
Inflow, Outflow, and Reciprocity in Machine Learning

Mukund Sundararajan 1 Walid Krichene 2

Abstract
Data is pooled across entities (individuals or en-
terprises) to create machine learning models, and
sometimes, the entities that contribute the data
also benefit from the models. Consider for in-
stance a recommender system (e.g. Spotify, Insta-
gram or YouTube), a health care app that predicts
the risk for some disease, or a service built by
pooling data across enterprises.
In this work we propose a framework to study this
value exchange, i.e., we model and measure con-
tributions (outflows), benefits (inflows) and the
balance between contributions and benefits (the
degree of reciprocity). We show theoretically,
and via experiments that under certain distribu-
tional assumptions, some classes of models are
approximately reciprocal.
These results only scratch the surface; we con-
clude with several open directions.

1. Introduction
Machine learning (henceforth ML) depends on training data,
and as machine learning and the artificial intelligence pow-
ered by it have increased in importance, there is an interest
in understanding the role of data. This data may be col-
lected from raters who are compensated for labeling the
data, or from end-users of products powered by ML, or
from enterprises that own and license data.

Different approaches have been considered to study the role
of data. Techniques such as (Jia et al., 2019; Ghorbani &
Zou, 2019; Hara et al., 2019; Pruthi et al., 2020; Hoaglin
& Welsch, 1978; Koh & Liang, 2017a; Yeh et al., 2018)
measure the contribution of data to model quality. Data
has also been viewed through the lens of privacy (for in-
stance, (Dwork & Roth, 2014)), which asks whether an
individual’s contributions reveal something about the indi-
vidual.

1Google 2Google Research. Correspondence to: Mukund Sun-
dararajan <mukunds@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

However, notice that both of these views are one-sided: they
are concerned with the contributions of the individual to the
system, but do not take into consideration how much the
individual benefits from the system. In this work, we study
contributions, benefits, and the balance between them.

1.1. Running Examples

In some applications, the agents that contribute data to a
system also benefit from it. We would like to study this
inflow of value to the user, and the resulting exchange of
value stemming from contributions and benefits.

Recommender Systems: Popular recommender systems
such as Spotify, Instagram or YouTube recommend items
(e.g. music, videos, posts) to their users. Past interactions
of an individual with items are used to learn not only the
preferences of the individual, but also the characteristics of
the item, that are then used to recommend it to other indi-
viduals. This is the premise of collaborative filtering (Koren
& Bell, 2015). Indeed, an individual’s data helps others
and vice-versa. Furthermore, this applies to any system
that leverages user behavior (such as clicks on content, or
the length of engagement with the content) to determine
recommendations or rankings.

Healthcare: Alternatively, consider initiatives that collect
health data from several individuals and use this to build
models that predict sleep, or the risk of disease (Perez et al.,
2019; Gulshan et al., 2016; Wang et al., 2016; Brajer et al.,
2020; Rajkomar et al., 2018). Such models benefit the
individual contributing the data, besides their data benefiting
other individuals that use the model’s predictions.

Federated Learning: Federated Learning (FL) is a dis-
tributed training techniques where individuals (or larger
entities such as enterprises) build shared models in a decen-
tralized way, without the data moving to a central location.
This is important in domains where data is scarce and pool-
ing data from different entities can lead to significant quality
improvements. One problem in federated learning is the
incentives for entities to contribute data. This is particularly
true in the cross-silo FL setting, in which larger entities
(such as companies) contribute their data to train a shared
model. As the survey (Kairouz et al., 2021, Section 2.2)
discusses, “Clients might worry that contributing their data
to training federated learning models will benefit their com-

1

Inflow, Outflow, and Reciprocity in Machine Learning

petitors, who do not contribute as much but receive the same
final model nonetheless.”

1.2. Inflow, Outflow and Reciprocity

Generally, an individual1 contributes data to an ML based
system, and this results in a benefit to other users of the
system—this is the individual’s outflow—and they, in turn,
benefit from data contributed by others—this is the individ-
ual’s inflow.

There are various questions one can ask about these inflows
and outflows. Are they large or small? Are they positive or
negative? (In the recommender system example, an outflow
is negative if one individual’s data hurts the recommendation
quality of another, perhaps because the two have opposing
tastes.) Do outflows and inflows vary greatly across individ-
uals?

While we touch upon these in our analyses, our main focus is
on whether the inflows and outflows are balanced individual
by individual; i.e., are they reciprocal.

Reciprocity is a well-studied concept in sociology (Gould-
ner, 1960), in economics, (e.g. Fehr & Gächter (2000)) in
matching markets such as kidney or student exchanges (Gill
et al., 2017; Guibert & Rayón, 2021; European Commis-
sion et al., 2020). In all of these cases, reciprocity enables
systems to function based on (approximately) fair trades,
without the need for money to change hands.

Indeed, we would like to understand when the value ex-
change from contributing data to a system is ‘fair’ in
this sense. We say that a system is (approximately) re-
ciprocal if for most individuals, the individual’s inflow
matches their outflow. This is formalized in Section 2.

1.3. Actionability

While the focus of this work is on measuring inflows, out-
flows and reciprocity, we briefly discuss some actions that
may stem from such an analysis.

In the recommender system, federated learning and health-
care examples, individuals (or enterprises) with large out-
flows and small inflows could perhaps be compensated for
their contributions, and conversely, individuals with large
inflows and small outflows could pay. This is particularly
true for systems in which a user can opt out from data col-
lection entirely, but still use the system, potentially resulting
in large unfairness (such individuals would have, by defi-
nition, no outflow, but still benefit from other users’ data.
Measuring their inflow quantifies this imbalance).

1By individual, we just mean an agent that owns some data.
This could also be an enterprise as in the Federated Learning
example.

Payments need not be in purely monetary terms. In a rec-
ommender system, users with contributions that exceed
benefits could be given preferential access to new content,
or fewer ads.

Another alternative is to design training algorithms that
enforce a certain level of reciprocity, see discussion in Sec-
tion 6.

1.4. Reciprocity as a Guardrail

Reciprocity should not be thought of as an objective, it is not
something we should optimize for in isolation. It is possibly
best seen as a guardrail, similar to privacy (Dwork & Roth,
2014) and fairness (Mehrabi et al., 2021). To elaborate on
the analogy, privacy (fairness) is often used as a constraint,
and the goal is to obtain the best model quality under a
certain privacy budget (fairness constraint). Similarly, reci-
procity can be used as (one of possibly many) constraints.
We are not arguing that all ML should be reciprocal, rather
that the inflows, outflows and their imbalance are worth
measuring.

1.5. Our Contributions

Our primary contribution is to initiate the study of
reciprocity and propose a measurement approach (Sec-
tion 2). We build on top of previously proposed techniques
(e.g. Pruthi et al. (2020); Hoaglin & Welsch (1978); Koh &
Liang (2017a); Yeh et al. (2018)) that quantify the influence
of individual training examples on individual predictions,
and use these to measure contributions (outflow), benefits
(inflow) and reciprocity.

Our main theoretical result (Theorem 3.2) states that models
trained using Stochastic Gradient Descent, a popular train-
ing algorithm for neural networks, are strongly reciprocal
under an assumption over the data distribution (Assump-
tion 3.1). One key observation is that the influence measure
satisfies certain symmetry properties.

We also demonstrate how to compute inflows and outflows
efficiently, avoiding a naive quadratic complexity over the
number of data points, which would make measurement
infeasible (see Section 4).

Finally, we perform experiments on one recommendation
and two healthcare data sets (Section 5). We observe that
reciprocity is still satisfied to a large extent, even though
some of the assumptions from Theorem 3.2 are violated.

2. Modeling Reciprocity
2.1. Setup and Notation

Let Z be a training data set of labelled examples. The model
is learned using this data and applied to an inference set Z ′.

2

Inflow, Outflow, and Reciprocity in Machine Learning

For an individual u, let Zu be the set of training data exam-
ples that belong to u, similarly let Z ′u be the set of inference
examples that belong to u.

Every example z = (x, y) consists of input features x and a
label y (the prediction target or the response variable).

2.2. Measuring Inflow, Outflow, and Reciprocity

We propose a measure of reciprocity by building on pre-
viously proposed techniques that quantify the influence
of training data points on predictions (Pruthi et al., 2020;
Hoaglin & Welsch, 1978; Koh & Liang, 2017a; Yeh et al.,
2018). An influence technique measures the influence of
a single training example z on a single inference exam-
ple z′, and will be denoted Influence(z, z′). We will
consider two standard examples: Marginal influence,
which generates this measure by deleting training exam-
ples, and TracIn influence, which tracks the effect of a
training example on a prediction via the parameter changes
that occur during training. We will describe these influence
techniques in more detail in Section 2.3.

Consider an individual u (the protagonist). We aggregate
Influence(z, z′) of the protagonist’s training and infer-
ence examples as follows.

Inflow is the influence of other individuals’ (v 6= u) data on
the predictions of u, i.e.:

Iu =
∑

z∈Z\Zu

∑
z′∈Z′

u

Influence(z, z′). (1)

Outflow is the influence of the protagonist u’s training data
on other individuals:

Ou =
∑

z′∈Z′\Z′
u

∑
z∈Zu

Influence(z, z′). (2)

There is also the influence of the protagonist on their
own predictions,

∑
z∈Zu

∑
z′∈Z′

u
Influence(z, z′). But

since reciprocity is only concerned with flows between the
protagonist and other individuals, this self-influence does
not play a role in reciprocity.

We now define reciprocity for an individual, and for a popu-
lation of individuals.
Definition 2.1. A machine learning model is α-reciprocal
for individual u if the ratio of outflow to inflow Iu/Ou is
in the range [α, 1/α] for some α ∈ [0, 1]. If the signs of Iu
and Ou do not match, we say that the model is 0-reciprocal
for individual u.

A model is (p, α)-reciprocal for a population of individ-
uals if it is α-reciprocal for p fraction of individuals.

Thus, a model is at best (1, 1) reciprocal and at worse (0, 0)
reciprocal. Depending on the measure of influence that

we use, we will say (p, α)-TracIn-reciprocal or (p, α)-
Marginal-reciprocal.

Another measure one can study is the correlation (e.g. Pear-
son or Spearman correlation) between the inflow and the
outflow across individuals. One important difference be-
tween reciprocity and Pearson correlation is that the latter
is sensitive to the magnitude of the flows, individuals with
large flows dominate the correlation measure; while reci-
procity is less sensitive to magnitudes since it is a statement
about the ratios of inflows and outflows. Spearman correla-
tion measures the correlation of ranks and is not sensitive to
magnitudes, but notice that a high correlation of ranks does
not imply that the inflows and outflows are balanced, which
is what our measure seeks to capture.

Remark 2.2 (Interpreting Reciprocity). Reciprocity does
not require that the outflows (or inflows) be equal or similar
across individuals. Indeed, in a recommender system, a fre-
quent user is likely to have larger outflows (and inflows) in
comparison to an occasional user. Reciprocity only requires
that the outflows and inflows be balanced individual-by-
individual, i.e., an individual who contributes a lot, benefits
a lot, and one who contributes a little benefits a little.2

Reciprocity does not even require that inflows and outflows
be positive. Indeed, in a recommender system, the data of
an individual with atypical tastes may hurt the recommen-
dations to other individuals. Reciprocity only demands that
if inflow is negative, outflow should be equally negative.

In general, reciprocity can be affected by the choice of
model class, and by the data distribution. We give some
examples to illustrate. Consider the following example.

Example 2.3 (k-Nearest Neighbors). In kNN, there is a dis-
tance function on points in feature space, and the prediction
of the algorithm is the mean (for regression) or majority (for
classification) of the k nearest neighbors, as per the distance
function, of the prediction point.
Suppose there is an outlier individual (the protagonist) with
outlier data points in the feature space. The protagonist
will not have any influence on other individuals because
the protagonist’s training examples will not appear in the
top k nearest list for prediction points of other individuals.
However, the protagonist’s predictions will be influenced by
the training data of other individuals.

The distribution of interactions matters. If all of an individ-
ual’s interactions with the system are late in the system’s
lifetime, this individual will benefit but not contribute. In the
analysis, we will make a stationarity assumption to control
for this effect, see Assumption 3.1.

2Contrast this with differential privacy (Dwork & Roth, 2014),
where the goal is asymmetric: one seeks to limit the impact of a
user’s data on the model (for example via gradient clipping (Abadi
et al., 2016)) regardless of the user’s benefit from the model.

3

Inflow, Outflow, and Reciprocity in Machine Learning

2.3. Influence Techniques

As discussed earlier, reciprocity is parameterized by a tech-
nique that identifies the influence of a training example on
a prediction example. There are several ways to measure
influence; in this paper, we investigate two methods.

2.3.1. MARGINAL INFLUENCE

Let MZ be the machine learning model trained on the data
set Z; MZ(x) is the model’s prediction on a data point x.
Let `(ŷ, y) be a loss function measuring the loss for a pre-
diction ŷ and label y. The marginal influence of a training
example z on an inference example z′ = (x′, y′) is based
on the counterfactual of removing the example z from the
training set:

Marginal(z, z′) = `(MZ\{z}(x
′), y′)− `(MZ(x

′), y′).
(3)

We will adopt the convention that influence functions mea-
sure reduction in the loss of the inference example from
the presence of a training example. Thus a positive quan-
tity connotes that loss was reduced by that amount, and a
negative quantity connotes that loss was increased by that
magnitude.

Computing exact marginal influence often requires retrain-
ing the model on the modified data set. However, this can
be estimated without retraining, via certain Hessian approx-
imations (Koh & Liang, 2017b).
Remark 2.4. Marginal influence relies on deleting a sin-
gle individual’s data and retraining the model to optimality.
This may result in a substantially similar model, if the data
set is large. This makes this measure of influence more sus-
ceptible to noise, as will be confirmed in our experiments.

2.3.2. TRACIN INFLUENCE

The second influence measure we use is called
TracIn (Pruthi et al., 2020). Whereas Marginal relies
on a counterfactual approach, TracIn assigns contribu-
tions and benefits based on actual work done during the
training process. It is therefore reliant on the training algo-
rithm, and applies only to models trained using Stochastic
Gradient Descent (SGD). Suppose the model Mw is param-
eterized by a vector w ∈ Rp, and let Lz(w) = `(Mw(x), y)
be the loss of the model on an example z = (x, y). In SGD,
the weight parameters are updated iteratively: at each iter-
ation t, a random batch Bt of training examples is visited,
and the parameters are updated in the direction opposite (we
are minimizing loss) to the gradient:

∑
z∈Bt ηt∇Lz(wt);

here∇Lz(wt) is the gradient of the loss with respect to the
weight parameters wt, and ηt is the step-size at time t.

The idea of TracIn is as follows: First, suppose that SGD
visits examples one at a time, i.e., the batch size is one. Then,

the visit (to the training example z) changes the model pa-
rameters, and this changes the model’s loss on the prediction
example z′. It is natural to attribute this change in loss to
the contribution of example z and the benefit of example z′.

If the model visits a batch Bt of training examples at once,
we have to disentangle the outflows of the examples z ∈
Bt. TracIn does this using dot products of gradients:
−ηt∇Lz(wt) · ∇Lz′(wt). The term −ηt∇Lz(wt) captures
the change in the weight parameters due to example z; this
is by definition of gradient descent. And ∇Lz′(wt) models
change in the loss of the prediction example z′ due to a
change in the weight parameters. The influence of training
example z on inference example z′ is computed by summing
across all the batches in which the example is present:

TracIn(z, z′) =
∑

t: z∈Bt

ηt∇Lz(wt) · ∇Lz′(wt). (4)

Remark 2.5. The use of gradients entails a first-order approx-
imation. The actual change in loss of the example z′, can be
written as Lz′(wt+1) = Lz′(wt)+∇Lz′(wt) ·(wt+1−wt),
plus a higher-order term of order O(η2t), that is ignored.
This approximation is reasonable when the step-sizes are
small. We measure this discrepancy for our experiments
(see Figure 5).

3. Models Trained Using SGD Are TracIn
Reciprocal

In this section, we study TracIn reciprocity for models
trained using SGD. We make the following assumption for
our analysis:

Assumption 3.1. Let there be a populationU of individuals,
a set X of features and a set Y of labels. We assume that
the training and inference sets are both drawn IID from a
joint distribution over U ×X × Y .

This is a standard assumption in machine learning literature.
Notice that the assumption allows for different individuals to
have different distributions (individuals are not interchange-
able). What the assumption requires is that for a given
individual, the training and inference distributions be the
same, i.e. that an example is equally likely to be in the
training or the inference set. We discuss breakages of this
assumption further in Section 6.

Theorem 3.2. Consider a model trained with Stochastic
Gradient Descent for T steps. Suppose that Assumption 3.1
holds. Furthermore, suppose that batches of training data
(Bt)t∈{1,...,T} are mutually independent. Then the model is
(1, 1)-TracIn-reciprocal in expectation, in the sense that
for all individuals u, E[Iu] = E[Ou].

We give a sketch of the argument, the full proof is deferred
to the appendix. Given a pair of users (u, v), the TracIn

4

Inflow, Outflow, and Reciprocity in Machine Learning

influence at time t of z ∈ Zu on z′ ∈ Z ′v is ηt∇Lz′(wt) ·
∇Lz(wt), which is symmetric in z, z′. Conditioned on
the model parameters at time step t, Zu, Z ′u have the same
distribution, and Zv, Z ′v have the same distribution. This
allows us to argue that the expected influence of u on v at
time t is the same as the expected influence of v on u. The
proof formalizes this argument.
Remark 3.3. The theorem suggests that reciprocity holds
whether the inflows and outflows are positive or negative;
indeed an individual’s data could hurt another’s predictions
if their characteristics are very different. (In our model,
negative outflows and inflows would manifest as negative
dot-products ∇Lz(wt) · ∇Lz′(wt), what helps one individ-
ual hurts the other.) It holds irrespective of the variation in
inflows and outflows across individuals; indeed some indi-
viduals may contribute more data than others (depending on
the size of Zu).
Remark 3.4. The theorem assumes that at each step of gra-
dient descent, a new set of independent examples is drawn,
which precludes revisiting the same example multiple times.
In practice, training examples are revisited, which breaks in-
dependence. But notice that for the result to hold, it suffices
that future samples Bt be independent of the past trajectory
w0, . . . , wt−1. In some regimes, this may be a reasonable
approximation. For example, when the batch size is very
large, there is little variance in the gradients, and one can
informally treat the trajectory w0, . . . , wt−1 as being deter-
ministic, unaffected by random sampling. Another regime
is when the data set is very large, and training only requires
a very small number of passes over the training data. In
such cases, independence may be a reasonable approxima-
tion. The experiments in Section 5 suggest that models can
be approximately reciprocal even when the independence
assumption is broken.
Remark 3.5. The proof crucially relies on the symmetry of
the influence function ηt∇Lz′(wt) ·∇Lz(wt) in z, z′. Thus,
any modifications to SGD that break this symmetry may also
break reciprocity. In particular, it is common to clip (rescale)
gradients to enforce differential privacy (Abadi et al., 2016).
This modification breaks the symmetry because clipping
affects the gradient update∇Lz(wt), but not the gradient of
the inference example∇Lz′(wt). The purpose of clipping
in this case is to control the influence of any individual on
the model, it is therefore expected that reciprocity is broken.
Clipping and normalization are also used for stabilizing
training of deep neural networks (Pascanu et al., 2013),
which may also break reciprocity.
Remark 3.6 (Homogeneity). If users are homogeneous (i.e.,
the marginal distributions are identical across users), then
by a simple argument, any model, whether it is trained using
SGD or not, would be (1, 1)-reciprocal. (Indeed our exam-
ple of non-reciprocity (Example 2.3) based on k-Nearest
Neighbors relies on outliers that differ from other users.)
Theorem 3.2 allows for heterogeneity among users.

4. Efficient Computation of TracIn Flows
The definition of Inflows and Outflows as a sum of terms
of the form Influence(z, z′) may suggest that one needs
to compute this matrix of pairwise influence, which can
be prohibitively expensive, but we show that for TracIn,
this can be done more efficiently. This optimization was
necessary in our experiments.

Suppose we apply minibatch SGD, and let Bt be the batch
at step t. A naive computation of outflow (2) would suggest
that we need to compute, at each step t, Influence(z, z′)
for all z ∈ Bt and z′ ∈ Z ′. This represents |Bt||Z ′| dot
products, and if p is the dimension of the parameter space,
the total cost per step t would be O(|Bt||Z ′|p).

Observe that by equations (2) and (4), we can write the
outflow as

Ou =
∑
z∈Zu

∑
z′∈Z′\Z′

u

∑
t:z∈Bt

ηt∇Lz′(wt) · ∇Lz(wt)

=
∑
z∈Zu

∑
t:z∈Bt

ηt∇Lz(wt) ·
∑

z′∈Z′\Z′
u

∇Lz′(wt)

=
∑
z∈Zu

∑
t:z∈Bt

ηt∇Lz(wt) · (∇LZ′(wt)−∇LZ′
u
(wt)),

(5)

where, in the last equality, we define, for any subset S ⊆ Z ′,

∇LS(wt) =
∑
z′∈S
∇Lz′(wt). (6)

To compute the outflows of all individuals, from equa-
tion (5), it suffices to compute at each step t the following
quantities: ∇Lz(wt), z ∈ Bt (cost O(p|Bt|)), ∇LZ′(wt)
(cost O(p|Z ′|)), ∇LZ′

u
, u ∈ U (cost O(p|Z ′|)), then com-

pute one dot product for each pair (z, u) ∈ Bt × U (cost
O(p|Bt||U |)). The total cost is therefore O(p(|Bt||U | +
|Z ′|)). In summary, the per-step cost is reduced from
O(p|Bt||Z ′|) to O(p(|Bt||U |+ |Z ′|)). This is an improve-
ment by a factor min(|Bt|, |Z ′|/|U |), leading to a signifi-
cant improvement when the average number of inference
examples per individual is large.

5. Experiments
We perform experiments on a recommender system data set
and two health data sets. Here is what we hope to learn from
the experiments:

• Theorem 3.2 assumes that data points are visited ex-
actly once during training. Practically, for many use
cases, training data are visited more than once. Does
reciprocity hold in such scenarios? We will find that it
does, though approximately.

5

Inflow, Outflow, and Reciprocity in Machine Learning

0.002 0.000 0.002 0.004 0.006 0.008
Relative Outflow

0.000

0.002

0.004

0.006

0.008

Re
la

tiv
e

In
flo

w

Relative Outflow vs. Relative Inflow

0.002 0.000 0.002 0.004 0.006 0.008
Relative Outflow

0.000

0.002

0.004

0.006

0.008

Re
la

tiv
e

In
flo

w

Relative Outflow vs. Relative Inflow

(a) Average outflow vs. inflow for all
individuals.

10 3 10 2 10 1 100

Reciprocity

0

50

100

150

200

250

300

350

Nu
m

be
r o

f u
se

rs

Reciprocity distribution across users

10 3 10 2 10 1 100

Reciprocity

0

50

100

150

200

250

300

350

Nu
m

be
r o

f u
se

rs

Reciprocity distribution across users

(b) Histogram of reciprocity across
individuals.

0 200 400 600 800 1000
Step

0.2

0.4

0.6

0.8

Time evolution of (p,)-TracIn-Reciprocity

p=25
p=50
p=75

0 200 400 600 800 1000
Step

0.0

0.2

0.4

0.6

0.8

1.0
Time evolution of (p,)-TracIn-Reciprocity

p=25
p=50
p=75

(c) Time evolution of
(p, α)-TracIn-Reciprocity along the

optimization trajectory.

Figure 1. Experiment results on the MovieLens data set. The top row shows averaged results over ten training runs for a single split, while
the bottom rows shows averages across all runs and all splits (ten runs per split for ten splits).

• The theorem is a statement about inflows and outflows
in expectation. To what extent is there reciprocity for a
single realization of the data? We will show that in the
recommender system example, there is approximate
reciprocity for a single realization, though the degree of
reciprocity increases as we average over realizations.

• Can Marginal reciprocity be measured reliably
(see Remark 2.4)? Is there agreement between
Marginal and TracIn reciprocity? We will find
that Marginal reciprocity is noisy for the recom-
mender system example, possibly because the data set
is large and an individual has relatively small inflows
and outflows. For healthcare datasets, we find that
Marginal reciprocity is more stable, and there is a
directional agreement between the two measures.

For each experiment, we randomly partition the data into
training and inference sets; this partitioning reflects Assump-
tion 3.1. Measurements are averaged across several such
random splits.

5.1. Recommendation Data Set

We conduct experiments on MovieLens Data (Harper &
Konstan, 2015), specifically, the MovieLens 100K data set
with 943 individuals, 1682 items (movies), and 100,000

ratings, i.e., an average of about 106 ratings per individual.
Each individual has at least 20 ratings. Each movie is rated
on a scale from 1-5. We randomly split the ratings into
training and inference sets in the ratio 80:20.3

We run the experiment on 10 different splits. For each split,
we average the measurements across 10 random initializa-
tions. We measure inflows, outflows, and (p, α) reciprocity.
We also report in Appendix C additional measurements,
such as the first-order approximation error in TracIn (re-
call Remark 2.5), and the signal-to-noise ratio (SNR) of
each measure (Appendix C.2). We find that the SNR is
much lower for Marginal influence than for TracIn in-
fluence, due to the reasons discussed in Remark 2.4. For
this reason, we only report results for TracIn.

3We train a matrix factorization model with embedding dimen-
sion d = 16. We randomly initialize the user and item embeddings.
Given the relatively small size of the training data, we use full-
batch Gradient Descent, i.e., all examples are visited at every time
step. We use the following hyper-parameters, which we tuned
on a random split of the data: regularization coefficient λ = 1,
number of steps T = 1000, and learning rate η = 0.0002. As a
sanity check, the quality of the model is consistent with previously
reported results. For example, (Zhang et al., 2017; Rashed et al.,
2019) report an RMSE of 0.911 using a 90-10 split. Our model
has an RMSE of 0.910 on the same split.

6

Inflow, Outflow, and Reciprocity in Machine Learning

Degree of reciprocity We plot inflows vs. outflows in
Figure 1a. Inflows and outflows appear commensurate;
large (resp. small) inflows correspond to large (resp. small)
outflows. The linear trend is stronger when we average
across ten splits (top vs. bottom figure).

Regarding reciprocity: For a single split, we find that 75%
of the individuals have reciprocities in the range [0.16, 1],
i.e. the model is (0.75, 0.16)-TracIn-reciprocal. The cor-
relation between inflow and outflow is 0.89.

When averaging across ten splits, the model is (0.75, 0.58)-
TracIn-reciprocal, and the correlation between inflows
and outflows increases to 0.98.

The experiment shows that although the independence as-
sumptions of Theorem 3.2 don’t hold (since training exam-
ples are revisited), reciprocity is relatively high in practice,
both on a single split, and when averaged across splits. It
is remarkable that we measure some degree of reciprocity
even on a single split (recall that the theorem is a statement
in expectation). Averaging results across splits gives an
empirical estimate of the expected inflows/outflows, and
indeed this averaging increases the measured reciprocity, in
line with the theorem.

Signs of inflows and outflows We also observe that in-
flows and outflows are largely non-negative. In a single split,
0.7% of individuals have a negative inflow and 19.6% have
a negative outflow. When averaging across all splits, 0.1%
have a negative inflow and 8% have a negative outflow; on
average, these individuals’ training examples degrade the
prediction quality of other individuals. However, these indi-
viduals tend to have small magnitudes of outflow and inflow;
this also explains why the correlation measure (which is
dominated by flows of large magnitudes) indicates a higher
degree of reciprocity than the (p, α) measure.

Effect of training dynamics Figure 1c shows the time
evolution of TracIn-Reciprocity along the optimization tra-
jectory. At initialization, reciprocity is low. It quickly in-
creases during the early phase of training, and as the model
nears convergence, reciprocity starts to degrade. This may
be due to cancellations in the gradients of training examples:
although the aggregate gradient is small, individual training
examples may have large gradients which results in large
credits (inflows and outflows) being assigned.

5.2. Healthcare Data Sets

We investigate reciprocity in two healthcare data sets. The
first is a data set from (Efron et al., 2004) about predicting
diabetes. It has ten features: age, sex, body mass index,
average blood pressure, and six blood serum measurements,
and the task is to predict disease progression one year after
the time of the readings. The data is from 442 individuals.

0.02 0.01 0.00 0.01 0.02
Relative Outflow

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Re
la

tiv
e

In
flo

w

Relative Outflow vs. Relative Inflow

(a) Diabetes

0.3 0.2 0.1 0.0 0.1
Relative Outflow

0.15

0.10

0.05

0.00

0.05

0.10

Re
la

tiv
e

In
flo

w

Relative Outflow vs. Relative Inflow

(b) Breast cancer

Figure 2. Average Marginal-outflow vs. Marginal-inflow for
all individuals.

The second is a data set from the UCI Machine Learning
Repository about predicting breast-cancer. There are thirty
features that relate to geometric properties of cell nuclei
from a digitized image of a fine needle aspirate of a breast
mass. The task is to predict whether the breast cancer is
malignant or benign. The data is from 569 individuals.

In both data sets, each individual corresponds to a single
data point, unlike the Movielens data set where individuals
correspond to at least 20 data points. Consequently, every
individual belongs to exactly one of the training or inference
sets; individuals in the training set only have outflows and
individuals in the inference set only have inflows. In this
case, measuring reciprocity is only possible in expectation
over random train/test splits. More precisely, we average
measurements over 100 random splits of the data.4

4On the diabetes prediction task, we train a linear regression
model optimized for the mean squared error, with a number of
steps T = 200, and a learning rate η = 0.01. On the breast
cancer classification task, we train a logistic regression model with
a number of steps T = 600 and a learning rate η = 0.1. In
both cases, some features have very different scales, so we found
it important to normalize all features (using mean and variance
computed on the training set).

7

Inflow, Outflow, and Reciprocity in Machine Learning

0.010 0.005 0.000 0.005 0.010 0.015 0.020
Ralative Outflow

0.010

0.005

0.000

0.005

0.010

0.015

0.020

Ra
la

tiv
e

In
flo

w

Ralative Outflow vs. Ralative Inflow (200 steps)

(a) Diabetes

0.020 0.015 0.010 0.005 0.000 0.005
Ralative Outflow

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

Ra
la

tiv
e

In
flo

w

Ralative Outflow vs. Ralative Inflow (600 steps)

(b) Breast cancer

Figure 3. Average TracIn-outflow vs. TracIn-inflow for all
individuals.

Degree of reciprocity We compute outflows and in-
flows using TracIn and Marginal as measures of in-
fluence. See Figures 2 and 3. Recall from Remark 2.4 that
Marginal is susceptible to noise. We find that the results
are not as noisy as in the MovieLens experiment (the 50-th
percentile of SNR is 0.30, compared to 0.19 in MovieLens),
possibly because these data sets are smaller (hence individ-
ual data points have larger influence). We report results for
both Marginal and TracIn so we can compare them.

We find that the diabetes model is (0.75, 0.36)-Marginal-
reciprocal, and (0.75, 0.76)-TracIn-reciprocal. The
breast cancer model is (0.75, 0.48)-Marginal-reciprocal
and (0.75, 0.93)-TracIn-reciprocal. TracIn reciprocity
is large for both experiments, inline with the Theorem 3.2,
even though here again, the independence assumptions of
the theorem don’t hold. Finally, although Marginal reci-
procity is lower, there is a directional agreement between
the two measures. When one is higher, so is the other.

6. Discussion
6.1. Modeling the User

In this work, we assume that user’s utility is modeled by
the machine learning objective (the loss function `). There

are two reasons why this is not completely true. First, ML
objectives are based on observable user behavior, such as the
interaction with a piece of content; such observable behavior
is not completely reflective of user satisfaction.

Second, this ignores any value that is created outside of the
ML process. For instance in a recommender system, be-
sides value derived from the quality of the recommendation
model, there is the value created by content creators. Simi-
larly, in a healthcare system, besides value derived from the
data of other patients, some benefit stems from the health-
care professionals. The impact of this issue will vary across
use-cases; for instance, when content is cheap to create,
perhaps the flow through the ML is the dominant flow.

6.2. Stationarity

Our main result, Theorem 3.2, states that we have reciprocity
under a certain stationarity assumption (Assumption 3.1).
This assumption requires that a specific user interaction
should be equally likely to occur during training or inference.
In practice, this assumption will almost certainly be violated.
(For instance, in a recommender system, a new user might
contribute fewer examples to the training set, but have more
in the inference set.)

While our theorem requires the assumption, our measure-
ments do not. Indeed, we are able to measure inflows
and outflows whatever the arrival pattern (our experiments
demonstrate this), and if there is an imbalance between in-
flows and outflows, one can take measures to address this,
via payments or different service levels.

6.3. Other Measures of Influence

Our measures of inflow and outflow depend on how we
compute influence. We study two measures: Marginal
and TracIn. There are other measures worth investigat-
ing, for instance, the Shapley value. Modifications of the
Shapley value have been used to determine feature attribu-
tion (Sundararajan & Najmi, 2020). However, to determine
the influence of training data, even approximately, would
requires a number of training runs that are super-linear in the
number of training examples, and this is usually intractable.
That said, Shapley may be computationally feasible when
the exchange happens between a small number of large
entities, as in the cross-silo federated setting described in
Section 1.1, or for restricted model classes such as decision
trees (with additional assumptions).

6.4. Balancing Flows

One exciting open direction is the design of training al-
gorithms that enforce a certain level of reciprocity. For
example, one can imagine introducing per-example weights
in SGD; changing the weight of an example z would directly

8

Inflow, Outflow, and Reciprocity in Machine Learning

scale TracIn(z, z′) for all z′ (by linearity of gradients),
and this can potentially be used to rebalance inflows and
outflows at each training step.

This bears similarities with differential privacy (DP), which
seeks to limit the impact that any training example has on the
distribution of model parameters. One of the most popular
methods to achieve DP is DPSGD (Abadi et al., 2016),
which crucially relies on rescaling per-example gradients to
bound their norm (a.k.a. gradient clipping).

Changes to the training algorithm (via example weights,
sampling, or clipping) often has a non-trivial impact on
model quality, and much like in DP literature, an important
question will be to understand optimal trade-offs between
reciprocity and model quality.

6.5. Other Settings

It is worth investigating inflow, outflow and reciprocity in
any setting that involves user data, whether ML is involved
or not. However, only those that have some model of user
utility will be amenable to mathematical analysis. For in-
stance, mapping applications often display real time infor-
mation about traffic congestion, and the user benefits by
using the application to avoid congestion. It is meaningful
to measure inflow, outflow and reciprocity in such settings.

Acknowledgements
We are grateful to Amir Najmi, Kedar Dhamdhere, Steffen
Rendle, Diane Tang, Fernando Pereira, John Anderson and
the anonymous reviewers (from this conference and others)
for insightful comments and stimulating discussions related
to problem framing.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, pp. 308–318, New York, NY, USA,
2016. Association for Computing Machinery.

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A.
Recommender systems survey. Knowledge-Based Sys-
tems, 46:109–132, 2013.

Brajer, N., Cozzi, B., Gao, M., Nichols, M., Revoir, M.,
Balu, S., Futoma, J., Bae, J., Setji, N., Hernandez, A.,
and Sendak, M. Prospective and External Evaluation of a
Machine Learning Model to Predict In-Hospital Mortality
of Adults at Time of Admission. JAMA Network Open, 3
(2), 2020.

Dwork, C. and Roth, A. The algorithmic foundations of dif-

ferential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3–4):211–407, 2014.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least
angle regression. The Annals of Statistics, 32(2):407–451,
2004.

European Commission, Directorate-General for Education,
Youth, S., and Culture. Erasmus+ annual report 2019.
Publications Office, 2020.

Fehr, E. and Gächter, S. Fairness and retaliation: The eco-
nomics of reciprocity. Journal of Economic Perspectives,
14(3):159–181, September 2000.

Ghorbani, A. and Zou, J. Data shapley: Equitable valuation
of data for machine learning. In International Conference
on Machine Learning, pp. 2242–2251, 2019.

Gill, J., Tinckam, K., Fortin, M., Rose, C., Shick-Makaroff,
K., Young, K., Lesage, J., Cole, E., Toews, M., Landsberg,
D., and Gill, J. Reciprocity to increase participation of
compatible living donor and recipient pairs in kidney
paired donation. Am J Transplant., 17(7), 2017.

Gouldner, A. The norm of reciprocity: A preliminary state-
ment. American Sociological Review, (2):161–178, 1960.

Guibert, J. and Rayón, A. Uk’s turing scheme. International
Higher Education, (106):23–24, Apr. 2021.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu,
D., Narayanaswamy, A., Venugopalan, S., Widner, K.,
Madams, T., Cuadros, J., Kim, R., Raman, R., Nelson,
P. Q., Mega, J., and Webster, D. Development and valida-
tion of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs. JAMA, 2016.

Hara, S., Nitanda, A., and Maehara, T. Data cleansing for
models trained with sgd. In Advances in Neural Informa-
tion Processing Systems, pp. 4215–4224, 2019.

Harper, F. M. and Konstan, J. A. The movielens datasets:
History and context. ACM Trans. Interact. Intell. Syst., 5
(4), December 2015.

Hoaglin, D. C. and Welsch, R. E. The hat matrix in regres-
sion and anova. The American Statistician, 32(1):17–22,
1978.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gürel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C. J.
Towards efficient data valuation based on the shapley
value. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1167–1176, 2019.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Nitin Bhagoji, A., Bonawitz, K., Charles, Z., Cor-
mode, G., Cummings, R., D’Oliveira, R. G. L., Eichner,

9

Inflow, Outflow, and Reciprocity in Machine Learning

H., El Rouayheb, S., Evans, D., Gardner, J., Garrett, Z.,
Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Har-
chaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu,
J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konecný,
J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T.,
Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh,
R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song,
D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr,
F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q.,
Yu, F. X., Yu, H., and Zhao, S. Advances and open prob-
lems in federated learning. Found. Trends Mach. Learn.,
14(1–2):1–210, jun 2021.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In Proceedings of the 34th
International Conference on Machine Learning-Volume
70, pp. 1885–1894, 2017a.

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In Precup, D. and Teh, Y. W.
(eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Ma-
chine Learning Research, pp. 1885–1894. PMLR, 06–11
Aug 2017b.

Koren, Y. and Bell, R. Advances in Collaborative Filtering,
pp. 77–118. Springer US, Boston, MA, 2015.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 42(8):
30–37, 2009.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and
Galstyan, A. A survey on bias and fairness in machine
learning. ACM Comput. Surv., 54(6), jul 2021.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In Proceedings
of the 30th International Conference on International
Conference on Machine Learning - Volume 28, ICML’13,
pp. III–1310–III–1318. JMLR.org, 2013.

Perez, M. V., Mahaffey, K. W., Hedlin, H., Rumsfeld, J. S.,
Garcia, A., Ferris, T., Balasubramanian, V., Russo, A. M.,
Rajmane, A., Cheung, L., Hung, G., Lee, J., Kowey, P.,
Talati, N., Nag, D., Gummidipundi, S. E., Beatty, A.,
Hills, M. T., Desai, S., Granger, C. B., Desai, M., and
Turakhia, M. P. Large-scale assessment of a smartwatch
to identify atrial fibrillation. New England Journal of
Medicine, 381(20):1909–1917, 2019.

Pruthi, G., Liu, F., Kale, S., and Sundararajan, M. Estimat-
ing training data influence by tracing gradient descent. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 19920–19930. Curran
Associates, Inc., 2020.

Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Liu,
P. J., Liu, X., Sun, M., Sundberg, P., Yee, H., Zhang, K.,
Duggan, G. E., Flores, G., Hardt, M., Irvine, J., Le, Q. V.,
Litsch, K., Marcus, J., Mossin, A., Tansuwan, J., Wang,
D., Wexler, J., Wilson, J., Ludwig, D., Volchenboum,
S. L., Chou, K., Pearson, M., Madabushi, S., Shah, N. H.,
Butte, A. J., Howell, M., Cui, C., Corrado, G., and Dean,
J. Scalable and accurate deep learning for electronic
health records. CoRR, abs/1801.07860, 2018.

Rashed, A., Grabocka, J., and Schmidt-Thieme, L. Attribute-
aware non-linear co-embeddings of graph features. In
Proceedings of the 13th ACM Conference on Recom-
mender Systems, RecSys ’19, pp. 314–321, New York,
NY, USA, 2019. Association for Computing Machinery.

Sundararajan, M. and Najmi, A. The many shapley values
for model explanation. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 9269–9278. PMLR, 13–18 Jul
2020.

Wang, D., Khosla, A., Gargeya, R., Irshad, H., and Beck,
A. H. Deep learning for identifying metastatic breast
cancer, 2016.

Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K.
Representer point selection for explaining deep neural
networks. In Advances in Neural Information Processing
Systems, pp. 9291–9301, 2018.

Zhang, S., Yao, L., and Xu, X. Autosvd++: An efficient
hybrid collaborative filtering model via contractive auto-
encoders. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’17, pp. 957–960, New York,
NY, USA, 2017. Association for Computing Machinery.

10

Inflow, Outflow, and Reciprocity in Machine Learning

Appendix

A. Reciprocity in Recommender Systems
We give additional details about reciprocity in the context of a standard recommendation model (Bobadilla et al., 2013).
There is a population U of individuals (indexed by u) and a set I of items (pieces of content, indexed by i). When individuals
interact with items, they rate the item implicitly or explicitly. This produces a score rui. The individuals and the items may
have features associated with them. These could be ids, or descriptive features such as the genre of the movie, the location
of the individual etc. The task is to predict the scores for unseen interactions given scores for past interactions.

We seek to measure the value exchange from the implicit curation that occurs when individuals consume recommendations.
For a recommender system, the features (x from Section 2.1 are characteristics of individuals and items, and the label (y
from Section 2.1) is a rating rui for the individual-item pair u, i associated with the example.

In such a model, every individual u is endowed with a d dimensional vector pu and every item i is endowed with a d
dimensional vector qi; we refer to these vectors as embeddings. The prediction matrix is the product R̂ = PQ>, where pu
is the u-th row of matrix P and similarly for Q. In other words, the predicted rating for user-item pair (u, i) is given by the
dot product r̂u,i = pu · qi. See (Koren et al., 2009) for more details about matrix factorization.

The model is optimized for a regularized quadratic loss, i.e.,

1

2

∑
(u,i)∈Z

(pu · qi − rui)2 +
λ

2

(∑
u

‖pu‖2 +
∑
i

‖qi‖2
)
,

where rui is the label of pair (u, i). The regularization term helps generalization.

For matrix factorization, we redistribute the regularization term as a sum over training examples, and define the loss as

1

2

∑
(u,i)∈Z

(
(pu · qi − rui)2 +

λ

|Zu|
‖pu‖2 +

λ

|Zi|
‖qi‖2

)
,

where Zu = {i : (u, i) ∈ Z} and Zi = {u : (u, i) ∈ Z}.
Remark A.1 (TracIn for Matrix Factorization). Notice that the loss gradients and the TracIn influence have a simple
structure. A visit to a training example (u, i) only updates the vectors pu and qi. Moreover, the change in the user embedding
pu only affects the predictions for user u; therefore updates to the user vectors do not play a role in the definitions of inflow
and outflow. (Equations 1 and 2).

The update to the item embedding qi only influences users who interact with the item i in the inference set. Thus, for this
loss function, inflows and outflows only flow through updates to item embeddings.
Remark A.2 (Computing TracIn for Matrix factorization). Section 4 suggests that we can compute TracIn in O(|Z|p+
|Z ′|p) where p is the total number of model parameters, in this case p = d(|U | + |I|). But due to the structure of the
problem, this computation can be done more efficiently for matrix factorization. Notice that the gradient of the loss w.r.t. a
training example z = (u, i) is 2d-sparse, only the embeddings pu, qi have a non-zero gradient. Thus, computing∇LZ(wt)
in Equation (6), can be done in O(|Z|d) instead of O(|Z|p). Similarly, computing the sum of dot products in Equation (5)
requires O(|Z ′|d) operations (since each∇Lz(wt) is 2d-sparse). The total complexity is therefore O(|Z|d+ |Z ′|d). This is
equal to the complexity of running gradient descent, which means that computing Inflows and Outflows along the SGD
trajectory does not significantly increase the computational cost of model training.

B. Proof of Theorem 3.2
First, we introduce some notation. Let Z = U ×X × Y , where U is the population of individuals, X is the feature set and
Y is the label set. Let D be the joint distribution over Z . For an individual u ∈ U , we write Zu = {u} ×X × Y , so that a
training example z belongs to individual u if z ∈ Zu.

Our goal is to show that for all u, E[Iu] = E[Ou].

Given batches of training data B1, . . . , BT and an inference set Z ′ (note that both are random variables), we rewrite inflows

11

Inflow, Outflow, and Reciprocity in Machine Learning

and outflows in a form that is more amenable to taking expectations.

Iu =

T∑
t=1

ηt
∑

z∈Bt:z/∈Zu

∑
z′∈Z′

u

∇Lz(wt) · ∇Lz′(wt)

=

T∑
t=1

ηt

(∑
z∈Bt

∇Lz(wt)1[z/∈Zu]

)
·

(∑
z′∈Z′

∇Lz′(wt)1[z′∈Zu]

)
, (7)

where 1[z′∈Zu] is the indicator of the event “z′ belongs to user u”. Similarly, we have for outflows

Ou =

T∑
t=1

ηt

(∑
z∈Bt

∇Lz(wt)1[z∈Zu]

)
·

(∑
z′∈Z′

∇Lz′(wt)1[z′ /∈Zu]

)
. (8)

Let (F1, . . . , Ft) denote the filtration arising from the sequence of random variables (B1, . . . , Bt). Taking the expectation
of inflow in Equation (7), and using the tower property of conditional expectations, we have

E[Iu] = E

[
T∑

t=1

ηt E

[∑
z∈Bt

∇Lz(wt)1[z/∈Zu] ·
∑

z′∈Z′

∇Lz′(wt)1[z′∈Zu]

∣∣∣Ft−1

]]
.

Now, notice that the batches (B1, . . . , Bt−1) completely determine the model parameters wt (since wt = w0 −∑t−1
τ=0 ητ

∑
z∈Bτ ∇Lz(wτ)), and by assumption, the next batch of training examples Bt is independent of previous

batches, and so is the inference set Z ′. So conditioned on Ft−1, the two random variables
∑
z∈Bt ∇Lz(wt)1[z/∈Zu] and∑

z′∈Z′ ∇Lz′(wt)1[z′∈Zu] are independent. Let us denote by

g−ut−1 = Ez∼D[∇Lz(wt)1[z/∈Zu]|Ft−1],
gut−1 = Ez′∼D[∇Lz′(wt)1[z′∈Zu]|Ft−1].

Then, by the aforementioned independence, linearity of expectations, and the assumption that elements of Z ′ and Z (and
hence Bt) follow the same distribution D, we have

E[Iu] = E

[
T∑
t=1

ηt(|Bt|g−ut−1) · (|Z ′|gut−1)

]
. (9)

We make a similar calculation for outflows (the only difference is in the indicators): taking expectations in Equation (8),

E[Ou] = E

[
T∑
t=1

ηt E

[∑
z∈Bt

∇Lz(wt)1[z∈Zu] ·
∑
z′∈Z′

∇Lz′(wt)1[z′ /∈Zu]
∣∣∣Ft−1]] ,

= E

[
T∑
t=1

ηt(|Bt|gut−1) · (|Z ′|g−ut−1)

]
, (10)

where we used independence (conditional on Ft−1) of the random variables
∑
z∈Bt ∇Lz(wt)1[z∈Zu] and∑

z′∈Z′ ∇Lz′(wt)1[z′ /∈Zu]. The two quantities (9) and (10) are equal. This concludes the proof.

C. Additional Experimental Results
C.1. Sanity Checks on MovieLens

In order to ensure that inflows and outflows are meaningful quantities, we measure the noise in the inflows and outflows due
to randomness in the training process.

We plot the distributions across five arbitrarily chosen individuals. See Figure 4. To aid interpretation, we normalize the
inflows and outflows by the total inflow (which approximates the total change in loss). Therefore, one can read the numbers
as the fraction of overall inflow, (or approximately the fraction of total loss reduction). We observe that the inflows and
outflows are consistent across runs, however, there is some variation, stemming from the random initialization.

12

Inflow, Outflow, and Reciprocity in Machine Learning

1 2 3 4 5

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Distribution of Outflow for five users

1 2 3 4 5

0.000

0.001

0.002

0.003

Distribution of Inflow for five users

Figure 4. Distribution of inflows and outflows across 10 runs for 5 individuals. The box edges show the upper and lower quartiles, the
whiskers show the fifth and ninety-fifth percentile.

1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Percentage TracIn discrepancy over 1000 steps of Gradient Descent.

Figure 5. TracIn approximation discrepancy across 1000 steps of Gradient Descent.

Next, we measure the error induced by the first-order approximation of TracIn (recall Remark 2.5). Figure 5 shows the
relative error for one run. The numerator is the sum of the gradient dot products (in Equation 4) across examples for one
step of gradient descent minus the total change in loss across Z ′. The denominator is the total change in loss across Z ′. The
percentage relative discrepancy remains relatively small; its 80th percentile is 1.1%. This can be further reduced by using a
smaller learning rate.

10 3 10 2 10 1 100 101 102 103

Outflow Signal-to-Noise Ratio

0

50

100

150

200

250

Nu
m

be
r o

f u
se

rs

Histogram of Outflow Signal-to-Noise Ratio

TracIn
Marginal

Figure 6. Histogram of user outflow signal-to-noise ratios, computed across ten splits.

C.2. Marginal Influence on the MovieLens Data Set

In the MovieLens experiment, we found that Marginal-outflows and inflows are noisy, and extremely susceptible to
random initialization (recall Remark 2.4). This can be quantified by measuring the Signal-to-Noise Ratio (SNR), defined
as the mean divided by the standard deviation. In an attempt to improve the SNR, we used a slightly different definition

13

Inflow, Outflow, and Reciprocity in Machine Learning

of marginal flows: instead of measuring the effect of deleting a single example, as in Equation (3), then summing over
z ∈ Zu, we measure the effect of removing all of user u’s examples simultaneously. Despite this change, the Marginal
SNR remains low, see Figure 6. For Marginal, over 99% of individuals have a SNR less than one. For TracIn, 90% of
individuals have a SNR greater than 76, making TracIn measurements much more meaningful.

14

