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Abstract

Many existing reinforcement learning (RL) meth-
ods employ stochastic gradient iteration on the
back end, whose stability hinges upon a hypoth-
esis that the data-generating process mixes expo-
nentially fast with a rate parameter that appears
in the step-size selection. Unfortunately, this as-
sumption is violated for large state spaces or set-
tings with sparse rewards, and the mixing time is
unknown, making the step size inoperable. In this
work, we propose an RL methodology attuned
to the mixing time by employing a multi-level
Monte Carlo estimator for the critic, the actor,
and the average reward embedded within an actor-
critic (AC) algorithm. This method, which we
call Multi-level Actor-Critic (MAC), is developed
specifically for infinite-horizon average-reward
settings and neither relies on oracle knowledge
of the mixing time in its parameter selection nor
assumes its exponential decay; it is therefore read-
ily applicable to applications with slower mixing
times. Nonetheless, it achieves a convergence
rate comparable to SOTA actor-critic algorithms.
We experimentally show that these alleviated re-
strictions on the technical conditions required for
stability translate to superior performance in prac-
tice for RL problems with sparse rewards.

1. Introduction
Modern machine learning (ML) techniques have enabled an-
alyzing and making predictions from large-scale data. This
is achieved through backpropagation in neural networks
(Hinton et al., 2006), cloud processing of industrial data
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sets (McAfee et al., 2012), complex event simulators (Silver
et al., 2016), and deep feature extraction (Krizhevsky et al.,
2017), among other innovations. However, a crucial under-
lying aspect of these developments is whether training data
is sufficiently informative. To put this in quantitative terms,
most ML training mechanisms hinge upon training samples
being independent and identically distributed (i.i.d.), which
is often violated in real-world problems, such as natural
language (Liu et al., 2021), financial markets (Heaton et al.,
2016), and robotics (Gu et al., 2016), where data exhibits
temporal dependence. Reinforcement learning (RL) algo-
rithms, in particular, are limited by this constraint, as the
data is inherently Markovian, owing to the fact that the RL
problem is most commonly represented mathematically as a
Markov Decision Process (MDP) (Sutton, 1988). For this
reason, as well as the numerous applications of RL in recent
years (Li, 2019), we focus on algorithms for RL methods
when data exhibits Markovian dependence.

Under Markovian sampling, many convergence analyses of
iterative methods for RL exist (Qiu et al., 2021b; Xu et al.,
2020b) and typically consider a critical assumption about
the rate at which the MDP’s transition dynamics converge
to the stationary distribution for a fixed policy. To establish
rigorous analyses, restrictions are typically placed on the
mixing times encountered during training: (1) prior oracle
knowledge of mixing times is employed to determine an
optimal step-size selection, as in (Duchi et al., 2012; Nagaraj
et al., 2020); or (2) mixing times decay exponentially fast
(Xu et al., 2020b; Wu et al., 2020; Qiu et al., 2021a; Chen &
Zhao, 2022). In this work, we are interested in developing
RL algorithms with performance certificates without the
aforementioned conditions.

For instance, consider an RL problem where the agent must
navigate through a continuous state space, such as a robot
reaching a target location or a self-driving car traversing
a complex road network. In these cases, the transition dy-
namics can be highly non-linear with sparse rewards, and
the agent may have to explore many states before locating
any rewards. In addition, if the environment’s dynamics are
highly random or there are many obstacles and the agent
can get stuck in certain states for a long time, the total vari-
ation distance to the steady state decreases slowly, i.e., the
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Table 1. This table compares the total sample complexity of actor-critic (AC) algorithms available in the literature. To our knowledge,
this is the first AC algorithm with an explicit dependence on the underlying mixing time, defined as τmix := maxt∈[T ] τ

θt
mix where θ is

the policy parameter (see Sec. 4 for details), that does not require the exponentially fast mixing assumption. We also remark that our
proposed approach is oblivious to mixing time if we follow Dorfman & Levy (2022) to let Tmax = T in Algorithm 1.

References
Sampling

Total complexity Reward Fast mixing
Actor Critic

(Wang et al., 2019) i.i.d. i.i.d. O(ϵ−4) Discounted Required

(Kumar et al., 2019) i.i.d. i.i.d. O(ϵ−4) Discounted Required

(Qiu et al., 2021a) i.i.d. Markovian Õ(ϵ−3) Average Required

(Xu et al., 2020b) Markovian Markovian Õ(ϵ−2) Discounted Required

(Wu et al., 2020) Markovian Markovian Õ(ϵ−2.5) Average Required

(Chen & Zhao, 2022) Markovian Markovian Õ(ϵ−2) Average Required

This work Markovian Markovian Õ(τ2mix · ϵ−2) Average Not required

mixing rate for a given policy is slow. These issues often
manifest in stationary MDPs that are simply weakly con-
nected by a few distinct regions, which could be defined,
e.g., by seasonality in data or distinct learning “tasks” com-
prised of similar states and sub-goals as detailed in Riemer
et al. (2021). In summary, many RL environments exhibit a
slower than exponential mixing rate due to high dimension-
ality, intrinsic volatility, sparse rewards, or that they contain
distinct sub-tasks.

We seek RL methodologies attuned to environments that mix
slowly, especially in the context of actor-critic (AC), due to
the fact that it underlies much of modern deep RL (Konda
& Tsitsiklis, 1999). As previously noted, existing results
(cf. Table 1) hinge upon either i.i.d. (Kumar et al., 2019) or
exponentially fast mixing (Xu et al., 2020b; Wu et al., 2020;
Qiu et al., 2021a; Chen & Zhao, 2022). We therefore aim to
develop a variant of actor-critic that does not possess these
limitations. To do so, inspired by Dorfman & Levy (2022),
we develop a multi-level Monte Carlo gradient estimator
and adaptive learning rate for the average reward, actor, and
critic, called Multi-level Monte Carlo Actor-Critic (MAC).
We compare the sample complexity of different methods in
Table 1. Our main contributions are:

• We develop a variant of multi-level Monte Carlo for
the average reward, policy gradient, and temporal dif-
ference estimates, which together comprise Multi-level
Monte Carlo Actor-Critic (MAC) algorithm.

• We establish the convergence rate dependence of the
proposed MAC algorithm on the mixing time without
any assumption on its decay rate, which alleviates the
exponentially fast mixing assumptions of prior works.

• Despite the two-timescale nature of MAC, our use of
a modified Adagrad stepsize in the actor allows us to
obtain final sample complexity of Õ(ϵ−2), instead of
the Õ(ϵ−2.5) of previous two-timescale analyses.

• We perform initial proof of concept experiments and
observe that MAC outperforms vanilla actor-critic for
settings with sparse rewards.

1.1. Related Works

We provide a brief overview of the related works here.
Please refer to Appendix A for more detailed context.

TD Learning. For discounted TD with Markovian samples,
Bhandari et al. (2018) established finite-time convergence
bounds which scale linearly with mixing time τmix. Dorf-
man & Levy (2022) then improved the rate to be propor-
tional to the

√
τmix using a multi-level gradient estimator

and adaptive learning rate. Qiu et al. (2021a) studied TD
under the average reward setting, which also imposes expo-
nentially fast mixing that manifests in an additional logarith-
mic term in the sample complexity. These results all hinge
upon imposing restrictive conditions on mixing time.

Policy Gradient. More recently, the sample complexity of
policy gradient methods has been established for a variety
of settings: for tabular (Bhandari & Russo, 2019; Agarwal
et al., 2020) and softmax policies (Mei et al., 2020), rates to
global optimality have been proven. For general parameter-
ized policies, early works focused on “policy improvement”
bounds (Pirotta et al., 2013; 2015). More recently, rates
towards stationarity (Bedi et al., 2022) and local extrema
(Zhang et al., 2020) have been studied, and under special
neural architectures, globally optimal solutions (Wang et al.,
2019; Leahy et al., 2022) are achievable. This topic is an
active area of work – we merely identify that these perfor-
mance certificates all require the mixing rate going to null
exponentially fast.

Actor-Critic. As previously mentioned, the stability of
actor-critic initially focused on asymptotics (Borkar &
Konda, 1997). More recently, non-asymptotic rates have
been derived under i.i.d. assumptions (Kumar et al., 2019;
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Wang et al., 2019) and more recently under a variety of
different types of Markovian data – see Table 1. However,
these results impose that any temporal correlation of data
across time vanishes exponentially fast as quantified by the
mixing rate. In this way, we are able to match (Chen &
Zhao, 2022) but without these restrictions.

2. Problem Formulation
We consider a reinforcement learning problem with average
reward criterion, which can be mathematically defined as a
Markov Decision Process (MDP) given by the tuple M :=
(S,A,P, r). Here, S is a finite state space; A is a finite
action space; P(· | s, a) is a distribution that determines
transition to the next state s′, and r : S×A → [0, rmax] is a
bounded reward function that informs the merit of selecting
action a when starting in state s. A policy π(· | s) of an MDP
maps the state s to the probability distribution over actions
a. Formally, π : S → △|A|, where △|A| is the probability
simplex. In the average reward setting, we seek to find a
policy π such that the long-term average reward is given by
J(π) := limT→∞ E

[
1
T

∑T
t=0 r(st, at)

]
is maximized. In

practice, when the state space is large, it is difficult to search
over a general class of policies since its parameterization
scales with |S|. Therefore, we restrict focus to the case that
π is parameterized by a vector θ ∈ Rd, where d denotes
the parameter dimension, which leads to the notion of a
parameterized policy πθ. Optimizing the average reward
with respect to policy parameters θ is the main goal of this
work, which we formalize as:

max
θ

J(πθ) := lim
T→∞

Est+1∼P(·|st,at),at∼πθ(·|st) [RT ] ,

(1)

where RT := 1
T

∑T
t=0 r(st, at). Denote by dπθ the unique

stationary state distribution induced by policy πθ. Then we
can also write J(πθ) = Es∼dπθ ,a∼πθ

[r(s, a)]. It turns to
be essential to further algorithm development to define the
differential action-value (Q) function as

Qπθ (s, a) = E

[ ∞∑
t=0

[r(st, at)− J(πθ)]

]
, (2)

such that s0 = s, a0 = a, and action a ∼ πθ. This implies
that we can write the differential state value function as

V πθ (s) = Ea∼πθ(·|s)[Q
πθ (s, a)]. (3)

We will drop the term “differential” in what follows and
simply refer to Qπθ and V πθ as the state-action and state
value functions. From (2) and (3), we can write the value of
a state s via Bellman’s equation (Puterman, 2014):

V πθ (s) = E[r(s, a)− J(πθ) + V πθ (s′)], (4)

where the expectation is over a ∼ πθ(·|s), s′ ∼ P(·|a, s).
Next, we shift to defining the standard actor-critic frame-
work to solve (1), in order to illuminate its merits and
drawbacks in terms of the conditions it imposes on the
state-action occupancy measure, i.e., the product measure
associated with the expectations in (1) and (4).

2.1. Decay Rates of Mixing Times

It is inherent to RL that the data-generating mechanism is
Markovian, which means that assumptions that trajectory
data is independent and identically distributed cannot hold
(Wang et al., 2019; Kumar et al., 2019; Qiu et al., 2021b).
That is, the noise driving the estimation error of the algo-
rithm updates is heteroscedastic. Because of this challenge,
various technical conditions have been considered to quan-
tify the degree of correlation in data across time, mostly
inherited from the applied probability literature – see (Levin
& Peres, 2017). Most prior stability and sample complex-
ity results of RL algorithms for the average reward setting
are defined in terms of the mixing time, which is the min-
imum time at which the transition dynamics are near the
long-term steady-state distribution induced by a policy πθ,
as formalized next.

Definition 2.1 (ϵ-Mixing Time). Let dπθ denote the station-
ary distribution of the Markov chain induced by πθ. The
ϵ-mixing time of this Markov chain is defined as

τθmix(ϵ) := inf{t : sup
s∈S

∥P t(·|s)− dπθ (·)∥TV ≤ ϵ}, (5)

where ∥ · ∥TV is the total variation distance. The conven-
tional mixing time is defined as τθmix := τθmix(1/4).

Limitations of Previous Work. In all the earlier works
from Table 1, a crucial assumption is regarding the expo-
nentially fast decay rate of the mixing time. Specifically,
all these works assume that there exist ζ > 0 and ρ ∈
(0, 1) such that, for all θ, it holds that sups∈S ∥P t(·|s) −
dπθ∥TV ≤ ζρt, which implies exponentially fast mixing
for all induced Markov chains. Also, to proceed with the
convergence analysis in the works mentioned in Table 1,
knowledge of ζ and ρ is required for the optimal step size
selection, which is usually unknown in practice. Moreover,
there is a wide range of applications where polynomial de-
cay rates have some fundamental role to play in defining
RL algorithms that can generalize well across tasks - see
(Riemer et al., 2021) for a detailed description.

Therefore, in this work, we are interested in going beyond
the exponentially fast mixing requirements and seek to de-
velop actor-critic algorithms which do not require access to
mixing time values a priori for optimal performance. We
present our proposed algorithm in the next section.
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3. Actor-Critic Method
3.1. Elements of Actor-Critic

We start by providing a quick recap of the standard actor-
critic (AC) algorithm in average reward RL settings. The
AC algorithm operates by alternating updates between the
actor and critic, which are respectively defined in terms
of gradient updates to policy parameters θ and estimates
of the value function V πθ (s) based on the fixed point re-
cursion implied by Bellman’s equation (4). To do so, we
proceed by writing down a gradient ascent iteration for the
maximization in (1) given by

θt+1 = θt + αt∇θJ(πθt), (6)

where αt is the actor learning rate. From the policy gradient
(PG) Theorem (Williams, 1992; Sutton et al., 1999), it is
well-known that ∇θJ(πθt) takes the explicit form:

∇θJ(πθ) = E(s,a,s′)∼Γθ
[δπθ · ∇θ log πθ(a|s)] , (7)

with the temporal difference (TD) δπθ defined as (Sutton,
1988):

δπθ := r(s, a)− J(πθ) + V πθ (s′)− V πθ (s), (8)

and Γθ := s ∼ dπθ , a ∼ πθ, s
′ ∼ P(·|s, a) is the short

notation for the joint distribution. We note that there are
two parts in the expression of PG in (7): the score function
∇θ log πθ(a|s), which comes from the policy parameteri-
zation, and the TD term δπθ , obtained by rearranging the
V πθ (s) term in (4) to the other side of the expression and
grouping expectations.

Critic update: We restrict focus to the case that the value
function V πθ (s), is estimated by the inner product between
a given feature map ϕ(s) and a weight vector ω, which
can be shown to be exact under some special cases such
as linear MDPs where the assumption of realizability is
met (Tsitsiklis & Van Roy, 1997; Bhandari et al., 2018;
Dorfman & Levy, 2022; Qiu et al., 2021a). Hence, we can
write Vω(s) = ⟨ϕ(s), ω⟩ where Vω(s) denotes the estimator
to V πθ (s) in terms of parameters ω ∈ Rm and feature map
ϕ : S → Rm of state s to m-dimensional space such that
∥ϕ(s)∥ ≤ 1 for all s ∈ S. TD learning is used to find ω,
which minimizes error G(ω) defined by

min
ω∈Ω

G(ω) :=
∑
s∈S

dπθ (s)(V πθ (s)− Vω(s))
2, (9)

where we take Ω ⊂ Rm to be a norm-ball of sufficiently
large radius Rω > 0 about the origin. The TD(0) update
for the critic parameter ω is given as

ωt+1 =ΠΩ

[
ωt + βt

(
r(st, at)− J(πθt) + ⟨ϕ(st+1), ωt⟩

− ⟨ϕ(st), ωt⟩
)
ϕ(st)

]
, (10)

Algorithm 1 Multi-level Monte Carlo Actor-Critic (MAC)
1: Initialize: Policy parameter θ0, actor step size αt, critic

step size βt, average reward tracking step size γt, initial
state s00 ∼ µ0(·), maximum rollout length Tmax.

2: for t = 0 to T − 1 do
3: Set s1t = s0t
4: Sample level length jt ∼ Geom(1/2)
5: for i = 1, . . . , 2jt do
6: Take action ait ∼ πθt(·|sit)
7: Collect next state si+1

t ∼ P (·|sit, ait)
8: Receive reward rit = r(sit, a

i
t)

9: end for
10: Evaluate MLMC gradient fMLMC

t , hMLMC
t , and

gMLMC
t via (13), (15), (16)

11: Update parameters following (17)
12: Set s0t+1 = s2

jt

t

13: end for

where βt is the critic learning rate. We remark that the critic
update in (11) requires that we know J(πθt) (time-averaged
reward), which is typically not available. We can replace this
unknown quantity with a recursive estimate for the average
reward obtained by ηt+1 = ηt − γt(ηt − r(st, at)), where
γt is the average reward learning rate.

Finally, we can write vanilla actor-critic updates as

ηt+1 = ηt + γt · ft (reward tracking)

ωt+1 = ΠΩ

[
ωt + βt · gt

]
, (critic update)

θt+1 = θt + αt · δπθt · ht, (actor update) (11)

where we have

ft = r(st, at)− ηt,

gt =
(
r(st, at)− ηt + ⟨ϕ(st+1)− ϕ(st), ωt⟩

)
ϕ(st),

ht = δπθt · ∇θ log πθt(at|st),
δπθt = r(st, at)− ηt + ⟨ϕ(st+1)− ϕ(st), ωt⟩. (12)

As previously mentioned, in existing works the stability
of (11)-(12) is only ensured under the exponentially fast
mixing condition, which can preclude cases with reward
sparsity or large state spaces. We therefore develop an
augmentation of actor-critic that alleviates this restriction in
the following subsection.

3.2. Multi-level Monte Carlo Actor-Critic

Recent work by Dorfman & Levy (2022) has developed the
use of Multi-level Monte Carlo techniques together with
AdaGrad step-size selection to develop a gradient estimator
for Markovian data in stochastic optimization settings. We
build upon these techniques in putting forth an MLMC
gradient estimator for the actor, critic, and reward tracking.
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Specifically, we propose to replace the stochastic gradients
ft, gt, and ht in (11) with the following MLMC gradients.
For each t, we let Jt ∼ Geom(1/2), then we collect a
trajectory Tt := {sit, ait, rit, si+1

t }2Jt

i=1 by interacting with the
environment using policy parameter vector θt. Our MLMC
policy gradient estimator is then given by

hMLMC
t = h0

t +

{
2Jt(hJt

t − hJt−1
t ), if 2Jt ≤ Tmax

0, otherwise
(13)

with hj
t =

1
2j

∑2j

i=1 h(θt; s
i
t, a

i
t) aggregating 2j gradients:

h(θt; s
i
t, a

i
t) = δ

πθt
i · ∇θ log πθt(a

i
t|sit), (14)

δ
πθt
i = r(sit, a

i
t)− ηt + ⟨ϕ(sit+1)− ϕ(sit), ωt⟩.

Based on (13) and (14), we can write analogous MLMC
estimators fMLMC

t and gMLMC
t for the reward tracking

and critic, respectively:

fMLMC
t = f0

t +

{
2Jt(fJt

t − fJt−1
t ), if 2Jt ≤ Tmax

0, otherwise
(15)

with f j
t = 1

2j

∑2j

i=1 f(ηt; s
i
t, a

i
t) =

1
2j

∑2j

i=1

(
r(sit, a

i
t)− ηt

)
; and

gMLMC
t = g0t +

{
2Jt(gJt

t − gJt−1
t ), if 2Jt ≤ Tmax

0, otherwise
(16)

with gjt = 1
2j

∑2j

i=1 g(ηt; s
i
t, a

i
t) =

1
2j

∑2j

i=1

(
r(sit, a

i
t)− ηt + ⟨ϕ(sit+1)− ϕ(sit), ωt⟩

)
ϕ(sit).

Overall, the proposed multi-level Monte Carlo actor-critic
(MAC) takes the form

ηt+1 =ηt + γt · fMLMC
t (reward tracking)

ωt+1 =ΠΩ

[
ωt + βt · gMLMC

t

]
, (critic update)

θt+1 =θt + ηt · δπθt · hMLMC
t , (actor update) (17)

We summarize the proposed algorithm in Algorithm 1.

Remark 1. The multi-level gradients (13), (15), and (16)
used in MAC require a stochastic number of samples for
each estimate. This differs from the classic scheme (11),
where we only need one sample (st, at, st+1) to evalu-
ate the actor and critic gradients. The original motivation
for using geometric sampling (i.e., Jt ∼ Geom(1/2)) in
MLMC estimators is that it allows us to obtain an unbiased
gradient estimate averaged over O (Tmax) samples while
using only O (log Tmax) samples in expectation. This is
made precise for our setting in equation (21) of Proposi-
tion 4.5. The reason that only an expected O (log Tmax)
samples are required is that, though Jt ∼ Geom(1/2),
the maximum value j is allowed to take in the MLMC

estimators (13), (15), (16) is jmax = ⌊log Tmax⌋, imply-
ing that the expected number of samples used is actually
O
(∑jmax

j=1 P (Jt = j)2j
)

= O (log Tmax). Importantly
for our case, the structure of the MLMC estimator also al-
lows us to quantify the effect of mixing time on its squared
norm, as we will show in Proposition 4.5, equation (22). Sur-
prisingly, using these features of MLMC estimators, we can
accommodate Markovian sampling in our actor-critic error
analysis without resorting to the exponentially fast mixing
assumption. This is a critical innovation in our analysis.

4. Non-asymptotic Convergence Analysis
In this section we provide convergence rate and sample
complexity results for Algorithm 1. We extend the MLMC
analysis of Dorfman & Levy (2022) to the actor-critic set-
ting, where we combine it with the two-timescale finite-time
analysis of Wu et al. (2020) to obtain non-asymptotic con-
vergence guarantees for MAC (cf. Algorithm 1). Salient
features of our approach: (1) it avoids uniform ergodicity
assumptions required in previous finite-time analyses (Zou
et al., 2019; Wu et al., 2020; Chen & Zhao, 2022); (2) it
explicitly characterizes convergence rate dependence on the
mixing times encountered during training; (3) it (i) clarifies
the trade-offs between mixing times and MLMC rollout
length Tmax, and (ii) extends the standard analysis to handle
additional sources of bias in the MLMC estimator, both of
which were missing from the analysis of Dorfman & Levy
(2022); (4) it leverages modified Adagrad stepsizes to avoid
the slower convergence rates of previous two-timescale anal-
yses (Wu et al., 2020) (cf. Theorem 4.8).

The rest of this section is structured as follows. We first out-
line standard assumptions (cf. Sec. 4.1) from the literature
and provide some preliminary results. Second, we analyze
the policy gradient norm (cf. Sec. 4.2) associated with Al-
gorithm 1, which provides a preliminary convergence rate
and characterizes its dependence on the error arising from
the critic estimation procedure, the MLMC bias resulting
from the choice of Tmax and mixing times encountered, and
the bias inherent in using function approximation for the
critic. Third, we analyze the convergence (cf. Sec. 4.3)
of the critic estimation error, characterizing its dependence
on the MLMC bias and its convergence rate. Finally, we
combine the actor and critic analyses to provide our main
convergence rate and sample complexity (cf. Theorem 4.8)
results for MAC. To keep the exposition clear, we provide
simplified versions of our main results and omit proofs in
this section. Mathematically precise statements and detailed
proofs of all results are presented in the appendix.
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4.1. Assumptions and Propositions

The algorithmic setting considered in this paper is that of
actor-critic with linear function approximation, where the
critic updates correspond to using TD(0) (Sutton & Barto,
2018) to estimate the state value function. Specifically, we
assume that, for a given critic parameter ω ∈ Rk and state
s, our critic approximator is of the form Vω(s) = ϕ(s)Tω
[cf. (9), where ϕ : S → Rk is a given feature mapping that
we assume satisfies sups ∥ϕ(s)∥ ≤ 1.

As discussed in Ch. 9 of (Sutton & Barto, 2018), for a fixed
policy parameter θ, TD(0) with linear function approxima-
tion will converge to the minimum of the mean squared
projected Bellman error (MSPBE), which satisfies

Aθω = bθ, (18)

Aθ = Es∼µθ,a∼πθ,s′∼p(·|s,a)
[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
,

bθ = Es∼µθ,a∼πθ
[(r(s, a)− J(θ))ϕ(s)] .

In what follows, we will use ω∗(θ) to denote the fixed
point satisfying Eq. (18) for a given θ. We will also use
ω∗
t = ω∗(θt) to denote the fixed point associated with policy

parameter vector θt at time t. For a given feature mapping
ϕ, we define the worst-case approximation error to be

Eapp = sup
θ

√
Es∼µθ

[ϕ(s)Tω∗(θ)− V πθ (s)]
2
, (19)

which we assume to be finite. Intuitively, Eapp quantifies
the quality of the feature mapping: when the features are
well-designed, Eapp will be small or even 0, while poorly
designed features will tend to have higher worst-case error.

Analyses of TD learning typically assume positive definite-
ness of the matrices Aθ to ensure the solvability of the
MSPBE minimization problem and uniqueness of its so-
lutions (Bhandari et al., 2018; Zou et al., 2019; Qiu et al.,
2021b), which we subsequently impose via Assumption 4.1.
Assumption 4.1. There exist λ > 0 such that, for all θ,
the matrix Aθ is positive definite, its eigenvalues are all
bounded and have norm greater than or equal to λ.

As indicated in our description of the algorithm in the previ-
ous section, we execute a projection onto a norm-ball with
radius Rω > 0, denoted by set Ω, in our critic update step
[cf. (17)]. As mentioned in (Wu et al., 2020), given Assump-
tion 4.1, we can simply take Rω = 2R/λ, since ∥bθ∥ ≤ 2R
by the boundedness of rewards, and ∥A−1

θ ∥ ≤ 1/λ.

In order to establish an ascent-type condition on the policy
gradient, we require some regularity conditions which have
been considered in recent analyses of model-free RL meth-
ods (Papini et al., 2018; Kumar et al., 2019; Zhang et al.,
2020; Xu et al., 2020a), as detailed next.
Assumption 4.2. Let {πθ}θ∈Rd denote our parameterized
policy class. There exist B,K,L > 0 such that

1. ∥∇ log πθ(a|s)∥ ≤ B, for all θ ∈ Rd,

2. ∥∇ log πθ(a|s)−∇ log πθ′(a|s)∥ ≤ K∥θ − θ′∥, for
all θ, θ′ ∈ Rd,

3. |πθ(a|s)− πθ′(a|s)| ≤ L∥θ − θ′∥, for all θ, θ′ ∈ Rd.

Finally, for our last major assumption we impose a con-
dition on the ergodicity coefficients of the family of state
transition kernels {Pθ} induced by the policy class {πθ},
where Pθ(s

′|s) =
∫
A πθ(a|s)p(s′|s, a)da. For a fixed

transition kernel P , defined its ergodicity coefficient to
be κ(P ) := sups,s′ ∥P (·|s)− P (·|s′)∥TV (Mitrophanov,
2005). Furthermore, for a given k ∈ N and fixed P , let P k

denote the induced k-step transition kernel.

Assumption 4.3. For every θ, there exists k ∈ N such that
the ergodicity coefficient κ(P k

θ ) satisfies κ(P k
θ ) < 1.

In prior works, related quantities are assumed to go to null
exponentially fast (uniform ergodicity) in finite-time anal-
yses of average-reward actor-critic (Wu et al., 2020; Qiu
et al., 2021b; Chen & Zhao, 2022) and related RL meth-
ods (Melo et al., 2008; Bhandari et al., 2018; Zou et al.,
2019) (Theorem 3.1 of (Mitrophanov, 2005) establishes a
correspondence). In our case, we merely require it to be
upper-bounded by a constant, meaning that the degree of
non-stationarity of the transition dynamics cannot be ar-
bitrarily large, and at worst has bounded drift with time.
This allows us to better accommodate large state spaces
comprised of distinct regions, for example.

We are now ready to provide two important propositions
that will be important in the core analysis to follow.

Proposition 4.4. Under Assumptions 4.1-4.3, there exists
Lω > 0 s.t. ∥ω∗(θ)− ω∗(θ′)∥ ≤ Lω∥θ − θ′∥, for all θ, θ′.

Please refer Lemma D.2 in the appendix for the proof of
Proposition 4.4. The next proposition is a generalization of
Lemma 3.1 from Dorfman & Levy (2022), adapted to our
actor-critic setting, that explicitly characterizes the compu-
tational cost associated with MLMC rollout length Tmax.

Before stating our main results, we first establish a result
characterizing the mean and variance of the MLMC gradient
estimators fMLMC

t , gMLMC
t , hMLMC

t used in the MAC
updates defined in (17). Since the core result is the same for
all three estimators, we formulate and derive the result for
a general MLMC estimator lMLMC

t . We note that lMLMC
t

can be replaced by any one of fMLMC
t , gMLMC

t , hMLMC
t

and the result will hold. To prepare to state the result, let a
policy parameter θt be given and sample Jt ∼ Geom(1/2).
Fix Tmax ∈ N such that Tmax ≥ τθtmix. Fix a trajectory
zt = {zit = (sit, a

i
t, r

i
t, s

i+1
t )}i∈[2Jt ] generated by follow-

ing policy πθt starting from s0t ∼ µ0(·). Let ∇L(x) :=
Ez∼µθt ,πθt

[l(x, z)] be a gradient that we wish to estimate
over zt where x ∈ K ⊂ Rk is the parameter of the estimator

6
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l, e.g., x could be xt = θt, ηt, or ωt. The MLMC estimator
(cf. (13), (15), (16)) thus becomes

lMLMC
t = l0t+

{
2Jt(lJt

t − lJt−1
t ), if 2Jt ≤ Tmax,

0, otherwise.
(20)

We are ready to present our result for the MLMC estimator
in Proposition 4.5.

Proposition 4.5. Let jmax = ⌊log Tmax⌋. Fix xt mea-
surable w.r.t. the σ-algebra Ft−1 = σ(θk, ηk, ωk; k ≤
t − 1), where xt ∈ {θt, ηt, ωt}. Assume Tmax ≥ τθtmix,
∥∇L(x)∥ ≤ GL, for all x ∈ K, and ∥lNt ∥ ≤ GL, for all
N ∈ [Tmax]. Then

Et−1

[
lMLMC
t

]
= Et−1

[
ljmax

t

]
, (21)

E
[
∥lMLMC

t ∥2
]
≤ Õ

(
G2

Lτ
θt
mix log Tmax

)
. (22)

We provide the proof of Proposition 4.5 with a detailed
description of the statement in Lemma B.3 in the appendix.

Remark 2. We note that the corresponding result in Dorf-
man & Levy (2022) hides the logarithmic dependence
of the second moment bound (22) on the MLMC rollout
length Tmax, subsuming it into the Õ (·) order notation.
When Tmax is allowed to grow with time, e.g., by setting
Tmax = T as in Dorfman & Levy (2022), the true impact of
using MLMC is not accurately accounted for. Furthermore,
a finite value for Tmax must be used in practice, so it is
important to understand its true effect. We rigorously char-
acterize its effect with Proposition 4.5. Nonetheless, it is
important to note that our main results, including Theorems
4.6, 4.7, and 4.8 (and their detailed analogues in the ap-
pendix, which retain additional information on the effects of
Tmax and problem-dependent constants), all still hold with
Tmax replaced by T . In particular, when Tmax = T , our
results all hold without the assumption that Tmax ≥ τθtmix.

In addition, Proposition 4.5, its precursor results (see Lem-
mas B.1, B.2 in appendix), and our extensions of it (see Lem-
mas C.1, D.3, C.2, D.4 in appendix) are the critical tools that
allow us to smoothly accommodate Markovian sampling
and reveal the dependence on mixing times encountered in
the analysis. Equation (21) is used at many points in the
analysis to tie the behavior of our MLMC estimates to that
of the lower-bias estimators f jmax

t , gjmax

t , hjmax

t , while equa-
tion (22) renders the dependence on log Tmax and mixing
time explicitly, and allows us to avoid uniform ergodicity
assumptions. These innovations allow us to derive the im-
proved actor and critic convergence analyses presented next.

4.2. Convergence of the Actor

In this section, we take the first step towards establishing
convergence of Algorithm 1 by providing a bound on the

average policy gradient norm. This result explicitly char-
acterizes the actor convergence in terms of its dependence
on the average reward tracking and critic estimation error,
mixing times encountered during training, MLMC rollout
length Tmax, and the function approximation bias Eapp. We
present our first main result in Theorem 4.6.
Theorem 4.6. Assume J(θ) is L-smooth, supθ |J(θ)| ≤
M , and ∥∇J(θ)∥, ∥hMLMC

t ∥ ≤ GH , for all θ, t. As-
sume also that Tmax ≥ τθtmix, for each t. Let αt =

α′
t/

√∑T
t=1 ∥hMLMC

t ∥2, where {α′
t} is an auxiliary step-

size sequence with α′
t ≤ 1, for all t ≥ 1. Then

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤ O

(
1√
T

)
+O

(
1

T

T∑
t=1

E(t)

)

+ Õ
(
max
t∈[T ]

τθt
mix

log Tmax

Tmax

)
+O (Eapp) , (23)

where E(t) = E
[
∥ηt − η∗t ∥

2
]
+ E

[
∥ωt − ω∗

t ∥
2
]
. and

η∗t = J(θt).

We provide a more detailed statement of Theorem 4.6 and
a complete proof in Theorem C.4 in the appendix. In ad-
dition to the O

(
T−1/2

)
term and the inherent O (Eapp)

bias term, this bound depends on the average value of
the critic error via E(t) and Markovian sampling through
maxt∈[T ] τ

θt
mix

log Tmax

Tmax
. As we will see in Theorem 4.7 in

the following subsection, the E(t) term dies to 0 at a favor-
able rate. The presence of the Markovian sampling term,
however, marks the point where our work departs signifi-
cantly from previous work.
Remark 3. Interestingly, we note that the right-hand side of
(23) no longer depends upon the step size rate as in Wu et al.
(2020, Theorem 4.5) due to the use of our modified Adagrad
stepsize in the actor update. This allows us to derive an
improved overall sample complexity in Theorem 4.8.

An important consequence of Theorem 4.6 is that the level
of bias resulting from Markov sampling can be controlled
by choosing Tmax appropriately. When the maximum mix-
ing time likely to be encountered during training – captured
here by the term maxt∈[T ] τ

θt
mix, is small – it makes sense

to choose Tmax to be relatively small as well. When mixing
times are long, on the other hand, choosing Tmax accord-
ingly keeps the Markovian sampling bias manageable.

4.3. Convergence of the Critic

We turn next to characterizing the convergence of the critic
error term arising in bound (23) of Theorem 4.6. Simi-
lar to that theorem, the resulting bound expresses critic
convergence in terms of mixing times encountered during
training as well as MLMC rollout length Tmax. This result
is also where our actor-critic scheme explicitly becomes
two-timescale due to our choice of stepsize sequences.

7
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Theorem 4.7. Assume βt = γt = (1 + t)−ν , αt =

α′
t/

√∑t
k=1 ∥hMLMC

t ∥2, and α′
t = (1 + t)−σ, where

0 < ν < σ < 1. Assume also that Tmax ≥ τθtmix, for
each t. Then

1

T

T∑
t=1

E(t) ≤O
(
T ν−1)+O

(
T−2(σ−ν)

)
+ Õ

(
max
t∈[T ]

τθt
mix log Tmax

)
O
(
T−ν)

+ Õ
(
max
t∈[T ]

τθt
mix

log Tmax

Tmax

)
. (24)

For the proof of Theorem 4.7, refer to Theorems D.1 and
D.5) in the appendix. Unlike the actor bound (23), the only
term in (24) that does not diminish with T is the Markovian
sampling term containing maxt∈[T ] τ

θt
mix

log Tmax

Tmax
. As in

the actor case, this bias can be controlled via the proper
selection of Tmax. As we will see in the final result of this
section, this Markovian sampling term will ultimately be
absorbed into the analogous term from Theorem 4.6.

4.4. Convergence Rate and Sample Complexity

We now present our main result characterizing the conver-
gence rate of Algorithm 1 in terms of only the total number
of iterations, mixing times encountered and Tmax used dur-
ing training, and the function approximation bias Eapp. We
present the result in Theorem 4.8 next, which follows di-
rectly from Theorems 4.6 and 4.7.

Theorem 4.8. (Convergence Rate) Under the assumptions
of Theorems 4.6 and 4.7 and with selection σ = 0.75 and
ν = 0.5, we have

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤O (Eapp) + Õ

(
τmix log Tmax√

T

)
+ Õ

(
τmix log Tmax

Tmax

)
, (25)

where τmix := maxt∈[T ] τ
θt
mix.

The proof of Theorem 4.8 is provided in Appendix E. The
result in Theorem 4.8 provides an explicit dependence of
the final convergence rate on the maximum mixing time
τmix encountered during training as well as rollout length
Tmax. The first term is O (Eapp) on the right-hand side
of (25) is unavoidable due to the use of linear function
approximation for the critic, but can be kept small or even
driven to zero with appropriate feature selection. The second
term shows the dependence on the mixing rate and shows
that we recover the original i.i.d. rates if τmix = 1. The last
term on the right-hand side of (25) is interesting because
that is the final bias we are incurring due to the use of finite
length rollout trajectories Tmax. Importantly, if we take

Tmax = T as in Dorfman & Levy (2022), we recover the
rate O (Eapp) + Õ

(
τmix log Tmax√

T

)
.

We conclude this section with a sample complexity result
for Algorithm 1.

Corollary 4.9. Let us consider Tmax =
√
T and Eapp ≤ ϵ.

Absorbing the logarithmic terms in the Õ notation, it holds
that to achieve min1≤t≤T E

[
∥∇J(θt)∥2

]
≤ ϵ, we need

T ≥ Õ
(

τ2
mix

ϵ2

)
.

The proof of Corollary 4.9 follows directly from the state-
ment of Theorem 4.8. We remark that, even for fast mixing
settings where we can ignore the dependence on τ2mix in
Corollary 4.9, our proposed algorithm achieves sample com-
plexity Õ

(
1
ϵ2

)
, which improves upon the state of the art

result of Õ
(

1
ϵ2.5

)
in Wu et al. (2020). This improvement is

due to the use of Adagrad step size in the actor update.

Remark 4. It is interesting to note that the analysis pre-
sented in this section recovers results for the simplified
i.i.d. sampling setting: since mixing occurs immediately,
maxt∈[T ] τ

θt
mix = 1, so we can simply choose Tmax = 1.

At the other extreme, when mixing is very slow we intu-
itively expect that single- or few-sample estimates of the
policy gradient like those considered in (Wu et al., 2020;
Xu et al., 2020b; Qiu et al., 2021b; Chen & Zhao, 2022)
will be highly inaccurate due to the failure of the fast mix-
ing condition of Assumption 4.2 of (Wu et al., 2020) and
Assumption 2 of (Xu et al., 2020b), for example, making
a larger number of samples imperative. Theorems 4.6, 4.7,
and 4.8 are the first results to shed light on this trade-off.

5. Experiments
In this section, we perform preliminary proof-of-concept
experiments to evaluate the performance of the proposed
MAC algorithm and compare it against vanilla actor-critic.
While we concede that numerous enhancements to actor-
critic have been considered, based on Nesterov acceleration
(Kumar et al., 2019), parallelization (Asynchronous Advan-
tage Actor-Critic (Mnih et al., 2016)), and offline processing
of prior trajectory information (Soft Actor-Critic (Haarnoja
et al., 2018)), our focus is on revealing the experimental
dependence of actor-critic’s stability on the environment’s
mixing rate. Therefore, for carefully controlled experimenta-
tion, we only compare against vanilla actor-critic as detailed
in Sec. 3.1. We consider an n × n grid with a starting
position at the top left and a goal at the bottom right. There
are five actions: stay, up, down, left, and right. An action
that results in the goal state gives the agent a +1 reward
and +0 for all other states. In Figure 1, we report algorithm
performance in terms of mean reward returns over 5 trials
with 95% confidence intervals.
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We compare MAC against vanilla actor-critic with a stan-
dard gradient estimator. In practice, we use a constant learn-
ing rate for the actor, critic, and reward estimation. For
comparison, we ran vanilla actor-critic for 1 million itera-
tions setting its constant rollout length to the largest integer
under the average rollout length of MAC. For Tmax = 8,
the average rollout length is 3.42, so the rollout length for
vanilla AC is 3. Thus, 3 million samples were observed
for the vanilla actor-critic. To have a similar number of
observed samples, we ran MAC for 877192 iterations. Sim-
ilarly when Tmax = 16, the average rollout length is 4.26.
Therefore, we ran MAC for 936768 iterations. The details
table of hyperparameters is provided in Appendix F. In Fig-
ure 1 (a) we set n = 6 and Tmax = 8 for MAC. For MAC
and vanilla actor-critic, we set the learning rate for actor,
critic, and reward estimation to .01. In Figure 1 (b), n = 10
and Tmax = 16 and learning rate is .005. We observe that
for both experiments, MAC converges faster to the max-
imum reward than vanilla actor-critic, showing MLMC’s
advantage over a standard gradient estimator.

6. Conclusions and Limitations
In this work, we proposed a new, multi-level Monte Carlo-
based actor-critic algorithm. In our analysis of this scheme,
we established for the first time an explicit dependence of
the convergence rate of an actor-critic algorithm on the mix-
ing times of the underlying Markov transitions induced by
the policies encountered during training. Furthermore, our
use of multi-level Monte Carlo estimators also allowed us
to remove the fast mixing assumptions of previous works,
extending the applicability of actor-critic algorithms to
slower-mixing problems frequently encountered in robotics,
finance, etc. As a limitation, our current dependence on mix-
ing time may not be the sharpest possible. One can likely
further improve the dependence on mixing time from linear
to sublinear, which is a valid scope of future research. In
addition, how best to choose Tmax in our algorithm remains
an open question. Developing adaptive selection methods
based on bounding mixing times or avoiding mixing time
estimation altogether (e.g., via the techniques in Zahavy
et al. (2020)) is an important direction for future work.
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Figure 1. (a) Mean Rewards over 3 million samples with Tmax = 8
for MAC and rollout = 3 for vanilla actor-critic with 6× 6 grid. (b)
Mean Rewards over 4 million samples with Tmax = 16 for MAC
and rollout = 4 for vanilla actor-critic with 10× 10 grid.
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A. Detailed Context of Related Works
Actor-critic by Konda & Tsitsiklis (1999) comprises algorithms that alternate between value function estimation (critic) and
policy search updates (actor), which may be seen as a form of policy iteration (Bertsekas, 2011) that incorporates stochastic
approximation (Borkar & Konda, 1997). We discuss each facet separately, before launching into their fusion.

TD Learning To evaluate the policy update direction, an estimate of the value function is required. To compute this estimate,
stochastic fixed point iterations are considered to solve Bellman’s equation Sutton (1988), whose stability under linear
function approximation was established in Tsitsiklis & Van Roy (1997). Since then, a plethora of works has studied the
stability properties of TD-based policy evaluation. Initially, their asymptotic convergence was prioritized (Tadić, 2001), but
more recently, non-asymptotic results have gained salience. For discounted TD with Markovian samples, Bhandari et al.
(2018) established finite-time convergence bounds which scale linearly with mixing time τmix. Dorfman & Levy (2022)
then improved the rate to be proportional to the

√
τmix using a multi-level gradient estimator and adaptive learning rate. Qiu

et al. (2021a) studied TD under the average reward setting, which also imposes exponentially fast mixing that manifests in
an additional logarithmic term in the sample complexity. These results all hinge upon imposing restrictive conditions on the
mixing time.

Policy Gradient With a value function estimate in hand, one can multiple this quantity together with the gradient of the
log-likelihood of a policy, i.e., the score function, to evaluate an estimate of the policy gradient (Williams, 1992; Sutton
et al., 1999). Then, gradient ascent steps are taken with respect to policy parameters. The convergence of policy gradient
has been studied extensively. Similar to TD, early work (Borkar & Meyn, 2000) focused on asymptotic stability via tools
from dynamical systems (Borkar & Meyn, 2000). More recently, its sample complexity has been established for a variety of
settings: for tabular (Bhandari & Russo, 2019; Agarwal et al., 2020) and softmax policies (Mei et al., 2020), rates to global
optimality exist. For general parameterized policies, early works focused on “policy improvement” bounds (Pirotta et al.,
2013; 2015), and more recently, rates towards stationarity (Bedi et al., 2022) and local extrema (Zhang et al., 2020) have
been studied, and under special neural architectures, globally optimal solutions (Wang et al., 2019; Leahy et al., 2022) are
achievable. This topic is an active area of work, and covering all related sub-topics is beyond our scope. We merely identify
that these performance certificates all hinge upon the mixing rate of the induced Markov chain going to null exponentially
fast.

12
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Actor-Critic As previously mentioned, the stability of actor-critic was initially focused on asymptotics (Borkar & Konda,
1997). More recently, its non-asymptotic rate has been derived under i.i.d. assumptions (Kumar et al., 2019; Wang et al.,
2019), and more recently under a variety of different types of Markovian data – see Table 1. However, these results impose
that any temporal correlation of data across time vanishes exponentially fast as quantified by the mixing rate. In this way, we
are able to match (Chen & Zhao, 2022) but without this restriction.

B. Preliminaries
Before proceeding with our analysis of Algorithm 1, we need some preliminary results and assumptions.

B.1. Preliminary Results

The statements of the results in this section have been adapted from (Dorfman & Levy, 2022) to fit the setting considered
in our paper. Except in the case of Lemma B.3, their proofs follow directly from that work. First, we need the following
concentration bound concerning gradient estimation from Markovian data.

Lemma B.1. Lemma A.5, (Dorfman & Levy, 2022). Fix K,N ∈ N such that N ≥ 2K. Let a policy parameter
θt ∈ Θ be given, and fix a trajectory zt = {zit = (sit, a

i
t, r

i
t, s

i+1
t )}i∈[N ] generated by following policy πθt starting

from s0t ∼ µ0(·). Let ∇L(x) be a gradient that we wish to estimate over zt, where Ez∼µθt ,πθt
[l(x, z)] = ∇L(x), and

x ∈ K ⊂ Rk is the parameter of the estimator l, i.e., xt = θt, ηt, or ωt. Finally, assume that ∥l(x, z)∥, ∥∇L(x)∥ ≤ GL,
for all x ∈ K, z ∈ S × A × R × S. Then, for every δ > Ndmix(K) and every xt ∈ K measurable w.r.t. the σ-algebra
Ft−1 = σ(θk, ηk, ωk, zk; k ≤ t− 1), we have

Pt−1

(∥∥∥∥∥ 1

N

N∑
i=1

l(xt, z
i
t)−∇L(xt)

∥∥∥∥∥ ≤ 12GL

√
K

N

(
1 +

√
log(K/δ̃)

)
+

6GK

N

)
≥ 1− δ, (26)

where δ̃ = δ −Ndmix(K).

We will use this result to facilitate our analyses of each of the MLMC estimators fMLML
t , gMLMC

t , lMLMC
t used in

Algorithm 1. We also need the following error bound, which follows from Lemma B.1.

Lemma B.2. Lemma A.6, (Dorfman & Levy, 2022). Let ∇L, l, zt be as in Lemma B.1. Define lNt = 1
N

∑N
i=1 l(xt, z

i
t). Fix

Tmax ∈ N and let K = τθtmax⌈2 log Tmax⌉. Then, for every N ∈ [Tmax] and every xt ∈ K measurable w.r.t. Ft−1,

E
[
∥lNt −∇L(xt)∥

]
≤ O

(
GL

√
logKN

√
K

N

)
, (27)

E
[
∥lNt −∇L(xt)∥

2
]
≤ O

(
G2

L log(KN)
K

N

)
. (28)

The following important result establishes key properties of MLMC estimators. It is an extension of Lemma 3.1 from
(Dorfman & Levy, 2022), clarifying the effect of using rollout length Tmax in the MLMC estimator.

Lemma B.3. Let ∇L, l, zt be as in Lemma B.1. Let Jt ∼ Geom(1/2). Define the MLMC estimator

lMLMC
t = l0t +

{
2Jt(lJt

t − lJt−1
t ), if 2Jt ≥ Tmax,

0, otherwise.
(29)

Let jmax = ⌊log Tmax⌋. Fix xt measurable w.r.t. Ft−1. Assume Tmax ≥ τθtmix, ∥∇L(x)∥ ≤ GL, for all x ∈ K, and
∥lNt ∥ ≤ GL, for all N ∈ [Tmax]. Then

Et−1

[
lMLMC
t

]
= Et−1

[
ljmax

t

]
, (30)

E
[
∥lMLMC

t ∥2
]
≤ Õ

(
G2

Lτ
θt
mix log Tmax

)
. (31)

13
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Proof. For brevity, let lt := lMLMC
t . To show (30), we simply recall that lt = l0t + 2Jt

(
lJt
t − lJt−1

t

)
and note that

Et−1 [lt] = Et−1

[
l0t
]
+

jmax∑
i=1

P (Jt = j)2jEt−1

[
ljt − lj−1

t

]
= Et−1

[
ljmax

t

]
. (32)

For (31), first note that by Cauchy-Schwarz and boundedness of ljt , for all j ∈ [Tmax], we know that

E
[
∥lt∥2

]
≤ 2E

[
∥lt − l0t ∥

2
]
+ 2G2

L. (33)

Now, since lt = l0t + 2Jt

(
lJt
t − lJt−1

t

)
,

E
[
∥lt − l0t ∥

2
]
=

jmax∑
j=1

P (Jt = j)E
[∥∥∥2j (ljt − lj−1

t

)∥∥∥2] (34)

=

jmax∑
j=1

2jE
[∥∥∥(ljt − lj−1

t

)∥∥∥2] (35)

≤
jmax∑
j=1

2j
(
2E
[∥∥∥ljt −∇J(θt)

∥∥∥2]+ 2E
[∥∥∥lj−1

t −∇J(θt)
∥∥∥2]) (36)

(a)
≤

jmax∑
j=1

2j
(
Õ
(

1

2j
G2

Lτ
θt
mix log(Tmax)

))
(37)

=

jmax∑
j=1

Õ
(
G2

Lτ
θt
mix log Tmax

)
(38)

= Õ
(
G2

Lτ
θt
mix log Tmax

)
, (39)

where (a) follows from Lemma B.2 and (39) holds by the definition of jmax. Combining (33) with (39) gives the result.

Finally, we will use the following result to manipulate the AdaGrad stepsizes in the final result of this section.

Lemma B.4. Lemma 4.2, (Dorfman & Levy, 2022). For any non-negative real numbers {ai}i∈[n],

n∑
i=1

ai√∑i
j=1 aj

≤ 2

√√√√ n∑
i=1

ai. (40)

B.2. Assumptions

We will also need the following assumptions.

Assumption B.5. The objective J(θ) is L-Lipschitz in θ. There exists GH such that ∥∇J(θ)∥ ≤ GH , for all θ.

Assumption B.6. The critic update includes a projection onto the ball of radius Rω about the origin.

Assumption B.7. For each θ, the matrix Aθ = Es∼µθ,a∼πθ,s′∼p(·|s,a)
[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
is positive definite.

C. Convergence Analysis of Actor
In this section, we provide a bound on the average policy gradient norm achieved by Algorithm 1, leveraging the MLMC
analysis machinery of (Dorfman & Levy, 2022) to reveal dependence on the worst-case mixing time encountered during
training. Combined with the error analysis of Section D, this forms the core of our analysis of Algorithm 1. The analysis

14
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largely follows that of (Dorfman & Levy, 2022), with key modifications to accommodate the average reward estimation,
critic estimation, and critic function approximation bias inherent in the average-reward actor-critic setting.

As the first step in our actor analysis, we prove a version of Lemma B.2 that incorporates average reward estimation error
and critic error. Before starting the result and its proof, we develop some notation to facilitate the exposition. Let

∇J i
t =

(
rit − ηt + ⟨ϕ(si+1

t ), ωt⟩ − ⟨ϕ(sit), ωt⟩
)
∇ log πθt

(
ait|sit

)
, (41)

∇J i,η
t =

(
rit − η∗t + ⟨ϕ(si+1

t ), ωt⟩ − ⟨ϕ(sit), ωt⟩
)
∇ log πθt

(
ait|sit

)
, (42)

∇J i,η,ω
t =

(
rit − η∗t + ⟨ϕ(si+1

t ), ω∗
t ⟩ − ⟨ϕ(sit), ω∗

t ⟩
)
∇ log πθt

(
ait|sit

)
, (43)

∇J i,η,V
t =

(
rit − η∗t + Vθt(s

i+1
t )− Vθt(s

i
t)
)
∇ log πθt

(
ait|sit

)
, (44)

where η∗t = J(θt) and ω∗
t is the limiting point of TD(0) applied to evaluating the policy πθt . Notice that

∇J i
t −∇J(θt) =

(
∇J i

t −∇J i,η
t︸ ︷︷ ︸

(a)

)
+
(
∇J i,η

t −∇J i,η,ω
t︸ ︷︷ ︸

(b)

)
+
(
∇J i,η,ω

t −∇J i,η,V
t︸ ︷︷ ︸

(c)

)
+
(
∇J i,η,V

t −∇J(θt)︸ ︷︷ ︸
(d)

)
, (45)

where

(a): ∇J i
t −∇J i,η

t = (η∗t − ηt)∇ log πθt

(
ait|sit

)
(46)

(b): ∇J i,η
t −∇J i,η,w

t = ⟨ϕ(si+1
t )− ϕ(sit), ωt − ω∗

t ⟩∇ log πθt

(
ait|sit

)
(47)

(c): ∇J i,η,w
t −∇J i,η,V

t =
[(
⟨ϕ(si+1

t ), ω∗
t ⟩ − Vθt(s

i+1
t )

)
−
(
⟨ϕ(sit), ω∗

t ⟩ − Vθt(s
i
t)
)]

∇ log πθt

(
ait|sit

)
(48)

and, since Eµθt ,πθt

[
∇J i,η,V

t

]
= ∇J(θt), (d) is the error between ∇J(θt) and the ideal policy gradient estimator. Define

Eapp := sup
s,θ

|⟨ϕ(s), ω(θ)− Vθ(s)⟩|, C := sup
s,s′

∥ϕ(s)− ϕ(s′)∥, (49)

and let B > 0 be such that

sup
θ,a,s

∥∇ log πθ(a|s)∥ ≤ B. (50)

Lemma C.1. Assume ∥∇J(θ)∥, ∥∇J i,η,V
t ∥ ≤ GH , for all θ, sit, a

i
t. Fix Tmax ∈ N and let K = τθtmax⌈2 log Tmax⌉. Define

hN
t = 1

N

∑N
i=1 ∇J i

t , for N ∈ [Tmax]. Then, for all N ∈ [Tmax] and θt measurable w.r.t. Ft−1,

E
[
∥hN

t −∇J(θt)∥
]
≤ O

(
GH

√
logKN

√
K

N

)
+ E1(t) + 2BEapp, (51)

E
[
∥hN

t −∇J(θt)∥
2
]
≤ O

(
G2

H log(KN)
K

N

)
+ E2(t) + 16B2Eapp, (52)

where

E1(t) = BE [∥ηt − η∗t ∥] +BCE [∥ωt − ω∗
t ∥] , (53)

E2(t) = 4B2E
[
∥ηt − η∗t ∥

2
]
+ 4B2C2E

[
∥ωt − ω∗

t ∥
2
]
. (54)

Proof. First notice that

∥∥hN
t −∇J(θt)

∥∥ ≤

∥∥∥∥∥ 1

N

N∑
i=1

∇J i,η,V
t −∇J(θt)

∥∥∥∥∥+
∥∥∥∥∥ 1

N

N∑
i=1

∇J i
t −∇J i,η

t

∥∥∥∥∥ (55)

+

∥∥∥∥∥ 1

N

N∑
i=1

∇J i,η
t −∇J i,η,ω

t

∥∥∥∥∥+
∥∥∥∥∥ 1

N

N∑
i=1

∇J i,η,ω
t −∇J i,η,V

t

∥∥∥∥∥ (56)

≤

∥∥∥∥∥ 1

N

N∑
i=1

∇J i,η,V
t −∇J(θt)

∥∥∥∥∥+B∥ηt − η∗t ∥+BC∥ωt − ω∗
t ∥+ 2BEapp. (57)
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As a consequence, we also have

∥∥hN
t −∇J(θt)

∥∥2 ≤ 4

∥∥∥∥∥ 1

N

N∑
i=1

∇J i,η,V
t −∇J(θt)

∥∥∥∥∥
2

+ 4B2∥ηt − η∗t ∥
2
+ 4B2C2∥ωt − ω∗

t ∥
2
+ 16B2E2

app. (58)

Taking expectations and applying Lemma B.2 with xt = θt, l(θt, zit) = ∇J i,η,V
t , ∇L(θt) = ∇J(θt) yields the result.

We next prove a key result regarding the bias and second moment of our policy gradient estimate. It is a generalization of
Lemma 3.1 in (Dorfman & Levy, 2022) building on our Lemma C.1.

Lemma C.2. Let jmax = ⌊log Tmax⌋ in Algorithm 1. Fix θt measurable w.r.t. Ft−1. Assume Tmax ≥ τθtmix, ∥∇J(θ)∥ ≤
GH , for all θ, and ∥hN

t ∥ ≤ GH , for all N ∈ [Tmax]. Then

Et−1

[
hMLMC
t

]
= Et−1

[
hjmax

t

]
, (59)

E
[
∥hMLMC

t ∥2
]
≤ Õ

(
G2

Hτθtmix log Tmax

)
+ 8 log(Tmax)Tmax

(
E2(t) + 16B2E2

app

)
. (60)

Proof. For brevity, let ht := hMLMC
t . Equation (59) follows directly from Lemma B.3. For (60), first note that by

Cauchy-Schwarz and boundedness of hj
t , for all j ∈ [Tmax], we know that

E
[
∥ht∥2

]
≤ 2E

[
∥ht − h0

t∥
2
]
+ 2G2

H . (61)

Now, since ht = h0
t + 2Jt

(
hJt
t − hJt−1

t

)
,

E
[
∥ht − h0

t∥
2
]
=

jmax∑
j=1

P (Jt = j)E
[∥∥∥2j (hj

t − hj−1
t

)∥∥∥2] (62)

=

jmax∑
j=1

2jE
[∥∥∥(hj

t − hj−1
t

)∥∥∥2] (63)

≤
jmax∑
j=1

2j
(
2E
[∥∥∥hj

t −∇J(θt)
∥∥∥2]+ 2E

[∥∥∥hj−1
t −∇J(θt)

∥∥∥2]) . (64)

Next, we can write

E
[
∥ht − h0

t∥
2
] (a)
≤

jmax∑
j=1

2j
(
Õ
(

1

2j
G2

Hτθtmix log(Tmax)

)
+ 4E2(t) + 16B2E2

app

)
(65)

=

jmax∑
j=1

(
Õ
(
G2

Hτθtmix log Tmax

)
+ 4 · 2j

[
E2(t) + 16B2E2

app

])
(66)

(b)
≤ log Tmax

(
Õ
(
G2

Hτθtmix log Tmax

)
+ 4Tmax

[
E2(t) + 16B2E2

app

])
(67)

= Õ
(
G2

Hτθtmix log Tmax

)
+ 4 log(Tmax)Tmax

[
E2(t) + 16B2E2

app

]
, (68)

where (a) follows from Lemma C.1 and (b) holds by the definition of jmax. Combining (61) with (68) gives the result.

Before proceeding to the final policy gradient norm bound of our actor analysis, we need one additional auxiliary result.

Lemma C.3. Assume J(θ) is L-smooth. Let ∆t = supθ J(θ)− J(θt) and ∆T
max = maxt∈[T ] ∆t. Then

T∑
t=1

∥∇J(θt)∥2 ≤ ∆T
max

αT
+

L

2

T∑
t=1

α∥hMLMC
t ∥2 +

T∑
t=1

⟨∇J(θt)− hMLMC
t ,∇J(θt)⟩. (69)
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Proof. Once again, write ht := hMLMC
t for brevity. We first have

J(θt+1) ≥ J(θt) + αt∇J(θt)
Tht −

Lα2
t

2
∥ht∥2 (70)

= J(θt) + αt∥∇J(θt)∥2 − αt⟨∇J(θt)− ht,∇J(θt)⟩ −
Lα2

t

2
∥ht∥2, (71)

where the first equality holds from the smoothness of J(θ) and the fact that θt+1 = θt + αtht. Rearranging gives

∥∇J(θt)∥2 ≤ J(θt+1)− J(θt)

αt
+

Lαt

2
∥ht∥2 + ⟨∇J(θt)− ht,∇J(θt)⟩, (72)

and summing yields

T∑
t=1

∥∇J(θt)∥2 ≤
T∑

t=1

∆t −∆t+1

αt
+

L

2

T∑
t=1

αt∥ht∥2 +
T∑

t=1

⟨∇J(θt)− ht,∇J(θt)⟩ (73)

≤
T∑

t=1

∆T
max

αT
+

L

2

T∑
t=1

αt∥ht∥2 +
T∑

t=1

⟨∇J(θt)− ht,∇J(θt)⟩. (74)

We are now ready to prove the main result of this section.

Theorem C.4. Assume J(θ) is L-smooth, supθ |J(θ)| ≤ M , and ∥∇J(θ)∥, ∥hMLMC
t ∥ ≤ GH , for all θ, t. Assume also

that Tmax ≥ τθtmix, for each t. Let αt = α′
t/

√∑T
t=1 ∥hMLMC

t ∥2, where {α′
t} is an auxiliary stepsize sequence with

α′
t ≤ 1, for all t ≥ 1. Then

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤ Õ

(
(M + L)GH

1√
T

√
max
t∈[T ]

τθtmix log Tmax

)
(75)

+
2M + L

T

√√√√ T∑
t=1

8 log(Tmax)Tmax

(
E2(t) + 16B2E2

app

)
(76)

+ Õ
(
G2

H max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+

1

T

T∑
t=1

E2(t) + 16B2E2
app. (77)

Proof. Again let ht := hMLMC
t . We have

T∑
t=1

∥∇J(θt)∥2
(a)
≤ ∆max

√√√√ T∑
t=1

∥ht∥2 +
L

2

T∑
t=1

α′
t∥ht∥2√∑t
k=1 ∥hk∥2

+

T∑
t=1

⟨∇J(θt)− ht,∇J(θt)⟩ (78)

(b)
≤ ∆max

√√√√ T∑
t=1

∥ht∥2 +
L

2

T∑
t=1

∥ht∥2√∑t
k=1 ∥hk∥2

+

T∑
t=1

⟨∇J(θt)− ht,∇J(θt)⟩ (79)

(c)
≤ (∆max + L)

√√√√ T∑
t=1

∥ht∥2 +
T∑

t=1

⟨∇J(θt)− ht,∇J(θt)⟩, (80)

17



Multi-Level Monte Carlo Actor-Critic (MAC) 18

where (a) follows from Lemma C.3, inequality (b) by the definition of αt, and (c) is by Lemma B.4. This implies that

T∑
t=1

E
[
∥∇J(θt)∥2

] (a)
≤ E

(∆max + L)

√√√√ T∑
t=1

∥ht∥2
+

T∑
t=1

E
[
⟨∇J(θt)− hjmax

t ,∇J(θt)⟩
]

(81)

(b)
≤ E

(∆max + L)

√√√√ T∑
t=1

∥ht∥2
+

T∑
t=1

E
[
∥∇J(θt)− hjmax

t ∥ · ∥∇J(θt)∥
]

(82)

(c)
≤ E

(∆max + L)

√√√√ T∑
t=1

∥ht∥2
+

T∑
t=1

(
E
[
∥∇J(θt)− hjmax

t ∥
2
])1/2 (

E
[
∥∇J(θt)∥2

])1/2
(83)

(d)
≤ E

(∆max + L)

√√√√ T∑
t=1

∥ht∥2
+

(
T∑

t=1

E
[
∥∇J(θt)− hjmax

t ∥
2
])1/2( T∑

t=1

E
[
∥∇J(θt)∥2

])1/2

,

(84)

where (a) follows from the law of total expectation, the fact that θt, θ∗t are deterministic conditioned on Ft−1, and Lemma
C.2, (b) follows by Cauchy-Schwarz, and (b) and (c) by applications of Hölder’s inequality. Define

A(T ) = E

(∆max + L)

√√√√ T∑
t=1

∥ht∥2
 , (85)

B(T ) =
1

4

T∑
t=1

E
[
∥∇J(θt)− hjmax

t ∥
2
]
, (86)

C(T ) =

T∑
t=1

E
[
∥∇J(θt)∥2

]
. (87)

The foregoing inequality becomes

C(T ) ≤ A(T ) + 2
√
B(T )

√
C(T ) (88)

Consider the following chain of implications:

C(T ) ≤ A(T ) + 2
√
B(T )

√
C(T ) =⇒

(√
C(T )−

√
B(T )

)2
≤ A(T ) +B(T ) (89)

=⇒
√

C(T )−
√
B(T ) ≤

√
A(T ) +

√
B(T ) (90)

=⇒
√
C(T ) ≤

√
A(T ) + 2

√
B(T ) (91)

=⇒ C(T ) ≤ 2A(T ) + 8B(T ). (92)

We therefore have

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤ 2E

(∆max + L)

√√√√ T∑
t=1

∥ht∥2
+ 2

T∑
t=1

E
[
∥∇J(θt)− hjmax

t ∥
2
]

(93)

(94)
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Now,

E

(∆max + L)

√√√√ T∑
t=1

∥ht∥2
 (a)

≤ (2M + L)

√√√√ T∑
t=1

E
[
∥ht∥2

]
(95)

(b)
≤ (2M + L)

√√√√Õ
(
TG2

H max
t∈[T ]

τθtmix log Tmax

)
+

T∑
t=1

8 log(Tmax)Tmax

(
E2(t) + 16B2E2

app

)
(96)

(c)
≤ Õ

(
(M + L)GH

√
T max

t∈[T ]
τθtmix log Tmax

)
+ (2M + L)

√√√√8

T∑
t=1

log(Tmax)Tmax

(
E2(t) + 16B2E2

app

)
, (97)

where (a) follows by the fact that ∆max ≤ 2M and Jensen’s inequality, (b) is from Lemma C.2, and (c) follows since√
a+ b ≤

√
a+

√
b. Furthermore, by the second-order bound of Lemma C.1 we have

T∑
t=1

E
[
∥∇J(θt)− hjmax

t ∥
2
]
≤ Õ

(
TG2

Hτθtmix

log Tmax

Tmax

)
+

T∑
t=1

E2(t) + T16B2E2
app. (98)

Combining these expressions and dividing by T completes the proof.

D. Average Reward Tracking and Critic Error Analyses
In this section we bound the error arising from the average reward tracking and critic estimation. Combined with the actor
gradient norm bound of Section C, this will complete the analysis of Algorithm 1. Our analysis broadly follows that of
(Wu et al., 2020), with key modifications leveraging our novel MLMC machinery to handle Markovian sampling in a more
streamlined manner.

D.1. Average Reward Tracking Analysis

The main result of this subsection is the following bound on the average reward tracking error.

Theorem D.1. Assume γt = (1+ t)−ν , α = α′
t/
√∑t

k=1 ∥ht∥2, and α′
t = (1+ t)−σ , where 0 < ν < σ < 1. Furthermore,

assume sups,a |r(s, a)| ≤ R. Then

1

T

T∑
t=1

E
[
(ηt − η∗t )

2
]
≤ O

(
T ν−1

)
+O

(
T−2(σ−ν)

)
(99)

+ Õ
(
max
t∈[T ]

τθtmix log Tmax

)
O
(
T−ν

)
(100)

+ Õ

(√
max
t∈[T ]

τθtmix

log Tmax

Tmax

)
. (101)

Proof. First, recall that the average reward tracking update is given by

ηt+1 = ηt − γtft, (102)

where for brevity we set ft := fMLMC
t . We can rewrite the tracking error term (ηt+1 − η∗t+1)

2 as

(ηt+1 − η∗t+1)
2 = (ηt+1 − η∗t + η∗t − η∗t+1)

2 (103)

= (ηt − γtft − η∗t + η∗t − η∗t+1)
2. (104)
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Expanding the squares and regrouping terms yields

(ηt+1 − η∗t+1)
2 = (ηt − η∗t )

2 − 2γt(ηt − η∗t )ft + 2(ηt − η∗t )(η
∗
t − η∗t+1)

− 2γt(η
∗
t − η∗t+1)ft + (η∗t − η∗t+1)

2 + γ2
t (ft)

2 (105)

= (ηt − η∗t )
2 − 2γt(ηt − η∗t )ft + 2(ηt − η∗t )(η

∗
t − η∗t+1)

+ (η∗t − η∗t+1 − γtft)
2. (106)

Next, we utilize the bound (a+ b)2 ≤ 2a2 + 2b2 to upper bound the last term in the right hand side of (106) to obtain

(ηt+1 − η∗t+1)
2 ≤ (ηt − η∗t )

2 − 2γt(ηt − η∗t )ft + 2(ηt − η∗t )(η
∗
t − η∗t+1)

+ 2(η∗t − η∗t+1)
2 + 2(γtft)

2. (107)

Now notice that the function whose gradient we are estimating with ft is simply the strongly convex function F (ηt) =
1
2 (ηt − η∗t )

2
= 1

2 (ηt − J(θt))
2. Clearly F ′(ηt) = ηt − J(θt) is Lipschitz in ηt and F has strong convexity parameter

mF = 1. Adding and subtracting 2γt(ηt − η∗t )F
′(ηt) in the above expression gives

(ηt+1 − η∗t+1)
2 ≤ (ηt − η∗t )

2 − 2γt(ηt − η∗t )F
′(ηt) + 2γt(ηt − η∗t )(F

′(ηt)− ft) + 2(ηt − η∗t )(η
∗
t − η∗t+1)

+ 2(η∗t − η∗t+1)
2 + 2(γtft)

2. (108)

From the strong convexity of F with mF = 1, we can write

(ηt+1 − η∗t+1)
2 ≤ (ηt − η∗t )

2 − 2γt(ηt − η∗t )
2 + 2γt(ηt − η∗t )(F

′(ηt)− ft) + 2(ηt − η∗t )(η
∗
t − η∗t+1)

+ 2(η∗t − η∗t+1)
2 + 2(γtft)

2 (109)

= (1− 2γt)(ηt − η∗t )
2 + 2γt(ηt − η∗t )(F

′(ηt)− ft) + 2(ηt − η∗t )(η
∗
t − η∗t+1)

+ 2(η∗t − η∗t+1)
2 + 2(γtft)

2. (110)

Taking expectations and summing yields

T∑
t=1

E[(ηt − η∗t )
2] ≤

T∑
t=1

1

2γt
E[(ηt − η∗t )

2 − (ηt − η∗t )
2]︸ ︷︷ ︸

I1

+

T∑
t=1

E[(ηt − η∗t )(F
′(ηt)− ft)]︸ ︷︷ ︸

I2

+

T∑
t=1

1

γt
E[(ηt − η∗t )(η

∗
t − η∗t+1)]︸ ︷︷ ︸

I3

+

T∑
t=1

1

γt
E[(η∗t − η∗t+1)

2]︸ ︷︷ ︸
I4

+

T∑
t=1

γtE[(ft)2]︸ ︷︷ ︸
I5

. (111)

We next provide intermediate bounds for all the terms I1, I2, I3, I4 and I5 in the right hand side of (111). We will
subsequently manipulate these intermediate bounds to obtain the final bound of Theorem D.1.

Bound on I1: By rearranging terms in I1, we get

I1 =

T∑
t=1

1

2γt
E[(ηt − η∗t )

2 − (ηt − η∗t )
2]

=
1

2γ1
E[(η1 − η∗1)

2] +

T∑
t=2

(
1

2γt
− 1

2γt−1

)
E[(ηt − η∗t )

2]− 1

2γT
E[(ηT+1 − η∗T+1)

2] (112)

≤ R2

γT
, (113)

where we use the fact that (ηt − η∗t )
2 ≤ 2R2.

Bound on I2: For I2, first notice that ηt, η∗t = J(θt) are deterministic conditioned on Ft−1 from Lemma B.1. This means
we can rewrite the expectation in I2 as

I2 =

T∑
t=1

E[Et−1[(ηt − η∗t )(F
′(ηt)− ft)]] =

T∑
t=1

E[(ηt − η∗t )(F
′(ηt)− Et−1[ft])], (114)
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where Et−1[. . .] denotes expectation conditioned on Ft−1. From C.2 we know that Et−1[ft] = Et−1[f
jmax

t ], hence we can
write the expression in (114) as

I2 =

T∑
t=1

E[(ηt − η∗t )(F
′(ηt)− Et−1[f

jmax

t )]] =

T∑
t=1

E[Et−1[(ηt − η∗t )(F
′(ηt)− f jmax

t )]] (115)

=

T∑
t=1

E[(ηt − η∗t )(F
′(ηt)− f jmax

t )]. (116)

Taking absolute values, then applying the triangle, Jensen, and Cauchy-Schwarz inequalities, we can upper bound (116) by

|I2| =
∣∣∣∣ T∑
t=1

E[(ηt − η∗t )(F
′(ηt)− f jmax

t )]

∣∣∣∣ ≤ T∑
t=1

E
[∣∣(ηt − η∗t )(F

′(ηt)− f jmax

t )
∣∣]

≤
T∑

t=1

E
[∣∣(ηt − η∗t )

∣∣ · ∣∣(F ′(ηt)− f jmax

t )
∣∣] . (117)

We know that |ηt − η∗t | ≤ 2R by assumption, implying

|I2| ≤ 2R

T∑
t=1

E
[∣∣(F ′(ηt)− f jmax

t )
∣∣] . (118)

By Lemma B.2 with xt = ηt,∇L(xt) = ∇F (ηt) and l(xt, zt) = ft, and the fact that the Lipschitz constant of ∇F (ηt) is 1,
we obtain the following upper bound on I2:

|I2| ≤ 2R

T∑
t=1

Õ

(√
τθtmix

log Tmax

Tmax

)
. (119)

Bound on I3: By Hölder’s inequality,

|I3| =
∣∣∣∣ T∑
t=1

1

γt
E[(ηt − η∗t )(η

∗
t − η∗t+1)]

∣∣∣∣ ≤
(

T∑
t=1

E
[
(ηt − η∗t )

2
])1/2( T∑

t=1

1

γ2
t

E
[
(η∗t − η∗t+1)

2
])1/2

. (120)

Notice that |η∗t − η∗t+1| = |J(θt)− J(θt+1)| ≤ L|θt − θt+1| ≤ LGHαt due to the Lipschitz continuity of J(θ) in θ and
boundedness of ∥∇J(θ)∥ from Assumption B.5. This implies

|I3| ≤

(
T∑

t=1

E
[
(ηt − η∗t )

2
])1/2(

L2G2
H

T∑
t=1

α2
t

γ2
t

)1/2

. (121)

Bound on I4: Similarly, due to Assumption B.5 we have

I4 =

T∑
t=1

1

γt
E[(η∗t − η∗t+1)

2] ≤ L2G2
H

T∑
t=1

α2

γt
. (122)

Bound on I5: Finally, by Lemma B.3 and taking GF = 2R without loss of generality, we have

I5 =

T∑
t=1

γtE[(ft)2] ≤
T∑

t=1

γtÕ
(
R2τθtmix log Tmax

)
. (123)
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Combining the foregoing and recalling that γt = (1 + t)−ν , α′
t = (1 + t)−σ , 0 < ν < σ < 1, and αt ≤ α′

t, we get

T∑
t=1

E[(ηt − η∗t )
2] ≤ 2R2(1 + T )ν + 2TRÕ

(√
max
t∈[T ]

τθtmix
log Tmax

Tmax

)
(124)

+ LGH

(
T∑

t=1

E[(ηt − η∗t )
2]

) 1
2
(

T∑
t=1

(1 + t)−2(σ−ν)

) 1
2

(125)

+ L2G2
H

T∑
t=1

(1 + t)(ν−2σ) + Õ
(
max
t∈[T ]

τθtmix log Tmax

) T∑
t=1

(1 + t)−ν (126)

≤ 2R2(1 + T )ν +

[
L2G2

H + Õ
(
max
t∈[T ]

τθtmix log Tmax

)] T∑
t=1

(1 + t)−ν (127)

+ 2TRÕ

(√
max
t∈[T ]

τθtmix
log Tmax

Tmax

)
(128)

+

(
T∑

t=1

E[(ηt − η∗t )
2]

) 1
2
(
L2G2

H

T∑
t=1

(1 + t)−2(σ−ν)

) 1
2

, (129)

where the second inequality follows from the fact that ν − 2σ < −ν.

We now manipulate the foregoing inequality to obtain the desired bound. Define

A(T ) =

T∑
t=1

E[(ηt − η∗t )
2], (130)

B(T ) =
L2G2

H

4

T∑
t=1

(1 + t)−2(σ−ν), (131)

C(T ) = 2R2(1 + T )ν +

[
L2G2

H + Õ
(
max
t∈[T ]

τθtmix log Tmax

)] T∑
t=1

(1 + t)−ν (132)

+ 2TRÕ

(√
max
t∈[T ]

τθtmix
log Tmax

Tmax

)
(133)

We can thus rewrite the foregoing inequality as

A(T ) ≤ C(T ) + 2
√
A(T )

√
B(T ). (134)

This expression is equivalent to (√
A(T )−

√
B(T )

)2
≤ C(T ) +B(T ), (135)

which in turn gives the following chain of implications:

(√
A(T )−

√
B(T )

)2
≤ C(T ) +B(T ) =⇒

√
A(T )−

√
B(T ) ≤

√
C(T ) +

√
B(T ) (136)

=⇒
√
A(T ) ≤

√
C(T ) + 2

√
B(T ) (137)

=⇒ A(T ) ≤ 2C(T ) + 4B(T ). (138)
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As a result, we have shown that

T∑
t=1

E[(ηt − η∗t )
2] ≤ 4R2(1 + T )ν +

[
2L2G2

H + Õ
(
max
t∈[T ]

τθtmix log Tmax

)] T∑
t=1

(1 + t)−ν (139)

+ 4TRÕ

(√
max
t∈[T ]

τθtmix
log Tmax

Tmax

)
(140)

+ L2G2
H

T∑
t=1

(1 + t)−2(σ−ν). (141)

Using the bound
∑T

t=1(1 + t)−ξ ≤
∫ t+1

0
x−ξdx = (t+ 1)1−ξ/(1− ξ), this implies

T∑
t=1

E[(ηt − η∗t )
2] ≤ O(T ν) + Õ

(
max
t∈[T ]

τθtmix log Tmax

)
O(T 1−ν) +O(T 1−2(σ−ν)) (142)

+ T Õ

(√
max
t∈[T ]

τθtmix
log Tmax

Tmax

)
(143)

Dividing by T completes the proof.

Notice that, for σ = 0.75 and ν = 0.5, this result becomes

1

T

T∑
t=1

E[(ηt − η∗t )
2] ≤ Õ

(
max
t∈[T ]

τθtmix log Tmax

)
O

(
1√
T

)
+ Õ

(√
max
t∈[T ]

τθtmix
log Tmax

Tmax

)
. (144)

D.2. Critic Error Analysis

In this subsection we provide a bound on the critic estimation error term 1
T

∑T
t=1 E

[
∥ωt − ω∗

t ∥
2
]

appearing in the main
actor analysis bound in Theorem C.4. To get started, we recall some facts about the TD(0) algorithm (Sutton, 1988). As
discussed in Ch. 9 of (Sutton & Barto, 2018), for a fixed policy parameter, θ, TD(0) with linear function approximation will
converge to the minimum of the mean squared projected Bellman error (MSPBE), which satisfies

Aθω = bθ, (145)

Aθ = Es∼µθ,a∼πθ,s′∼p(·|s,a)
[
ϕ(s)(ϕ(s)− ϕ(s′))T

]
, (146)

bθ = Es∼µθ,a∼πθ
[(r(s, a)− J(θ))ϕ(s)] . (147)

The target critic parameter ω∗
t at iteration t of our Algorithm 1 is thus given by ω∗

t = A−1
θt

bθt . From the definition of
gMLMC
t , the critic update ωt+1 = ωt + βtg

MLMC
t is clearly an attempt to use an MLMC estimator to approximately

perform the ideal update ωt+1 = ωt + βt(bθt −Aθtωt). We can thus view ∇G(ωt) = bθt −Aθtωt as the gradient of the
true critic objective G(ωt) corresponding to using least squares minimization to solve the equation Aθω = bθ.

Our task in this section is to characterize the average error that arises when using critic parameters {ωt} generated by
Algorithm 1 to track the ideal parameters {ω∗

t }. Before we provide the main result of this section, we need three useful
lemmas and an assumption. The first result ensures that the optimal critic parameter is Lipschitz in θ.

Lemma D.2. Define Pθ(s
′|s) =

∫
A p(s′|s, a)πθ(a|s)da, for each θ. Assume that, for all θ, the ergodicity coefficient κ(Pθ)

of Pθ satisfies κ(Pθ) < 1. Then there exists Lω such that, for all θ, θ′, ω∗(θ) = A−1
θ bθ and ω∗(θ′) = A−1

θ′ bθ′ satisfy
∥ω∗(θ)− ω∗(θ′)∥ ≤ Lω∥θ − θ′∥.

Proof. The result follows by applying the same reasoning as that for Lemma A.3 in (Zou et al., 2019) to the bound from
Theorem 3.3 in (Mitrophanov, 2005).

The next result is an extension of Lemma B.2 to our MLMC critic gradient estimator.
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Lemma D.3. Assume ∥∇G(ω)∥ ≤ GG, for all ω such that ∥ω∥ ≤ Rω. Define D = sups ∥ϕ(s)∥. Fix Tmax ∈ N, θt
measurable with respect to Ft−1, and let K = τθtmax⌈2Tmax⌉. Define gNt = 1

N

∑N
i=1 δ

i
tϕ(s

i
t), for N ∈ [Tmax], where

δit = rit − ηt + (ϕ(si+1
t )− ϕ(sit))

Tωt. Then, for all N ∈ [Tmax],

E
[∥∥gNt −∇G(ωt)

∥∥] ≤ O

(
GG

√
logKN

√
K

N

)
+DE [|ηt − η∗t |] , (148)

E
[∥∥gNt −∇G(ωt)

∥∥2] ≤ O

(
G2

G log(KN)
K

N

)
+D2E

[
(ηt − η∗t )

2
]
. (149)

Proof. Define

δi,ηt = rit − η∗t + (ϕ(si+1
t )− ϕ(sit))

Tωt, (150)

gN,η
t =

1

N

N∑
i=1

δi,ηt ϕ(sit). (151)

Clearly ∥∥gNt −∇G(ωt)
∥∥ ≤

∥∥∥gNt − gN,η
t

∥∥∥+ ∥∥∥gN,η
t −∇G(ωt)

∥∥∥ (152)

=

∥∥∥∥∥ 1

N

N∑
i=1

δitϕ(s
i
t)− δi,ηt ϕ(sit)

∥∥∥∥∥+
∥∥∥∥∥ 1

N

N∑
i=1

δi,ηt ϕ(sit)−∇G(ωt)

∥∥∥∥∥ . (153)

Notice that the first term can be bounded by D|ηt − η∗t | and that Lemma B.2 applies to the second term. The remainder of
the proof is analogous to that of Lemma C.1.

Next, we need a critic version of Lemma B.3.
Lemma D.4. Let jmax = ⌊log Tmax⌋ and fix θt measurable w.r.t. Ft−1. Assume Tmax ≥ τθtmix and ∥∇G(ω)∥ ≤ GG, for
all ω such that ∥ω∥ ≤ Rω . Then

Et−1 [gt] = Et−1

[
gjmax

t

]
(154)

E
[
∥gt∥2

]
≤ Õ

(
G2

Gτ
θt
mix log Tmax

)
+ 8 log(Tmax)TmaxD

2E
[
(ηt − η∗t )

2
]
. (155)

Proof. The claim follows from Lemma D.3 by the same argument as that used in the proof of Lemma C.2.

We now provide the main result of this section. The analysis is a modification of that used for the average reward tracking
setting.

Theorem D.5. Assume βt = (1 + t)−ν , αt = α′
t/
√∑t

k=1 ∥ht∥2, and α′
t = (1 + t)−σ, where 0 < ν < σ < 1. Assume

without loss of generality that αt ≤ α′
t, for all t. Furthermore, assume that Assumptions B.6 and B.7 hold. Then

1

T

T∑
t=1

E
[
∥ωt − ω∗

t ∥
2
]
≤ O

(
T ν−1

)
+O

(
T−2(σ−ν)

)
(156)

+ Õ
(
max
t∈[T ]

τθtmix log Tmax

)
O
(
T−ν

)
(157)

+ Õ
(
max
t∈[T ]

τθtmix

log Tmax

Tmax

)
. (158)

Proof. By Assumption B.7 and the fact that ∇2G(ω) = −Aθ, G(ω) is strongly concave. Let m denote its strong concavity
parameter, so that ⟨∇G(ω)−∇G(ω′), ω−ω′⟩ ≤ −m∥ω − ω′∥2, for all ω, ω′. Recall that ωt+1 = ΠRω (ωt + βgt), where
we use gt = gMLMC

t for brevity. We have

∥ωt+1 − ω∗
t+1∥

2
= ∥ΠRω

(ωt + βgt)− ω∗
t+1∥

2 ≤ ∥ωt + βgt − ω∗
t+1∥

2
, (159)
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where the inequality holds since ∥ω∗
t+1∥ ≤ Rω by definition, so projection can only reduce the distance. Furthermore,

∥wt+1 − w∗
t+1∥

2 ≤ ∥wt − βtht − w∗
t + w∗

t − w∗
t+1∥

2 (160)

= ∥ωt − ω∗
t ∥

2
+ 2βt⟨ωt − ω∗

t , gt⟩+ 2⟨ωt − ω∗
t , ω

∗
t − ω∗

t+1⟩ (161)

+ 2βt⟨ω∗
t − ω∗

t+1, gt⟩+ ∥ω∗
t − ω∗

t+1∥
2
+ β2

t ∥ht∥2 (162)
(a)
≤ ∥ωt − ω∗

t ∥
2
+ 2βt⟨ωt − ω∗

t , gt⟩+ 2⟨ωt − ω∗
t , ω

∗
t − ω∗

t+1⟩ (163)

+ 2∥ω∗
t − ω∗

t+1∥
2
+ 2β2

t ∥ht∥2 (164)

= ∥ωt − ω∗
t ∥

2
+ 2βt⟨ωt − ω∗

t ,∇G(ωt)⟩+ 2βt⟨ωt − ω∗
t , gt −∇G(ωt)⟩ (165)

+ 2⟨ωt − ω∗
t , ω

∗
t − ω∗

t+1⟩+ 2∥ω∗
t − ω∗

t+1∥
2
+ 2β2

t ∥ht∥2 (166)
(b)
≤ (1− 2mβt)∥ωt − ω∗

t ∥
2
+ 2βt⟨ωt − ω∗

t , gt −∇G(ωt)⟩ (167)

+ 2⟨ωt − ω∗
t , ω

∗
t − ω∗

t+1⟩+ 2∥ω∗
t − ω∗

t+1∥
2
+ 2β2

t ∥ht∥2, (168)

where (a) follows from completing the square with the last three terms and the fact that (a + b)2 ≤ 2a2 + 2b2, and (b)
follows from the strong concavity of G(ω).

Rearranging, dividing by 2mβt, taking expectations, and summing yields

T∑
t=1

E[∥wt − w∗
t ∥2] ≤

T∑
t=1

1

2mβt
E[∥wt − w∗

t ∥2 − ∥wt − w∗
t ∥2]︸ ︷︷ ︸

M1

+

T∑
t=1

1

m
E[⟨wt − w∗

t ,∇G(wt)− gt⟩]︸ ︷︷ ︸
M2

+

T∑
t=1

1

mβt
E[⟨wt − w∗

t , w
∗
t − w∗

t+1⟩]︸ ︷︷ ︸
M3

+

T∑
t=1

1

mβt
E[∥w∗

t − w∗
t+1∥2]︸ ︷︷ ︸

M4

+

T∑
t=1

βt

m
E[∥gt∥2]︸ ︷︷ ︸
M5

. (169)

As in the proof of Theorem D.1, we first provide intermediate bounds on M1,M2,M3,M4,M5, then manipulate the
resulting expressions to obtain the desired, final bound on the critic error. With the exception of M2, the intermediate bounds
follow by the same reasoning as their counterparts in Theorem D.1.

Bound for M1: By the same reasoning as for I1,

M1 ≤ 2R2
ω

mβt
. (170)

Bound for M2: Since ωt, ω
∗
t are deterministic given Ft−1, by the law of total expectation and Lemma D.4 we have

M2 =

T∑
t=1

1

m
E
[
⟨ωt − ω∗

t , g
jmax

t −∇G(ωt)⟩
]
. (171)

Furthermore,

|M2|
(a)
≤

T∑
t=1

1

m
E
[
∥ωt − ω∗

t ∥ · ∥g
jmax

t −∇G(ωt)∥
]

(172)

(b)
≤

T∑
t=1

1

m

(
E
[
∥ωt − ω∗

t ∥
2
])1/2 (

E
[
∥gjmax

t −∇G(ωt)∥
2
])1/2

(173)

(c)
≤

(
1

m2

T∑
t=1

E
[
∥ωt − ω∗

t ∥
2
])1/2( T∑

t=1

E
[
∥gjmax

t −∇G(ωt)∥
2
])1/2

(174)

(d)
≤

(
1

m2

T∑
t=1

E
[
∥ωt − ω∗

t ∥
2
])1/2(

T Õ
(
G2

G max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+D2

T∑
t=1

E
[
∥ηt − η∗t ∥

2
])1/2

, (175)
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where (a) follows by applying the triangle, Jensen’s, and Cauchy-Schwarz inequalities, (b) and (c) follow from Hölder’s
inequality, and (d) results from applying Lemma D.3.

Bound for M3: Since ω∗(θ) is Lω-Lipschitz in θ by Lemma D.2, we have ∥ω∗
t − ω∗

t+1∥ ≤ Lω∥θt − θt+1∥ ≤ LωGHαt,
where we recall that supθ ∥∇J(θ)∥ ≤ GH . Thus, by reasoning analogous to I3,

|M3| ≤

(
T∑

t=1

E
[
∥ωt − ω∗

t ∥
2
])1/2(

L2
ωG

2
H

m2

T∑
t=1

α2
t

β2
t

)1/2

. (176)

Bound for M4: Similarly,

M4 ≤ L2
ωG

2
H

m

T∑
k=1

α2
t

βt
. (177)

Bound for M5: Finally, by Lemma D.4 and the fact that |ηt| ≤ R, for all t,

M5 ≤
T∑

t=1

βt

m

[
Õ
(
G2

Hτθtmix log Tmax

)
+ 8D2 log(Tmax)TmaxE

[
(ηt − η∗t )

2
]]

(178)

≤
[
Õ
(
G2

Hτθtmix log Tmax

)
+ 16D2R2 log(Tmax)Tmax

] T∑
k=1

βt

m
. (179)

Combining the foregoing and recalling the definitions of βt, αt, α
′
t, we have

T∑
t=1

E
[
∥ωt − ω∗

t ∥
2
]
≤ 2Rω

m
(1 + t)ν (180)

+

(
1

m2

T∑
t=1

E
[
∥ωt − ω∗

t ∥
2
])1/2(

T Õ
(
G2

G max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+D2

T∑
t=1

E
[
∥ηt − η∗t ∥

2
])1/2

(181)

+

(
T∑

t=1

E
[
∥ωt − ω∗

t ∥
2
])1/2(

L2
ωG

2
H

m2

T∑
t=1

(1 + t)−2(σ−ν)

)1/2

(182)

+
L2
ωG

2
H

m

T∑
k=1

(1 + t)ν−2σ (183)

+ Õ
(
G2

H max
t∈[T ]

τθtmix log(Tmax)Tmax

) T∑
t=1

(1 + t)−ν . (184)

Define

Z(T ) =

T∑
t=1

E
[
∥ωt − ω∗

t ∥
2
]
, (185)

F (T ) =
L2
ωG

2
H

4m2

T∑
t=1

(1 + t)−2(σ−ν), (186)

G(T ) =
1

16m

[
T Õ

(
G2

G max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+D2

T∑
t=1

E
[
∥ηt − η∗t ∥

2
]]

, (187)

A(T ) =
2Rω

m
(1 + t)ν +

L2
ωG

2
H

m

T∑
k=1

(1 + t)ν−2σ + Õ
(
G2

H max
t∈[T ]

τθtmix log(Tmax)Tmax

) T∑
t=1

(1 + t)−ν . (188)
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The previous inequality is thus the same as

Z(T ) ≤ A(T ) + 2
√

Z(T )
√
F (T ) + 2

√
Z(T )

√
G(T ), (189)

which is in turn equivalent to(√
Z(T )−

√
F (T )−

√
G(T )

)2
≤ A(T ) +

(√
F (T ) +

√
G(T )

)2
. (190)

This yields

√
Z(T )−

√
F (T )−

√
G(T ) ≤

(
A(T ) +

(√
F (T ) +

√
G(T )

)2)1/2

(191)

≤
√
A(T ) +

√
F (T ) +

√
G(T ), (192)

whence √
Z(T ) ≤

√
A(T ) + 2

√
F (T ) + 2

√
G(T ) (193)

and thus

Z(T ) ≤ 2A(T ) + 2
(
2
√
F (T ) + 2

√
G(T )

)2
(194)

≤ 2A(T ) + 16F (T ) + 16G(T ). (195)

Noticing that 2A(T ) + 16F (T ) = O (T ν) + O
(
T 1+ν−2σ

)
+ O

(
T 1−ν

)
and using the bound

∑T
t=1(1 + t)−ξ ≤ (1 +

t)1−ξ/(1− ξ), we have

T∑
t=1

E
[
∥ωt − ω∗

t ∥
2
]
≤ 1

m

[
T Õ

(
G2

G max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+D2

T∑
t=1

E
[
∥ηt − η∗t ∥

2
]]

(196)

+O (T ν) +O
(
T 1+ν−2σ

)
+O

(
T 1−ν

)
. (197)

Dividing by T , combining with Theorem D.1, and absorbing constants into the order notation finishes the proof.

E. Proof of Theorem 4.8
Proof. From the statement of Theorems 4.6 and 4.7, we have

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤ O

(
1√
T

)
+O

(
1

T

T∑
t=1

E(t)

)
+ Õ

(√
max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+O (Eapp) , (198)

and

1

T

T∑
t=1

E(t) ≤O
(
T ν−1

)
+O

(
T−2(σ−ν)

)
+ Õ

(
max
t∈[T ]

τθtmix log Tmax

)
O
(
T−ν

)
+ Õ

(√
max
t∈[T ]

τθtmix

log Tmax

Tmax

)
. (199)

utilizing the upper bound in (199) into the right hand side of (198), we get

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤O

(
1√
T

)
+O

(
T ν−1

)
+O

(
T−2(σ−ν)

)
+ Õ

(
max
t∈[T ]

τθtmix log Tmax

)
O
(
T−ν

)
+ Õ

(√
max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+O (Eapp) . (200)
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For the selection ν = 0.5 and σ = 0.75 (which satisfies the constraint that 0 < ν < σ < 1), we obtain

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤O

(
1√
T

)
+O

(
1√
T

)
+O

(
1√
T

)
+ Õ

(
max
t∈[T ]

τθtmix log Tmax

)
O
(

1√
T

)

+ Õ

(√
max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+O (Eapp) . (201)

Therefore, after further simplification, we can write

1

T

T∑
t=1

E
[
∥∇J(θt)∥2

]
≤Õ

(
max
t∈[T ]

τθtmix log Tmax

)
O
(

1√
T

)
+ Õ

(√
max
t∈[T ]

τθtmix

log Tmax

Tmax

)
+O (Eapp) . (202)

completes the proof.

F. Hyperparametrs for the Experiments
We list all the hyperparameters in Table 2 here.

Table 2. This table compares the hyperparameters and performance between the four experiments, each run for five trials. From the table,
we see that given the same learning rates, environment, and the number of samples, MAC and Vanilla AC converge to the same reward
value.

Method Learning Rate Grid Size Tmax Samples Limiting Limiting Policy
Actor Critic Reward Estimator Processed Mean Reward Gradient Norm

MAC .01 .01 .01 6× 6 8 3 · 106 0.4 0
Vanilla AC .01 .01 .01 6× 6 3 3 · 106 0.4 0

MAC .005 .005 .005 10× 10 16 4 · 106 0.5 0
Vanilla AC .005 .005 .005 10× 10 4 4 · 106 0.5 0
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