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Abstract
The estimation of repeatedly nested expectations
is a challenging task that arises in many real-
world systems. However, existing methods gen-
erally suffer from high computational costs when
the number of nestings becomes large. Fix any
non-negative integer D for the total number of
nestings. Standard Monte Carlo methods typi-
cally cost at least O(ε−(2+D)) and sometimes
O(ε−2(1+D)) to obtain an estimator up to ε-
error. More advanced methods, such as multilevel
Monte Carlo, currently only exist for D = 1. In
this paper, we propose a novel Monte Carlo esti-
mator called READ, which stands for “Recursive
Estimator for Arbitrary Depth.” Our estimator
has an optimal computational cost of O(ε−2) for
every fixed D under suitable assumptions, and a
nearly optimal computational cost ofO(ε−2(1+δ))
for any 0 < δ < 1

2 under much more general as-
sumptions. Our estimator is also unbiased, which
makes it easy to parallelize. The key ingredients
in our construction are an observation of the prob-
lem’s recursive structure and the recursive use of
the randomized multilevel Monte Carlo method.

1. Introduction

Monte Carlo methods are a class of algorithms that use
random sampling to estimate quantities of interest, such as
integrals or expected values. When the estimand can be
expressed as an expectation, for example Eπ[g(X)], these
methods work by generating independent random samples
X1, . . . , Xn from π, and using the average

∑n
i=1 g(Xi)/n

as an estimator. Monte Carlo estimators are unbiased and
converge at a rate of n−1/2, regardless of the dimension of
the samples. This dimension-independent convergence rate
makes Monte Carlo methods a powerful tool for approxi-
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mating high-dimensional integrations, as they do not suffer
from the curse of dimensionality that plagues deterministic
numeric integration methods.

However, the above analysis implicitly assumes the inte-
grand g can be pointwisely evaluated, which may not be
possible in many situations. This can arise, for instance,
when it is expressed as another integration over latent vari-
ables or when it involves solving a optimization problem.
In this paper, we study the problem of estimating repeat-
edly nested expectations (RNE), which means the integrand
depends on a sequence of other functions and conditional
expectations. Specifically, fix any positive integer D for
the total number of nestings, and {gd}Dd=0 for a family of
real-valued functions which can be pointwisely evaluated.
Let (y(0), . . . , y(D)) be a finite-time stochastic process with
underlying joint distribution π, and let y(0:d) denote the
vector (y(0), . . . , y(d)) for every d ≤ D. The RNE, first
formally formulated in (Rainforth et al., 2018), is defined
as:

γ0 = E
[
g0

(
y(0), γ1

(
y(0)

))]
, (1)

where {γi}D−1
i=1 is recursively defined as:

γd(y
(0:d−1)) = E

[
gd

(
y(0:d), γd+1

(
y(0:d)

)) ∣∣∣∣ y(0:d−1)

]
,

(2)

and

γD(y(0:D−1)) = E

[
gD

(
y(0:D)

) ∣∣∣∣ y(0:D−1)

]
. (3)

The estimation of Resource-Optimal Nested Expectations
(RNEs) is a significant challenge that encompasses various
practical scenarios, where the desired outcome relies on
multiple stages or decision points. Here, we provide several
instances to illustrate this:

• In financial modeling, one crucial problem involves es-
timating RNEs when γ0 represents the expected utility
of an optimal strategy in a D-horizon optimal stopping
problem. Here, gd(y(0:d), u) is defined as max y(d), u
for 0 ≤ d ≤ D − 1, and gD(y(0:D)) is simply y(D).
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• When D = 2, a recent paper by (Giles et al., 2023)
focuses on risk estimation for the credit valuation ad-
justment. In their analysis, the outermost function g0
is a Heaviside function, while the inner functions g1
and g2 are smooth functions.

• When D = 1, RNE estimation finds extensive appli-
cations in Bayesian experimental design (Goda et al.,
2022), portfolio risk management (Gordy & Juneja,
2010), stochastic and bilevel optimization (Hu et al.,
2021), as well as variational Bayes (He et al., 2022).

In addition to the aforementioned examples, RNE estima-
tion, sometimes also referred to nonlinear Monte Carlo,
finds relevance in various fields including probabilistic pro-
grams (Rainforth, 2018), numerical partial differential equa-
tions (PDEs) (Beck et al., 2020), as well as physics and
chemistry (Dauchet et al., 2018).

However, estimating RNEs is challenging. As shown in
formulas (1) – (3), we are interested in the expectation of
g0, which depends on the random variable y(0) and γ1(y

(0))
– a conditional expectation of g1 given y(0). Then g1 further
depends on a random variable y(1) and γ2(y

(0), y(1)) which
is a conditional expectation of g2 given y(0) and y(1). This
procedure is recursively defined until it reaches the deepest
depth, D. Since γ1(y

(0)) (and also γ2, γ3, . . .) cannot be
directly evaluated in most practical cases, estimating RNEs
cannot be handled by standard Monte Carlo methods.

The most natural way to estimate RNEs is by nesting Monte
Carlo (NMC) estimators. In the D = 1 case, this method
works by first sampling independent and identically dis-
tributed (i.i.d.) copies y(0)1 , . . . , y

(0)
N0

according to the distri-

bution of y(0). For each fixed y
(0)
i , one further samples N1

i.i.d. y(1)1 , . . . , y
(1)
N1

according to π(y(1) | y(0)i ), and uses the

standard estimator γ̂1(y
(0)
i ) :=

∑N1

i=j g1(y
(0)
i , y

(1)
j )/N1 to

estimate γ1(y
(0)
i ). The final estimator uses the estimated

γ̂1(y
(0)
i ) to replace the intractable γ1(y

(0)
i ), i.e.,

IN0,N1 =
1

N0

N0∑
i=1

g0(y
(0)
i , γ̂1(y

(0)
i )).

This nested estimator can be easily extended to the general
D case, albeit the notations become more complex. Roughly,
one still samples N0 i.i.d. copies according to π(y(0)), and
for each fixed trajectory y(0:d−1), the user generates Nd i.i.d.
samples from π(y(d) | y(0:d−1)) all the way to depth D and
then form the nested estimator from the deepest depth to the
shallower depths. The construction details are referred to
Section 3.2 of (Rainforth et al., 2018).

After suitably allocating the number of samples (Nd)
D
d=0

for each depth, the root-mean-square error (rMSE) of the
NMC estimator converges to 0 at a rate of N−1/(2D+2) or

N−1/(D+2) (Rainforth et al., 2018), depending on the reg-
ularity conditions of the functions {gd}Dd=0, where N =∏D

d=0 Nd is the total number of samples used to form a
nested estimator. This convergence rate diminishes exponen-
tially with D, meaning that NMC estimators do not have the
same dimension-free convergence rate as standard Monte
Carlo estimators. As a result, NMC methods require at least
O(ε−(2+D)) and sometimes O(ε−2(1+D)) samples to get
an estimator within ε-rMSE, while standard Monte Carlo
estimators require only O(ε−2) samples. Although there
are a few cases mentioned in (Rainforth et al., 2018) where
the canonical O(N−1/2) rate can be achieved, the problem
of estimating RNEs with an optimal (or dimension-free)
convergence rate remains largely open.

In the special case D = 1, more efficient methods have been
proposed (Giles, 2018; Giles & Goda, 2019; Giles & Haji-
Ali, 2019) based on the celebrated multilevel Monte Carlo
(MLMC) methods (Heinrich, 2001; Giles, 2008). These es-
timators achieve up to ε-rMSE with cost O(ε−2 log(1/ε)

2
)

or O(ε−2) under varying conditions, comparing favorably
with the NMC estimator. However, existing methods can-
not be directly generalized to solve the general D case.
Meanwhile, implementing these methods requires users to
prespecify the precision level ε and conduct preliminary
experiments/calculations to carefully estimate/bound the pa-
rameters in the MLMC algorithm (see, e.g., Theorem 1 of
(Giles & Goda, 2019)). Therefore, existing MLMC estima-
tors seem to be harder to implement and less amendable to
our original problem, which has a recursive structure.

In this work, we propose the READ, a novel Monte Carlo es-
timator for the RNE estimation with an arbitrary number of
nestings D. Our construction is interesting in the following
three aspects. Firstly, under suitable regularity conditions
similar to those in (Rainforth et al., 2018), the rMSE of our
estimator has an optimal convergence rate N−1/2 regardless
of D. Equivalently, our method costs in expectationO(ε−2)
to get an estimator up to ε-rMSE. Under much more general
assumptions, our method still achieves a nearly-optimal cost
of O(ε−2(1+δ)) for any 0 < δ < 1

2 to get an estimator up to
ε-mean-absolute-error (MAE).

It is worth mentioning that most of our effort is devoted to
designing unbiased estimators of γ0 in (1) with finite com-
putational cost and finite variance (or finite (2-δ)-th moment
under more general assumptions). After developing such an
unbiased estimator, we can simulate independent copies of
these estimators and average them. The N−1/2 convergence
rate and O(ε−2) cost are then immediate corollaries of the
bias-variance decomposition formula, see Corollary 2.3.

Therefore, another appealing property of READ, in contrast
to existing methods, is that it admits no estimation bias.
Unbiasedness implies these estimators can be implemented
in parallel processors without requiring any communication
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between them. Designing unbiased estimators has recently
attracted much interest in statistics, operations research, and
machine learning communities for its potential for paral-
lelization. Our methods add to the rich body of works of
(Glynn & Rhee, 2014; Rhee & Glynn, 2015; Blanchet &
Glynn, 2015; Jacob et al., 2020; Biswas et al., 2019; Wang
et al., 2021; Wang & Wang, 2022; Kahale, 2022).

Finally, our algorithm for constructing READ relies on
the randomized multilevel Monte Carlo (rMLMC) method
(McLeish, 2011; Rhee & Glynn, 2015; Blanchet & Glynn,
2015), but it is significantly different from its previous ap-
plications. Many of the current applications of randomized
Multilevel Monte Carlo (rMLMC) methods (Rhee & Glynn,
2015; Vihola, 2018; Goda et al., 2022) also have a determin-
istic version known as the original Multilevel Monte Carlo
(MLMC) (Giles, 2008), which offers similar or even better
guarantees in terms of computational cost. As a result, it is
natural to speculated that every problem solved by rMLMC
has a corresponding deterministic version. However, our
findings indicate that this assumption may not always be
accurate. The rMLMC framework is well-suited to the re-
cursive structure of RNEs, and can be used as a subroutine
in our method. In contrast, the non-randomized MLMC
cannot be easily applied to the general case of D > 1. This
suggests that the rMLMC framework may be more widely
applicable than previously thought.

The rest of this paper is organized as follows: in the re-
mainder of this section, we discuss related works, set up our
notation, and introduce our technical assumptions. In Sec-
tion 2, we introduce our algorithm and show that it attains
the optimal and nearly-optimal computational cost under
two different assumptions, respectively. In Section 3, we
demonstrate the empirical performance of our method on
several toy examples. We conclude this paper with a short
discussion in Section 4. Proof and experiment details are
deferred to the Appendix. An additional experiment is also
included in Appendix F.

1.1. Related work

Our algorithm design strategy mainly follows the ran-
domized multilevel Monte Carlo (rMLMC) framework
(McLeish, 2011; Rhee & Glynn, 2015; Blanchet & Glynn,
2015). Our algorithm is inspired by the unbiased optimal
stopping estimator (Zhou et al., 2022), which develops es-
timators for the optimal stopping problem by recursively
calling the rMLMC algorithm. We extend the methodology
in (Zhou et al., 2022) both in scope and depth. Our method
works with a more general class of problems formulated by
(Rainforth et al., 2018), which includes the optimal stopping
problem as a special case, and provides more precise results
under practical assumptions.

Throughout this paper, we will assume the functions

{gd}D−1
d=0 are all continuous and the process π can be per-

fectly simulated. When D = 1 and g0 is discontinuous,
progress has been made by (Broadie et al., 2011) and (Giles
& Haji-Ali, 2019; 2022). When the underlying distribu-
tion is itself challenging, users have to first use MCMC to
approximately sample from π. The case of D = 1 and
challenging π is considered in (Wang & Wang, 2022).

1.2. Notations

Now we introduce our notations. Many of our notations
follow those used in the original definition (Rainforth et al.,
2018), despite generalizing their setting to a multivariate
underlying process. Throughout this paper, we preserve
the letter D for the total number of nestings. We denote
by π the underlying joint distribution of a finite-time, real-
valued, M -dimensional stochastic process (y(0), . . . , y(D)),
i.e. y(d) ∈ RM for each 0 ≤ d ≤ D.

For every 0 ≤ i ≤ j ≤ D, we use the y(i:j) to de-
note the vector (y(i), . . . , y(j)). The conditional distribu-
tion of y(d:D) given the value of y(0:d−1) is denoted by
πd:D(· | y(0:d−1)). The marginal distribution of y(d) con-
ditioning on y(0:d−1) is denoted by πd(· | y(0:d−1)). We
adopt the convention that y(0:−1) = ∅, and therefore π0

stands for the (unconditioned) marginal distribution of y(0).
Let Π be any probability distribution on some probabil-
ity space, and Z be some random variable on the same
space, then we use ∥Z∥Π,m to denote the Lm–norm of

Z under Π, i.e.,
(
EΠ[|Z|m]

)1/m
. The geometric distri-

bution with parameter r is denoted by Geo(r). We also
define pr(n) := P[Geo(r) = n] = r(1 − r)n for every
n ∈ {0, 1, 2, . . . , }. For every 0 ≤ d ≤ D − 1, the func-
tion gd introduced in (1) – (2) maps from R(d+1)M+1 to R
since gd takes as its first d+ 1 arguments M -dimensional
vectors, and it takes only a scalar as its final argument. The
function gD in (3) maps from R(D+1)M to R since gD
has all D + 1 vectors in the M -dimensional process as its
arguments. For random variables X1, . . . , Xn, we denote
their summation by Sn :=

∑n
i=1 Xi. When n is even, we

denote by SO
n/2

:=
∑n/2

k=1 S2k−1 and SE
n/2

:=
∑n/2

k=1 S2k

the summations of their odd and even terms, respectively.

1.3. Assumptions

Throughout this paper, we assume that we can access a
simulator S . The simulator can take any trajectory y(0:d−1)

with 0 ≤ d ≤ D as input, and outputs y(d) which fol-
lows the distribution πd(· | y(0:d−1)). In particular, S can
take ∅ as input and simulates y(0) ∼ π0. Calling S recur-
sively for D + 1 times generates one complete sample path.
This assumption enables us to sample from any marginal
or conditional distribution perfectly. This assumption is
also standard and is posed explicitly or implicitly in nearly
all the existing works concerning the estimation of nested
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expectations, see (Giles & Goda, 2019; Goda et al., 2022;
Zhou et al., 2022) for examples.

For 0 ≤ d ≤ D − 1, fix gd : R(d+1)M+1 → R. We say
gd satisfies the last-component bounded second derivative
condition (LBS) if there exists a Kd <∞ such that

sup
(y(0:d),z)

∣∣∣∂2
(d+1)M+1gd(y

(0:d), z)
∣∣∣ < Kd. (4)

We say gd satisfies the last-component bounded Lipschitz
condition (LBL) if there exists an Ld <∞ such that for all
x, z ∈ R

sup
y(0:d)

|gd(y(0:d), x)− gd(y
(0:d), z) < Ld|x− z|. (5)

These assumptions (and their variants) are also posed in
related works such as (Rainforth, 2018; Blanchet & Glynn,
2015; Giles, 2018).

2. Algorithm, estimator, and theoretical results
Now we are ready to present our main results. As discussed
in Section 1, we will be focusing on designing a Monte Carlo
estimator which is unbiased, has a finite computational cost,
and has finite variance or (2-δ)-th moment under different
assumptions.

2.1. Preliminary analysis

One of the challenges in estimating the RNEs is the dif-
ficulty of estimating γ1(y

(0)). Users typically first esti-
mate γ1(y

(0)) and then use these estimators to estimate γ0.
For the time being, we are temporarily adding the assump-
tion that users can simulate unbiased estimators γ̂1(y

(0))
of γ1(y(0)) for every fixed y(0) with finite computational
cost. This assumption will be removed in Section 2.2. It
easily holds when D = 1, as users can repeatedly simulate
y
(1)
i ∼ π1(· | y(0)) and it follows from the problem defini-

tion that each g1(y
(0), y

(1)
i ) is unbiased for γ1(y(0)). In the

general case of D > 1, this assumption is far from trivial, as
γ1(y

(0)) is itself a nested expectation with a nesting depth
of D − 1. Nevertheless, as we will see in Section 2.2, this
assumption helps us to capture and reduce the intrinsic diffi-
culty of the problem and, therefore, will guide us to design
the general algorithm.

With this extra assumption, constructing unbiased esti-
mators of (1) is equivalent to constructing unbiased es-
timators of g0(y

(0), γ1(y
(0))). Even with access to un-

biased estimators of γ1(y
(0)), the intuitive plug-in es-

timator g0
(
y(0), γ̂1(y

(0))
)

is still biased, as in general
E[g0

(
y(0), γ̂1(y

(0))
)
| y(0)] ̸= g0(y

(0),E[γ̂1(y
(0)) | y(0)]).

To eliminate this bias, we use the rMLMC method (Blanchet
& Glynn, 2015), which is briefly reviewed below.

The rMLMC method uses the Law of Large Numbers (LLN)
and rewrites g0 as the following telescoping summation.

g0(y
(0), γ1(y

(0))) = E

[
g0

(
y(0), lim

k→∞

Sk

k

) ∣∣∣∣ y(0)]
=

∞∑
n=1

E

[
g0

(
y(0),

S2n

2n

) ∣∣∣∣ y(0)]
−E

[
g0

(
y(0),

S2n−1

2n−1

) ∣∣∣∣ y(0)] ,
where Sk =

∑k
i=1 γ̂1,i(y

(0)) is the summation of i.i.d.
copies of γ̂1(y(0)). To unbiasedly estimate the infinite sum,
the rMLMC algorithm first samples y(0) ∼ π0, then sam-
ples a random N ∼ Geo(r), finally generates 2N unbiased
estimators {γ̂1,i(y(0))}2

N

i=1 of γ1(y(0)) and estimates γ0 by
R0 := ∆N/pr(N), where ∆n is defined as:

∆n := g0

(
y(0),

S2n

2n

)
− 1

2

[
g0

(
y(0),

SE
2n−1

2n−1

)

+ g0

(
y(0),

SO
2n−1

2n−1

)]

for n ≥ 1 and ∆0 := g0(y
(0), γ̂1,1(y

(0))).

The next theorem justifies the theoretical properties of R0:

Theorem 2.1. With all the notations as above, suppose
g0 : RM+1 → R satisfies LBS condition defined in (4),
and ∥γ̂1(y(0))∥π,m < ∞ for some m ≥ 4. Then for any
r ∈ (1/2, 3/4), the estimator R0 := ∆N/pr(N) has expec-
tation γ0, finite variance, and finite expected computational
cost.

Theorem 2.1 will be proved as a special case of our Theorem
2.2. For now, we use the following heuristic calculation to
justify the unbiasedness of γ̂0:

E[R0

∣∣ y(0)] = ∞∑
n=0

E

[
∆n

pr(n)
pr(n)

∣∣ y(0)]

=

∞∑
n=0

E

[
g0

(
y(0),

S2n

2n

)
− g0

(
y(0),

S2n−1

2n−1

) ∣∣∣∣ y(0)]
= g0(y

(0), γ1(y
(0))).

Therefore E[R0] = E[g0(y
(0), γ1(y

(0)))] = γ0 by (1).
More technical discussions such as the range of r, other
possible regularity conditions on g0, and the moment guar-
antees of γ0 will all be deferred after Theorem 2.2.

2.2. Recursive rMLMC algorithm for general D

Theorem 2.1 is useful to solve our original problem (without
extra assumptions) in two ways. First, Theorem 2.1 already
solves the case where D = 1, as our extra assumption
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automatically holds. It states that if g0 has a bounded second
derivative on its last component, and g1(y

(0), y(1)) has at
least finite fourth moment under π, then R0 is unbiased,
has finite variance, and finite expected computational cost.
More importantly, Theorem 2.1 tells us that the original
problem of estimating an RNE with a depth of D can be
solved if we can unbiasedly estimate γ1(y(0)) for fixed y(0),
which is another RNE with a depth of D− 1. Therefore, we
have successfully reduced the number of nestings by one.
This observation motivates us to come up with an algorithm
for the general D case, as explained below.

We first go one step further to illustrate the D = 2 case.
When D = 2, estimating γ1(y

(0)) reduces to the case we
have analyzed in Section 2.1. To be precise, since g2(y(0:2))
is unbiased for γ2(y

(0:1)) if y(2) ∼ π2(· | y(0:1)), one
can first sample y(1) ∼ π1(· | y(0)), then simulate N ∼
Geo(r) and 2N samples {y(2)i }2

N

i=1 from π2(· | y(0:1)). Let
γ̂2,i(y

(0:1)) := g2(y
(0:1), y

(2)
i ), our estimator of γ1(y

(0))
is then constructed in the same way as Section 2.1, i.e.,
R1(y

(0)) := ∆N/pr(N) with

∆n := g1

(
y(0:1),

S2n

2n

)
− 1

2

[
g1

(
y(0:1),

SE
2n−1

2n−1

)

+ g1

(
y(0:1),

SO
2n−1

2n−1

)]
,

where S2n , S
E
2n−1 , SO

2n−1 are the summation of every, even,
and odd terms of {γ̂2,i(y(0:1))}, respectively. The same
procedure of simulating R1(y

(0)) can be repeated indepen-
dently. Therefore we can sample another geometrically
distributed random variable N ′ ∼ Geo(r′), and generate
R1,i(y

(0)) := ∆N ′/pr(N
′) independently. Since each

R1,i(y
(0)) is unbiased for γ1(y(0)), one can again use the

method described in Section 2.1 to form our final estimator
for γ0. After checking R1(y

(0)) satisfies the finite fourth-
moment assumption, Theorem 2.1 can be applied which
implies our estimator is unbiased, has finite variance and
finite cost (for the D = 2 case).

The general case works in the same way. A key observation
is that, due to the nested structure of the problem, Theorem
2.1 not only states that an unbiased estimator of γ0 can be
constructed if one can unbiasedly estimate γ1(y

(0)) for ev-
ery y(0), but also directly implies that an unbiased estimator
of γd(y(0:d−1)) can be constructed if one can unbiasedly
estimate γd+1(y

(0:d)) for every y(0:d). Therefore, we can
estimate γ0 in a backward, inductive manner.

To begin, we consider the deepest depth of the problem, fix-
ing any y(0:D−1). An unbiased estimator of γD(y(0:D−1))
can be directly constructed as gD(y(0:D−1), y(D)), where
y(D) ∼ πD(· | y(0:D−1)). For 0 ≤ d ≤ D − 1, if
we assume that users can generate unbiased estimators of

γd+1(y
(0:d)) for every y(0:d), then we can obtain an unbi-

ased estimator of γd(y(0:d−1)) by sampling one y(d), gen-
erating Nd ∼ Geo(rd) and 2Nd unbiased estimators of
γd+1(y

(0:d)), and applying the method described in Sec-
tion 2.1. This process continues until we reach d = 0, at
which point we have an unbiased estimator of γ0. The pa-
rameters (r0, r1, . . . , rD−1) will be carefully chosen and
depend on the regularity assumptions of (g0, g1, . . . , gD−1).
These choices will be discussed in more detail later.

Our algorithm is described in Algorithm 1. It is written as
a recursive algorithm, though it could also be equivalently
written in an iterative form with much more cumbersome
notations. Algorithm 1 takes a depth index, a trajectory,
a simulator, and parameters for the geometric distribution
as inputs, and outputs an unbiased estimator of γd(H). In
particular, with inputs {depth = 0, trajectory = ∅, parame-
ters = (r0, r1, . . . , rD−1)}, it outputs READ – an unbiased
estimator of the RNE defined in (1). The logic of Algo-
rithm 1 is precisely the same as we just discussed. To
estimate γd(y

(0:d−1)), the algorithm first checks the value
of d. When d = D, the problem becomes straightforward.
When d < D, the algorithm samples y(d), appends y(d) to
the trajectory, samples Nd, and calls itself 2Nd times with
depth d + 1 and new trajectory {y(0:d)} to get 2Nd unbi-
ased estimators of γd+1(y

(0:d)). Finally, we split these 2Nd

estimators into even and odd terms and apply the method
described in Section 2.1. The algorithm is guaranteed to
stop, as the depth will eventually reach the deepest depth D.

2.3. Theoretical guarantees

We now discuss the computational costs of Algorithm 1 and
the statistical properties of READ. Our theoretical results
depend on the smoothness conditions of {gd}D−1

d=0 , so we
will examine the LBS and LBL cases separately.

2.3.1. THE LBS CASE

The following theorem shows, under the LBS assumption,
the computational cost and the variance of READ can be
controlled simultaneously.

Theorem 2.2. Suppose for every d ∈ {0, 1, . . . , D−1}, the
function gd satisfies the LBS assumption (4), rd := 1−2−kd

satisfies kd ∈
(
1, 2d+1

2d+1−1

)
, and ∥gD(y(0:D))∥π,2D+1 <∞.

Then for every 0 ≤ d ≤ D, the output Rd(y
(0:d−1)) of

Algorithm 1 with inputs {depth = d, trajectory = y(0:d−1),
S, parameters (rd, . . . , rD−1)} satisfies:

• For π-almost every fixed y(0:d−1),

E
[
Rd(y

(0:d−1)) | y(0:d−1)
]
= γd(y

(0:d−1)).
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Algorithm 1 A recursive rMLMC algorithm for RNEs
Input: Depth index d ∈ {0, ..., D}. Trajectory history
H = {y0, ..., yd−1} or ∅. A simulator S. Parameters
rd, ..., rD−1 determined by conditions on {gd}D−1

d=0 (see
Theorem 2.2, 2.4).
Output: An unbiased estimator of γd(H)
if d = D then

Sample one y(D) ∼ πD (· | H);
Return: RD := gD

(
y(0:D)

)
.

else
Sample y(d) ∼ πd (· | H);
Update the trajectory H ← H ∪

{
y(d)

}
;

Sample Nd ∼ Geo(rd);
Call Algorithm 1 for 2Nd times with inputs {d +
1;H;S; rd+1, ..., rD−1}, and label the observations as
Rd+1(y

(0:d))(1), ..., Rd+1(y
(0:d))

(
2Nd

)
;

Calculate S2Nd , S
E
2Nd−1 , S

O
2Nd−1 defined in Section

1.2;
Calculate

(
note ∆0 := gd

(
y(0:d), Rd+1(y

(0:d))(1)
))

:

∆Nd
= gd

(
y(0:d),

S2Nd

2Nd

)
−

1

2

[
gd

(
y(0:d),

SO
2Nd−1

2Nd−1

)
+ gd

(
y(0:d),

SE
2Nd−1

2Nd−1

)]
;

Return: Rd := ∆Nd
/prd(Nd).

end if

• The expected computational cost of Rd equals

D−1∏
k=d

rk
2rk − 1

<∞.

• The output has finite 2d+1-th moment, i.e.,

Eπ

[
|Rd(y

(0:d−1))|2
d+1
]
<∞ for 0 ≤ d ≤ D.

Theorem 2.2 states for π-almost every y(0:d−1), the expecta-
tion of the output Rd conditioning on the input is unbiased
for γd(y(0:d−1)). The computational cost has a finite ex-
pectation, and the output has a finite 2d+1-th moment 1.
The detailed proof of Theorem 2.2 will be provided in the
Appendix. Here, we highlight two special cases. First, The-
orem 2.2 shows that READ, the output R0 of Algorithm 1
when given input {depth = 0, trajectory = ∅, S , parameters
= (r0, . . . , rD−1)}, has the desired properties. Specifically,

1Readers should notice that the expectation of Rd(y
(0:d−1)) is

calculated under the conditional distribution πd:D(· | y(0:d−1)).
The computational cost and the 2d+1-th moment are calculated
under the joint distribution π. When the input depth = 0, these
two underlying distributions coincide.

it is an unbiased estimator for γ0 with finite expected com-
putational cost and finite variance. Second, Theorem 2.2
includes Theorem 2.1 as a special case when D = 1.

Let R0,1, R0,2, . . . be the i.i.d. outcomes by repeatedly im-
plementing Algorithm 1. Since each R0,i is unbiased and
has a finite variance, the standard Central Limit Theorem
(CLT) implies that

√
n(
∑n

i=1 R0,i/n − γ0) → N(0, 1) in
distribution. This means that the estimator

∑n
i=1 R0,i/n

converges to γ0 at a rate of n−1/2 in rMSE (or equivalently,
n−1 in MSE), which compares quite favorably with the rates
obtained by NMC estimators in (Rainforth, 2018). This rate
is optimal in the sense that it matches the minimax lower
bound over all Monte Carlo methods (Theorem 2.1 of (Hein-
rich & Sindambiwe, 1999)). The next corollary shows that,
by repeatedly implementing Algorithm 1, users can easily
obtain an unbiased estimator for γ0 with at most ε-rMSE
within O(ε−2) computational cost.

Corollary 2.3. With all the assumptions the same as The-
orem 2.2, for any ε > 0, we can construct an estimator
R with expected computational cost O(ε−2) such that the
rMSE

√
E[(R− γ0)2] is at most ϵ.

Proof of Corollary 2.3. Calling Algorithm 1 independently
for n times with {depth = 0, trajectory = ∅, S, pa-
rameters = (r0, . . . , rD−1)} yield i.i.d. unbiased estima-
tors R0,1, ..., R0,n for γ0. Let our estimator be R :=
1
n

∑n
i=1 R0,i. Then,

E[(R− γ0)
2] = E

( 1

n

n∑
i=1

R0,i − γ0

)2
 =

1

n
Var(R0).

Thus noting that Var(R0) <∞ by Theorem 2.2, taking n =
Var(R0)/ε

2 samples ensures R has up to ε-rMSE. Finally,
let C := C(D) <∞ be the expected computational cost for
one call of Algorithm 1 . The expected computational cost
for constructing R is then C · Var(R0)/ε

2 = Θ(ε−2).

We add two additional remarks regarding the above corol-
lary. Firstly, while the above result demonstrates that our
algorithm achieves optimal dependency on ϵ, it is important
to highlight that we are operating within the context of the
’fixed D’ regime, where the constant in our O notation de-
pends on D. In fact, it is clear from Theorem 2.2 that each
invocation of Algorithm 1 has a cost of at least Ω((1+ω)D)
for some ω > 0, indicating that our algorithm does not
scale well with increasing nesting levels. Nevertheless, our
algorithm remains practically relevant in scenarios where D
is small or moderate, including the examples discussed in
Section 1. Secondly, the ε-rMSE of R can be easily trans-
lated to other performance metrics via standard inequalities.
For example, for any δ, Markov’s inequality implies the
absolute error |R − γ0| is less than ε/

√
δ with probability

at least 1− δ.
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Next, we discuss the assumptions and proof strategies of
Theorem 2.2. We require the first D functions {gd}D−1

d=0

all satisfy the LBS condition, and the final function gD has
finite 2D+1-th moment under π. The LBS assumption also
appears in the work of NMC estimators (see the second
part of Theorem 3 in (Rainforth et al., 2018)). The moment
assumption of gD is not required in (Rainforth et al., 2018).
Nevertheless, it is a mild assumption that holds in most
practical applications. It covers all the cases where gD is
bounded or has a moment generating function (including the
uniform, Gaussian, Poisson, or exponential distributions),
which implies E[|gD|k] < ∞ for every k. As we will see
in our proofs, these assumptions help us to establish the
moment guarantee of Theorem 2.2 in a backward inductive
way. For example, the 2D+1-th moment assumption on gD
and the LBS assumption on gD−1 implies RD−1 has finite
2D-th moment. More generally, the finiteness of the 2d+1-th
moment of Rd follows from the LBS assumption on gd and
the 2d+2-th moment of Rd+1 (which is the conclusion of the
previous inductive step). Eventually, we conclude R0 has a
finite variance. Finally, we want to emphasize our moment
assumption on gD is not ‘trajectory-dependent’. We require
gD has finite 2D+1-th moment under the joint distribution
π of y(0:D), which is much weaker than gD has a uniformly
bounded finite 2D+1-th moment under πD(· | y(0:D−1)) for
every fixed trajectory y(0:D−1).

Finally, the parameters {rd}D=1
d=0 reflect the trade-off be-

tween the variance and computation cost. Since 2Nd calls
are required for each d, standard calculation shows that
E[2Nd ] = rd/(2rd − 1) when rd > 0.5, and +∞ if
rd ≤ 0.5. Therefore, every rd has to be strictly greater than
0.5 to ensure a finite expected computational cost. Mean-
while, we cannot guarantee finite variance or unbiasedness
of READ when rd becomes too large. Our range for rd
in Theorem 2.2 follows from a careful calculation in our
proof to ensure unbiasedness, finite computational cost, and
variance simultaneously.

2.3.2. THE LBL CASE

The assumptions in Theorem 2.2 guarantee that READ en-
joys an optimal convergence rate and computational cost.
However, the second-order derivative assumption also rules
out many functions of practical interest, such as max and
min. In this section, we study the theoretical properties
of Algorithm 1 and READ under weaker smoothness and
moment assumptions. Our result is summarized below:
Theorem 2.4. Fix any 0 < δ < 1/2. Suppose for every
d ∈ {0, 1, . . . , D − 1}, the function gd satisfies the LBL
assumption defined in (5), and rd := 1− 2−kd satisfies

kd ∈
(
1,

(
2d+2 − 3δ

2d+3 − 3δ

)(
2d+1 − δ

2d − δ

))
.

Moreover, suppose ∥gD(y(0:D))∥π,2 < ∞. Then for every

0 ≤ d ≤ D, the output Rd(y
(0:d−1)) of Algorithm 1 with

inputs {depth = d, trajectory = y(0:d−1), S, parameters
(rd, . . . , rD−1)} has the following properties:

• For π-almost every fixed y(0:d−1),

E
[
Rd(y

(0:d−1)) | y(0:d−1)
]
= γd(y

(0:d−1)).

• The expected computational cost of Rd equals

D−1∏
k=d

rk
2rk − 1

<∞.

• The output has finite (2− δ/2d)-th moment, i.e.,

Eπ

[
|Rd(y

(0:d−1))|(2−δ/2d)
]
<∞ for 0 ≤ d ≤ D.

Comparing Theorem 2.2, which requires the LBS assump-
tion for {gd}D−1

d=0 and finite 2D+1-th moment for gD, with
Theorem 2.4, which only requires the LBL assumption for
{gd}D−1

d=1 and finite second moment for gD, it is clear that
Theorem 2.4 has more general assumptions. However, it
does not guarantee that READ has a finite variance. Never-
theless, it remains unbiased and has a finite expected com-
putational cost. To minimize the loss of moment guarantees,
one can choose suitable parameters such that READ has
finite (2− δ)-th moment for any small δ.

Again, let R0,1, R0,2, . . . , be the i.i.d. outcomes by re-
peatedly implementing Algorithm 1. There are more tech-
nical challenges when analyzing the convergence rate of∑n

i=1 R0,i/n − γ0, as the CLT cannot be applied. In-
stead, we use the Marcinkiewicz-Zygmund generalized
law of large numbers (see Theorem A.4 in Appendix A),
which shows n−1E[|

∑n
i=1 Xi|p]→ 0 if {Xi}ni=1 are i.i.d.,

centered random variables with finite p-th moment for
p ∈ [1, 2). Our result is the following:
Corollary 2.5. With all the assumptions the same as Theo-
rem 2.4, let R0,1, R0,2, . . . , be the i.i.d. outcomes by repeat-
edly implementing Algorithm 1, we have:

• E[|
∑n

i=1 R0,i/n− γ0|] = o(n−1/(2(1+δ))).

• We can construct an estimator R with expected compu-
tational cost O(ε−2(1+δ)) such that the mean absolute
error E[|R− γ0|] < ε.

Proof of Corollary 2.5. Applying Theorem A.4 with p =
2− δ,Xi = R0,i − γ0 and Jensen’s inequality, we have:

E

[∣∣∣∣∣
n∑

i=1

R0,i/n− γ0

∣∣∣∣∣
]
= n−1E

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
]

≤ n−1

(
E

[∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣
p])1/p

= o(n−1+ 1
p ) = o(n

−1
2(1+δ) ),
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which proves the first part. The last step follows from
1− 1/(2− δ) > 1/(2 + 2δ) for δ ∈ (0, 1/2). Setting n =
Ω(ε−2(1+δ)) and the second part immediately follows.

Although we are not able to recover the optimal n−1/2 con-
vergence rate under this more general regime, our conver-
gence rate is still near-optimal as it can be as close to n−1/2

as we want. Still, the convergence rate does not depend on
D, and, although we replace the MSE by MAE due to the
moment constraint, one can still use Markov’s inequality
to show the absolute error |R − γ0| is less than ε/δ with
probability at least 1− δ.

As the max function satisfies the LBL assumption, our re-
sults here include the optimal stopping problem as a special
case. Our results complement the work of (Zhou et al.,
2022), where the authors use rMLMC to design an estima-
tor with O(ε−2) computational cost under stronger assump-
tions (see their Assumption 4). We have a slightly worse
cost of O(ε−2(1+δ)) but under more general assumptions.

3. Numerical experiments
We test our algorithm on three examples. Some additional
statistics and an extra experiment are provided in Appendix
E and F. Our code is available at https://github.
com/guanyangwang/rMLMC_RNE.

3.1. A toy example

We consider the following simple example with known
ground-truth. Suppose the process (y(0), y(1), y(2)) satisfies
y(0) ∼ N(π/2, 1), y(1) ∼ N(y(0), 1), y(2) ∼ N(y(1), 1).
Define g0(y

(0), z) := sin
(
y(0) + z

)
, g1(y

(0:1), z) :=

sin
(
y(1) − z

)
, and g2(y

(0:2)) := y(2). The target quan-
tity γ0 defined (1) is a nested expectation with D =
2. One can use the formula EZ∼N(µ,σ2)[sin(Z)] =

sin(µ) exp
(
−σ2/2

)
to analytically calculate γ0 =

exp(−1/2) ≈ 0.6065. Now we compare our READ es-
timator with the NMC estimators in (Rainforth et al., 2018).

For the NMC estimator, users first specify N0, N1, N2.
Then we sample N0 copies of y(0), N1 copies of y(1) for
each fixed y(0), and N2 copies of y(2) for each fixed y(0:1),
and use these samples to form the NMC estimator, details
are explained in Appendix D. Following (Rainforth, 2018),
we consider two ways of allocating (N0, N1, N2). The first
estimator NMC1 is to choose N0 = N1 = N2, the second
NMC2 is to choose N0 = N2

1 = N2
2 . For READ, since all

assumptions in Theorem 2.2 are satisfied, therefore when
r0 ∈ (1/2, 3/4) and r1 ∈ (1/2, 1 − 2−4/3), the READ es-
timator generated by Algorithm 1 is unbiased and of finite
variance. Since the computational cost gets lower when each
ri gets larger, we choose r0 = 0.74 and r1 = 0.6 (close to
the upper-end of their respective ranges above) to facilitate
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Figure 1. (a): The comparison on the empirical MSEs of estimating
the RNE among READ (blue), NMC1 (red), and NMC2 (green).
All the logarithms are of the base 10. Each method’s empirical
errors are calculated based on 20 independent repetitions. (b) The
trace plot (solid blue curve) of the running averages of READ.
The blue dotted curves are the 95% confidence intervals. The red
dashed line is the ground truth exp(−1/2).

the computational efficiency. Therefore, implementing Al-
gorithm 1 once has an expected sample size/computational
cost (r1/(2r1 − 1)) (r2/(2r2 − 1)) ≈ 4.625.

Our comparison result is summarized in Figure 1. Since the
NMC methods and READ have different ways of generating
estimators. To make a fair comparison, we compare the
estimation errors with the total sample cost used by these
three estimators. For NMC1 and NMC2, the total sample
cost is n = N0N1N2. For READ, the total sample cost is
random, therefore we use its expected value, which equals
4.625× Number of repetitions of Algorithm 1. The slopes
of the blue, red, and green lines, which correspond to the em-
pirical convergence rate of READ, NMC1, NMC2, equals
−0.97,−0.35,−0.47, respectively. They match well with
the theoretical predictions n−1 in Corollary 2.3 for READ,
n−1/3 for NMC1, and n−1/2 for NMC2 in (Rainforth et al.,
2018). It is clear from Figure 1(a) that READ has a sig-
nificant advantage over NMC estimators, with both faster
convergence rate and orders of magnitude lower errors.

We also call Algorithm 1 for 106 times and plot the running
averages of our estimates in Figure 1(b). Our estimator
becomes more accurate when we increase the number of
repetitions. For each k ∈ (1, 2, . . . , 106), we also calculate
the standard deviation (SD) of the first k repetitions and use
Mean ±1.96 SD to form the 95% confidence interval. It is
also clear from Figure 1(b) that our confidence intervals al-
ways include the ground-truth, suggesting the high accuracy
of our method. In contrast, constructing confidence intervals
of NMC estimators are much more time-consuming.

3.2. Example with heavy-tail underlying distribution

All three estimators are also evaluated on the same set of
functions using an independent, non-central t-distribution
with 10 degrees of freedom and a noncentrality parameter
of 0.5. The outcomes of these tests are illustrated in Figure
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Figure 2. (a): Scatterplot of the estimation of γ0. Blue, red, green
points correspond to READ, NMC1, NMC2 estimators respec-
tively. (b) Trace plot (solid blue curve) of the running averages of
READ. The blue dotted curves are the 95% confidence intervals.

2. Despite the fact that the t-distribution exhibits a signif-
icantly heavier tail compared to the Gaussian distribution,
it is evident from Figure 2(a) that the convergence rate, as
indicated by the speed at which each color converges to
the black dotted line, is considerably faster for the READ
method compared to the NMC estimators.

3.3. Pricing the Bermudan Options

Finally, we utilize our method to price high-dimensional
Bermudan basket put options. Given that option pricing can
be formulated as an optimal stopping problem, our estimator
simplifies to the MUSE estimator in (Zhou et al., 2022). The
underlying process y(0:D) = (S0, ST/D, S2T/D, . . . , ST )
where St is a M -dimensional geometric Brownion mo-
tion, each coordinate follows dSi(t) = (r − δ)Si(t)dt +
σSi(t)dWi(t). For d ≤ D − 1, our gd(y

(0:d), z) :=
max{e−rT/D, z}, where U(x) := max{(K − x), 0}. For
d = D, gD(y(0:D)) := U(y(D)). We also adopt the stan-
dard parameters in (Jain & Oosterlee, 2012; Bender et al.,
2006; Zhou et al., 2022): T = 3,M = 5, σ = 0.2, r =

0.05,K = y
(0)
i = 100 for every i.

We follow previous works and set D = 3 . We tested READ
on a 500-core cluster, with each computer generating 104

estimators. Our estimator is obtained by averaging all the
5 million estimators. We also tested NMC1 and NMC2 on
the same cluster. Each computer generates 10 estimators for
both methods. NMC1 uses N0 = N1 = · · · = 80, NMC2
uses N0 = N2

1 = .. = 900. The results are summarized in
Table 1. After comparing with existing algorithms tailored
for option pricing/optimal stopping, we observe that READ
aligns closely with the results of previous works. In contrast,
both NMC1 and NMC2 exhibit a significant overestimation
of the target. This discrepancy arises from the convex nature
of the max function, which introduces a systematic bias
in the NMC estimators. Therefore, our method provides
more reliable estimates with a much shorter completion time.
Similarly, we test the case where D = 4. READ generates
5 million estimators over 500 processors. NMC1 generates
5000 estimators with N0 = 25, NMC2 generates 5000

estimators with N0 = 225. The outcomes of these tests
are also presented in Table 1. Again, both NMC estimators
overestimate the target, albeit a smaller standard error.

D = 3 READ NMC1 NMC2
Cost 6.9× 107 2.05× 1011 1.22× 1011

Time/s (14.6, 22.6, 87.3) (116.1, 169.1, 215.9) (316.3, 350.7, 377.8)
Estimate (se) 2.159(0.008) 2.169(0.005) 2.180(0.014)

D = 4 READ NMC1 NMC2
Cost 2.36× 108 4.88× 1010 5.69× 1010

Time/s (19.8, 44.5, 299.8) (66.6, 118.2, 189.1) (316.3, 350.7, 377.8)
Estimate (se) 2.284(0.065) 2.357(0.008) 2.393(0.003)

Table 1. Summary of results when D = 3. The three values in the
“Time” row correspond to the minimum, average, and maximum
completion times across 500 processors.

4. Further discussions
Here we provide some remarks for practical implementation
and discuss some potential generalizations. The users need
to specify the parameters {rd}D−1

d=0 when implementing Al-
gorithm 1. Larger values of ri lead to a shorter time for
each implementation but potentially larger variance. When
some ri is not chosen according to Theorem 2.2 or 2.4, the
algorithm can still be implemented, but the variance may be
infinite. The trade-off between the values of {rd} and the
fluctuations of the resulting estimator is problem-specific. In
practice, knowing how many repetitions are sufficient is im-
portant to provide an accurate estimator. One possible way
is to bound certain moments of READ and use Corollary
2.3 or 2.5 to choose a sufficiently large n. But this bound
can be problem-specific and very conservative. Instead, we
follow (Glynn & Rhee, 2014) and suggest the following
adaptive stopping rule: users first specify a precision-level ε
and a small δ%. When repeatedly implementing Algorithm
1, users calculate the empirical (1− δ%) confidence inter-
val [Lδ(k), Uδ(k)] for first k repetitions in the same way as
Section 3 for every k. Users can stop when the width of
the confidence interval is less than 2ε. The validity of this
stopping rule is proven in (Glynn & Whitt, 1992).

One potential direction for extension is as follows. Here we
only consider the ‘fix D’ regime and construct estimators
with optimality guarantees. However, the cost of Algorithm
1 scales exponentially with D. Therefore, although our al-
gorithm is more efficient than the NMC estimator for every
fixed D, both methods are not practical when D becomes
too large. Indeed, the poor scaling with D is a common
issue in related literature such as (Glasserman & Yu, 2004;
Zanger, 2013) and seems unavoidable. An interesting di-
rection would be to construct modifications of Algorithm
1 under extra practical assumptions for large or infinite D.
For example, if we know that the ‘influence’ of γd on γ0
decays exponentially or double-exponentially with d, it is
then sufficient to truncate the depth to D̃ := log(1/ε) or√

log(1/ε). We hope to report progress in the future.
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A. Auxiliary results
The following theorem is from pg. 150 (Gut, 2005).
Theorem A.1. Let p ≥ 1. Suppose that X1, X2, ...Xn are independent random variables, with mean 0 and E|Xk|p <∞
for all k, and let Sn :=

∑n
i=1 Xi denote the partial sums. Then there exist constants A∗

p, B
∗
p depending only on p such that

A∗
pE

(
n∑

k=1

X2
k

)p/2

≤ E|Sn|p ≤ B∗
pE

(
n∑

k=1

X2
k

)p/2

.

The following corollary to the above theorem is from pg. 151 (Gut, 2005), Corollary 8.2.
Corollary A.2. Let p ≥ 1. Suppose that X1, X2, . . . are i.i.d. random variables, with mean 0 and E|X1|p <∞, and let
Sn :=

∑n
i=1 Xi denote the partial sums. Then there exists a constant Bp depending only on p, such that

E|Sn|p ≤

{
Bpn

p/2E|X1|p, p > 2

BpnE|X1|p, 1 ≤ p ≤ 2.

The following lemma is instrumental in the proofs for the theoretical guarantees of our algorithm under both the LBS and
LBL assumptions.
Lemma A.3. Let (Z1, Z2) be a 2-stage stochastic process and there exists p ≥ 1, such that E[|Z2|p] <∞. Conditioning
on Z1, sample i.i.d. Z2(1), ..., Z2(n). Then,

E

[∣∣∣∣∣ 1n
n∑

i=1

Z2(i)−E[Z2 | Z1]

∣∣∣∣∣
p]
≤

{
B′

p
E[|Z2|p]
np/2 p > 2

B′
p
E[|Z2|p]
np−1 1 ≤ p ≤ 2

Proof. Let p > 2. For arbitrary fixed Z1 = z1, define Z̄2(i) := Z2(i)− E[Z2(i) | Z1 = z1], and apply Corollary A.2 on
the i.i.d. mean 0 random variables Z̄2(i) under the probability distribution π(· | Z1 = z1), we have

E

[∣∣∣∣∣ 1n
n∑

i=1

Z2(i)−E[Z2 | Z1]

∣∣∣∣∣
p]

=

∫
Ω

E

[∣∣∣∣∣ 1n
n∑

i=1

Z2(i)−E[Z2 | Z1]

∣∣∣∣∣
p

| Z1 = z1

]
π1(dz1)

=
1

np
E[

∣∣∣∣∣
n∑

i=1

Z̄2(i)

∣∣∣∣∣
p

| Z1 = z1]π1(dz1)

≤ Bp

np/2
E[|Z̄2(1)|p | Z1 = z1]π1(dz1)

≤
B′

p

np/2
E[|Z2(1)|p | Z1 = z1]π1(dz1)

=
B′

p

np/2
E[|Z2(1)|p|].

The second inequality follows from the inequality (a+ b)p ≤ 2p−1(|a|p + |b|p) and the monotonicity of a random variable’s
Lp norm :

E[|X −E[X]|p] ≤ 2p−1(E[|X|p] + |E[X]|p) ≤ 2pE[|X|p]

For the case 1 ≤ p ≤ 2, the calculation is identical to the above, except replace the B′
p/n

p/2 with B′
p/n

p−1 from Corollary
A.2.

The following theorem is the Marcinkiewicz-Zygmund law of large numbers from pg. 311 (Gut, 2005), which gives us the
O
(
ε−2(1+δ)

)
sampling complexity for the LBL case for 0 < δ < 1/2.

Theorem A.4. Suppose that X1, X2, ... are i.i.d. random variables., and set Sn =
∑n

k=1 Xk, n ≥ 1. If E|X1|p <∞ and
E[X1] = 0 when 1 ≤ p < 2, then

E

∣∣∣∣ Sn

n1/p

∣∣∣∣p = E
|Sn|p

n

n→∞−→ 0.
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B. Proof of Theorem 2.2
Recall that we are considering an M -dimensional process y(0:D), i.e. y(d) ∈ RM for each 0 ≤ d ≤ D. Explicitly, for
d ∈ {0, ..., D − 1}, gd : R(d+1)M+1 → R and gD : R(D+1)M → R.

Then, we say {gd}D−1
d=0 satisfy the last-component bounded second derivative condition (LBS) if for z ∈ R:

sup
(y(0:d),z)

∣∣∣∂2
(d+1)M+1gd(y

(0:d), z)
∣∣∣ < Kd.

Proof. Case 1: d = D

When d = D, Algorithm 1 samples one y(D) ∼ πD and outputs RD(y(0:D−1)) := gD(y(0:D)). We first prove our
output RD(y(0:D−1)) has a finite expectation for almost every fixed y(0:D−1), then its expectation equals γD(y(0:D−1))
follows directly from the algorithm design. To show the first point, notice that the expectation of |RD(y(0:D−1))| given
y(0:D−1) equals the conditional expectation E[|gD(y(0:D))| | y(0:D−1)]. Since E[|gD|] < ∞ by assumption, we have
E[|gD(y(0:D))| | y(0:D−1)] < ∞, almost surely. Therefore Algorithm 1 is unbiased when d = D for almost every input
y(0:D−1). Furthermore, it has computational cost 1, and the output has finite 2D+1-st moment.

Case 2: 0 ≤ d ≤ D − 1

Now that our base case is proven, we proceed via backwards induction. Suppose unbiasedness, finite 2d+2-th moment,
and finite expected computational cost are all satisfied for d + 1 where 0 ≤ d ≤ D − 1. Conditioning on y(0:d−1),
we sample y(d) ∼ πd and Nd ∼ Geo(rd). Algorithm 1 will call itself independently for 2Nd times, each with input
{Depth index: d + 1, Trajectory History: H = y(0:d), Parameters: rd+1, · · · , rD−1}. This gives us i.i.d. samples
Rd+1(y

(0:d))(1), ..., Rd+1(y
(0:d))(2Nd) which are used to compute the following:

S2Nd = Rd+1(y
(0:d))(1) +Rd+1(y

(0:d))(2) + · · ·+Rd+1(y
(0:d))(2Nd),

SO
2Nd−1 = Rd+1(y

(0:d))(1) +Rd+1(y
(0:d))(3) + · · ·+Rd+1(y

(0:d))(2Nd − 1),

SE
2Nd−1 = Rd+1(y

(0:d))(2) +Rd+1(y
(0:d))(4) + · · ·+Rd+1(y

(0:d))(2Nd).

Then Algorithm 1 returns as output Rd = ∆Nd
/prd(Nd), where ∆Nd

is the antithetic quantity in Algorithm 1. By the
inductive hypothesis on d+ 1, we have for almost every y(0:d):

Eπd+1:D
[Rd+1 | y(0:d)] = γd+1(y

(0:d)), Eπ

[
|Rd+1|2

d+2
]
<

(
D∏

i=d+1

C̃i

)∥∥∥gD(y(0:D))
∥∥∥2D+1

π,2D+1
.

We will start with showing Rd has a finite computational cost and a finite 2d+1-th moment, and then show the unbiasedness.
Finite cost:
To show the finite expected computational cost, recall that implementing Algorithm 1 with input depth d requires 2Nd calls
of Algorithm 1 with input depth d+ 1. Since Nd ∼ Geo(rd) with rd > 0.5, calling Algorithm 1 with input depth d has an
expected cost:

rd
2rd − 1

× the expected cost of Algorithm 1 with input depth d+ 1,

where rd
2rd−1 = E[2Nd ] < ∞. By our inductive hypothesis, the second term in the above product is finite, therefore the

expected cost of Algorithm 1 with input depth d is also finite.

Finite 2d+1-th moment:

Next we show Rd has a finite 2d+1-th moment. For every fixed positive integer n, doing a Taylor expansions for gd at
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(y(0:d), γd+1) with respect to the last component gives us:

gd

(
y(0:d),

S2n

2n

)
= gd(y

(0:d), γd+1) + ∂(d+1)M+1gd(y
(0:d), γd+1)

(
S2n

2n
− γd+1

)
+

1

2
∂2
(d+1)M+1gd(y

(0:d), ξ(n))

(
S2n

2n
− γd+1

)2

gd

(
y(0:d),

SO
2n−1

2n−1

)
= gd(y

(0:d), γd+1) + ∂(d+1)M+1gd(y
(0:d), γd+1)

(
SO
2n−1

2n−1
− γd+1

)
+

1

2
∂2
(d+1)M+1gd(y

(0:d), ξO(n− 1))

(
SO
2n−1

2n−1
− γd+1

)2

gd

(
y(0:d),

SE
2n−1

2n−1

)
= gd(y

(0:d), γd+1) + ∂(d+1)M+1gd(y
(0:d), γd+1)

(
SE
2n−1

2n−1
− γd+1

)
+

1

2
∂2
(d+1)M+1gd(y

(0:d), ξE(n− 1))

(
SE
2n−1

2n−1
− γd+1

)2

,

with ξ(n) between γd+1 and S2n/2
n, ξO(n− 1) between γd+1 and SO

2n−1/2n−1, ξE(n− 1) between γd+1 and SE
2n−1/2n−1.

Thus, we have:

∆n = gd

(
y(0:d),

S2n

2n

)
− 1

2

[
gd

(
y(0:d),

SO
2n−1

2n−1

)
+ gd

(
y(0:d),

SE
2n−1

2n−1

)]
= ∂(d+1)M+1gd(y

(0:d), γd+1)

(
S2n

2n
− γd+1

)
+

1

2
∂2
(d+1)M+1gd(y

(0:d), ξ(n))

(
S2n

2n
− γd+1

)2

− 1

2

[
∂(d+1)M+1gd(y

(0:d), γd+1)

(
SO
2n−1

2n−1
− γd+1

)
+

1

2
∂2
(d+1)M+1gd(y

(0:d), ξO(n− 1))

(
SO
2n−1

2n−1
− γd+1

)2

+ ∂(d+1)M+1gd(y
(0:d), γd+1)

(
SE
2n−1

2n−1
− γd+1

)
+

1

2
∂2
(d+1)M+1gd(y

(0:d), ξE(n− 1))

(
SE
2n−1

2n−1
− γd+1

)2
]

=
1

2
∂2
(d+1)M+1gd(y

(0:d), ξ(n))

(
S2n

2n
− γd+1

)2

− 1

2

[
1

2
∂2
(d+1)M+1gd(y

(0:d), ξO(n− 1))

(
SO
2n−1

2n−1
− γd+1

)2

+
1

2
∂2
(d+1)M+1gd(y

(0:d), ξE(n− 1))

(
SE
2n−1

2n−1
− γd+1

)2
]
.

By the LBS assumption which assumes |∂2
(d+1)M+1gd(y

(0:d), z))| < Kd for every (y(0:d), z), and our inductive hypothesis:
γd+1 = E[Rd+1(y

(0:d)) | y(0:d)] which allows us to use Lemma A.3 with Z1 = y(0:d), Z2 = Rd+1(y
(0:d)), we have:

∥∆n∥π,2d+1 ≤ Kd

∥∥∥∥∥
(
S2n

2n
− γd+1

)2
∥∥∥∥∥
π,2d+1

+
Kd

2

∥∥∥∥∥
(
SO
2n−1

2n−1
− γd+1

)2
∥∥∥∥∥
π,2d+1

+
Kd

2

∥∥∥∥∥
(
SE
2n−1

2n−1
− γd+1

)2
∥∥∥∥∥
π,2d+1

≤ KdB
′
2d+2

Eπ

[
|Rd+1(y

(0:d))|2d+2
]

2(2d+1n)

1/2d+1

+KdB
′
2d+2

Eπ

[
|Rd+1(y

(0:d))|2d+2
]

2(2d+1(n−1))

1/2d+1

= KdB
′
2d+2

Eπ

[
|Rd+1(y

(0:d))|2d+2
]

2(2d+1n)

1/2d+1

+ 2KdB
′
2d+2

Eπ

[
|Rd+1(y

(0:d))|2d+2
]

2(2d+1n)

1/2d+1

= 3KdB
′
2d+2

Eπ

[
|Rd+1(y

(0:d))|2d+2
]

2(2d+1n)

1/2d+1

.
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Therefore, in total:

Eπ

[
|∆n|2

d+1
]
≤ Dd

Eπ

[
|Rd+1(y

(0:d))|2d+2
]

2(2d+1n)
,

with Dd = (3KdB
′
2d+2)

(2d+1).

The result claimed in (c) is obtained as follows. We have for (1− rd) = 2−kd for some kd ∈
(
1, 2d+1

2d+1−1

)
:

Eπ

[
|Rd(y

(0:d−1))|2
d+1
]
=

∞∑
n=0

Eπ

[
|∆n|2

d+1
]

prd(n)
2d+1−1

≤
DdEπ

[
|Rd+1(y

(0:d))|2d+2
]

r2
d+1−1

d

∞∑
n=0

1

22d+1n(1− rd)(2
d+1−1)n

≤ Cd

(
D∏

i=d+1

C̃i

)∥∥∥gD(y(0:D))
∥∥∥2D+1

π,2D+1

∞∑
n=0

(
1

22d+1−kd(2d+1−1)

)n

inductive hypothesis

= Cd

(
D∏

i=d+1

C̃i

)∥∥∥gD(y(0:D))
∥∥∥2D+1

π,2D+1

(
2(2

d+1−kd(2
d+1−1))

2(2d+1−kd(2d+1−1)) − 1

)

=

(
D∏
i=d

C̃i

)∥∥∥gD(y(0:D))
∥∥∥2D+1

π,2D+1
.

Here the choice kd ∈
(
1, 2d+1

2d+1−1

)
is crucial. It ensures 2(2

d+1)(1 − rd)
(2d+1−1) > 1, and in turn ensures the infinite

summation of the above geometric series is finite.

Unbiasedness:
Now we show the unbiasedness of Rd(y

(0:d−1)). Firstly, since we have just shown Rd(y
(0:d−1)) has a finite 2d+1-th moment

under π, it directly implies |Rd(y
(0:d−1))| has a finite first moment, which further implies E[|Rd(y

(0:d−1))| | y(0:d−1)] is
finite for π-almost surely y(0:d−1).

We fix y(0:d−1) from now on, and we will write Eπd:D
[·] as a shorthand notation for E[· | y(0:d−1)] . Recall that we have

output Rd = ∆Nd
/prd(Nd), with

∆Nd
= gd

(
y(0:d),

S2Nd

2Nd

)
− 1

2

[
gd

(
y(0:d),

SO
2Nd−1

2Nd−1

)
+ gd

(
y(0:d),

SE
2Nd−1

2Nd−1

)]
.
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Then,

Eπd:D
[Rd(y

(0:d−1))] = Eπd:D

[
E

[
∆Nd

prd(Nd)
| Nd

]]
= Eπd:D

[ ∞∑
n=0

∆n

prd(n)
prd(n)

]

= Eπd:D

[ ∞∑
n=0

∆n

]
(⋆⋆⋆)
=

∞∑
n=0

Eπd:D
[∆n]

=

∞∑
n=0

Eπd:D

{
gd

(
y(0:d),

S2n

2n

)
− 1

2

[
gd

(
y(0:d),

SO
2n−1

2n−1

)
+ gd

(
y(0:d),

SE
2n−1

2n−1

)]}

=

∞∑
n=1

{
Eπd:D

[
gd

(
y(0:d),

S2n

2n

)]
−Eπd:D

[
gd

(
y(0:d),

S2n−1

2n−1

)]}
+Eπd:D

[gd(y
(0:d), gd+1(1))]

= Eπd:D

[
gd

(
y(0:d), lim

n→∞

S2n

2n

)]
= Eπd:D

[
gd

(
y(0:d), γd+1(y

(0:d))
)]

= γd(y
(0:d−1)).

All the above calculations are straightforward except for (⋆ ⋆ ⋆), which swaps the order of expectation and summation.
Therefore we complete this proof of unbiasedness by justifying the swap in (⋆ ⋆ ⋆). To justify the swap, it suffices to
show

∑
n E[|∆n|] < ∞. Notice that Rd(y

(0:d)) can be equivalently written as
∑∞

n=1 ∆nI(Nd = n)/prd(n) where Nd

independent with {∆i}. Calculating Eπd:D
[|Rd(y

(0:d))|] yields:

Eπd:D
[|Rd(y

(0:d−1))|] = Eπd:D

[∣∣∣∣∣
∞∑

n=1

∆nI(Nd = n)

prd(n)

∣∣∣∣∣
]

= Eπd:D

[ ∞∑
n=1

∣∣∣∣∆nI(Nd = n)

prd(n)

∣∣∣∣
]

only one term in the summation is non-zero

=

∞∑
n=1

Eπd:D

[∣∣∣∣∆nI(Nd = n)

prd(n)

∣∣∣∣] every term is non-negative

=

∞∑
n=1

Eπd:D

[∣∣∣∣ ∆n

prd(n)

∣∣∣∣]E [I(Nd = n)] independence between N and {∆i}

=

∞∑
n=1

Eπd:D
[|∆n|] .

Since we already know Eπd:D
[|Rd(y

(0:d−1))|] <∞, this justifies our swap (⋆ ⋆ ⋆).
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C. Proof of Theorem 2.4
Recall that we say {gd}D−1

d=0 satisfy the last-component bounded Lipschitz condition (LBL) if for all x, z ∈ R:

|gd(y(0:d), x)− gd(y
(0:d), z)| < Ld|x− z|.

The proof strategy of Theorem 2.4 is very similar to Theorem 2.2. We start with a backward induction.

Proof. Case 1: d = D

When d = D, Algorithm 1 samples one y(D) ∼ πD and outputs RD(y(0:D−1)) := gD(y(0:D)). Again, we first prove our
output RD(y(0:D−1)) has a finite expectation for almost every fixed y(0:D−1), then its expectation equals γD(y(0:D−1))
follows directly from the algorithm design. To show the first point, notice that the expectation of |RD(y(0:D−1))| equals the
conditional expectation E[|gD(y(0:D))| | y(0:D−1)]. Since E[|gD|] <∞ by assumption, we have

E[|gD(y(0:D))| | y(0:D−1)] <∞

almost surely. Therefore Algorithm 1 is unbiased when d = D for almost every input y(0:D−1). Furthermore, it has
computational cost 1, and the output has finite

(
2− δ

2D

)
-th moment.

Case 2: 0 ≤ d ≤ D − 1

Now that our base case is proven, we proceed via backwards induction. Let δd := δ/2d for every d ∈ {0, 1, . . . , D}.
Suppose unbiasedness, finite (2− δd+1)-th moment, and finite expected computational cost are all satisfied for d+ 1 where
0 ≤ d ≤ D−1. Then Algorithm 1 will call itself independently for 2Nd times, each with input {Depth index: d+1, Trajectory
History: H = y(0:d), Parameters: rd+1, · · · , rD−1}. This gives us i.i.d. samples Rd+1(y

(0:d))(1), ..., Rd+1(y
(0:d))(2Nd)

which are used to compute the following:

S2Nd = Rd+1(y
(0:d))(1) +Rd+1(y

(0:d))(2) + · · ·+Rd+1(y
(0:d))(2Nd),

SO
2Nd−1 = Rd+1(y

(0:d))(1) +Rd+1(y
(0:d))(3) + · · ·+Rd+1(y

(0:d))(2Nd − 1),

SE
2Nd−1 = Rd+1(y

(0:d))(2) +Rd+1(y
(0:d))(4) + · · ·+Rd+1(y

(0:d))(2Nd).

Then Algorithm 1 returns as output Rd(y
(0:d)) = ∆Nd

/prd(Nd), where ∆Nd
is defined in Algorithm 1. By the inductive

hypothesis on d+ 1, we have for almost every y(0:d):

E[Rd+1(y
(0:d)) | y(0:d)] = γd+1(y

(0:d))

and

Eπ

[
|Rd+1(y

(0:d))|2−δd+1

]
<

(
D∏
i=d

C̃i

)∥∥∥gD(y(0:D))
∥∥∥2−δd+1

π,2
.

We will start with showing Rd(y
(0:d−1)) has a finite computational cost and a finite (2− δd)-th moment, and then show the

unbiasedness.
Finite cost:
To show the computational cost, recall that implementing Algorithm 1 with input depth d requires 2Nd calls of Algorithm 1
with input depth d+ 1. It suffices to check rd > 0.5, which reduces to check the upper bound for kd (defined in Theorem
2.4) satisfies (

2d+2 − 3δ

2d+3 − 3δ

)(
2d+1 − δ

2d − δ

)
> 1.

Let t := 2d and the above product becomes:

4t− 3δ

8t− 3δ

2t− δ

t− δ
=

8t2 + 3δ2 − 10δ

8t2 + 3δ2 − 11δ
> 1.
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Since Nd ∼ Geo(rd) with rd > 0.5, calling Algorithm 1 with input depth d has an expected cost:

rd
2rd − 1

× the expected cost of Algorithm 1 with input depth d+ 1,

where rd
2rd−1 = E[2Nd ] < ∞. By our inductive hypothesis, the second term in the above product is finite, therefore the

expected cost of Algorithm 1 with input depth d is also finite.

Finite (2− δd)-th moment:
Next we show Rd has a finite (2− δd)-th moment. By the uniform Ld-Lipschitz property of gd:

|∆n| ≤
1

2

∣∣∣∣gd(y(0:d), S2n

2n

)
− gd

(
y(0:d),

SO
2n−1

2n−1

)∣∣∣∣+ 1

2

∣∣∣∣gd(y(0:d), S2n

2n

)
− gd

(
y(0:d),

SE
2n−1

2n−1

)∣∣∣∣
≤ Ld

2

∣∣∣∣SO
2n−1

2n−1
−

SE
2n−1

2n−1

∣∣∣∣ .
Therefore, for any fixed 1 ≤ p < 2, applying the triangle inequality under the norm ∥·∥π,p, and applying Lemma A.3 with
Z1 = y(0:d), Z2 = Rd+1(y

(0:d)), we have:

∥∆n∥π,p ≤
Ld

2

∥∥∥∥SO
2n−1

2n−1
−

SE
2n−1

2n−1

∥∥∥∥
π,p

≤ Ld

2

∥∥∥∥SO
2n−1

2n−1
− γd+1

∥∥∥∥
π,p

+
Ld

2

∥∥∥∥γd+1 −
SE
2n−1

2n−1

∥∥∥∥
π,p

≤ Ld

(
BpEπ[|Rd+1(y

(0:d))|p]
2(n−1)(p−1)

)1/p

,

exponentiating both sides by p yields,

Eπ[|∆n|p] ≤
Lp
dBpEπ[|Rd+1(y

(0:d))|p]
2(n−1)(p−1)

≤ C(d, p)Eπ[|Rd+1(y
(0:d))|p]

2(p−1)n
,

where C(d, p) = Lp
dBp2

1−p.

Recall that δd = δ/2d, let us choose qd = 2− (δd + δd+1)/2. Since

(
1,

(
qd − 1

qd

)(
2− δd
1− δd

))
=

(
1,

(
2d+2 − 3δ

2d+3 − 3δ

)(
2d+1 − δ

2d − δ

))
,

by definition of kd in the Theorem statement we have

kd <

(
qd − 1

qd

)(
2− δd
1− δd

)
.

Now we estimate the (2− δd)-th moment of Rd. An important trick in the calculation below is that we are not going to
use the above estimate of Eπ[|∆n|p] directly on p = 2− δd. Instead, we will first use Hölder’s inequality, and then bound
Eπ[|∆n|qd ](2−δd)/qd via the above estimate. It turns out the first way gives us an order of 2−n(1−δd), while the latter is of
order 2−n(qd−1)(2−δd)/qd . Since the function (x− 1)(2− δd)/x is increasing with x when x > 1, and equals 1− δd when
x = 2− δd, we gain an extra factor 2−Ω(1)n by choosing qd > 2− δd and use Hölder’s inequality, which is important for
establishing our main result. The detailed calculation is below:
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Eπ[|Rd(y
(0:d−1))|2−δd ] ≤

∞∑
n=0

Eπ[|∆n|2−δd ]

prd(n)
1−δd

≤
∞∑

n=0

(
Eπ

[
|∆n|2−δd·

qd
2−δd

]) 2−δd
qd

prd(n)
1−δd

Hölder’s inequality

≤ 1

r1−δd
d

∞∑
n=0

(
C(d, qd)Eπ[|Rd+1(y

(0:d))|qd ]
2(qd−1)n

) 2−δd
qd 1

(1− rd)(1−δd)n
estimate of Eπ[|∆n|p] with p = qd

= C ′(d)
∥∥∥Rd+1(y

(0:d))
∥∥∥2−δd

π,qd

∞∑
n=0

(
1

2
(qd−1)

qd
(2−δd)−kd(1−δd)

)n

here C ′(d) =
C(d, qd)

(2−δd)/qd

r1−δd
d

≤ C ′(d)
∥∥∥Rd+1(y

(0:d))
∥∥∥2−δd

π,2−δd+1

∞∑
n=0

(
1

2
(qd−1)

qd
(2−δd)−kd(1−δd)

)n

since qd < 2− δd+1

≤ C ′(d)

(
D∏

i=d+1

C̃i

)∥∥∥gD(y(0:D))
∥∥∥2−δd

π,2

 2
(qd−1)

qd
(2−δd)−kd(1−δd)

2
(qd−1)

qd
(2−δd)−kd(1−δd) − 1

 inductive hypothesis

=

(
D∏
i=d

C̃i

)∥∥∥gD(y(0:D))
∥∥∥2−δd

π,2
,

and note the RHS is still finite given the assumption of our theorem on gD. Again, as we can see in the proof, the choice
of kd and qd is crucial for our calculation. It ensures (qd−1)

qd
(2 − δd) − kd(1 − δd) > 0, and in turn ensures the above

summation of the geometric series converges.

Unbiasedness:

The proof of unbiasedness of our estimator in this case is identical to the LBS case, however we still require a justification
of the existence of a finite conditional expectation of Rd(y

(0:d−1)). By what we have just proven,

Eπ[|Rd(y
(0:d−1))|] ≤

(
Eπ

[
|Rd(y

(0:d−1))|2−
δ

2d

])1/(2− δ

2d
)

<∞.

Given Eπ[|Rd(y
(0:d−1))|] <∞, we immediately have Eπd:D

[Rd(y
(0:d−1))] exists for almost every y(0:d−1).

D. Construction of the NMC estimator
The construction of the NMC estimator is described in (Rainforth et al., 2018). For concreteness, we explain the construction
details here for the D = 2 case, which we use in Section 3.

Fix positive integers N0, N1, N2, users first simulate N0 i.i.d. {y(0)i }
N0
i=1 ∼ π0. For each fixed y

(0)
i , users sample N1

i.i.d. {y(1)i,j }
N1
j=1 from π1(· | y(0)i ). Then for each fixed trajectory (y

(0)
i , y

(1)
i,j ), users sample N2 i.i.d. {y(2)i,j,k}

N2

k=1 from

π2(· | y(0)i , y
(1)
i,j ). After getting all these samples, we use the standard estimator:

γ̂2(y
(0)
i , y

(1)
i,j ) :=

1

N2

N2∑
k=1

g2

(
y
(0)
i , y

(1)
i,j , y

(2)
i,j,k

)
to estimate γ2(y

(0)
i , y

(1)
i,j ). Then using the plug-in estimator

γ̂1(y
(0)
i ) :=

1

N1

N1∑
j=1

g1

(
y
(0)
i , y

(1)
i,j , γ̂2(y

(0)
i , y

(1)
i,j )
)
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to estimate γ1(y
(0)
i ). Finally, plugging in these N0 estimators {γ̂1(y(0)i )}N0

i=1 to form the NMC estimator

γ̂0 :=
1

N0

N0∑
i=1

g0

(
y
(0)
i , γ̂1(y

(0)
i )
)

for γ0.

It is proven in (Rainforth et al., 2018) that when all N0, N1, N2 go to ∞, γ̂0 converges to γ0. It remains crucial to
allocate N0, N1, N2 to maximize the convergence rate with respect to the total sample size n = N0N1N2. The choice
N0 = N2

1 = N2
2 is suggested in (Rainforth et al., 2018), which has a O(N−1/4) convergence rate for the rMSE, or a

O(N−1/2) rate for the MSE.

E. Additional statistics of Section 3
Figure 1 in Section 3 compares the errors between READ, NMC1, and NMC2 in terms of the cost of the total sample size.
Here we also compare their estimation errors in terms of the wall-clock time. For READ, we call Algorithm 1 repeatedly
for 105 times. For NMC1, we choose N0 = N1 = N2 = 400. For NMC2, we choose N0 = N2

1 = N2
2 = 104. Their

estimation errors and the corresponding wall-clock time costs are summarized in Table 2. It is clear that READ is both faster
(in wall-clock time) and more accurate. We also calculate the time-normalized squared error, defined as the product between
the time cost and the squared error (Glynn & Whitt, 1992). From the normalized squared error, READ is more than 130
times more efficient than NMC2, and more than 407 times more efficient than NMC1.

Method Setting Total Sample Cost Time/Seconds Squared Error
Time-normalized

Squared Error
READ 105 repetitions 4.625× 105 11.86 3.186× 10−6 3.78× 10−5

NMC1 N0 = N1 = N2 = 400 6.4× 107 43.79 3.51× 10−4 1.54× 10−2

NMC2 N0 = N2
1 = N2

2 = 104 108 72.6 6.8× 10−5 4.93× 10−3

Table 2. Cost comparison between different methods

F. Extra experiments
We consider an extra experiment with unknown ground truth. Let σ(x) := ex/(1 + ex) be the sigmoid function. Suppose
the process (y(0), y(1), y(2)) satisfies y(0) ∼ N(0, 1), y(1) ∼ N(y(0), 1), y(2) ∼ N(y(1), 1). Define g0(y

(0), z) := σ(y(0) +
z), g1(y

(0:1), z) := σ(y(1) + z), and g2(y
(0:2)) := σ(y(2)). The target quantity γ0 defined (1) is again a nested expectation

with D = 2. Although we can not analytically calculate out γ0, we still implement our READ estimator with the NMC
estimators in (Rainforth et al., 2018) and compare their performance. The parameters of READ are the same as Section 3,
the allocation of N0, N1, N2 of the NMC estimators also follows the same way as Section 3.

The scatter plot of the estimation results is shown in Figure 3. Although no ground truth is available, the trend for the
estimation is clear. All three methods eventually get close to 0.612, represented by the dotted black line in Figure 3. It
is also clear from the plot that READ always stays very close to the black line. In contrast, both NMC1 and NMC2 are
significantly more fluctuated than READ, where NMC1 appears to be the most unstable estimator. This again matches with
the theoretical predictions in our paper and (Rainforth, 2018) that READ converges the fastest while NMC1 converges the
slowest.

Next we let the parameters (r0, r1) in Algorithm 1 vary and investigate the proper choice of the parameters in this experiment.
Theorem 2.2 shows any (r0, r1) ∈ (0.5, 0.75) × (0.5, 1 − 2−4/3) guarantees READ has finite variance and finite cost.
Therefore we choose r0 on the lattice {0.6, 0.614, . . . , 0.74} and r1 on the lattice {0.55, 0.555, . . . , 0.6}. For each pair
of (r0, r1), we repeat Algorithm 1 for 106 times, record the results and calculate their empirical standard deviation. The
heatmap is shown in the left plot of Figure 4. The pattern suggests the standard deviation depends crucially on the choice of
r0, but less on r1. The standard deviation decreases when r0 increases.

Since the expected sample cost of Algorithm 1 equals (r1/(2r1 − 1)) (r2/(2r2 − 1)). We also plot the ‘work-normalized
standard deviation’, which is defined as

√
Expected Sample Cost×Standard deviation in (Glynn & Whitt, 1992) to measure
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Figure 3. Scatterplot of the estimation of γ0 as a function of log10(Total Sample Cost). Blue, red, green points correspond to READ,
NMC1, NMC2 estimators respectively.

(a) (b)

Figure 4. (a): Heatmap of the (empirical) standard deviation of READ. (b): Heatmap of the work-normalized standard deviation of READ.
Here r0 ∈ (0.6, 0.74), r1 ∈ (0.55, 0.6). Each standard deviation is estimated based on 106 repetitions of Algorithm 1.
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the efficiency of difference choices of (r0, r1). The heatmap is shown in the right subplot of Figure 4. Our result suggests
users should choose larger values of (r0, r1) to maximize the efficiency, at least in this example.

Finally we test our results when r0, r1 are both beyond the range given by Theorem 2.2. Algorithm 1 can still be
implemented, though there is no guarantees on the finite variance. Nevertheless, we choose r0 ∈ {0.8, 0.81, . . . , 0.9} and
r1 ∈ {0.7, 0.71, . . . , 0.8} and report the heatmaps of the standard deviations/work-normalized standard deviations in Figure
s5. The estimates become significantly less stable, as some pairs of (r0, r1) have much larger standard deviation than their
neighborhoods. This suggests the actual standard deviation maybe already infinity (though the empirical standard deviation
will always be finite), and therefore our result is less reliable. In conclusion, although larger values of (r0, r1) can reduce
the average cost of each implementation, users should not choose them too large as it may sacrifice the finite variance. Users
can choose the parameters closer to the upper end of the ranges in Theorem 2.2, but not exceed these ranges.

(a) (b)

Figure 5. (a): Heatmap of the (empirical) standard deviation of READ. (b): Heatmap of the work-normalized standard deviation of READ.
Here r0 ∈ (0.8, 0.9), r1 ∈ (0.7, 0.8). Each standard deviation is estimated based on 106 repetitions of Algorithm 1.
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