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Abstract
In federated learning (FL), a cluster of local
clients are chaired under the coordination of the
global server and cooperatively train one model
with privacy protection. Due to the multiple local
updates and the isolated non-iid dataset, clients
are prone to overfit into their own optima, which
extremely deviates from the global objective and
significantly undermines the performance. Most
previous works only focus on enhancing the con-
sistency between the local and global objectives
to alleviate this prejudicial client drifts from the
perspective of the optimization view, whose per-
formance would be prominently deteriorated on
the high heterogeneity. In this work, we propose a
novel and general algorithm FedSMOO by jointly
considering the optimization and generalization
targets to efficiently improve the performance in
FL. Concretely, FedSMOO adopts a dynamic reg-
ularizer to guarantee the local optima towards the
global objective, which is meanwhile revised by
the global Sharpness Aware Minimization (SAM)
optimizer to search for the consistent flat minima.
Our theoretical analysis indicates that FedSMOO
achieves fast O(1/T ) convergence rate with low
generalization bound. Extensive numerical stud-
ies are conducted on the real-world dataset to ver-
ify its peerless efficiency and excellent generality.

1. Introduction
FL is a horizontally distributed framework that allows a
mass of edge devices to collaboratively train a global model
on their isolated private dataset (McMahan et al., 2017). To
protect the data privatization and localization, each client
has no direct access to the other dataset. To enable informa-
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tion exchange during training, a global server is employed
to communicate the intermediate variables and parameters
with the local clients, and to assist them with performing
the joint training. Due to the poor bandwidth throttling espe-
cially on the global server, it adopts multiple local training
and partial participation to mitigate the communication bot-
tleneck to a greater extent. With extensive studies of FL,
theoretical analysis reveals that the major influence on lim-
iting the performance of FL is client drifts, whose essence
is that the inconsistent local optima deviate from the global
objective on the heterogeneous dataset (Karimireddy et al.,
2020; Woodworth et al., 2020; Li et al., 2020b; Kairouz
et al., 2021). Yang et al. (2021) theoretically demonstrate
that the performance of the classical FedAvg method suf-
fers from the length of local updates and the number of
partial participation multiplied by the constant upper bound
of the variance of the heterogeneous gradient, which con-
tributes as the dominant term of the convergence rate. This
divergence would be extremely multiplied by both increas-
ing the local interval and reducing the participation ratio.

To address these problems above, spontaneously, most ex-
isting works focus on tackling the global consistent objec-
tives from the perspective of optimization view with Empir-
ical Risk Minimization (ERM) (Malinovskiy et al., 2020;
Wang et al., 2020b; Charles & Konečnỳ, 2021; Wang et al.,
2021; Zhang et al., 2022). With the process of global train-
ing, steady correction to the local objectives based on the
regularization term productively reduces the upper bound
of theoretical convergence rate (Zhang et al., 2021; Acar
et al., 2021). Furthermore, considering the asynchrony, re-
weighted empirical averages contribute to aggregating more
stable global parameters (Wang et al., 2020a; Huang et al.,
2022). However, in the face of the challenge of a higher
heterogeneous dataset, e.g. for heavy tail, the global solu-
tion falling into a sharp landscape may fail to provide solid
estimates and yet overfit to an unreliable minimum with
poor stability (Brownlees et al., 2015; Foret et al., 2020).
Therefore, we need to contemplate the training process com-
prehensively and completely. More attention must be paid
to the generalization ability under ensuring the optimization
performance in the federated framework.

To further approach the consistent stationary state with cred-
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ible stability in FL, in this paper, we jointly take into account
ensuring both the optimization and generalization perfor-
mance on the global target and propose a novel algorithm
FedSMOO to guide the local clients to search for the con-
sistent flat minima aligned to the global objective which
significantly improve the performance, especially on the
dataset with high heterogeneity. Specifically, we first adopt
the dynamic regularizer to align the global and local objec-
tives. Under the assurance of local consistency, we consider
the global objective as searching for a flat stationary state
based on the global SAM optimizer, which will correct the
regularization term dynamically. As the local multiple up-
dates, applying the general SAM optimizer on the global
server cannot get the accurate perturbation when updating
locally. To tackle this, we introduce an additional equality
constraint on the perturbation in the global optimization
objective and employ another regularization term to modify
the updates of SAM, which maintains the consistency of the
local perturbation terms aligned to the global target. When
the active local clients converge, they eventually achieve the
global stationary state with a smooth loss landscape.

In contrast with Qu et al. (2022) (FedSAM) which firstly
incorporates the SAM optimizer with FL and allows each
client to train the model with a local SAM optimizer, they
focus on improving the local generality to inherently align
the local flatness closer to the global flatness and expect to
enhance the consistency. FedSMOO jointly considers the
global consistency and global generality as the target from
the perspective of both the optimization and generalization
to approach a consistent smooth minimum.

Theoretically, we relax the general assumption of bounded
heterogeneous gradients and demonstrate that our proposed
FedSMOO could achieve the fast O(1/T ) convergence rate
on smooth non-convex scenes. Then we provide the gen-
eralization bound of the global function to theoretically
guarantee the smoothness of the optimal state. Empirically,
we conduct extensive experiments on the CIFAR-10/100
dataset and show that FedSMOO achieves the faster conver-
gence rate and higher generalization accuracy in practice,
compared with 7 baselines including FedAvg, FedAdam,
SCAFFOLD, FedCM, FedDyn, FedSAM, and MoFedSAM.

In the end, we summarize our main contributions as:

• We propose a novel and general federated algorithm,
FedSMOO, to jointly consider both global consistency
and global generality as the target, which simultane-
ously stays fast convergence and high generalization.

• We provide the theoretical analysis of the conver-
gence rate and generalization bound. On the smooth
non-convex scene, FedSMOO could achieve the fast
O(1/T ) convergence rate without the general assump-
tion of the bounded heterogeneous gradients.

• Extensive numerical studies are conducted on the
CIFAR-10/100 dataset to verify the excellent perfor-
mance of FedSMOO, which outperforms several clas-
sical baselines, especially on the high heterogeneity.

2. Related Work
FL: McMahan et al. (2017) propose the federated frame-
work to corporately train a model among a cluster of edged
devices with the isolated private dataset (Hard et al., 2018).
To reduce the communication costs, multiple local updates
and partial participation are yet adopted, which significantly
undermines the performance (Woodworth et al., 2020) and
becomes a trade-off in the federated framework in prac-
tice (Stich, 2018; Asad et al., 2020; Yang et al., 2021).
The essential reason for this is due to the global hetero-
geneous distribution of isolated private datasets (Konečnỳ
et al., 2016; Yang et al., 2019; Li et al., 2020a; Liu et al.,
2022). With further studies in FL, this is summarized as
client drifts (Karimireddy et al., 2020) and inconsistency
objectives among clients (Charles & Konečnỳ, 2021; Mali-
novskiy et al., 2020; Wang et al., 2020b; 2021). To address
these difficulties, a series of algorithms are proposed from
the perspective of optimization. Sahu et al. (2018) propose
to penalize the quadratic term of the equality constraint
on the local objective to limit the local updates, which in-
troduces a balance of local and global optima (Hanzely &
Richtárik, 2020). Pathak & Wainwright (2020); Tran Dinh
et al. (2021) combine proximal mapping to approach the
global consistency. Liang et al. (2019); Karimireddy et al.
(2020); Haddadpour et al. (2021) utilize the variance reduc-
tion technique to reduce the stochastic variance of gradients
caused by the sampling among clients. Reddi et al. (2020)
improve the performance by applying an efficient adaptive
optimizer on the server side. Zhang et al. (2021) employ
the primal-dual method on the server and clients respec-
tively and Wang et al. (2022); Gong et al. (2022) extend the
method to the Alternating Direction Method of Multipliers
(ADMM). Acar et al. (2021) propose a variant of ADMM
via dynamic regularization terms. Wang et al. (2019); Das
et al. (2022) introduce the momentum to the local optimizer
to improve the performance. Xu et al. (2021); Ozfatura et al.
(2021) bring the client-level momentum across the clients
and global server which forces local updates to be similar.

SAM: Hochreiter & Schmidhuber (1994) firstly explore the
strong relationship between the generalization and its flat
loss landscape. Inspired by this, Foret et al. (2020) propose
the SAM optimizer to search for a flat minimum with higher
generality. Kwon et al. (2021) propose a scale-invariant
SAM to improve the training stability. Zhuang et al. (2022)
redefine the sharpness from an intuitive and theoretical view
for SAM. After that, extensive variants of SAM are proposed
Zhao et al. (2022); Sun et al. (2023a); Zhong et al. (2022);
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Mi et al. (2022). Existing works (Foret et al., 2020; Kwon
et al., 2021) show that the flat loss landscape approached
by the SAM optimizer holds higher stability and generality.
Besides, Qu et al. (2022) firstly take into account the local
generality to inherently enhance the consistency. Caldarola
et al. (2022); Sun et al. (2023b); Shi et al. (2023a;b) propose
some variants to adopt the SAM optimizer in FL.

3. Rethinking FedSAM Algorithm
Below, we introduce the preliminaries of FL and FedSAM.
Then, we provide a deep understanding for FedSAM.

3.1. Preliminaries

Federated Learning (FL) Taking into account the clas-
sical FL framework, we focus on the minimization of the
following finite sum problem:

min
w

{
f(w) =

1

m

∑
i∈[m]

fi(w)
}
,

fi(w) ≜ Eεi∼Difi(w, εi),

(1)

where f : Rd → R is the global objective function; w is the
parameters; m is the number of total clients; [m] is the set of
total clients; εi is the data sample randomly drawn from the
distribution Di which may differ across the local clients as
the heterogeneity; fi is the empirical loss of the i-th client.

Sharpness Aware Minimization (SAM) SAM aims to
jointly minimize the loss function and smooth the loss land-
scape by solving the following problem:

min
w

{
fs(w) ≜ max

∥s∥≤r
f(w + s)

}
, (2)

where ∥ · ∥ is l2-norm and r is the size of the neighborhood.
SAM does not solve the min-max objective and adopts an
efficient approximation in practice. Via the first-order Taylor
expansion of f , the solution of the inner maximization is:

s∗(w) ≈ argmax
∥s∥≤r

{
f(w) + s⊤∇f(w)

}
= r · ∇f(w)/∥∇f(w)∥,

(3)

where ∇ is the abbreviation for ∇w on parameters w.
Substituting back into equation (2) and differentiating:

∇fs(w) ≈ ∇f(w + s∗(w))

≈ ∇f(w)|w+r·∇f(w)/∥∇f(w)∥.
(4)

Equation (4) approximates the SAM gradient by the stage-
wised calculation of 1) performing a gradient ascent step
to reach the state w+ r · ∇f(w)/∥∇f(w)∥ and calculating
its gradient; 2) performing a gradient descent step with
this gradient at state w. General SAM applies a standard
numerical optimizer such as the Stochastic Gradient Descent
(SGD) to approach the SAM objective (Foret et al., 2020).

3.2. Rethinking FedSAM Algorithm

FedSAM (Qu et al., 2022) focuses on improving local gen-
erality to achieve efficient training based on SAM optimizer
for each client. According to equation (1) (2), by applying
the SAM objective to replace the local ERM objective:

min
w

{
f s(w) =

1

m

∑
i∈[m]

f s
i (w)

}
,

f s
i (w) ≜ max

∥si∥≤r
fi(w + si),

(5)

where si is the local perturbation allocated to fi.
Its core idea is similar to personalized Federated Learning
(pFL) (Tan et al., 2022; Kulkarni et al., 2020), which con-
cerns more about improving the performance on the local
dataset. Intuitively, the improvement of each client could
promote better performance. Global Aggregation of local
states with smoother local loss landscape helps boost the
flatness of the global model. According to the formula (4):

∇f s(w) ≈ 1

m

∑
i∈[m]

∇fi(w)|w+r·∇fi(w)/∥∇fi(w)∥. (6)

The calculation of the global gradient can be easily split
to each local client i, which allows FedSAM to directly
enable the periodic aggregation from local training, like
FedAvg. However, this indirect promotion also has its own
limitations. Since the objective of equation (5) is not for the
global function f , the flatness of the global landscape can
not be directly optimized, which makes the whole process
full of uncertainty. We illustrate a situation with the simple
schematic shown in Figure 1. Obviously, when the local
consistency maintains a high level, which means the local
objectives are close to the global target, FedSAM effectively
improves the smoothness of the global loss landscape like
Figure 1 (a). However, when the consistency drops as shown
in Figure 1 (b), though it contributes to reducing the loss
value to a certain extent, the global loss surface is still sharp.
An important reason is that the effective range of SAM

flat surface of f1
flat surface of f2
flat surface of f
surface of f1
surface of f2
surface of f

(a) High consistency. (b) Low consistency.

Figure 1. A toy schematic to introduce a bad case of FedSAM.
We assume m = 2 and f = (f1 + f2)/2. The dotted lines
represent the general loss surface trained by SGD, and the solid
lines represent the flat loss surface trained by SAM. The red, green,
and blue correspond to the local f1, f2, and global f , respectively.
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usually cannot cover the total surface, and its performance
drops significantly far away from the optima. Therefore,
simply considering improving the local generality still faces
very large limitations, e.g. rugged inconsistent local optimal
under the severely heterogeneous dataset in practice.

4. Methodology
To tackle the difficulties and improve the performance of
the global function, we propose the FedSMOO which jointly
considers both consistency and a global flat landscape. Then,
we give convergence and generalization analysis.

4.1. FedSMOO Algorithm

In contrast to FedSAM (Qu et al., 2022), we focus on adopt-
ing the SAM objective on the global function as follows:

min
w

{
F(w) =

1

m

∑
i∈[m]

Fi(w)
}
,

Fi(w) ≜ max
∥s∥≤r

fi(w + s),

(7)

where s is the global perturbation allocated to f .
In FL, due to the data privatization and localization, gradient
calculations can only cover the local dataset of each client i.
If directly adopting the equation (7), it requires the global
gradient ∇f as mentioned in (4). This is impossible for the
local clients. Therefore, we transform the objective (7) into
the following form by adding two constraints on w and s:

min
wi=w

{
F =

1

m

∑
i∈[m]

Fi(w,wi, s, si)
}
,

Fi(w,wi, s, si) ≜ max
∥si∥≤r,
si=s

fi(wi + si).
(8)

Under the constraints of wi and si, the objective (8) and (7)
are equivalent. Meanwhile, the parameters wi and pertur-
bation si could be easily split to each local client, which
supports the federated calculations. This target guarantees
the global consensus of wi and si, and could search for the
consistent flat minima after completing the optimization.

4.1.1. RE-APPROXIMATING THE INNER MAXIMIZATION

Like the general SAM, instead of solving this maximization
problem rigorously, we derive an effective approximation
of its solution. By taking the first-order Taylor expansion
of fi(wi + si), we define the local augmented Lagrangian
function via penalizing the constrain si = s as the linear and
quadratic regularization terms on the objective as follows:

Ls
i : fi(wi)+s⊤i ∇fi(wi)+µ⊤

i (s−si)+
1

2α
∥s−si∥2, (9)

where the local perturbation satisfies ∥si∥ ≤ r.
To solve the maximization, we adopt a similar pattern as

ADMM to alternately update the local perturbation si, the
dual variable µi, and global perturbation s. Firstly, we have:

ŝi = argmax
∥si∥≤r

{
s⊤i (∇fi(wi)−µi)+

1

2α
∥si−s∥2

}
= argmax

∥si∥≤r

{ 1

2α
∥si + si∥2

}
,

(10)

where si = α (∇fi(wi)− µi)−s. Thereby, ŝi = rsi / ∥si∥.
Then we update the dual variable as µi = µi+

1
α (ŝi−s).To

maximize the global perturbation s, we have the following:

ŝ = argmax
∥s∥≤r

1

m

∑
i∈[m]

{
s⊤µi +

1

2α
∥s− ŝi∥2

}
= argmax

∥s∥≤r

{ 1

2α

1

m

∑
i∈[m]

∥s+ αµi − ŝi∥2
}
.

(11)

Let s = 1
m

∑
i∈[m] (αµi − ŝi). Thereby, ŝ = rs / ∥s∥.

With these update rules, we can calculate the local pertur-
bation of approximately satisfying the constraints. Due to
the data privatization and localization mentioned above, we
can not directly get the s⋆ during the local training as its re-
quirement of s⋆i for i ∈ [m]. Therefore, we iterate the global
perturbation on the global server and communicate it to the
active clients at the new round. At the local training process,
compared to the vanilla FedSAM, our proposed FedSMOO
adopts the new perturbation vector corrected by the global
estimation, which gradually approaches the global perturba-
tion during the training. Then, according to the formula (4),
we get the new corrected gradient to perform optimization.

4.1.2. GLOBAL CONSISTENCY AND THE MINIMIZATION

As shown in Figure 1, to productively avoid the performance
dropping and further improve the consistency, we also adopt
a dynamic regularizer (Acar et al., 2021) on each local client
via a similar pattern as ADMM, to efficiently minimize the
global objective F. Also, we penalize the wi = w constrain
and introduce the global augmented Lagrangian function as:

L :
1

m

∑
i

{
Fi + λ⊤

i (w
t −wi) +

1

2β
∥wt −wi∥2

}
. (12)

We split the finite sum problem to each local client and solve
each sub-problem in one communication round for several
local updates. In each sub-problem, we firstly minimize the
local parameters wi in the augmented Lagrangian function,

wt
i,K = argmin

wi

{
Fi − λ⊤

i wi +
1

2β
∥wt − wi∥2

}
. (13)

In order not to affect the performance of the vanilla SAM,
we adopt the SGD to solve this problem. Then we update
the dual variable as λi = λi − 1

β (w
t
i,K − wt). At the end

of each round, we minimize the global variable wt from the
function (12) and set it as wt+1 to start the next round.
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Algorithm 1 FedSMOO Algorithm
Input: global model w, local model wi, communication

round T , local interval K, local perturbation si, global
perturbation s, dual variable for parameters λi, global
dual variable λ, dual variable for perturbation µi, penal-
ized coefficient for the quadratic term α, β.

Output: global model wT .
1: Initialization : w = w0, λi = λ = 0, µi = 0.
2: for t = 0, 1, 2, · · · , T − 1 do
3: randomly select the active clients set [n] from [m]
4: for client i ∈ [n] in parallel do
5: send the wt, st to the active clients as wt

i,0, s
6: for k = 0, 1, · · · ,K − 1 do
7: get the stochastic gradient gti,k at wt

i,k

8: ŝti,k = rsti,k / ∥sti,k∥ for sti,k = (gti,k− µi)−s

9: µi = µi + (ŝti,k − s)

10: get the stochastic gradient ĝti,k at wt
i,k + ŝti,k

11: wt
i,k+1 = wt

i,k − η
[
ĝti,k − λi +

1
β (w

t
i,k − wt)

]
12: end for
13: s̃i = µi − ŝti,K
14: λi = λi − 1

β (w
t
i,K − wt)

15: send the wt
i = wt

i,K , s̃i to the global server
16: end for
17: st = rst / ∥st∥ for st = 1

n

∑
i∈[n] s̃i

18: λt+1 = λt − 1
βm

∑
i∈[n](w

t
i − wt)

19: wt+1 = 1
n

∑
i∈[n] w

t
i − βλt+1

20: end for

4.1.3. OVERVIEW OF FEDSMOO ALGORITHM

Algorithm 1 shows our detailed implementation flow. At
round t, we randomly select a sub-set of active clients [n]
from the total clients set [m], and send the current global
model wt and global perturbation estimation st to all active
clients. Line.8 computes the corrected local perturbation
according to equation (10) with α = 1. Line.9 updates the
dual variable for the local perturbation with the same α = 1.
Line.10 computes the new corrected SAM gradient and
Line.11 updates the local model wi with SGD according to
equation (13). Line.14 updates the local dual variable for the
local model. After finishing the local training process, we
send the required variables wt

i and s̃i to the global server for
aggregation. Line.17 computes the new global perturbation
estimation according to the equation (11). Line.18 and
Line.19 update the global model wt+1 by minimizing the
function (12) on the wt. The global updates repeat T rounds.

4.2. Theoretical Analysis

In this part, we demonstrate the theoretical analysis of our
proposed FedSMOO Algorithm. We take into account the
smooth non-convex case and prove its convergence rate can
achieve fast O(1/T ) with a general generalization bound.

4.2.1. CONVERGENCE RATE

Firstly we state some general assumptions in this work.

Assumption 1. Function fi(w) is L-smooth for all i∈ [m],
i.e., ∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x, y ∈ Rd.

Assumption 2. Stochastic gradient gti,k = ∇fi(w
t
i,k, ε

t
i,k)

with randomly sampled data εti,k is an unbiased estimator of
∇fi(w

t
i,k) with bounded variance, i.e., E[gti,k] = ∇fi(w

t
i,k)

and E∥gti,k −∇fi(w
t
i,k)∥2 ≤ σ2

l , for all xt
i,k ∈ Rd.

Assumption 1 assumes the Lipschitz continuity of the gra-
dients and Assumption 2 assumes the bounded stochastic
properties of the gradients. The two general assumptions are
widely used in the analysis of the FL framework (McMahan
et al., 2017; Reddi et al., 2020; Karimireddy et al., 2020;
Xu et al., 2021; Acar et al., 2021; Qu et al., 2022). In addi-
tion to these, FedSAM requires a tighter bounded variance
of the stochastic gradient and the assumption of bounded
heterogeneity (Qu et al., 2022). In our work, we refer to the
approach of Zhang et al. (2021); Acar et al. (2021); Wang
et al. (2022); Gong et al. (2022) and do not require the extra
assumptions. Proof details can be referred to the Appendix.

Theorem 4.1. Let the assumptions hold, let the size of the
active clients’ set | [n] | = n, and similarly, | [m] | = m, let
r ≤ 4κr√

nT
where κr ∈ R is a constant, and let β ≤

√
n

6
√
6mL

,

the sequence
{
wt+1 ≜ 1

n

∑
i∈[n] w

t
i

}
t∈[T−1]

generated by

the Algorithm 1 under the non-convex case satisfy:

1

T

T∑
t=1

E∥∇f(wt)∥2

≤ 1

ζβT

[
κf +

1

n
3βLκr +

m

n
72β2L2δ0

]
,

(14)

where ζ ∈
(
0, 1

2

)
is a constant, κf ≜ f(w1) − f⋆ for f⋆

is the optima of f , δ0 ≜ 1
m

∑
i∈[m] E∥w0

i − w1∥2 is the
inconsistent term at the first round for w1 ≜ 1

n

∑
i∈[n] w

0
i .

Remark 4.2. Under the participation ratio equal to n/m,
our proposed FedSMOO achieves fast O(1/T ) convergence
rate, which matches the conclusion of existing works (Zhang
et al., 2021; Acar et al., 2021; Wang et al., 2022; Gong et al.,
2022). κf term indicates the impact of the initial state w0.
κr term comes from the corrected SAM steps. δ0 term is
the variance of the local parameters wi optimized in the
first round, which indicates the inconsistency level from the
heterogeneity. The latter two achieve n× linear speedup.

Remark 4.3. A key property is that local models will con-
verge to the global model after training. With reference to
the analysis of Acar et al. (2021); Wang et al. (2022); Gong
et al. (2022) and consider the first-order gradient condition
of equation (13) as ∇Fi(w

t
i)− λi +

1
β (w

t
i −wt) = 0. And,

considering the update of λi = λi − 1
β (w

t
i − wt), we infer
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λi = ∇Fi(w
t
i) after updating at round t. Thus, rethinking

the first-order gradient condition, we have the relationship of
∇Fi(w

t
i)−∇Fi(w

t−1
i ) + 1

β (w
t
i −wt) = 0. When t → ∞,

the local model wt
i → w∞

i = w∞−1
i converges to the local

state. Thus, we have w∞
i → w∞. Furthermore, as shown in

Theorem 4.1, wt converges with the rate of O(1/t), which
implies w∞ = 1

n

∑
i∈[n] w

∞
i → w∞. This matches the

conclusion in (Acar et al., 2021) and guarantees that all
local objectives converge to the consistent global objective.

4.2.2. GENERALIZATION BOUND

Based on the margin generalization bounds in (Neyshabur
et al., 2017; Farnia et al., 2018), we consider the generaliza-
tion error bound on the global function f as following:

Gf
ϵ ≜ P

(
f(w+s, ε)[y] ≤ max

j ̸=y
f(w+s, ε)[j]+ ϵ

)
, (15)

where ε is the input data and y is its ground truth. If ϵ =
0, we denote the equation (15) as Gf to represent for the
average misclassification rate under the global perturbation
s. We define the G̃f

ϵ as the empirical estimate of the above
expected margin loss trained on the heterogeneous dataset.

Different from the FedSAM (Qu et al., 2022), which focuses
on the averaged local generality and define the error bound:
1
m

∑
i Pi(fi(w+si, ε)[y] ≤ max

j ̸=y
fi(w+si, ε)[j]+ϵ). This

split margin loss cannot describe the detailed characteristics
of the global function f . To directly explore the stability of
the global function, we adopt equation (15) as the margin
P( 1

m

∑
i

fi(w + s, ε)[y] ≤ max
j ̸=y

1
m

∑
i

fi(w + s, ε)[j] + ϵ).

Theorem 4.4. We assume the input data ε as the normalized
tensor, e.g. for an image, with the norm of Ln. And we
consider a Ll-layer neural network with d parameters per
layer. The activation functions hold no biases and bounded
1-Lipschitz property. The input data will be bounded by a
positive constant Lw and its total size equal to D. Under the
margin value of ϵ and a positive value p, with the probability
of at least 1 − p, the empirical generalization risk on the
global parameters w generated by FedSMOO satisfies:

Gf ≤ G̃f
ϵ +O

√L2
lL

2
nd ln(dLl)VL + ln LlD

p

(D − 1)ϵ2

 , (16)

where VL =
∏L

l=1 ∥wl∥2
∑L

l=1
∥wl∥2

F

∥wl∥2 .

FedSMOO focuses on searching for the global consistent
flat minima aligned to each local client, which theoretically
guarantees the global consistency. Theorem 4.4 indicates
the upper bound of the generalization risk on the global
parameters w of the global function f under SAM pertur-
bation s, which guarantees the flat landscape of the global
objective. Due to the space limitation, detailed proofs can
be referred to the Appendix C.

5. Experiments
In this section, we firstly introduce our experimental imple-
mentation details, including the introduction of the base-
lines, the backbone, dataset splitting, and hyperparameters
selection. Next, we state the evaluation of FedSMOO and
study its hyperparameters’ sensitivity and ablation test.

5.1. Implementation Details

Baselines: We compare the FedSMOO with several bench-
marks: FedAvg (McMahan et al., 2017) firstly introduce
the federated framework via partial participation and local
multiple training; FedAdam (Reddi et al., 2020) imple-
ment the global adaptive optimizer; SCAFFOLD (Karim-
ireddy et al., 2020) utilize the SVRG (Johnson & Zhang,
2013) to diminish the client drift; FedCM (Xu et al., 2021)
maintain the consistency of local updates with a momen-
tum term; FedDyn (Acar et al., 2021) guarantee the local
collective objectives through the local dynamic regulariza-
tion; FedSAM and its variant MoFedSAM (Qu et al., 2022)
employ the local SAM (Foret et al., 2020) optimizer with
momentum to reduce the generalized divergence drift. All
methods are evaluated on ResNet-18 (He et al., 2016) imple-
mented in PyTorch (Paszke et al., 2019) official model-zoo.
We follow the suggestion of Hsieh et al. (2020) to replace
the Batch Normalization with the Group Normalization (Wu
& He, 2018) to avoid the non-differentiable parameters.

Hyperparameter selections: In the interests of the fair-
ness, we freeze the general hyperparameters for all base-
lines on the same setups, including the local learning rate
equal to 0.1, the global learning rate equal to 1 expect for
FedAdam which adopts 0.1 for the global adaptivity, the
perturbation learning rate equal to 0.1 expect for FedSAM
and MoFedSAM which adopt 0.01, the weight decay equal
to 1e-3, and the learning rate decreasing by 0.998× expo-
nentially except for FedDyn and FedSMOO which adopt
0.9995× for the proxy term. On the CIFAR-10, we take the
batchsize equal to 50, and the local epochs equal to 5. On
the CIFAR-100, we adjust the batchsize equal to 20, and
the local epochs equal to 2 to avoid the extreme overfitting.
More details of the selections can be found in Appendix B.

Dataset splitting: We conduct the experiments on CIFAR-
10/100 (Krizhevsky et al., 2009) and then follow the Hsu
et al. (2019) to partition the dataset via widely used Dirichlet
and Pathological sampling. The coefficient u is adopted to
control the variance, which measures the heterogeneity.

Additionally, to further enhance the heterogeneity and ran-
domness, we enable the sampling with replacement when
generating the non-iid dataset. Most of the previous works
only consider the local heterogeneity and sample the data
without replacement, which makes the distribution of the
overall samples across the category uniform. In practice,
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Table 1. Test accuracy comparison among baselines and our proposed method on the CIFAR-10/100 dataset after 800 rounds. The dataset
splitting method is selected from the Dirichlet sampling with replacement and Pathological partition (only a few random categories
are enabled for sampling on a local client). The experimental setups are 10%-100 clients (upper part) and 5%-200 clients (lower part)
respectively. ”u” represents the Dirichlet coefficient which is selected from [0.1, 0.6], and ”c” represents the number of active categories
on each client which is selected from [3, 6] on CIFAR-10 and [10, 20] on CIFAR-100. Each result is calculated by 2 times.

ALGORITHM
CIFAR-10 CIFAR-100

DIRICHLET PATHOLOGICAL DIRICHLET PATHOLOGICAL

u = 0.6 u = 0.1 c = 6 c = 3 u = 0.6 u = 0.1 c = 20 c = 10

FEDAVG 79.52±.13 76.00±.18 79.91±.17 74.08±.22 46.35±.15 42.64±.22 44.15±.17 40.23±.31

FEDADAM 77.08±.31 73.41±.33 77.05±.26 72.44±.29 48.35±.17 40.77±.31 41.26±.30 32.58±.22

SCAFFOLD 81.81±.17 78.57±.14 83.07±.10 77.02±.18 51.98±.23 44.41±.15 46.06±.22 41.08±.24

FEDCM 82.97±.21 77.82±.16 83.44±.17 77.82±.19 51.56±.20 43.03±.26 44.94±.14 38.35±.27

FEDDYN 83.22±.18 78.08±.19 83.18±.17 77.63±.14 50.82±.19 42.50±.28 44.19±.19 38.68±.14

FEDSAM 80.10±.12 76.86±.16 80.80±.23 75.51±.24 47.51±.26 43.43±.12 45.46±.29 40.44±.23

MOFEDSAM 84.13±.13 78.71±.15 84.92±.14 79.57±.18 54.38±.22 44.85±.25 47.42±.26 41.17±.22

OUR 84.55±.14 80.82±.17 85.39±.21 81.58±.16 53.92±.18 46.48±.13 48.87±.17 44.10±.19

FEDAVG 75.90±.21 72.93±.19 77.47±.34 71.86±.34 44.70±.22 40.41±.33 38.22±.25 36.79±.32

FEDADAM 75.55±.38 69.70±.32 75.24±.22 70.49±.26 44.33±.26 38.04±.25 35.14±.16 30.28±.28

SCAFFOLD 79.00±.26 76.15±.15 80.69±.21 74.05±.31 50.70±.18 41.83±.29 39.63±.31 37.98±.36

FEDCM 80.52±.29 77.28±.22 81.76±.24 76.72±.25 50.93±.31 42.33±.19 42.01±.17 38.35±.24

FEDDYN 80.69±.23 76.82±.17 82.21±.18 74.93±.22 47.32±.18 41.74±.21 41.55±.18 38.09±.27

FEDSAM 76.32±.16 73.44±.14 78.16±.27 72.41±.29 45.98±.27 40.22±.27 38.71±.23 36.90±.29

MOFEDSAM 82.58±.21 78.43±.24 84.46±.20 79.93±.19 53.51±.25 42.22±.23 42.77±.27 39.81±.21

OUR 82.94±.19 79.76±.19 84.82±.18 81.01±.19 53.45±.19 45.83±.18 44.70±.21 43.41±.22
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Figure 2. Distribution across category on CIFAR-10 of sampling
with/without replacement under the Dirichlet coefficient u = 0.1
and the number of total clients m = 100. The standard deviation
of the samples’ number approaches 829.14, which highly increases
their imbalance and properly approximates the practical scenes.

due to the privacy protection policy, the distribution is usu-
ally disorderly and nonuniform. Some SOTA methods have
significant performance degradation unanimously on this
rugged dataset. Adopting sampling with replacement breaks
the balance of the raw data, which approaches more in line
with real-world scenarios. Figure 2 demonstrates the differ-
ence between these two setups in the experiments.

5.2. Experimental Evaluation

Comparison with the baselines: As shown in Table 1, our
proposed FedSMOO performs well with good stability and
effectively resists the negative impact of the strong hetero-

geneous dataset. Specifically, on the CIFAR-10 dataset,
FedSMOO achieves 80.82% on the Dirichlet-0.1 setups,
which is 2.11% higher than the second highest accuracy. On
the CIFAR-100 dataset, the improvement achieves 1.63%
from the MoFedSAM. Improvements of the vanilla FedSAM
on both CIFAR10 / 100 are very limited, which is only
about 1% over than FedAvg on average. While its vari-
ant MoFedSAM achieves about 5% improvement over the
FedSAM on average, which benefits from the momentum
updates during the local training. FedSMOO focuses on both
the optimization and global generalization performance, and
searches for the consistent flat landscape, which efficiently
converges to a better minimum and is significantly ahead
of the MoFedSAM algorithm, especially on the severely
heterogeneous dataset with inconsistent local optima.

Impact of heterogeneity: Via sampling with replacement,
not only is there a data imbalance between local clients, but
also the number of samples among categories in the global
dataset is also very different, as shown in Figure 2. With the
larger heterogeneity, several baselines are greatly affected.
We select the two methods to split the data, the Dirichlet
and the Pathological. In the Dirichlet, we select the variance
coefficient equal to 0.1 and 0.6 (the results of 0.6 and iid are
very close). In detail, on CIFAR-10, when the coefficient
decreases from 0.6 to 0.1, MoFedSAM drops from 84.13%
to 78.71%, while FedSMOO drops about only 3.73% to
80.82%, which maintains high accuracy. On CIFAR-100,
MoFedSAM achieves a little higher accuracy on Dirichlet-
0.6 low heterogeneous dataset, while it severely drops
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(a) FedAvg v.s FedSMOO (b) SCAFFOLD v.s FedSMOO (c) MoFedSAM v.s FedSMOO

Figure 3. Visualization of the loss landscape of ResNet-18 backbone trained via FedAvg, SCAFFOLD, MoFedSAM and FedSMOO on
the CIFAR-10 dataset. For clarity, we use the grid surface on the FedSMOO and compare it with the other three baselines separately.
FedSMOO could approach a more general and flat loss landscape which efficiently improves the generalization performance in FL.
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Figure 4. Hyperparameters sensitivity studies of local intervals, learning rate decay, penalized coefficient β and SAM-lr r on CIFAR-10.

about 9.53% when the non-iid level decreases to Dirichlet-
0.1. FedSMOO works well on the high heterogeneity and
achieves 1.63% ahead of the second-highest accuracy. Fur-
thermore, we test the Pathological split by blocking certain
types on a client and only sampling from the total random
c categories, which is a higher level of heterogeneity. On
the pathological dataset with only 3 categories per client,
FedSMOO is 2.01% ahead of the MoFedSAM on the 10%
participation and 1.08% on 5% participation. It achieves
good performance on the strong heterogeneous dataset with
high stability on different setups.

Impact of partial participation: Another important option
is the partial participation ratio. To fairly compare with the
baselines, we froze the other hyperparameters selections.
When the participation ratio decreases from 10% to 5% on
CIFAR-10, FedSMOO still achieves excellent performance,
which drops from 80.82% to 79.76% on Dirichlet-0.1, and
from 81.58% to 81.01% on Pathological-3. On the CIFAR-
100 experiments, FedSMOO maintains a high level of gen-
eralization on Pathological-10, which achieves 44.10%.

Loss landscape: Figure 3 shows the visualization of the loss
landscape. All models are trained on CIFAR-10 with the
Dirichlet-0.1 setup. We compare the FedAvg, SCAFFOLD,
MoFedSAM and FedSMOO algorithms. For a clear compar-
ison, we superimpose the landscape of the two algorithms
together and apply the grid surface on FedSMOO. It can
be seen that the global minima approached by our method
has not only a lower loss value but also a smoother loss

landscape, than the other three benchmarks.

Hyperparameters Sensitivity: We study the hyperparam-
eters’ sensitivity of local interval, learning rate decay, pe-
nalized coefficient β, and SAM learning rate r. FedSMOO
is stable on the changes in learning rate decay and r. The
selection of local intervals needs to be long enough to ap-
proximate the solution of Equation (13) as mentioned in
Acar et al. (2021). The selection can be fine-tuned appro-
priately for the gain. The penalized coefficient β can not
be selected too small, which will cause the proxy term to
severely interfere with the direction of gradient descent.

Hessian: To further illustrate the efficiency of improving the
generalization, we test the Hessian matrix of the final mod-
els. We test ResNet-18-GN on the CIFAR-10 dataset with
the setup of 10%-100 clients under the Dirichlet sampling
coefficient equal to 0.1 and 0.6 (the same hyperparameter
selection in Table 1. The results are shown in Table 2. It
is clear to see that the proposed FedSMOO approaches the
flat minimal with a lower Hessian top eigenvalue than the
FedSAM method. The Hessian trace also decreases effec-

Table 2. Consistency and Hessian matrix.

method FedSAM FedSMOO

Dirichlet 0.6 0.1 0.6 0.1
1
n

∑
i ∥w

t
i − wt∥2 0.866 1.245 0.821 1.061

Hessian Top Eigenvalue 142.65 177.18 91.46 107.44
Hessian Trace 3104.1 3842.3 1783.3 2689.4
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tively. The divergence term 1
n

∑
i ∥wt

i − wt+1∥2 maintains
similar properties with the flatness in our experiments.

Communication Cost: One of the major concerns in FL
is the communication bottleneck. Though some advanced
algorithms achieve higher performance, they have to com-
municate more data to support the training process. This
is undoubtedly a very large limitation in the FL paradigm.
Therefore, we compare the communication costs for the
algorithms in our paper. For convenience, we assume
FedAvg communicates total V bits in the training process.
To achieve 74% on CIFAR-10 of Pathological-3 splitting,
the total communication costs are stated in Table 3.

Table 3. Total communication costs.

method rounds communication costs

FedAvg 723 (1×) V
FedAdam - -
SCAFFOLD 533 (1.36×) 1.47 V
FedCM 442 (1.64×) 1.22 V
FedDyn 424 (1.71×) 0.59 V
FedSAM 604 (1.20×) 0.84 V
MoFedSAM 298 (2.43×) 0.82 V
FedSMOO 194 (3.73×) 0.53 V

From this table, we clearly see that advanced methods, i.e.
SCAFFOLD and FedCM, suffer from very high communica-
tion costs for transferring double vectors per round. Though
our proposed FedSMOO requires double as well, it focuses
on improving the generalization performance in FL and
effectively reduces the total communication costs.

6. Conclusion
In this work, we propose a novel and practical federated
algorithm FedSMOO which jointly considers the optimiza-
tion and generalization targets via adopting the dynamic
regularizer to guarantee the local optima towards the global
objective revised by the global SAM optimizer. It efficiently
searches for a consistent flat minimum in the FL framework.
Theoretical analysis guarantees that FedSMOO achieves the
fast convergence rate of O(1/T ). Furthermore, we also pro-
vide the global generalization bound. We conduct extensive
experiments to verify its efficiency and significant perfor-
mance on the global model under severe heterogeneity.
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A. Appendix
In this part, we provide the appendix supplementary materials including some experimental results and the proof of the main
theorem.

B. Experiments
In this part, we present the results of some complementary experiments.

B.1. Introduction of the Dataset

Table 4. Dataset introductions.

Dataset Training Data Test Data Class Size

CIFAR-10 50,000 10,000 10 3×32×32
CIFAR-100 50,000 10,000 100 3×32×32

CIFAR-10 / 100 are two basic dataset in the computer version studies. Data samples in both are the colorful images with the
small resolution of 32× 32. The main reason why FL pays more attention to this kind of small dataset is that FL focuses on
privacy-protection training on isolated small dataset, e.g. for medical images. Usually the resolution of such data is not high,
and the number of samples per class is very limited due to its expensive labeling cost.

B.2. Distributions of Dirichlet and Pathological Split
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(a) Dirichlet-0.6 on CIFAR-100.
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Figure 5. Heat-map of the Dirichlet split and Pathological split.

Above figures show the different distribution of the Dirichlet-0.6 and Pathological-30 on CIFAR-100 dataset. The main
differences are:

• Dirichlet: Each category can be sampled with a non-zero probability. The local dataset obeys a Dirichlet distribution.
As shown in Figure 5 (a), each category has a color.

• Pathological: Only selected categories can be sampled with a non-zero probability. The local dataset obeys a uniform
distribution of active categories. As shown in Figure 5 (b), the category only has a color of purple or red.
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B.3. Sampling with replacement

We have shown the difference between the difference between the vanilla process and our process. Adopting sampling with
replacement will extremely change the distribution of the total dataset. Here we also show their differences in CIFAR-100
dataset.
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Figure 6. Distribution across category on CIFAR-100 of sampling with (green) /without (red) replacement under the Dirichlet coefficient
u = 0.1 and the number of total clients m = 100.

Why we use this dataset splitting?

Under a true federated learning framework, the distribution between data is strictly forbidden to be accessed,
which means we never know the other isolated dataset aligned to other clients. In other words, it is impossible to guarantee
an uniform distribution of the categories on the total dataset. Therefore, it is very valuable to explore the real performance of
FL on non-uniform dataset, e.g. for the heavy tail. We also find that many algorithms that work well are significantly less
effective in the face of categories imbalance of the total dataset. Thus, in our experiments, we select this difficult problem as
our dataset splitting method.

B.4. Detailed Hyperparameters Selection

We search for a lot of hyperparameters selection to explore the best performing of the baselines and our method. Our results
show that the selection of best-performing hyperparameters is mainly distinguished by two main types, vanilla local SGD
and its variants like FedAvg, FedCM, SCAFFOLD, FedSAM, and the proxy-based methods like FedDyn, FedSMOO. In
the Table 5 we propose the all selections in our experiments and state the different combinations.

Table 5. Dataset introductions.

Options SGD-type Best Selection proxy-type Best Selection

local learning rate [0.01, 0.1, 0.5] 0.1 [0.01, 0.1, 0.5] 0.1
global learning rate [0.1, 1.0] 1.0 [0.1, 1.0] 1.0
SAM learning rate [0.001, 0.01, 0.1] 0.01 [0.01, 0.1, 1.0] 0.1
learning rate decay [0.995, 0.998, 0.9995] 0.998 [0.998, 0.9995, 0.99995] 0.9995

penalized coefficient β - - [1, 10, 100] 10
client-level momentum α [0.05, 0.1, 0.5] 0.1 - -

For FedAdam, we use a adaptive learning rate which is different from the above due to its global adaptivity. We test a lot of
selections to search for the best-performing hyperparameters. Empirically, the global learning rate is 1.0 for the averaged
aggregation. The local learning rate usually adopts 0.1. The SAM learning rate is 0.01 for FedSAM and 0.1 for FedSMOO.
The learning rate decay is different from each other. Usually for the SGD-type methods, they adopt the 0.998. While for
the proxy-type methods, they require a larger selection, like 0.9995, 0.9998 for the stability during the training process.
About the penalized coefficient β, we select 10 for CIFAR-10 and 100 for CIFAR-100. About the client-level momentum,
we follow the (Xu et al., 2021) and set it as 0.1. The other common hyperparameters are selected as introduced in the text of
experiments.
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B.5. Evaluation Curves
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Figure 7. Accuracy on the CIFAR-10 dataset under 10% participation of total 100 clients.
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(b) Dirichlet-0.1.
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(c) Pathological-6.
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(d) Pathological-3.

Figure 8. Loss on the CIFAR-10 dataset under 10% participation of total 100 clients.
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0 100 200 300 400 500 600 700 800
Communication Rounds

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

 To
p-

1 
Ac

c.

(b) Dirichlet-0.1.
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(c) Pathological-6.
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(d) Pathological-3.

Figure 9. Accuracy on the CIFAR-10 dataset under 5% participation of total 200 clients.
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(b) Dirichlet-0.1.
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(c) Pathological-6.
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Figure 10. Loss on the CIFAR-10 dataset under 5% participation of total 200 clients.

To smooth the whole curve, we adopt the Hanning window as the filter to adjust them. According to the figures above,
we can see that FedSMOO significantly outperforms the other algorithms, especially under the large heterogeneity, e.g.
for Dirichlet-0.1 and Pathological-3. These results are in line with our expectations. Our original intention is to design
the algorithm to effectively find the global flat minimum while strengthening the global consistency to obtain excellent
generalization performance. When heterogeneity is low, the gaps are not large, and our algorithm remains ahead. When
heterogeneity increases, our algorithm has a significant performance improvement.
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B.6. Training Speed

Table 6. Communication rounds required to achieve the target test accuracy. We will note the slowest record as 1× baseline to show the
improvement of other algorithms on training rounds on the Dirichlet-0.1 and Pathological-10 setups. The upper part shows the results of
the participation ratio equal to 10%-100 clients and the lower part shows the results of the participation ratio equal to 5%-200 clients.

ALGORITHM
CIFAR-10 CIFAR-100

DIRICHLET-0.1 PATHOLOGICAL-3 DIRICHLET-0.1 PATHOLOGICAL-10

acc = 68% acc = 74% acc = 68% acc = 74% acc = 38% acc = 43% acc = 35% acc = 40%

FEDAVG 259 - 246 723 339 744 373 732
FEDADAM 445 - 487 - 772 - 788 -
SCAFFOLD 191 419 180 533 323 480 361 617
FEDCM 133 620 96 442 264 603 447 -
FEDDYN 148 410 173 424 239 - 267 -
FEDSAM 264 649 253 604 361 603 380 718
MOFEDSAM 122 404 116 298 271 445 450 599

OUR 132 224 144 194 252 350 258 354

acc = 68% acc = 74% acc = 68% acc = 74% acc = 35% acc = 40% acc = 33% acc = 38%

FEDAVG 494 - 397 - 438 747 529 -
FEDADAM 688 - - - 700 - - -
SCAFFOLD 345 696 352 674 433 609 518 -
FEDCM 251 744 167 438 255 437 374 751
FEDDYN 239 532 234 599 323 600 418 750
FEDSAM 509 - 419 - 478 729 556 -
MOFEDSAM 220 415 170 355 298 432 412 621

OUR 245 355 239 330 352 534 447 541

According to the above Table, we can see that our method performs well on average. To achieve the high accuracy, it is
much faster than other benchmarks. SAM optimizers usually make the entire training process slower, see results of FedAvg
and FedSAM. However, enhancing consistency will improve this. MoFedSAM force the consistency by adopting a global
momentum on each local client weighted by a coefficient α (usually 0.1), which means in the local updates of round t, their
gradients share a common direction as 90% and their own local gradients as 10%. FedSMOO provides a amended vector on
both parameters w and perturbation s, which greatly enhances its consistency. Thus, our method can efficiently train the
federated model, especially on the large heterogeneity.

Table 7. Training wall-clock time comparison to achieve 74% accuracy on the CIFAR-10 of Pathological-3 dataset split.

α1 Times (s/Round) Rounds Total Time (s)

FedAvg 13.33 (1.76×) 723 (1×) 9637.59 (1×)
FedAdam 13.77 (1.70×) - -
SCAFFOLD 16.97 (1.38×) 533 (1.36×) 9045.01 (1.06×)
FedCM 14.36 (1.63×) 442 (1.64×) 6347.12 (1.51×)
FedDyn 12.81 (1.83×) 424 (1.71×) 5431.44 (1.77×)
FedSAM 19.69 (1.19×) 604 (1.20×) 11892.76 (0.81×)

MoFedSAM 22.08 (1.06×) 298 (2.43×) 6579.84 (1.46×)
OUR 23.52 (1×) 194 (3.73×) 4562.88 (2.11×)

Test Experiments: A100-SXM4-40GB GPU, CUDA Driver 11.7, Driver Version 515.86.01, PyTorch-1.13.1

Table B.6 shows the wall-clock time costs on the CIFAR-10 of the Pathological-3 dataset split. Due to the double calculation
of the gradients via SAM optimizer, FedSAM, MoFedSAM, and FedSMOO will take more time in a single round of updates,
about 1.5× over the single-calculation methods. However, the communication rounds required are much less than the
single-calculation methods. Specifically, to achieve the 74% accuracy, FedSMOO can be accelerated by a factor of 3.73
on the communication rounds of the FedAvg. Considering the total wall-clock time costs, the acceleration ratio achieves
2.11×. An important case is that FedSAM can not accelerate the total wall-clock time due to the double-calculation, which
must be combined with other methods to further improve its performance, like its variant MoFedSAM.
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B.7. Ablation studies

Table 8. Ablation studies of different modules.

Dynamic Regularization SAM SAM-correction Accuracy (%)

- - - 74.08±.22√ - - 77.63±.14√ √ - 80.13±.11√ √ √
81.58±.16

We test the performance of the different modules on the CIFAR-10 dataset of Pathological-3 split, which are named as
”Dynamic Regularization”, ”SAM”, and ”SAM-correction” modules. The vanilla benchmark is FedAvg. After introducing
the above three modules, the performance improvements are 3.55%, 6.05%, and 7.5%.
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C. Proofs
C.1. Proof of Theorem 4.1

C.1.1. PRELIMINARY LEMMAS

Before proving the theorem, we first introduce some preliminary lemmas used in our proofs.

Lemma C.1. For random variables {xk}k∈[K] ∈ Rd, we can bound:

E∥
∑
k

xk∥2 ≤ K
∑
k

E∥xk∥2. (17)

Proof. It can be proved by Jensen inequality.

Lemma C.2. For two random variables x, y ∈ Rd, we can bound:

∥x+ y∥2 ≤
(
1 +

1

c

)
∥x∥2 + (1 + c) ∥y∥2, (18)

where c > 0 is a constant.

Proof. It can be proved by triangle inequality.

Lemma C.3. For two random variables x, y ∈ Rd, we can bound:

⟨x, y⟩ ≤ 1

2
∥x∥2 − 1

2
∥x− y∥2. (19)

Proof. Applying the product of two vectors:

∥x− y∥2 = ⟨x− y, x− y⟩ = ⟨x, x⟩+ ⟨x,−y⟩+ ⟨−y, x⟩+ ⟨−y,−y⟩ = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩.

Thus we can bound the product term as:

⟨x, y⟩ = 1

2
∥x∥2 + 1

2
∥y∥2 − 1

2
∥x− y∥2 ≤ 1

2
∥x∥2 − 1

2
∥x− y∥2.

C.1.2. PROOFS OF THEOREM 4.1

The paradigm of our proposed method is shown in Algorithm 1. We use a similar proof technique in (Karimireddy et al.,
2020; Acar et al., 2021) and define a set of auxiliary variables to match the global update. With the partial participation
training, the active clients at each communication round will update the local parameters while the inactive clients will
inherit the previous parameters. Thus, we introduce the virtual variables w̃ as:

w̃t
i = argmin

w

{
Fi(w)− ⟨λt

i, w − wt⟩+ 1

2β
∥w − wt∥2

}
, i ∈ [m] . (20)

The virtual variable is based on partial participation. The active client set is randomly selected with the probability of n
m ,

which means that wt
i equals to w̃t

i with probability n
m and maintains w̃t−1

i otherwise. Thus the first order condition satisfies:
β (∇Fi(w̃

t
i)− λt

i) + w̃t
i − wt = 0, which indicates that λt+1

i = ∇Fi(w
t
i) among active i ∈ [n] after the local update of the
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dual variable. If the client i is inactive, the w̃t
i maintains the previous parameters wt. Thus the global variable λ is updated

as:

λt+1 − λt = − 1

βm

∑
i∈[n]

(
wt

i − wt
)
= − 1

βm

∑
i∈[m]

(
w̃t

i − wt
)

=
1

βm

∑
i∈[m]

(
∇Fi(w̃

t
i)− λt

i

)
=

1

βm

∑
i∈[m]

(λt+1
i − λt

i).

According to the update of the λ, we consider that λt = 1
m

∑
i∈[m] λ

t
i as λt+1

i = λt
i holds for i ∈ [m] − [n]. In order to

distinguish the parameters before and after updating with the dual variable, we define the:

wt+1 ≜
1

n

∑
i∈[n]

wt
i = wt+1 + βλt+1. (21)

Lemma C.4. The adjacent averaged parameters generated in Algorithm 1 satisfies the following update:

E
[
wt+1

]
− E

[
wt
]
= − β

m

∑
i∈[m]

E
[
∇Fi(w̃

t
i)
]
. (22)

Proof. According to the equation (21), we have:

E
[
wt+1

]
− E

[
wt
]
= E

 1

n

∑
i∈[n]

(
wt

i − wt − βλt
) = E

 1

m

∑
i∈[m]

(
w̃t

i − wt − βλt
)

=
β

m

∑
i∈[m]

E
[
λt
i − λt −∇Fi(w̃

t
i)
]
= − β

m

∑
i∈[m]

E
[
∇Fi(w̃

t
i)
]
.

The second equation is based on the expectation of w̃ equal to the expectation of clients’ sampling. The last equation is
based on the relationship between λi and λ.

According to the lemma C.4, we can directly bound the norm term of the update of w:

E∥wt+1 − wt∥2 = E∥ 1
n

∑
i∈[n]

wt
i − wt∥2 ≤ 1

n
E
∑
i∈[n]

∥wt
i − wt∥2 ≤ 1

m

∑
i∈[m]

E∥w̃t
i − wt∥2. (23)

The last inequality is based on the expectation of w̃i equals to the expectation of clients’ sampling.
In the inequality (23), the term w̃i is the local parameters generated in algorithm 1 at each round t, and the wt is the averaged
parameters. Thus the RHS term of the inequality (23) represents the average norm expectation of the local changes before
dual correction. It bounds that the norm of the global update will not exceed its average local updates. In this proof, we
denote υt ≜ 1

m

∑
i∈[m] E∥w̃t

i −wt∥2 and provide its upper bound in the next part. Furthermore, we need to consider another
important term 1

m

∑
i∈[m] E∥wt

i − wt+1∥2, the averaged divergence of the heterogeneity during the local training, which is
also defined as the ’client drift’ in FL. It reflects the volatility caused by the heterogeneity in the local training process. In
this proof, we denote δt as the divergence term at round t. In the next part, we will bound these two terms to demonstrate
the convergence analysis.

Lemma C.5. Based on the assumptions, the averaged local update term could be bounded as:

(1− 12β2L2)υt ≤ 30β2L2r2 + 36β2L2δt−1 + 12β2E∥∇f(wt)∥2, (24)

where β < 1
2
√
3L

for 1− 12β2L2 > 0.
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Proof. According to the update rules (21) and the first order gradient condition above, the υt term could be bounded as:

υt =
1

m

∑
i∈[m]

E∥w̃t
i − wt∥2 =

1

m

∑
i∈[m]

E∥w̃t
i − wt − βλt∥2

=
β2

m

∑
i∈[m]

E∥λt
i −∇Fi(w̃

t
i)− λt∥2 =

β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i + ŝt−1

i )−∇fi(w̃
t
i + ŝti)− λt∥2

=
β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i + ŝt−1

i )−∇fi(w
t−1
i ) +∇fi(w

t−1
i )−∇fi(w̃

t
i + ŝti) +∇fi(w̃

t
i)−∇fi(w̃

t
i)− λt∥2

≤ 3β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i + ŝt−1

i )−∇fi(w
t−1
i )∥2 + 3β2

m

∑
i∈[m]

E∥∇fi(w̃
t
i + ŝti)−∇fi(w̃

t
i)∥2

+
3β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i )−∇fi(w̃

t
i)− λt∥2

≤ 3β2L2

m

∑
i∈[m]

∥ŝt−1
i ∥2 + 3β2L2

m

∑
i∈[m]

∥ŝti∥2 +
3β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i )−∇fi(w̃

t
i)− λt∥2

=
3β2L2

m

∑
i∈[m]

∥r st−1
i

∥st−1
i ∥

∥2 + 3β2L2

m

∑
i∈[m]

∥r sti
∥sti∥

∥2 + 3β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i )−∇fi(w̃

t
i)− λt∥2

= 6β2L2r2 +
3β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i )−∇fi(w̃

t
i)− λt∥2

= 6β2L2r2 +
3β2

m

∑
i∈[m]

E∥∇fi(w
t−1
i )−∇fi(w

t) +∇fi(w
t)−∇fi(w̃

t
i)−∇f(wt) +∇f(wt)− λt∥2

≤ 6β2L2r2 +
12β2L2

m

∑
i∈[m]

E∥wt−1
i − wt∥2 + 12β2L2

m

∑
i∈[m]

E∥wt − w̃t
i∥2 + 12β2E∥∇f(wt)∥2

+ 12β2E∥ 1

m

∑
i∈[m]

(
∇fi(w

t)− λt
i

)
∥2

≤ 6β2L2r2 + 12β2L2δt−1 + 12β2L2υt + 12β2E∥∇f(wt)∥2 + 12β2

m

∑
i∈[m]

E∥∇fi(w
t)− λt

i∥2

≤ 6β2L2r2 + 12β2L2δt−1 + 12β2L2υt + 12β2E∥∇f(wt)∥2

+
12β2

m

∑
i∈[m]

E∥∇fi(w
t)−∇fi(w

t−1
i ) +∇fi(w

t−1
i )−∇fi(w

t−1
i + ŝt−1

i )∥2

≤ 30β2L2r2 + 36β2L2δt−1 + 12β2L2υt + 12β2E∥∇f(wt)∥2.

Collecting the like terms of LHS and RHS above will complete the proofs.

Lemma C.5 reveal one relationship between the local updates and the divergence drifts. When we provide a constant
bounded r, the upper bound of the local updates is always controlled by the global gradient term and divergence drifts,
which is consistent with the conclusion of the gradient descent method in FL. In order to further clarify the relationship
between these two terms, we introduce the upper bound of divergence drift term δ in the next.

Lemma C.6. Based on the assumptions, the divergence drifts term could be bounded as:

δt ≤ 2m− 2n

2m− n
δt−1 +

6m− 2n

2m− n
υt. (25)
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Proof. According to the definition of delta, we have:

δt =
1

m

∑
i∈[m]

E∥wt
i − wt+1∥2 =

1

m

∑
i∈[m]

E∥wt
i − wt + wt − wt+1∥2

≤
(
1 +

1

c

)
1

m

∑
i∈[m]

E∥wt
i − wt∥2 + (1 + c)E∥wt − wt+1∥2

=
n

m

(
1 +

1

c

)
1

m

∑
i∈[m]

E∥w̃t
i − wt∥2 + m− n

m
(1 + c)

1

m

∑
i∈[m]

E∥wt−1
i − wt∥2 + (1 + c)E∥wt − wt+1∥2

=

[
n

m

(
1 +

1

c

)
+ (1 + c)

]
υt +

m− n

m
(1 + c) δt−1.

For the convenience of analysis, we select a proper constant c to complete the proofs. Let c = n
2m−n > 0 where n < m, thus

we have 1 + c = 2m
2m−n and 1 + 1

c = 2m
n . Plugging into the last equation and we have:

[
n
m

(
1 + 1

c

)
+ (1 + c)

]
= 6m−2n

2m−n

and m−n
m (1 + c) = 2m−2n

2m−n , which completes the proofs.

According to the lemmas above, we can bound the recursion terms of υt and δt to prove the convergence theorem. From the
assumption of smoothness, taking the conditional expectation with t on both side and we have:

Et

[
f(wt+1)

]
≤ f(wt) +

L

2
Et∥wt+1 − wt∥2 + Et⟨∇f(wt), wt+1 − wt⟩

= f(wt) +
L

2
Et∥wt+1 − wt∥2 + Et⟨∇f(wt),− β

m

∑
i∈[m]

Et

[
∇Fi(w̃

t
i)
]
⟩

≤ f(wt) +
L

2
Et∥wt+1 − wt∥2 + β

2
Et∥

1

m

∑
i∈[m]

(
∇fi(w̃

t
i + ŝti)−∇f(wt)

)
∥2 − β

2
Et∥∇f(wt)∥2

≤ f(wt) +
L

2
Et∥wt+1 − wt∥2 + β

2m

∑
i∈[m]

Et∥∇fi(w̃
t
i + ŝti)−∇fi(w̃

t
i) +∇fi(w̃

t
i)−∇fi(w

t)∥2

− β

2
Et∥∇f(wt)∥2

≤ f(wt) +
L

2
Et∥wt+1 − wt∥2 + β

m

∑
i∈[m]

Et∥∇fi(w̃
t
i + ŝti)−∇fi(w̃

t
i)∥2 +

β

m

∑
i∈[m]

Et∥∇fi(w̃
t
i)−∇fi(w

t)∥2

− β

2
Et∥∇f(wt)∥2

≤ f(wt) +
L

2
Et∥wt+1 − wt∥2 + βL2

m

∑
i∈[m]

Et∥r
sti
∥sti∥

∥2 + βL2

m

∑
i∈[m]

Et∥w̃t
i − wt∥2 − β

2
Et∥∇f(wt)∥2

≤ f(wt) +
L

2
Et∥wt+1 − wt∥2 + βL2r2 +

βL2

m

∑
i∈[m]

Et∥w̃t
i − wt∥2 − β

2
Et∥∇f(wt)∥2.

We take full expectation from 0 to t on the above inequality and get:

E
[
f(wt+1)

]
≤ E

[
f(wt)

]
+ βL2r2 +

L(1 + 2βL)

2
υt − β

2
E∥∇f(wt)∥2. (26)

Equation (26) indicates the relationship of expected global update and its norm term. Here we consider the lemma C.5 and
C.6,

(1− 12β2L2)υt ≤ 30β2L2r2 + 36β2L2δt−1 + 12β2E∥∇f(wt)∥2, (27)
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δt ≤ 2m− 2n

2m− n
δt−1 +

6m− 2n

2m− n
υt. (28)

Let formula (27) multiplied by constant p and formula (28) multiplied by constant q, we take the sum of for-
mula (26) (27) (28),

E
[
f(wt+1)

]
+ p(1− 12β2L2)υt + qδt ≤ E

[
f(wt)

]
+ βL2r2 +

L(1 + 2βL)

2
υt − β

2
E∥∇f(wt)∥2

+ 30pβ2L2r2 + 36pβ2L2δt−1 + 12pβ2E∥∇f(wt)∥2

+ q
2m− 2n

2m− n
δt−1 + q

6m− 2n

2m− n
υt.

Collecting the like term of υt and let the constants p and q satisfy:

p(1− 12β2L2) =
L(1 + 2βL)

2
+ q

6m− 2n

2m− n
. (29)

When equation (29) holds, the relationship will be simplified to:

E
[
wt+1

]
+ qδt ≤ E

[
wt
]
+ (1 + 30pβ)β2L2r2 +

(
36pβ2L2 + q

2m− 2n

2m− n

)
δt−1

−
(
β

2
− 12pβ2

)
E∥∇f(wt)∥2.

Furthermore, considering the coefficient of δ term, we let the constant p and q satisfy:

q = 36pβ2L2 + q
2m− 2n

2m− n
. (30)

According to the equation (29) and (30), we can get the solution of p and q as:

p =
L(1 + 2βL)

2

(
1 + 60β2L2 − 216mβ2L2

n

)−1

,

q =
(2m− n)36β2L2

n
.

This proof requires the constants p and q both to be positive, thus the β satifies β ≤
√
n

6
√
6mL

. With this selection, the
coefficient of the global gradient term maintain a positive value. Let ζ to be the coefficient of the global gradient term, we
can rewrite the relationship as:

ζE∥∇f(wt)∥2 ≤
(
E
[
f(wt)

]
+ qδt−1

)
−
(
E
[
f(wt+1)

]
+ qδt

)
+ (1 + 30pβ)β2L2r2.

Adding up the above formula from 0 to T − 1 and applying q ≤ 72mβ2L2

n , let β ≤ min{
√
n

6
√
6mL

, 1
2
√
3L

}, we have:

1

T

T∑
t=1

E∥∇f(wt)∥2 ≤ 1

ζT

((
f(w1)− f∗)+ 72β2L2

∑
i∈[m] E∥w0

i − w1∥2

n

)
+ (1 + 30pβ)β2L2r2. (31)

Similar to the FedSAM and MoFedSAM (Qu et al., 2022), we select the perturbation learning rate r = O( 1√
T
) that the final

convergence rate approaches O( 1
T ), which completes the proofs. Selecting some proper constants makes Theorem 4.1 hold.
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C.2. Proof of Theorem 4.4

Based on the margin generalization bounds in (Neyshabur et al., 2017; Farnia et al., 2018), we consider the generalization
error bound on the global function f as following:

Gf
ϵ ≜ P

(
f(w + s, ε)[y] ≤ max

j ̸=y
f(w + s, ε)[j] + ϵ

)
. (32)

ε is the input data and y is its ground truth. If ϵ = 0, we denote the equation (32) as Gf to represent for the average
misclassification rate under the global perturbation s. We define the G̃f

ϵ as the empirical estimate of the above expected
margin loss trained with the heterogeneous dataset.

We assume the input data ε as the normalized tensor, e.g. for an image, with the norm of Ln. And we consider a L-layer
neural network with d parameters per layer. The activation functions hold no biases and bounded 1-Lipschitz property. The
input of each layer are bounded by a positive constant Lw. Under the margin value of ϵ and total m data samples, with the
probability of at least 1− p, the global parameters w generated by FedSMOO satisfy:

Gf ≤ G̃f
ϵ +O

√L2
lL

2
nd ln(dLl)VL + ln LlD

p

(D − 1)ϵ2

 . (33)

where VL =
∏L

l=1 ∥wl∥2
∑L

l=1
∥wl∥2

F

∥wl∥2 .

Lemma C.7. (Neyshabur et al., 2017) If f(w, ε) is the predictor with the parameters w. P is the arbitrary distribution on
w. We assume the data ε is sampled from the D and its size is D. Thus for any ϵ, δ > 0, with the probability at least 1− p,
and the arbitrary perturbation s satisfies Ps

(
maxε |f(w + s, ε)− f(w, ε)|∞ ≤ ϵ

4

)
≥ 1

2 , then:

Gf ≤ G̃f
ϵ + 4

√
KL(w + s∥P) + log 6D

p

D − 1
. (34)

This KL divergence comes from the frozen parameters w and the s is a random variable. It comes from the PAC-Bayes
margin bounds for a linear predictors. Then we bound the inference of parameters.

Lemma C.8. (Neyshabur et al., 2017) We assume the input ε is a tensor with bounded norm of Ln. And we consider a
L-layer neural network with d parameters per layer. The activation functions hold no biases and bounded 1-Lipschitz
property. Thus, for the arbitrary input sample, let the parameters are perturbed by a bounded noise s with ∥sl∥ ≤ ∥wl∥, the
total change of the value of function f is:

∥f(w + s, ε)− f(w, ε)∥ ≤ eLn

L∏
l=1

∥wl∥
L∑

l=1

∥sl∥
∥wl∥

. (35)

This lemma bounds the change from the perturbation s, which judges the stability of the neural network after the training.
The perturbation s could be an arbitrary vectors with the same size of the model parameters.

Then with the preliminary lemmas, we prove the generalization bound of our proposed method. Firstly, as the previous
works (Farnia et al., 2018; Qu et al., 2022), we assume the perturbation sl for each layer is a zero-mean Gaussian noise of
N(0, σ2

l ). We consider the new parameters ws which satisfies the |∥wl∥2 − ∥ws
l ∥2| ≤ 1

L , thus we have (Tropp, 2011):

P

(
L∏

l=1

∥wl∥
1
L
∥sl∥
∥ws

l ∥
> p

)
≤ 2de

− p2
∏L

l=1 ∥wl∥
2
L

2dσ2
l
∥ws

l
∥2 .

Thus, we consider the union bound over all layers by at least probability of 0.5, which is:

max
ϵ

∥f(w + s, ε)− f(w, ε)∥ ≤ eLn

L∏
l=1

∥wl∥
L∑

l=1

∥sl∥
∥wl∥

≤ e2LLn

L∏
l=1

∥wl∥
L−1
L σ

√
2d ln(4dL).
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Where we select a constant variance of σ = ϵ

4e2LLn
∏L

l=1 ∥wl∥
L−1
L

√
2d ln(4dL)

, we have:

∥f(w + s, ε)− f(w, ε)∥ ≤ max ∥f(w + s, ε)− f(w, ε)∥ ≤ ϵ

4
.

Thus we bound the KL divergence on the distribution P as:

KL(w + s∥P) ≤
∑L

l=1 ∥wl∥2F
2σ2

=
16e4L2L2

n

∏L
l=1 ∥wl∥

2L−2
L d ln(4dL)

ϵ2

L∑
l=1

∥wl∥2F

=
16e4L2L2

n

∏L
l=1 ∥wl∥2d ln(4dL)
ϵ2

L∑
l=1

∥wl∥2F∏L
l=1 ∥wl∥

2
L

≤
16e4L2L2

n

∏L
l=1 ∥wl∥2d ln(4dL)
ϵ2

L∑
l=1

∥wl∥2F
∥wl∥2

.

Hence, when we provide a arbitrary distribution P, with the probability of at least 1− p, the optimized parameters w under
the cover of the total dataset size LD

1
2L , we have:

Gf ≤ G̃f
ϵ +O


√

L2L2
nd ln(dL)

∏L
l=1 ∥wl∥2

∑L
l=1

∥wl∥2
F

∥wl∥2 + ln Lm
p

mϵ2

 . (36)
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