(L,G) as the comparison image to guarantee
that each superlevel set of the comparison image is the
union of the corresponding superlevel sets of ground truth
and likelihood map.

3.2. Betti matching defines topological loss

We denote by R the extended real line R ∪ {−∞,∞}. A
barcode B consisting of intervals [a, b) can then equivalently
be seen as a multiset Dgm(B) of points (a, b) ∈ R2 which
lie above the diagonal ∆ = {(x, x) | x ∈ R}. Furthermore,
we add all the points on the diagonal ∆ with infinite multi-
plicity to Dgm(B) and thus define the persistence diagram
of B. A matching τ : B1 → B2 between barcodes then cor-
responds to a bijection τ : Dgm(B1)→ Dgm(B2) between
persistence diagrams, by mapping unmatched points (a, b)
to their closest point ((a + b)/2, (a + b)/2) on the diago-
nal ∆. We use these perspectives interchangeably (see Fig.
19). For simplicity, we denote by Dgm(I) the persistence
diagram associated to the barcode of a grayscale image I .

Persistent homology is stable, i.e., there exist metrics on the
set of persistence diagrams for which slight variations in the
input result in small variations of the corresponding persis-
tence diagram (Chazal et al., 2009a). Therefore, it is natural
to require Dgm(L) to be similar to Dgm(G). A frequently
used metric to measure the difference between persistence
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Figure 6: Betti matching. (a)–(f) show a likelihood map L, a ground truth G, the comparison image C and their barcodes. (g) and (i)
show the induced matchings σ(L,C) : B(L) → B(C) and σ(G,C) : B(G) → B(C) (matchings indicated in gray) and (h) shows the
resulting Betti matching µ(L,G) : B(L) → B(G), which matches a red interval to a blue interval if there is a green interval in between.
We use this matching to define our loss and metric.

diagrams is the Wasserstein distance (Cohen-Steiner et al.,
2010), and it has been adapted to train segmentation net-
works (Hu et al., 2019). Because of the shortcomings de-
scribed in Fig. 2,8b and App. A,G, we propose to replace
the Wasserstein matching γ∗ by the Betti matching µ(L,G)
and define the Betti matching loss

lBM(L,G) =
∑

q∈Dgm(L)

2∥q − µ(L,G)(q)∥22. (2)

The factor 2 is added to simplify its interpretation as Betti
matching error (see Sec. 3.3). Since the values in L and
G are contained in [0, 1], we replace the essential intervals
[a,∞) with the finite interval [a, 1], to obtain a well-defined
expression. To efficiently train segmentation networks, we
combine our Betti matching loss with a standard volumetric
loss, specifically, the Dice Loss, to

ltrain = αlBM(L,G) + ldice(L,G). (3)

Gradient of Betti matching loss Note that we can see L =
L(I, ω) as a function that assigns the predicted likelihood
map to an image I ∈ Rm×n and the segmentation network
parameters ω ∈ Rl. A point q = (q1, q2) ∈ Dgm(L)
describes a topological feature that is born by adding pixel
b(q) (birth of q) and killed by adding pixel d(q) (death of
q) to the filtration. The coordinates of q are then determined
by their values q1 = Ld(q) and q2 = Lb(q). Assuming
that the Betti matching is constant in a sufficiently small
neighborhood around the given predicted likelihood map L,
the Betti matching loss is differentiable in ω and the chain

rule yields the gradient

∇ωlBM(L,G) =
∑

q∈Dgm(L)

4(q1 − µ(L,G)(q)1)
∂Ld(q)

∂ω

+ 4(q2 − µ(L,G)(q)2)
∂Lb(q)

∂ω
. (4)

Note that likelihood maps for which this assumption is not
satisfied may exist. But this requires L to have at least
two entries with the exact same value, and the set of such
likelihood maps has Lebesgue measure zero. Therefore, the
gradient is well-defined almost everywhere, and in the edge
cases, we consider it as a sub-gradient, which still reduces
the loss and has a positive effect on the topology of the
segmentation.

Physical meaning of the gradient To understand the ef-
fect of the Betti matching gradient during training, con-
sider the example in Fig. 7. Let x, y ∈ Dgm(L) denote
the points corresponding to the yellow and blue cycle in
(c), respectively. (b) shows that x is matched and y is un-
matched. Since, all points in Dgm(G) are of the form (0,1),
Betti matching maps x to (0, 1) and y to its closest point
(y1+y2

2 , y1+y2

2 ) on the diagonal ∆. Therefore, the gradient
will enforce the segmentation network to move x closer to
(0, 1) (i.e., decrease x1 = Ld(x) and increase x2 = Lb(x))
and y closer to (y1+y2

2 , y1+y2

2 ) (i.e., increase y1 = Ld(y)

and decrease y2 = Lb(y)). This results in an amplification
of the local contrast between ⋆ and × of the yellow cycle
and a reduction of the local contrast between ⋆ and × of the
blue cycle, which improves the topological performance of
the segmentation.
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(a) L G

(b) Betti matching (c) 1-cycles in L

Figure 7: (a) L shows a Topological error (bottom right). (b)
Matched cycles in Betti matching are shown in yellow. (c) For both
cycles in L, the birth (b(q)) and death pixels (d(q)) are marked
with ⋆ and ×, respectively.

Summarized, we can say that matched features get empha-
sized, and unmatched features get suppressed during train-
ing, which highlights the importance of finding a spatially
correct matching (see App. G for further discussion).

3.3. Betti matching error as topological metric

(a) βerr
1 (P ,G) = 0 (b) lW(P ,G) = 0 (c) µerr

1 (P ,G) = 4

Figure 8: Advantages of our Betti matching error over the Betti
number error. (a) shows a prediction P (left), ground truth G
(right) and the corresponding Betti number error in dim 1. (b)
shows the Wasserstein matching in dim 1 (same color indicates
a matching) with its corresponding loss and (c) shows the Betti
matching in dim 1 (no features are matched) with the correspond-
ing Betti matching error. Note that both Betti number error and
Wasserstein loss fail to represent the spatial mistake in the predic-
tion, while the Betti matching correctly does not match any cycles
resulting in an error of 4.

Betti number error The Betti number error βerr (see App.
M) compares the topological complexity of the binarized
prediction P and the ground truth G. However, it is limited
as it only compares the number of topological features in
both images, while ignoring their spatial correspondence
(see Fig. 8). In terms of persistence diagrams, the Betti
number error can be expressed by considering a maximal
matching β : Dgm(P )→ Dgm(G), e.g., the Wasserstein
matching (see App. G), and counting the number of un-
matched points:

βerr(P ,G) = #ker(β) + #coker(β), (5)

where for a matching σ we denote by #ker(σ) and
#coker(σ) the number of unmatched points in the domain
of σ and in codomain of σ, respectively (see App. N.4).

We denote by µerr(P ,G) := lBM(P ,G) the Betti match-

ing error between P and G. It can be seen as a refinement
of the Betti number error, which also takes the location of
the features within their respective images into account (see
Fig. 8). Since the entries of P and G take values in {0, 1},
the only point appearing in their persistence diagrams is
(0, 1) and its multiplicity coincides with the number of fea-
tures in the respective image. Observe that an unmatched
point – with respect to the Betti matching – contributes with
2(0− 1

2 )
2 +2(1− 1

2 )
2 = 1 to µerr(P ,G), while a matched

pair of points contributes with 0. Hence, the Betti match-
ing error takes values in N0 and represents the number of
unmatched features in both P and G, i.e.,

µerr(P ,G) = #ker(µ(P ,G))+#coker(µ(P ,G)). (6)

4. Experiments with Betti matching
Datasets We employ a set of six datasets with diverse topo-
logical features for our validation experimentation. Two
datasets, the Massachusetts roads dataset and the CREMI
neuron segmentation dataset, exhibit frequently connected
curvilinear, network-like structures, which form a large num-
ber of cycles in the foreground. The C.elegans infection
live/dead image dataset (Elegans) from the Broad Bioimage
Benchmark Collection (Ljosa et al., 2012) and our synthetic,
modified MNIST dataset (LeCun, 1998) (synMnist) con-
sist of a balanced number of dimension 0 and dimension 1
features. And third, the colon cancer cell dataset (Colon)
from the Broad Bioimage Benchmark Collection (Carpen-
ter et al., 2006; Ljosa et al., 2012) and the Massachusetts
buildings dataset (Buildings) (Mnih, 2013) have ”blob-like”
foreground structures. They contain very few dimension
1 features but every instance of a cell or building forms a
dimension 0 feature.

Training of the segmentation networks For implementa-
tion details, e.g., the training splits, please refer to App. K
and L. We train all our models for a fixed, dataset-specific
number of epochs and evaluate the final model on an unseen
test set. We train all models on an Nvidia P8000 GPU using
Adam optimizer. We run experiments on a range of alpha-
parameters for clDice (Shit et al., 2021), the Wasserstein
matching (Hu et al., 2019), and Betti matching; we choose
to present the top performing model in Table 1; extended
results are given in tables 3, 4, 5, 6, 7 in App. J.

4.1. Results

Main Results Our proposed Betti matching loss improves
the topological accuracy of the segmentations across all
datasets (Table 1), irrespective of the choice of hyper-
parameters (Table 4) compared to all baselines. We show
superior scores for the topological metrics Betti matching
error (µerr) and Betti number error (βerr) in both dimension
0 and dimension 1. Furthermore, the volumetric metrics

7
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Table 1: Main results for Betti matching and three baselines on six datasets. Green columns indicate the topological metrics. Bold
numbers highlight the best performance for a given dataset if it appears substantial (i.e. the second best performance is not within std/8).
We find that Betti matching improves the segmentations in all topological metrics for all datasets. We further observe a constantly high
performance in volumetric metrics. ↑ indicates higher value wins and ↓ the opposite. More metrics are given in the supplementary Tables.

Loss Dice ↑ clDice ↑ Acc. ↑ µerr ↓ µerr
0 ↓ µerr

1 ↓ βerr ↓ βerr
0 ↓ βerr

1 ↓
C

R
E

M
I Dice 0.894 0.939 0.959 149.64 39.68 109.96 114.12 39.12 75.00

clDice 0.879 0.944 0.952 147.04 34.36 112.68 103.92 33.64 70.28
Hu et al. 0.888 0.935 0.957 162.48 44.24 118.24 118.16 43.68 74.48

Ours 0.893 0.941 0.959 129.80 31.00 98.80 79.16 30.36 48.80

R
oa

ds

Dice 0.663 0.698 0.974 117.80 87.04 30.76 113.96 86.54 27.42
clDice 0.668 0.704 0.975 131.00 102.08 28.92 125.83 101.67 24.17

Hu et al. 0.674 0.712 0.974 101.00 73.04 27.96 95.83 72.54 23.29
Ours 0.663 0.713 0.972 83.00 56.30 26.70 75.08 55.79 19.29

sy
nM

ni
st Dice 0.871 0.907 0.962 3.70 1.96 1.74 2.590 1.674 0.916

clDice 0.875 0.921 0.963 2.54 0.87 1.67 1.640 0.700 0.940
Hu et al. 0.866 0.915 0.960 2.85 1.00 1.85 1.802 0.764 1.038

Ours 0.849 0.915 0.954 2.28 0.53 1.75 1.348 0.426 0.922

E
le

ga
ns

Dice 0.922 0.959 0.984 4.10 2.60 1.50 2.60 1.40 1.20
clDice 0.917 0.964 0.982 3.90 2.20 1.70 2.20 1.20 1.00

Hu et al. 0.921 0.959 0.984 4.30 2.84 1.45 2.50 1.35 1.15
Ours 0.919 0.960 0.983 3.40 2.10 1.30 1.90 0.80 1.10

C
ol

on

Dice 0.899 0.863 0.970 44.26 21.76 22.50 33.75 13.75 20.00
clDice 0.907 0.871 0.974 47.26 18.76 28.50 37.75 11.75 26.00

Hu et al. 0.902 0.876 0.972 34.50 15.50 19.00 22.00 7.00 15.00
Ours 0.907 0.871 0.975 32.00 14.26 17.76 21.50 6.25 15.25

B
ui

ld
in

gs Dice 0.623 0.672 0.934 572.44 551.00 21.46 162.95 151.70 11.25
clDice 0.632 0.693 0.931 571.20 535.96 35.26 175.50 155.05 20.45

Hu et al. 0.625 0.677 0.934 556.60 537.50 19.10 181.10 169.60 11.50
Ours 0.625 0.685 0.937 489.16 471.26 17.90 118.45 107.75 10.70

of the segmentations (Accuracy, Dice, and clDice) show
equivalent if not superior quantitative results for our method.
Our method can be trained from scratch or used to refine
pre-trained networks. Importantly, our method improves the
topological correctness of curvilinear segmentation prob-
lems (Roads, CREMI), blob-segmentation problems (Build-
ings, Colon), and mixed problems (SynMnist, Elegans). We
confidently attribute this to the theoretical guarantees of
induced matchings, which hold for the foreground and the
background classes in dim 0 and dim 1. For illustration,
please consider the Roads and Buildings dataset; essentially,
the topology of the background of the Buildings dataset is
very similar to the foreground in Roads, i.e., the foreground
of the Roads and the background of the Buildings dataset
are interesting in dim 1, whereas the background of the
roads and the foreground of the Buildings are interesting
in dimension 0. As our method can efficiently leverage
the topological features of both foreground and background
when we apply sub- and superlevel set-matching and it is
intuitive that our method prevails in both. It is of note that
for some datasets, the method by (Hu et al., 2019) is the
best performing baseline and for some (Shit et al., 2021).

Ablation experiments In order to study the effectiveness
of the Betti matching loss, we conduct various ablation

experiments. First, we study the effect of the α parame-
ter in our method, see Table 4. We find that increasing α
improves the topological metrics. For some datasets, e.g.,
synMnist, the Dice metric is compromised if α is chosen
too big. Therefore, we conclude that α is a tunable and
dataset-specific parameter. Ostensibly, the effect of the α
parameter cannot be compared directly. Nonetheless, it
appears that our method is more robust towards variation
in α. Second, we study the effect of considering both the
foreground and the background (bothlevel) versus solely the
foreground (superlevel). We find that bothlevel is particu-
larly useful if the background has a complex topology (e.g.,
Elegans), whereas superlevel shows a similar performance if
the foreground has a more complex topology (e.g., CREMI),
see Table 3. Third, we test the effect of pre-training and
training from scratch for Betti matching, and the method
by (Hu et al., 2019). Table 7 shows that our method can be
trained from scratch efficiently, if not superiorly, whereas
the baseline method struggles in that setting – especially
on more complex datasets such as CREMI. We attribute
this to the spatially correct matching of Betti matching and
its consequences on the gradient (see Sec. 3.2). Training-
from-scratch means that there is a lot of potential for false
positives and false negatives in the Wasserstein matching
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clDice Hu et al.  Label Dice  Image Ours

clDice Hu et al.  Label Dice  Image Ours

Figure 9: Qualitative Results on the CREMI (top row) and Elegans (bottom row) dataset using the same models as in Table 1. Topological
errors are indicated by red circles. Our method leads to less topological errors in the segmentation. For more results, please consider
Figures 14-16 in the Appendix.

(see App. G) since there are a lot noisy features when the
network is still uncertain. For example, for CREMI, we
found that the Wasserstein matching matches cycles incor-
rectly in more than 99 % of the cases. Moreover, we observe
that Betti matching optimizes the Wasserstein loss more ef-
ficiently We also experiment with adding a boundary to
images in order to close loops that cross the image border,
similar to (Hu et al., 2019), and term this relative Betti
matching. Table 5 shows a negligible effect on all metrics.
For additional ablation and more metrics on the ablation
studies, please refer to App. J. The computational complex-
ity of Betti matching is O(n3), see App. D for details.

5. Discussion
Concluding remarks In this paper, we propose a rigorous
method called Betti matching, which enables the faithful
quantification of topological errors in image segmentations.
Herein, our method is the first to guarantee the correct
matching of persistence barcodes in image segmentation
according to their spatial correspondence. We show that
Betti matching error is an interpretable segmentation metric,
which can be understood as a sharpened variant of the Betti
number error. Further, we show how our method can be
used to train segmentation networks. Training networks us-
ing Betti matching loss is stable and leads to improvements
on all 6 datasets. We foresee vast application potential in
challenging tasks such as road network, vascular network
and Neuron instance segmentation. We are thus hopeful
that our method’s theory and experimentation will stimulate
future research in this area.

Limitations In the general setting of persistent homol-
ogy of functions on arbitrary topological spaces, there are
instances where maps of persistence modules cannot be writ-

ten as matchings. This is somewhat analogous to the fact
that in linear algebra, certain linear transformations cannot
be diagonalized. We did not observe any such case in our
specific segmentation setting. A theoretical investigation
of this question will be the subject of future work. Further,
we understand application-specific experimental limitations.
Our method’s computational complexity is beyond widely
used loss functions such as BCE (see App. D); moreover,
our current implementation is only available in 2D, whereas
the theoretical guarantees trivially generalize to 3D.
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A. Illustrating additional examples of topological matching performance.

Betti matching Wasserstein matching

LabelPrediction  LabelPrediction  

Dim-0

Dim-0

Dim-0

Figure 10: Motivation. Our Betti matching and the Wasserstein matching ((Hu et al., 2019)) for Elegans, Colon and Buildings label-
prediction pairs. Here we match the connected components (dim 0). The matched components (according to the matching methods) are
represented in the same color. We randomly sample 6 matched pairs.
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Betti matching Wasserstein matching

LabelPrediction  LabelPrediction  

Figure 11: Motivation. Our Betti matching and the Wasserstein matching ((Hu et al., 2019)) for Roads label-prediction pairs. The matched
1-cycles (according to the matching methods) are represented in the same color. We randomly sample 6 matched pairs. We observe that
our method correctly matches the cycles in the first two rows. The third row represents an example early in Training. Here we observe
that our method correctly matches some ”finished” cycles but also provides a correct matching to the blue and green cycles which still
have to be closed. Essentially, one can observe here that our Betti matching leads to a correct loss.
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Betti matching Wasserstein matching

LabelPrediction  LabelPrediction  

Figure 12: Motivation. Our Betti matching and the Wasserstein matching ((Hu et al., 2019)) for CREMI label-prediction pairs. The
matched cycles (according to the matching methods) are represented in the same color. We randomly sample 6 matched pairs.
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Betti matching Wasserstein matching

LabelPrediction  LabelPrediction  

Dim-1

Dim-1

Dim-0

Figure 13: Motivation. Our Betti matching and the Wasserstein matching ((Hu et al., 2019)) for synMnist label-prediction pairs (top row),
colon cells (middle row) and the Elegans dataset (lower row). The matched connected components (dim 0) and cycles (dim 1) (according
to the matching methods) are represented in the same color. We randomly sample 6 matched pairs. Importantly, in the last row, one
limitation of our proposed matching can be observed. Consider the features (buildings) matched by our method in red; here, the matching
could be considered suboptimal, because the actual building is poorly segmented, and our method does not match the feature from the
label to the largest segmentation component in the prediction. Please note that this scenario is only relevant for really poor predictions.
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B. Additional qualitative results

clDice Hu et al.  Label Dice  Image Ours

Figure 14: Qualitative Results on Roads and Buildings dataset. Image, Label, and different segmentations (same models as table 1).
Topological errors are indicated by red circles. Our method leads to improved topology compared to the baselines.
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clDice Hu et al.  Label Dice  Image Ours

Figure 15: Qualitative Results on CREMI, Elegans and Colon dataset. Image, Label, and different segmentations (same models as table
1). Topological errors are indicated by red circles. Our method leads to improved topology compared to the baselines.
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clDice Hu et al.  Label Dice  Image Ours

Figure 16: Qualitative Results on SynMnist. Image, Label, and different segmentations (same models as table 1) on examples of the
SynMnist testset. Topological errors are indicated by red circles. Our method always segments the correct topology.

C. Implementing Betti matching in an algorithm
Below, we provide the pseudocode for an efficient realization of the Betti matching. For the computation of the barcodes in
dimension 0 we leverage the Union-Find datastructure, which is very efficient at managing equivalence classes. Alexander
duality allows us to use it in dimension 1, as well (see (Garin et al., 2020)). Moreover, it can also be used for the computation
of the image barcodes in both dimensions. Note that we adapt the Union Find class to manage the birth of equivalence
classes. We use clearing (as proposed in (Bauer, 2021)) by keeping track of critical-edges and columns-to-reduce, in order
to reduce the amount of operations during the reductions (see sections 2.3, 2.4).
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Algorithm 1: Betti matching
Data: G,L
Option: relative = False,filtration = ‘superlevel ′

Result: L0, L1, L
1 begin
2 if filtration=‘superlevel’ then // Construction of comparison image
3 C ← max(G,L)
4 else
5 C ← min(G,L)
6 end
7 B(G),DG,VG,XG ← CubicalPersistence(G, relative,filtration,True);
8 B(L),DL,VL,XL ← CubicalPersistence(L, relative,filtration,True);
9 B(C),CC ,VC ,XC ← CubicalPersistence(C, relative,filtration,False);

10 B(G,C)← ImagePersistence(DG,XG,CC ,XC);
11 B(L,C)← ImagePersistence(DL,XL,CC ,XC);
12 σ(G,C)← InducedMatching(B(G,C),B(G),B(C));
13 σ(L,C)← InducedMatching(B(L,C),B(L),B(C));
14 µ(L,G) = ϕ; // Initialize matched refined intervals
15 U0,U1 = B(G)0,B(G)1 ; // Initialize unmatched refined intervals for ground truth
16 V0,V1 = B(L)0,B(L)1 ; // Initialize unmatched refined intervals for prediction
17 L0 = L1 = 0 ; // Initialize Betti matching loss
18 for d← 0 to 1 by 1 do // Loop over dimension d
19 foreach m0 ∈ σ(G,C)d do
20 foreach m1 ∈ σ(L,C)d do
21 if m0[2] = m1[2] then // Check for same image persistence pair
22 Add ((m0[0],m0[2],m1[0])) to µ(L,G)d;
23 Remove (m0[0]) from Ud;
24 Remove (m1[0]) from Vd;
25 Remove (m1) from σ(L,C)d;
26 p, q = m0[0],m1[0];
27 I0, I1 = VG(Index2Coord(p[0])),VG(Index2Coord(p[1])) ; // Map index to value
28 J0, J1 = VL(Index2Coord(q[0])),VL(Index2Coord(q[1])) ; // Map index to value
29 Ld = Ld + (I0 − J0)

2 + (I1 − J1)
2 ; // Loss for matched intervals

30 break
31 end
32 end
33 end
34 foreach p ∈ Ud do
35 I0, I1 = VG(Index2Coord(p[0])),VG(Index2Coord(p[1])) ; // Map index to value

36 Ld = Ld +
(I0−I1)

2

2 ; // Loss for unmatched intervals in ground truth
37 end
38 foreach p ∈ Vd do
39 I0, I1 = VL(Index2Coord(p[0])),VL(Index2Coord(p[1])) ; // Map index to value

40 Ld = Ld +
(I0−I1)

2

2 ; // Loss for unmatched intervals in prediction
41 end
42 end
43 L ← L0 + L1 ; // Total Betti matching loss
44 end
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45 Procedure CubicalPersistence(I , relative, filtration, critical)
46 if relative=True then
47 I ← AddBoundary(I); // Add image boundary
48 end
49 V ,X,E← FilterCubeMap(I, filtration) ; // Valuemap, Indexmap & edges are computed

using the CubeMap datastructure as in (Wagner et al., 2012)
50 B(I)0,B(I)1 = ϕ ; // Initialize refined barcodes
51 C = ϕ ; // Initialize columns-to-reduce for the clearning trick
52 if critical=True then
53 D = ϕ ; // Initialize critical-edges for the clearing trick
54 end
55 U = UnionFind(#cubes+ 1) ; // Instantiate a Union-Find class
56 foreach e ∈ E do // Compute refined intervals in dimension 1
57 b0, b1 ← DualBoundary(X, e) ; // Find dual boundary of an edge
58 x, y ← U .find(b0),U .find(b1);
59 if x = y then
60 Add e to C , continue
61 end
62 b = min(U .getbirth(x),U .getbirth(y)) ; // Retrieve birth
63 if critical=True then
64 Add e to D;
65 end
66 if (e, b) is valid then // Check for positive interval
67 Add (e, b) to B(I)1
68 end
69 U .union(x, y)
70 end
71 U = UnionFind(#cubes) ; // Instantiate a Union-Find class
72 foreach e ∈ C do // Compute refined intervals in dimension 0
73 b0, b1 ← Boundary(X, e); // Find boundary of an edge
74 x, y ← U .find(b0),U .find(b1);
75 if x = y then
76 continue
77 end
78 b = max(U .getbirth(x),U .getbirth(y)) ; // Retrieve birth
79 if (b, e) is valid then // Check for positive interval
80 Add (b, e) toB(I)0;
81 end
82 U .union(x, y)
83 end
84 if critical=True then
85 return (B(I)0,B(I)1),D,V ,X ; // Return refined barcodes, critical-edges,

Valuemap & Indexmap
86 else
87 return (B(I)0,B(I)1),C,V ,X ; // Return refined barcodes, columns-to-reduce,

Valuemap & Indexmap
88 end
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89 Procedure ImagePersistence(D,XI ,C,XJ)
90 B(I,J)0,B(I,J)1 = ϕ ; // Initialize image persistence pairs
91 U = UnionFind(#cubes) ; // Instantiate a Union-Find class
92 foreach e ∈ C do // Compute pairs in dimension 0
93 b0, b1 ← Boundary(XI , e); // Find boundary of an edge
94 x, y ← U .find(b0),U .find(b1);
95 if x = y then
96 continue
97 end
98 b = max(U .getbirth(x),U .getbirth(y)); // Retrieve birth
99 Add (b, e) to B(I,J)0 ; // All pairs for extended induced matching (see Sec. 2.4)

100 U .union(x, y)
101 end
102 U = UnionFind(#cubes+ 1) ; // Instantiate a Union-Find class
103 foreach e ∈ D do // Compute pairs in dimension 1
104 b0, b1 ← DualBoundary(XJ , e); // Find dual boundary of an edge
105 x, y ← U .find(b0),U .find(b1);
106 if x = y then
107 continue
108 end
109 b = min(U .getbirth(x),U .getbirth(y)); // Retrieve birth
110 Add (e, b) to B(I,J)1 ; // All pairs for extended induced matching (see Sec. 2.4)
111 U .union(x, y)
112 end
113 return (B(I,J)0,B(I,J)1) ; // Return image persistence pairs
114

115 Procedure InducedMatching(B(I,J),B(I),B(J))
116 σ(I,J)0, σ(I,J)1 = ϕ ; // Initialize matched refined intervals
117 for d← 0 to 1 by 1 do // Loop over dimension d
118 foreach (a, b) ∈ B(I,J)d do // For each image persistence pair
119 mi,mj = None;
120 foreach (c, d) ∈ B(I)d do // Match left endpoints
121 if c = a then
122 mi = (c, d);
123 break
124 end
125 end
126 if mi = None then // Skip search if no match found
127 continue
128 end
129 foreach (c, d) ∈ B(J)d do // Match right endpoints
130 if d = b then
131 mj = (c, d);
132 break
133 end
134 end
135 if mj = None then // Skip search if no match found
136 continue
137 end
138 Add (mi, (a, b),mj) to σ(I,J)d;
139 end
140 end
141 return (σ(I,J)0, σ(I,J)1)
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D. Computational complexity
For a grayscale image represented by a matrix I ∈ RM,N , we have n = MN number of pixels and form a cubical grid
complex of dimension d = 2. The computation of the filtration and the boundary matrix can be done efficiently using the
CubeMap data structure (see (Wagner et al., 2012)) with O(3dn+ d2n) time and O(d2n) space complexity. Computing
the barcodes by means of the reduction algorithm requires cubic complexity in the number of pixels O(n3) (see (Otter
et al., 2017)). Despite our empirical acceleration due to the Union-Find class and clearing tricks (as described in (Bauer &
Schmahl, 2022; Bauer, 2021)), the order complexity remains O(n3). We need O(n2) time complexity for computing the
final matching and loss. It is noteworthy that (Hu et al., 2019) also needs O(n3) time complexity to compute the barcode
and O(n2) for the matching, whereas (Shit et al., 2021) requires relatively lower complexity O(n) due to the overlap based
loss formulation.

E. Runtime Experiments
We have added experiments that show the runtime of our training and the calculation of the metric compared to the baseline
of Hu et al. and the Betti number metric.

Loss Computation Runtime (Training)
Hu et al. 5.38 seconds per iteration
Ours Betti matching 7.24 seconds per iteration

We report the loss computation time per iteration for a batch size of 8 on a Quadro P6000.

Metric Computation Runtime (Evaluation)
Betti number error 20.55 seconds per image
Ours Betti matching 35.25 seconds per image

We report the metric computation time for an image size of 312x312 on a Quadro P6000.

F. Convergence of Betti matching loss

(a) CREMI (b) synMnist (c) ELEGANS

Figure 17: Plot of the empirical convergence curves of our Betti matching loss for the CREMI, MNIST, and ELEGANS datasets. We plot
the Betti matching contribution in the training loss for a varying number of epochs, which is dependent on the dataset size. Please note
that we train our model on 48× 48 size image patch. We show that Betti matching loss efficiently converges for the different datasets.
The absolute magnitude of the loss varies from dataset to dataset because Betti matching is a real interpretable measure of dim 0 and dim
1 topological features in the training images. For example, CREMI has a substantially higher number of features, especially cycles, than
Elegans, therefore, the absolute magnitude of the loss is likely higher.
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G. Wasserstein matching
The pth Wasserstein distance is frequently used to measure the difference between persistence diagrams; it is given by

dp(B1,B2) = inf
γ

( ∑
q∈Dgm(B1)

∥q − γ(q)∥p∞

)1/p

for p ≥ 1, where γ runs over all bijections Dgm(B1) → Dgm(B2) that respect the dimension. For a likelihood map
L ∈ [0, 1]m×n and a ground truth G ∈ {0, 1}m×n, the authors of (Hu et al., 2019) adopt this metric to define the
Wasserstein loss

lW(L,G) = min
γ

∑
q∈Dgm(L)

∥q − γ(q)∥22,

(a) L G

(b) Wasserstein matching

Figure 18: (a) A predicted like-
lihood map L and ground truth
segmentation G. (b) visualizes
the Wasserstein matching γ∗ (only
the yellow cycles are matched), i.e.
the top-left cycle in L is a false
negative and the bottom-right cy-
cle in L is a false positive.

where γ runs over all bijections Dgm(L) → Dgm(G) that respect the dimension.
The bijection γ∗ achieving the minimum corresponds to the Wasserstein matching
Dgm(L) → Dgm(G), which minimizes the total distance of matched points. For
the represented topological features this means that the matching is purely based on
their local contrast within their respective images. Furthermore, note that Dgm(G)
contains exclusively the point (0, 1) since the entries of G are contained in {0, 1}.
Hence, γ∗ matches points in Dgm(L) representing features in L with enough local
contrast in descending order until Dgm(G) runs out of points. This procedure results
in a matching of topological features, which potentially exhibit no spatial relation within
their respective images (see Fig. 2,8b,18b and App. A) and can have a negative impact
on the training of segmentation networks. To see this, we distinguish two cases for a
fixed point q = (q1, q2) ∈ Dgm(L):

case 1: (false positive) q is matched but there is no spatially corresponding feature in
G :
Since q is matched to the point (0, 1) ∈ Dgm(G), the loss lW will be reduced by
decreasing the value q1 and increasing the value q2. Hence, the segmentation network
will learn to increase the local contrast of the feature described by the q (see Sec. 3.2),
but it should be decreased.

case 2: (false negative) q is unmatched but there is a spatially corresponding feature
in G:
Since q is unmatched, the bijection γ∗ maps it to its closest point ((q1+q2)/2, (q1+q2)/2)
on the diagonal ∆ and the loss lW will be reduced by increasing the value q1 and
decreasing the value q2. Hence, the segmentation network will learn to decrease the local contrast of the feature described
by q (see Sec. 3.2), but it should be increased.

G.1. Frequency of incorrect Wasserstein matching

Next, we study how frequently these two cases occur. Assuming that the Betti matching is correct, we evaluate the quality of
the Wasserstein matching on the CREMI dataset. Therefor, we choose a segmentation model to obtain label-prediction pairs
for every image in the CREMI dataset and compute both matchings. Among the 37243 matched intervals in the barcodes of
the predictions by the Wasserstein matching, only 224 have been matched correctly, i.e. it achieves a precision of 0.6%.

G.2. Wasserstein loss as Betti number error

For a binarized output P and ground truth G, the Wasserstein loss and the Betti number error are closely related. A similar
argumentation as in Sec. 3.3 for the Betti matching loss shows that

βerr(P ,G) = 2lW(P ,G).

A lower Betti number error of a model trained with our Betti matching loss compared to a model trained with the Wasserstein
loss asserts that the Betti matching loss produces more faithful gradients during the training of segmentation networks. Note
that, empirically, models trained with Betti matching loss consistently outperform models trained with Wasserstein loss with
regard to the Betti number error (see Tables 1,4).
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H. Persistence Diagrams and Barcodes

(a) Matching between Barcodes (b) Bijection between persistence diagram

Figure 19: Illustrations of how to translate a matching between barcodes (a) into a bijection between persistence diagram (b) and vice
versa. A red or blue line in (a) is a dot of the same color in (b). In (a), a green interval in between a blue and a red interval indicates that
they are matched. In (b), a line connecting two points indicates that they are matched. For detail, please refer to Section 3.2.

I. Additional comparison experiments

Table 2: We find that our method outperforms the unified focal loss proposed by Weung et al. (Yeung et al., 2022) in all metrics on
CREMI dataset. It is important to note that the main contribution of our method is the faithful matching of topological features between
label and prediction. This sets us apart from all voxel based losses designed to handle class imbalance.

Methods Dice clDice Acc. µerr µerr
0 µerr

1 βerr βerr
0 βerr

1

Yeung et al. 0.867 0.926 0.949 472.16 152.88 319.28 184.72 75.88 108.84
Ours (Betti matching) 0.893 0.941 0.959 259.60 62.00 197.60 79.16 30.36 48.80

J. Additional ablation experiments

Table 3: bothlevel versus superlevel matching of our method on the Elegans dataset and the CREMI dataset. The bothlevel matching
appears to have a more pronounced contribution in the scenario of topologically complex background

level α Dice clDice Acc. µerr µerr
0 µerr

1 βerr βerr
0 βerr

1

Elegans bothlevel 0.005 0.92 0.96 0.98 3.40 2.10 1.30 1.90 0.80 1.10
Elegans superlevel 0.005 0.92 0.95 0.98 4.30 2.70 1.60 2.40 1.30 1.10

CREMI bothlevel 0.5 0.89 0.95 0.95 120.96 25.84 95.12 52.08 25.28 26.80
CREMI superlevel 0.5 0.89 0.95 0.96 118.40 28.80 89.60 52.24 28.16 24.08
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Table 4: α ablation on the synMnist dataset and the Roads dataset.

α Dice clDice Acc. µerr µerr
0 µerr

1 βerr βerr
0 βerr

1 ARI VOI
R

oa
ds

O
ur

s

0.0005 0.670 0.706 0.974 107.92 79.79 28.13 103.917 79.375 24.542 0.643 0.847
0.005 0.670 0.708 0.974 102.50 74.54 27.96 97.583 74.042 23.542 0.647 0.839
0.05 0.667 0.709 0.974 90.79 63.33 27.46 85.042 62.833 22.208 0.655 0.828
0.5 0.663 0.713 0.972 83.00 56.29 26.71 75.083 55.792 19.292 0.690 0.791

cl
D

ic
e

0.05 0.664 0.701 0.975 154.58 123.38 31.21 151.250 123.125 28.125 0.588 0.895
0.1 0.663 0.697 0.975 162.38 131.96 30.42 158.375 131.708 26.667 0.599 0.885
0.25 0.667 0.701 0.975 158.38 128.25 30.13 154.208 127.917 26.292 0.622 0.879
0.75 0.668 0.704 0.975 131.00 102.08 28.92 125.833 101.667 24.167 0.615 0.873
0.5 0.663 0.696 0.975 157.25 127.50 29.75 152.417 127.000 25.417 0.618 0.874

H
u

et
al

. 0.0005 0.669 0.706 0.974 107.50 79.04 28.46 102.500 78.542 23.958 0.651 0.838
0.005 0.674 0.712 0.974 101.00 73.04 27.96 95.833 72.542 23.292 0.660 0.836
0.05 0.669 0.707 0.974 105.79 78.42 27.38 99.875 77.917 21.958 0.654 0.832
0.5 0.656 0.699 0.970 117.17 89.21 27.96 105.417 88.708 16.708 0.709 0.787

sy
nM

ni
st

O
ur

s

0.0005 0.866 0.907 0.962 3.37 1.69 1.69 2.302 1.370 0.932 0.844 0.537
0.005 0.871 0.920 0.962 2.54 0.92 1.62 1.596 0.732 0.864 0.873 0.481
0.05 0.849 0.916 0.955 2.28 0.53 1.75 1.348 0.426 0.922 0.868 0.491
0.5 0.796 0.888 0.939 2.30 0.58 1.72 1.428 0.466 0.962 0.805 0.612

cl
D

ic
e

0.05 0.871 0.911 0.963 3.23 1.59 1.64 2.264 1.328 0.936 0.871 0.483
0.1 0.872 0.912 0.963 3.28 1.63 1.65 2.320 1.384 0.936 0.862 0.506
0.25 0.874 0.917 0.963 2.68 1.04 1.65 1.764 0.826 0.938 0.877 0.461
0.5 0.875 0.922 0.963 2.54 0.87 1.67 1.640 0.700 0.940 0.881 0.454
0.75 0.869 0.921 0.961 2.39 0.80 1.59 1.580 0.622 0.958 0.888 0.429

H
u

et
al

. 0.0005 0.872 0.909 0.963 3.76 2.00 1.76 2.650 1.686 0.964 0.880 0.461
0.005 0.870 0.908 0.962 3.57 1.82 1.75 2.498 1.514 0.984 0.864 0.504
0.05 0.867 0.916 0.960 2.85 1.00 1.85 1.802 0.764 1.038 0.893 0.425
0.5 0.785 0.862 0.935 3.51 1.12 2.38 1.968 0.840 1.128 0.814 0.589

Table 5: Relative Frame ablation of our method on the Roads dataset

α Dice clDice Acc. µerr µerr
0 µerr

1 βerr βerr
0 βerr

1 ARI VOI

re
la

tiv
e 0.0005 0.670 0.706 0.974 107.92 79.79 28.13 103.917 79.375 24.542 0.643 0.847

0.005 0.670 0.708 0.974 102.50 74.54 27.96 97.583 74.042 23.542 0.647 0.839
0.05 0.667 0.709 0.974 90.79 63.33 27.46 85.042 62.833 22.208 0.655 0.828
0.5 0.663 0.713 0.972 83.00 56.29 26.71 75.083 55.792 19.292 0.690 0.791

no
n-

re
la

tiv
e 0.0005 0.669 0.706 0.974 109.46 81.04 28.42 104.542 80.542 24.000 0.654 0.835

0.005 0.671 0.709 0.974 100.50 72.96 27.54 95.167 72.458 22.708 0.661 0.829
0.005 0.669 0.712 0.973 92.21 64.54 27.67 84.708 64.042 20.667 0.675 0.818
0.5 0.661 0.711 0.972 82.83 56.33 26.50 75.583 55.833 19.750 0.695 0.787

Table 6: Dimension 1 and dimensions 0,1 matching ablation for the Hu et al. method on the Roads dataset

α Dice clDice Acc. µerr µerr
0 µerr

1 βerr βerr
0 βerr

1 ARI VOI

di
m

1

0.0005 0.669 0.706 0.974 107.50 79.04 28.46 102.500 78.542 23.958 0.651 0.838
0.005 0.674 0.712 0.974 101.00 73.04 27.96 95.833 72.542 23.292 0.660 0.836
0.05 0.669 0.707 0.974 105.79 78.42 27.38 99.875 77.917 21.958 0.654 0.832
0.5 0.656 0.699 0.970 117.17 89.21 27.96 105.417 88.708 16.708 0.709 0.787

di
m

0,
1 0.0005 0.672 0.709 0.974 108.58 80.21 28.38 104.083 79.708 24.375 0.649 0.839

0.005 0.673 0.710 0.974 105.50 77.25 28.25 100.667 76.750 23.917 0.656 0.836
0.05 0.668 0.708 0.974 94.00 66.29 27.71 88.083 65.792 22.292 0.649 0.832
0.5 0.662 0.711 0.972 89.42 62.58 26.83 80.583 62.083 18.500 0.692 0.798

Table 7: Pretraining (denoted with *) vs. training from scratch (denoted without *) of ours and the Hu et al. method on the Elegans dataset.

Training α Dice clDice Acc. µerr µerr
0 µerr

1 βerr βerr
0 βerr

1 ARI VOI

C
R

E
M

I Ours 0.05 0.882 0.938 0.953 130.12 27.88 102.24 45.72 27.16 18.56 0.919 0.393
Ours* 0.05 0.889 0.940 0.957 131.36 28.52 102.84 64.40 27.96 36.44 0.905 0.437
Hu et al. 0.05 0.880 0.932 0.953 165.52 55.84 109.68 85.60 55.28 30.32 0.905 0.436
Hu et al.* 0.05 0.895 0.942 0.960 132.80 35.52 97.28 75.36 34.96 40.40 0.909 0.425

E
le

ga
ns

Ours 0.005 0.919 0.960 0.983 3.40 2.10 1.30 1.90 0.80 1.10 0.927 0.359
Ours* 0.005 0.924 0.963 0.984 3.90 2.40 1.50 2.30 1.20 1.10 0.939 0.313
Hu et al. 0.005 0.921 0.959 0.984 4.30 2.85 1.45 2.50 1.35 1.15 0.929 0.350
Hu et al.* 0.005 0.921 0.962 0.984 4.15 2.50 1.65 2.55 1.30 1.25 0.929 0.349
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K. Datasets and training splits
The full training routine with the complete trainingsets and testsets will be available with our github repository 2. All our
trainings are done on patches of 48 × 48 pixels. For the buildings dataset (Mnih, 2013), we downsample the images to
375× 375 pixels and randomly choose 80 samples for training and 20 for testing. For each epoch, we randomly sample 8
patches from each sample. For the Colon dataset (Carpenter et al., 2006; Ljosa et al., 2012), we downsample the images to
256× 256 pixels; we randomly choose 20 samples for training and 4 for testing. For each epoch, we randomly sample 12
patches from each sample. For the CREMI dataset (Funke et al., 2019), we downsample the images to 312× 312 pixels; we
choose 100 samples for training and 25 for testing. For each epoch, we randomly sample 4 patches from each sample. For
the Elegans dataset (Ljosa et al., 2012), we crop the images to 96× 96 pixels; we randomly choose 80 samples for training
and 20 for testing. For each epoch, we randomly sample 1 patch from each sample. For the synMnist dataset (LeCun,
1998), we synthetically modify the MNIST dataset to an image size of 48× 48 pixels; please see our GitHub repository for
details; we train on 4500 full, randomly chosen images and use 1500 for testing. For the Roads dataset (Mnih, 2013), we
downsample the images to 375× 375 pixels; we randomly choose 100 samples for training and 24 for testing. For each
epoch, we randomly sample 8 patches from each sample.

L. Network specifications
We use the following notation:

1. In(input channels), Out(output channels), BI(output channels) present input, output, and bottleneck channel
(for U-Net);

2. C(filter size, output channels) denote a convolutional layer followed by ReLU and batch-normalization;

3. U(filter size, output channels) denote a transposed convolution followed by ReLU and batch-normalization;

4. ↓ 2 denotes maxpooling;

5. ⊕ indicates concatenation of information from an encoder block.

L.1. Unet Configuration-I

We use this configuration for CREMI, synthMNIST, Colon and Elegans dataset. This is a lightweight U-net which has
sufficient expressive power for these datasets.

ConvBlock : CB(3, out size) ≡ C(3, out size)→ C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size)→ ⊕→ C(3, out size)

Encoder : IN(1/3 ch)→ CB(3, 16)→ CB(3, 32)→ CB(3, 64)→ CB(3, 128)→ CB(3, 256)→ B(256)

Decoder : B(256)→ UB(3, 256)→ UB(3, 128)→ UB(3, 64)→ UB(3, 32)→ UB(3, 16)→ Out(1)

L.2. Unet Configuration-II

We had to choose a different U-Net architecture for the road and building dataset because we realized that a larger model is
needed to learn useful features for this complex task.

ConvBlock : CB(3, out size) ≡ C(3, out size)→ C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size)→ ⊕→ C(3, out size)

Encoder : IN(3 ch)→ CB(3, 64)→ CB(3, 128)→ CB(3, 256)→ CB(3, 512)→ CB(3, 1024)→ B(1024)

Decoder : B(1024)→ UB(3, 1024)→ UB(3, 512)→ UB(3, 256)→ UB(3, 128)→ UB(3, 64)→ Out(1)

2https://github.com/nstucki/Betti-matching/
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M. Evaluation metrics
We evaluate our experiments using a set of topological and pixel-based metrics. The metrics are computed with respect to
the binarized predictions. Here, Betti matching error constitutes the most meaningful quantification, see section 3.3. We
calculate the Betti matching error for dimension 0 (µerr

0 ) and dimension 1 (µerr
1 ) as well as their sum (µerr). Furthermore, we

implement the Betti number error for dimension 0 (βerr
0 ), dimension 1 (βerr

1 ), and their sum (βerr):

βerr(P ,G) =

∞∑
d=0

|βd(D(P )0.5)− βd(D(G)0.5)|

It computes the Betti numbers of both foregrounds and sums up their absolute difference in each dimension, i.e., it compares
the topological complexity of the foregrounds. It is important to consider the dimensions separately since they have
different relevance on different datasets. E.g., Roads has many 1-cycles, whereas Buildings has many 0-cycles (connected
components).

(a) Prediction 1
Acc = 0.99
Dice = 0.99
βerr = 0
µerr = 2

(b) Ground truth (c) Prediction 2
Acc = 0.97
Dice = 0.95
βerr = 0
µerr = 0

Figure 20: (a) and (c) show two predictions for ground truth (b). Volumetric metrics, e.g., Accuracy and Dice favor (a) over (c), and even
Betti number error can not differentiate between (a) and (c) while only Betti matching detects the spatial error in (a) and favors (c).

Additionally, we use the traditional Dice metric and Accuracy, which describe the in total correctly classified pixels, as well
as the clDice metric from (Shit et al., 2021). Here, we calculate the clDice between the volumes and the skeleta, extracted
using the skeletonize function of the skimage python-library. We compute all metrics on the individual test images of their
respective size (without patching) and take the mean across the whole testset.
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N. Basic definitions and terminology
N.1. Cubical complexes

A d-dimensional (cubical) cell in Rn is the Cartesian product c =
∏n

j=1 Ij of intervals Ij = [aj , bj ] with aj ∈ Z,
bj ∈ {aj , aj + 1} and d ∈ {0, . . . , n} is the number of non-degenerate intervals among {I1, . . . , Id}.

If c and d are cells and c ⊆ d, we call c a face of d of codimension dim(d)− dim(c). A face of codimension one is also
called a facet.

A d-dimensional (cubical) complex in Rn is a finite set of cubical cells in Rn with maximal dimension d that is closed
under the face relation, i.e., if d ∈ K and c is a face of d, then c ∈ K. Furthermore we call a cubical complex K ′ ⊆ K a
subcomplex of K.

A filtration of a cubical complex K is given by a family (Kr)r∈R of subcomplexes of K, which satisfies:

(1) Kr ⊆ Ks for all r ≤ s,

(2) K = Kr for some r ∈ R.

A filtered (cubical) complex K∗ is a cubical complex K together with a nested sequence of subcomplexes, i.e., a sequence
of complexes

∅ = K0 ⊆ K1 . . . ⊆ Km = K.

A function f : K → R on a cubical complex is said to be order preserving if f(c) ≤ f(d) for a face c of a cell d.

N.2. Homology

A chain complex C∗ consists of a family {Cd}d∈Z of vector spaces and a family of linear maps {∂d : Cd → Cd−1}d∈Z that
satisfy ∂d−1 ◦ ∂d = 0.

(a) 1-cell (b) 2-cell

(c) 1-cycle z2 (d) 1-cycle z2

Figure 21: (a) and (b) show cells and their
boundary (red). (c) and (d) visualize two
homologous 1-cycles (blue) in a cubical
complex.

For d ∈ Z, we denote by Kd the set of d-dimensional cells in a cubical complex
K. The F2-vector space Cd(K) freely generated by Kd is the chain group of K
in degree d. We can think of the elements in Cd(K) as sets of d-dimensional cells
and call them chains. These chain groups are connected by linear boundary maps
∂d : Cd(K)→ Cd−1(K), which map a cell to the sum of its faces of codimension
1 and are extended linearly to all of Cd(K). The cubical chain complex C∗(K)
is given by the pair ({Cd(K)}d∈Z, {∂d}d∈Z). We denote by Zd(K) = ker ∂d
the subspace of cycles and by Bd(K) = im ∂d+1 the subspace of boundaries in
Cd(K). Since ∂d−1◦∂d = 0, every boundary is a cycle and the homology group of
K in degree d is defined by the quotient space Hd(K) := Zd(K)/Bd(K). In other
words, Hd(K) consists of equivalence classes of d-cycles and two d-cycles z1, z2
are equivalent (homologous) if their difference is a boundary. For convenience,
we define H∗(K) =

⊕
d∈Z Hd(K). Note that the homology groups still carry the

structure of a F2-vector space and their dimension βd(K) = dimF2
(Hd(K)) is

the dth Betti number of K.

A map f : K → K ′ between cubical complexes is said to be cubical if it respects the face relation, i.e., f(c) must be a face
of f(d) in K ′ if c is a face of d in K.

A cubical map f : K → K ′ induces a linear map C∗(f) : C∗(K) → C∗(K
′), by mapping a cell c ∈ K with

dim(f(c)) = dim(c) to f(c) and extending this assignment linearly to all of C∗(K). Then C∗(f) descends to a lin-
ear map H∗(f) : H∗(K)→ H∗(K

′) in homology since ∂∗ ◦ C∗(f) = C∗(f) ◦ ∂∗.
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N.3. Persistence modules

A persistence module M consists of a family {Mr}r∈R of vector spaces, which are connected by linear transition maps
maps Mr,s : Mr →Ms for all r ≤ s, such that

(1) Mr,r = idMr
for all r ∈ R,

(2) Ms,t ◦Mr,s = Mr,t for r ≤ s ≤ t.

M is said to be pointwise finite-dimensional (p.f.d.) if Mr is finite-dimensional for every r ∈ R.

A basic example of a persistence module is an interval module C(I) for a given interval I ⊆ R. It consists of vector spaces

C(I)r =

{
F2 if r ∈ I,
0 otherwise.

and transition maps

C(I)r,s =

{
idF2

if r, s ∈ I,
0 otherwise.

for r ≤ s.

A morphism Φ: M → N between persistence modules is a family {Φr : Mr → Nr}r∈R of linear maps, such that for all
r ≤ s the following diagram commutes:

Mr Ms

Nr Ns

Mr,s

Φr Φs

Nr,s

We call Φ an isomorphism (resp. monomorphism, epimorphism) of persistence modules if Φr is a isomorphism (resp.
monomorphism, epimorphism) of vector spaces for all r ∈ R.

For a family {Mi}i∈I of persistence modules, the direct sum
⊕

i∈I Mi is the persistence module consisting of vector
spaces (

⊕
i∈I Mi)r =

⊕
i∈I(Mi)r for all r ∈ R and transition maps (

⊕
i∈I Mi)r,s =

⊕
i∈I(Mi)r,s for all r ≤ s ∈ R.

A multiset X consists of a set |X| together with a multiplicity function multX : |X| → N ∪ {∞}. Equivalently it can be
represented by its underlying set ⨿X =

⋃
x∈|X|

∐multX(x)
i=1 {x}. We say X is finite if its underlying set ⨿X is finite and

its cardinality #X is given by the cardinality of its underlying set.

Let K∗ be a filtered cubical complex and L∗ a cell-wise refinement according to the compatible ordering c1, . . . , cl of the
cells in K. The boundary matrix B ∈ Fl×l

2 of L∗ is given entry-wise by

Bi,j =

{
1 if σi is a facet of σj ,

0 otherwise.

N.4. Matchings

A map f : X → Y between multisets is a map f : ⨿X → ⨿Y between their underlying sets.

A matching σ : X → Y between multisets is a bijection σ : ⨿X ′ → ⨿Y ′ for some multisets X ′, Y ′ that satisfy⨿X ′ ⊆ ⨿X
and ⨿Y ′ ⊆ ⨿Y . We call

• coim(σ) = X ′ the coimage of σ,

• im(σ) = Y ′ the image of σ,

• ker(σ) = X \X ′ the kernel and of σ,

• coker(σ) = Y \ Y ′ the cokernel of σ.
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For a morphism Φ: M → N of persistence modules, the image of Φ is the persistence module im(Φ), with im(Φ)r =
im(Φr) and transition maps im(Φ)r,s = Nr,s|im(Φr) : im(Φr)→ im(Φs) for r, s ∈ R.

Let M,N be persistence modules. We call M a (persistence) submodule of N if Mr is a subspace of Nr for every r ∈ R
and the inclusions ir : Mr ↪→ Nr assemble to a persistence map i = (ir)r∈R. In this case we write M ⊆ N .

The composition of two matchings X σ1−→ Y
σ2−→ Z is given by the composition of the bijections

σ−1
1 (Y ′)

σ1−→ Y ′ σ2−→ σ2(Y
′),

with Y ′ = ⨿ im(σ1) ∩ ⨿ coim(σ2).

A persistence module M is said to be staggered if every real number r ∈ R occurs at most once as endpoint of an interval
in B(M).
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