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Abstract
With the introduction of data protection and pri-
vacy regulations, it has become crucial to remove
the lineage of data on demand from a machine
learning (ML) model. In the last few years, there
have been notable developments in machine
unlearning to remove the information of certain
training data efficiently and effectively from ML
models. In this work, we explore unlearning
for the regression problem, particularly in deep
learning models. Unlearning in classification and
simple linear regression has been considerably
investigated. However, unlearning in deep
regression models largely remains an untouched
problem till now. In this work, we introduce deep
regression unlearning methods that generalize
well and are robust to privacy attacks. We
propose the Blindspot unlearning method which
uses a novel weight optimization process. A
randomly initialized model, partially exposed
to the retain samples and a copy of the original
model are used together to selectively imprint
knowledge about the data that we wish to keep
and scrub off the information of the data we
wish to forget. We also propose a Gaussian fine
tuning method for regression unlearning. The
existing unlearning metrics for classification are
not directly applicable to regression unlearning.
Therefore, we adapt these metrics for the
regression setting. We conduct regression un-
learning experiments for computer vision, natural
language processing and forecasting applications.
Our methods show excellent performance for
all these datasets across all the metrics. Source
code: https://github.com/ayu987/
deep-regression-unlearning
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1. Introduction
Data is an essential asset of any organization and it has
opened up a new frontier for countries to flex their techno-
logical and economic muscle. Governments across the globe
have taken cognizance of the importance of data privacy
and protection. The data protection law, European Union
General Data Protection Regulation (EU GDPR) (Voigt
& Von dem Bussche, 2017), introduced in the European
Union has changed the way companies handle personal data.
Similarly, in USA, the California Consumer Privacy Act
(CCPA) (Goldman, 2020) has been introduced in California
to protect the privacy of users and give them more control
over the use of their data. The introduction of these rules
have engendered a set of changes in the way organizations
collect, store, analyze, and use personal data collected from
citizens. In particular, all users are given the right to be
forgotten under these data protection regulations. The EU
GDPR necessitates prior consent by the user to collect their
data. The CCPA allows the company to collect user data
by default. However, the user may request for removal of
his/her data at any point in time. A company is obligated
to remove the data pertaining to a user upon receiving a
request for deletion.

In case of simple aggregation and storage of data, it is easy to
remove the data from the company’s databases. However, a
machine learning (ML) model trained on such personal data
essentially creates a new type of data which is an indirect
representation of the original data. The enforcement of the
right to be forgotten on such ML models will help control
the analytical use of data through ML algorithms that do not
strictly fall under the purview of traditional understanding of
data privacy. However, the removal of indirectly represented
information from ML models is a non-trivial problem. A
typical machine learning algorithm learns about the data by
observing a large number of data samples. The information
about the data is encoded in the weights of the ML model.
This means the model weights contain information about
the data. Any request for removal of information about a
particular data or set of data would require manipulating
the set of weights in the model. In a general ML setting,
the model is trained using the training dataset. After the
model is optimized via some learning method, it is used for
inference in the downstream application. Upon receipt of a
data removal request, the information pertaining to the for-
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get data is required to be scrubbed from the model. A naı̈ve
approach is to retrain the model from scratch after excluding
the data that needs to be removed/forgotten. However, this
is not a feasible solution due to limited resources available
to repeatedly train the ML model. For large models, this
approach would make the response time very high which
might not be acceptable to the user or the compliance author-
ity. Besides, the unnecessary use of energy-intensive GPU
servers would add to the already acute problem of climate
change. An efficient approach would be to update the model
weights in such a way that the information is forgotten by
the model. An unlearning method should ideally provide
an effective, efficient, and robust solution to enable such a
change in the model.

Motivation. Machine unlearning is an important field of
study as the existence of effective and efficient machine un-
learning solutions would give confidence to the lawmakers
to formulate stricter data privacy and protection policies for
their citizen. The existing works in unlearning have primar-
ily focused on the classification problems. Relatively simple
models such as linear and logistic regression (Mahadevan
& Mathioudakis, 2022; Neel et al., 2021; Izzo et al., 2021;
Guo et al., 2020), random forests (Brophy & Lowd, 2021),
and k-means clustering (Ginart et al., 2019; Mirzasoleiman
et al., 2017) have been explored in an provable unlearning
setup. Furthermore, the deep learning models such as con-
volutional neural networks (Golatkar et al., 2020a;b; 2021;
Wang et al., 2022; Wu et al., 2022; Chundawat et al., 2023b)
and vision transformers (Tarun et al., 2023) have been ex-
plored under the approximate unlearning setup. All these
existing methods are aimed at unlearning in classification
problems. Li et al. (Li et al., 2021) proposed an online for-
getting process for linear regression models. This method
does not generalize to deep learning regression models. Un-
learning in a regression problem, particularly if it employs
a deep learning approach, is yet to be explored in the litera-
ture. Same is the case with unlearning in case of forecasting
models. The existing methods designed for classification
tasks cannot be directly applied to these tasks. Moreover,
the evaluation metrics for unlearning in a classification task
do not transfer well to unlearning in a regression task.

Our Contribution. Based on the above motivation, in this
paper, we propose novel unlearning methods for deep regres-
sion models. The proposed Blindspot method selectively
removes the information of the forget data and keeps the
information of the retain data through a collaborative op-
timization process. We use a randomly initialized model
and partially expose it to the retain samples. Then another
model, initialized with the original model’s weights is opti-
mized with three loss functions: i) the attention difference
loss, ii) forget data output difference loss between the par-
tially exposed model and the original model, and iii) retain
data prediction loss which helps in maintaining the original

prediction accuracy on the retain data. In effect, the relevant
knowledge of the original model is selectively imprinted
into the new model and unlearning of the forget samples
is induced through our novel weight optimization process.
Our strategy ensures that the unlearning occurs both at the
representation level and the ingrained level. We also present
a Gaussian distribution based fine tuning method for re-
gression unlearning. We check for privacy leaks in the
unlearned model by designing a membership inference at-
tack and inversion attack for regression problem. Several
ablation studies are conducted to show the characteristics of
the proposed method. In summary, the main contributions
of our paper are:

1. Novelty: To the best of our knowledge, this work is
the first to study unlearning in deep regression models
and forecasting. We propose two deep regression un-
learning methods that achieve quality unlearning with
good performance and is robust to privacy attacks.

2. Unlearning in Deep Regression Models: We propose
a Blindspot method which optimizes three loss func-
tions to induce selective unlearning. We also propose
a Gaussian Amnesiac learning method for regression
unlearning.

3. Effectiveness: We conduct extensive experiments on
four datasets AgeDB, IMDB-Wiki, STS-B (SemEval-
2017) and UCI Electricity load. The results show that
the proposed method outperforms the baseline methods
for regression unlearning on a variety of metrics that
denote both representation and ingrained level unlearn-
ing.

4. Robustness to Privacy Attacks: The proposed un-
learning methods are resistant to membership infer-
ence and inversion attacks. This provides more confi-
dence to the user regarding privacy preservation against
queries related to his/her forget data.

2. Related Work
Machine unlearning has been investigated for different tasks
and different modalities of learning algorithms. Generally,
these methods can be categorized into exact and approxi-
mate unlearning techniques. Exact unlearning aims to com-
pletely remove the requested data from the model. Approxi-
mate unlearning aims to provide a statistical guarantee that
the unlearned model cannot be distinguished from a model
that was trained without using the forget data. The unlearn-
ing can be measured at both the representation (abstract
level) and ingrained level (model weight level information)
in order to offer the statistical guarantees. We discuss the
existing methods in the literature as designed for the classi-
fication and regression tasks.
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Unlearning in Classification Tasks. Cao et al. (Cao &
Yang, 2015) introduced machine unlearning to selectively
remove the effect of a subset of training data. Several re-
search subsequently aimed to produce efficient and effective
ways of unlearning. In SISA framework (Bourtoule et al.,
2021) the model learns from the summation of different
subsets of data. Chen et al. (Chen et al., 2022b) extend this
idea to unlearning in graph data. An unlearning framework
for recommendation is presented in (Chen et al., 2022a). In
Amnesiac learning (Graves et al., 2021) the updates made by
each data-point is stored during training and subtracted from
final parameters upon each deletion request. The definition
of differential privacy is adopted to introduce a probabilistic
notion of unlearning in (Ginart et al., 2019). The idea is to
produce similar distribution of output between the unlearned
model and the model trained without using the forget data.
This approach is frequently used in several methods (Mirza-
soleiman et al., 2017; Izzo et al., 2021; Ullah et al., 2021).
A certified data removal framework is presented in (Guo
et al., 2020). (Neel et al., 2021) use gradient descent based
approach for unlearning in convex models. Unlearning for
Bayesian methods (Nguyen et al., 2020), k-means cluster-
ing (Mirzasoleiman et al., 2017), random forests (Brophy
& Lowd, 2021) and other studies (Sekhari et al., 2021; War-
necke et al., 2021; Mahadevan & Mathioudakis, 2022) have
been explored.

Some of the early works on unlearning in convolutional
neural networks (CNN) were presented in (Golatkar et al.,
2020a). This work presents a scrubbing method to remove
information from the network weights. A neural tangent ker-
nel (NTK) based method to approximate the training process
was introduced in (Golatkar et al., 2020b). An approximated
model is used to estimate the network weights for the un-
learned model. Similarly, a mixed-linear model is trained for
unlearning approximation in (Golatkar et al., 2021). A more
practical and efficient approach for deeper neural networks
and vision transformers was presented in (Tarun et al., 2023).
A zero-shot unlearning method was presented in (Chun-
dawat et al., 2023b). A teacher-student based framework for
class-level unlearning as well as random cohort unlearning
was introduced in (Chundawat et al., 2023a). Other notable
works in deep unlearning include (Mehta et al., 2022; Ye
et al., 2022). Several works have presented efficient meth-
ods for unlearning in the federated learning setup (Wang
et al., 2022; Liu et al., 2022; 2021). (Bevan & Atapour-
Abarghouei, 2022) use the bias unlearning methods (Kim
et al., 2019) to remove bias from CNN based melanoma
classification. Some recent works have identified the vul-
nerabilities of the unlearned model under different type of
attacks (Marchant et al., 2022; Carlini et al., 2022; Chen
et al., 2021).

Unlearning in Deep Regression Tasks. (Li et al., 2021)
investigated online forgetting process in ordinary linear re-

gression tasks. The method supports a class of deletion
practice first in first delete where the user authorize the use
of their data for limited period of time. (Izzo et al., 2021)
proposed an approximate deletion method for linear and
logistic regression. The existing methods are relevant for
convex models and are hard to apply on non-convex models
like deep neural networks for regression unlearning. Our
method does not put any constraint over the underlying
model used. Similarly, our method does not require prior
information related to the training procedure as in some
existing works (Nguyen et al., 2022). From the survey
paper (Nguyen et al., 2022), it is evident that there is no
existing work on deep regression unlearning and ours is
the first deep regression unlearning method. This work in-
troduces the first deep regression unlearning methods for
deeper models and large datasets. Our work also presents
a set of suitable metrics for evaluation of the unlearned
regression models.

3. Regression Unlearning
3.1. Preliminaries

Let D = {xi, yi}Ni=1 be a dataset consisting of N samples
where xi ∈ R is the ith sample, and yi ∈ R is the corre-
sponding output variable. Df denotes the set of data-points
we wish to forget. These are the data-points a machine un-
learning algorithm will receive as a query. They may or may
not be related in any way. Similarly, Dr denotes the set of
data-points whose knowledge we wish the model to retain.
This means D = Dr ∪Df , Dr and Df are mutually exclu-
sive i.e., Dr ∩ Df = ϕ. The model trained from scratch
with only Dr is called the retrained model or gold model in
this work.

To measure the similarity between output distributions of
different models, we use the first Wasserstein Distance (Kan-
torovich, 1960; Ramdas et al., 2017). We treat the output
space as a metric. Let p be the output distribution of model
1 and q be the output distribution of model 2, then the first
Wasserstein Distance between these two distributions is de-
fined by

W1(p, q) = inf
γ∈Γ(p,q)

∫
R×R
|x− y|dγ(x, y) (1)

where Γ(p, q) is the set of probability distributions on R×R
whose marginals are p and q on the first and second factors
respectively.

3.2. Problem Formulation

Let M(.;ϕ) be a machine learning (ML) model M with
parameters ϕ. For an input x the model returns M(x;ϕ).
For a ML algorithm A trained on dataset D, the obtained

3



Deep Regression Unlearning

Figure 1: The proposed Blindspot deep regression unlearn-
ing method. The blindspot model is first partially trained
for a few epochs on the retain set and frozen during the
unlearning process.

model parameters ϕ can be represented as

ϕ = A(D) (2)

The parameters of a model trained only on the retain set of
D i.e., Dr (also called retrained model) is represented as

ϕr = A(Dr) (3)

A machine unlearning algorithm U uses the originally
trained model ϕ. It may also use a subset of Dr and Df .
With this algorithm U we obtain a new set of parameters ϕu

as follows.
ϕ →

U(ϕ,Dr,Df )
ϕu (4)

An exact unlearning algorithm aims to produce a model with
exactly the same output distribution as that of the retrained
model. In this work, we propose an approximate unlearning
algorithm which aims to obtain a parameter set ϕu which
results in approximately the same output distribution as that
of the retrained model i.e.,

P (M(x, ϕu) = y) ≈ P (M(x, ϕr) = y) ∀x ∈ D, y ∈ R
(5)

where P (X) denotes the probability distribution of any
random variable X . Note that we emphasize only on the
similarity between the output distributions and not the pa-
rameters. Readout functions (Golatkar et al., 2020a) are
used to check the validity of Eq. 5 and the validity/quality
of ϕu obtained using U .

3.3. Challenges in Regression Unlearning

The existing machine unlearning methods use measures
like KL-Divergence with a retrained model, or a proxy to
the retrained model, or provide certain information bounds
for the unlearned model. The KL-Divergence (Golatkar
et al., 2020a) is used as a measure of closeness between the
current and the desired distribution. Unlike in classification,

where we have a probability distribution, in regression we
usually deal with a single valued output. In a regression
task, we generally predict the expected value of the real-
valued label instead of a set of probabilities associated with
each label. So, it becomes non-trivial to ascertain the output
distribution based on the obtained output. Thus, regression
unlearning is different and a difficult task. Moreover, the
inference attacks in a regression setting is not well studied
in the literature leading to another challenge in evaluation
of regression unlearning.

4. Proposed Deep Regression Unlearning
We propose two algorithms to delete information about the
query data from a deep regression model: (i) Blindspot
Unlearning, (ii) Gaussian Amnesiac Learning. We discuss
each of these methods below.

4.1. Blindspot Unlearning

In Blindspot unlearning, we first partially expose a ran-
domly initialized model to few samples from the retain
set. It is trained on the retain samples for a few epochs.
This gives the model a vague idea about the output distribu-
tion in the absence of the forget set from the training data.
The forget set is a blindspot for this model. This partially
learned blindspot model acts as an unlearning helper. Let
the blindspot model be denoted as B(.; θ). We denote the
original fully trained model by M(xi;ϕ). In our method,
the model M is updated to obtain the final unlearned model.
The complete Blindspot Unlearning method is depicted in
Figure 1. The following three loss functions are employed
in our method: (i) We compute the loss for the retain set
sample prediction in the original model, (ii) We compute
the loss by comparing the output similarities between the
original and the blindspot model, (iii) We also measure the
closeness of the layerwise activation between the original
and blindspot model. We combine these three losses and
optimize the original model through minimization. This pro-
cess selectively keeps the knowledge regarding the retain
set while removing the knowledge about the forget set. Let
the prediction made by the original model on ith sample of
dataset D is M(xi;ϕ) and yi is the corresponding correct
label. Then the loss for samples in Dr is

Lr ← L(M(xi;ϕ), yi);∀xi ∈ Dr (6)

where L denotes a standard loss function used in a regres-
sion task. This can be a mean absolute error (MAE), mean
squared error (MSE), or some other regression loss function.
Let M(xi;ϕ) denote the prediction of fully trained model
on sample xi of dataset D. Similarly, let B(xi; θ) denote the
prediction of the blindspot model. If the sample xi is a part
of the forget set Df , then the following loss is computed

Lf ← L(M(xi;ϕ), B(xi; θ));∀xi ∈ Df (7)
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This loss helps in increasing the closeness between the orig-
inal model M and the blindspot model B for the forget
set Df . Since we want to scrub the information related to
the forget data from the unlearned model. The blindspot
model B works as the perfect foil for it to unlearn the same.
Finally, we optimize the closeness of activations (Micaelli
& Storkey, 2019) between the last k layers of model M and
B on the forget set Df

Lattn ← λ

k∑
j=1

∥actϕj − actθj∥ (8)

where actϕj and actθj corresponds to the jth layer of acti-
vation map in the original model M and blindspot model
B. λ is a parameter used to control the relative degree of
significance of the loss terms. The final loss is computed as

L← (1− lif )Lr + lif (Lf + Lattn) (9)

where lif = 1 for samples in the forget set and lif = 0 oth-
erwise. A step-by-step process of the proposed Blindspot
Unlearning method is given in Algorithm 1. The informa-
tion present in the unlearned model about the forget set after
unlearning is bounded by the information present in the
blindspot model. More details on the information bound for
unlearning in the Blindspot method is discussed in Section A
in the Supplementary.

4.2. Gaussian-Amnesiac Learning

We adapt the unlearning technique in (Graves et al., 2021)
which was originally presented for a classification task. In
this method, the label of a sensitive data is replaced with an
incorrect label. In a classification problem, it is reasonable
to assume that the samples are uniformly distributed across
class labels. However, this is almost never the case in a
regression problem and real-life regression data usually re-
semble a Gaussian distribution (Bishop & Nasrabadi, 2006).
Thus, in a regression task, we model the distribution of the
regression output values as a Gaussian model. The incorrect
labels are sampled from this Gaussian distribution instead
of random assignment. A straightforward adaptation by
replacing random selection with a uniform distribution pro-
duces inferior results. This is shown through experiments in
Section D where we compare the results of sampling from a
Gaussian distribution with a uniform distribution. We then
fine tune the original model on this data. Algorithm 2 shows
the step-by-step process of the Gaussian Amnesiac learning.

5. Evaluation Measures
A machine unlearning method is evaluated through a va-
riety of measures in the literature (Golatkar et al., 2021;
Chundawat et al., 2023a). These metrics usually validate the
unlearning at the representation level and ingrained level.

Algorithm 1 Blindspot Unlearning

1: M(.;ϕ) (Fully Trained Model)
2: B(.;θ) (Randomly Initialized Blind model)
3: Df ← forget set (from training data)
4: Dr ← retain set (from training data)
5: D = Dr ∪Df

6: for 1,2....n do
7: Partially expose model to retain samples with very

less epochs n <<< nepochs

8: for xi, yi ∈ Dr do
9: ypredi ← B(xi; θ)

10: L← L(ypredi , yi)
11: θ ← θ − η ∂L

∂θ , where η is the learning rate
12: end for
13: end for
14: for 1,2....nunlearn do
15: for (xi, yi) ∈ D do
16: ypredi ←M(xi;ϕ) (Finetune)
17: if (xi, yi) ∈ Df then
18: lif = 1 (Forget Label)
19: else
20: lif = 0
21: end if
22: Lr ← L(ypredi , yi)

23: Lf ← L(ypredi , B(xi; θ))

24: Lattn ← λ
∑k

j=1 ∥act
ϕ
j − actθj∥

25: L← (1− lif )Lr + lif (Lf + Lattn)

26: ϕ← ϕ− η ∂L
∂ϕ

27: end for
28: end for

At representation level, the unlearning is validated through
the model error or accuracy on the forget set and retain
set. The relearn time to achieve similar performance as the
original model (Golatkar et al., 2020a; Chundawat et al.,
2023b) also falls into this category. The ingrained level eval-
uation include the weight and output distribution analysis
of the unlearned model. Several metrics such as activation
distance, weight distance, JS-Divergence, ZRF-score (Chun-
dawat et al., 2023a) comes under this category. Prediction
distribution analysis on the forget class (Tarun et al., 2023)
is another type of ingrained level evaluation. A third class
of evaluation entails checking the privacy leakage about the
forget data in the unlearned model through various types
of inference attacks. In our work, we validate the deep re-
gression unlearning methods with all three categories of
evaluation methods.

Privacy Attacks: Membership Inference and Model In-
version Attacks for Regression We develop a simple mem-
bership inference attack to evaluate the regression unlearn-
ing approaches in this study. We construct the membership
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Algorithm 2 Gaussian-Amnesiac Learning

1: M(.;ϕ) (Fully Trained Model)
2: Df ← forget set (from training data)
3: Dr ← retain set (from training data)
4: D

′

f ← [ ]
5: for (xi, yi) ∈ Df do
6: Replace labels of forget samples: y

′

f ← N (µ, σ)
(Sample random labels from a Gaussian distribution,
N (ν, σ) of labels Y = {yi∀(xi, yi) ∈ Df})

7: D
′

f = D
′

f + (xi, y
′

i)
8: end for
9: D

′ ← Dr + D
′

f (New dataset to finetune the original
model)

10: shuffle(D
′
)

11: for 1,2....nfinetune do
12: for (xi, yi) ∈ D

′
do

13: ypredi ←M(xi;ϕ) (Finetune)
14: LM ← L(ypredi , yi)
15: ϕ← ϕ− η ∂LM

∂ϕ
16: end for
17: end for

attack as a binary classification problem where class 1 de-
notes a data point is in the training set and 0 denotes it is in
the test set. We use a support vector classifier with radial
basis function kernel as the attacker. We use loss, penul-
timate layer gradients, and penultimate layer activations
as the inputs to the attacker for classification. We train the
classifier by providing retain set as class 1 and test set as
class 0. We use this trained attacker on the forget set.

For inversion attack, we use a modified version of the attack
presented in (Fredrikson et al., 2015). A randomly initial-
ized image vector is optimized using gradient descent using
mean squared error as the loss function. Section B.1 in the
Supplementary shows the model inversion attack results.

Relearning Effort: Regression Anamnesis Index. We
adapt the Anamnesis Index (AIN) proposed in (Chundawat
et al., 2023b) to measure the relearning effort in the un-
learned regression model. The AIN measures the relearning
time of the retrained model (retrained from scratch without
forget data) and unlearned model to come under α% margin
of the performance of a fully trained model. Let Mu and Mg

denote the unlearned model and the retrained model on Dr,
respectively. If the number of mini-batches (steps) required
by a model M to come within α% range of the accuracy of
the original model on the forget classes is rt(M,Morig, α)
then

AIN =
rt(Mu,Morig, α)

rt(Mg,Morig, α)
(10)

For our regression use case, we define rt(M,Morig, α) as
the number of steps required to come within α% range

of the loss of the original model Morig on forget set. As
discussed in (Chundawat et al., 2023b), AIN close to 0
denotes sub-optimal unlearning and AIN close to 1 denotes
an adequate amount of unlearning. If the AIN is very large,
then it signifies the Streisand effect where the sample to be
forgotten is actually made more noticeable.

Output Distribution: Wasserstein Distance. In
case of class-level unlearning, KL-Divergence and JS-
Divergence (Golatkar et al., 2020a; Chundawat et al., 2023a)
between the output distribution of retrained and the un-
learned model is compared. In our analysis, we use Wasser-
stein Distance (refer Eq. 1) between the forget set prediction
of the retrained and the unlearned model. We also measure
the relative deviation for each individual prediction on the
forget set and plot the density curves for the same. If the
density is closer to zero, then the unlearning is better in the
model.

Performance: Error on Df and Dr. Unlike in a classifi-
cation task, the metrics in a regression task are usually not
bounded (for example, mean squared error, mean absolute
error). Therefore these measures are not fit for checking the
quality of unlearning in a regression model. In our work,
we report the error on both forget and retain set. The errors
should be close to the corresponding metrics on the retrain
model.

6. Experiments
6.1. Datasets

We use four datasets in our experiments. Two computer
vision datasets are used: i. AgeDB (Moschoglou et al.,
2017) contains 16,488 images of 568 subjects with age
labels between 1 and 101, ii. IMDB-Wiki (Rothe et al.,
2015) contains 500k+ images with age labels varying from
1 to 100. One NLP dataset is used: iii. Semantic Text
Similarity Benchmark (STS-B) SemEval-2017 dataset (Cer
et al., 2017) has around 7200 sentence pairs and labels
corresponding to the similarity between them on a scale of 0
to 5 categorized by genre and year. One forecasting dataset
is used: iv. UCI Electricity Load dataset (Yu et al., 2016)
contains data of electricity consumption of 370 customers,
aggregated on an hourly level.

6.2. Baselines and Models

We use fine tuning and gradient ascent (denoted as NegGrad)
as baseline methods. In case of finetuning, the original
model is fine tuned on the retain dataset Dr. The training
only on the retain set leads to unlearning on the forget set
Df . This is same as catastrophic forgetting of Df . In case
of gradient ascent, the model is finetuned using negative
of the models gradients on the forget set. As the experi-
ments cover 3 different domains, we use the suitable models
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Table 1: Unlearning on AgeDB. We unlearn samples from a specific age band and observe the performance on several
unlearning metrics. err Dr

t : error on retain set from test data, err Df
t : error on forget set from train data, att prob:

membership inference attack probability on forget set, w dist: Wasserstein distance between the unlearned and retrained
model predictions on Df

t , AIN : Anamnesis Index, Amn: Amnesiac. A ResNet18 model is used in all the experiments.

Forget Set Metric Original Retrained FineTune NegGrad Gaussian Amn (Ours) Blindspot (Ours)

0-30

err Dr
t ↓ 7.69 7.54 7.59 ± 0.32 23.01 ± 1.12 7.51 ± 0.19 7.63 ± 0.27

err Df
t ↑ 8.11 15.1 10.40 ± 0.28 30.47 ± 0.31 13.73 ± 0.22 18.27 ± 0.24

att prob ↓ 0.72 0.07 0.51 ± 0.03 0 ± 0 0.13 ± 0.01 0.02 ± 0
w dist ↓ 11.39 - 7.40 ± 0.13 12.82 ± 0.17 3.74 ± 0.09 1.90 ± 0.06

AIN ↑ - - 1.6 ± 0.20 0.33 ± 0.04 0.66 ± 0.03 1 ± 0.04

60-100

err Dr
t ↓ 7.24 6.73 6.78 ± 0.29 13.79 ± 0.20 6.73 ± 0.17 7.31 ± 0.18

err Df
t ↑ 10.43 22.87 13.5±0.24 34.87± 0.97 21.01± 0.64 25.8± 0.53

att prob ↓ 0.62 0.03 0± 0 0.10± 0.02 0.02± 0 0.01± 0
w dist ↓ 17.74 - 11.81± 0.41 11.34± 0.34 2.71± 0.23 3.66± 0.21

AIN ↑ - - 0.03 0.75± 0.10 0.28± 0.02 0.41± 0.03

Table 2: Unlearning on IMDBWiki. A ResNet18 model is used in all the experiments.

Forget Set Metric Original Retrained FineTune Gaussian Amn (Ours) Blindspot (Ours)

0-30

err Dr
t ↓ 8.27 7.52 7.86 7.94 8.04

err Df
t ↑ 7.64 17.34 14.15 16.12 20.66

att prob ↓ 0.75 0.13 0.26 0.14 0.07
w dist ↓ 9.26 - 3.16 1.62 3.84

AIN ↑ - - 0.005 0.01 0.04

60-100

err Dr
t ↓ 6.55 6.43 6.35 6.61 6.68

err Df
t ↑ 11.82 20.36 16.21 24.44 25.77

att prob ↓ 0.56 0.06 0.33 0.0005 0.0
w dist ↓ 10.68 - 5.55 4.03 5.05

AIN ↑ - - 0.001 0.03 0.04

in each of the experiments. We use ResNet18 (He et al.,
2016) in computer vision experiments. We use an LSTM
model (Hochreiter & Schmidhuber, 1997) with GLOVE
embedding (Pennington et al., 2014) for NLP experiments.
We use a Temporal Fusion Transformer (TFT) (Lim et al.,
2021) for the forecasting experiments.

6.3. Experimental Setup

All the experiments are performed on NVIDIA Tesla-A100
(80GB). The λ is set to 50 for Blindspot method in all
experiments. The ablation study for different values of λ
is available in the Supplementary material. We discuss the
experimental setup followed in each dataset below.

AgeDB and IMDBWiki. We train the model for 100 epochs
with initial learning rate of 0.01 and reduce it on plateau by
a factor of 0.1. The models are optimized on L1-loss with
Adam optimizer. In FineTune, 5 epochs of training is done
with a learning rate of 0.001. We run gradient ascent for 1
epoch with a learning rate of 0.001 on the AgeDB dataset.
In Gaussian Amnesiac, 1 epoch of amnesiac learning is done
with a learning rate of 0.001. In Blindspot, the blindspot
model is trained for 2 epochs with a learning rate of 0.01.
Subsequently, 1 epoch of unlearning is performed on the
original model with a learning rate of 0.001.

STS-B SemEval-2017. The model is trained for 100 epochs
with initial learning rate of 0.01 and reduced on plateau by
a factor of 0.1. The model is optimized on mean squared
error (MSE) loss with Adam optimizer. In FineTune, 10
epochs of training is done with a learning rate of 0.001. In
Gaussian Amnesiac, 10 epochs of amnesiac learning is done
with a learning rate of 0.001. In Blindspot, the blindspot
model is trained for 10 epochs with a learning rate of 0.01
and thereafter, 10 epoch of unlearning is performed on the
original model with learning rate of 0.001.

Electricity Load. The data points are normalized before
training and analysis. We train the model for 10 epochs
with initial learning rate of 0.001 and reduce it by 1/10
after every 3 epochs. The model is optimized on Quantile
Loss with Adam optimizer. The model predicts 3 quantiles
0.1, 0.5, and 0.9. The data and the model can be used for
multi-horizon forecasting but we only forecast for single
horizon (one time step) for simplicity. In FineTune, 1 epoch
of training is done with a learning rate of 10−6. In Gaussian
Amnesiac, 1 epoch of amnesiac learning is done with a
learning rate of 10−6. In Blindspot method, the blindspot
model is trained for 1 epoch with a learning rate of 10−5

and then 1 epoch of unlearning is performed on the original
model with learning rate of 10−6.
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Table 3: Unlearning results on Semantic Text Similarly Benchmark (STS-B) SemEval-2017 dataset.

Forget Set Metric Original Retrained FineTune Gaussian Amn (Ours) Blindspot Ours)

0-2

err Dr
t ↓ 1.63 0.95 1.03 1.05 0.99

err Df
t ↑ 1.40 2.75 2.35 2.30 2.47

att prob ↓ 0.67 0.002 0.06 0.06 0.03
w dist ↓ 1.64 - 0.64 0.63 0.35

AIN ↑ - - 0.54 0.54 0.62
err Dr

t ↓ 1.46 1.46 1.46 1.48 1.49
Random err Df

t ↑ 1.35 1.49 1.34 1.35 1.41
Samples att prob ↓ 0.73 0.60 0.54 0.62 0.53

1000 w dist ↓ 0.09 - 0.10 0.28 0.09
AIN ↑ - - 0.03 0.03 1.0

err Dr
t ↓ 1.46 1.46 1.46 1.47 1.48

Year err Df
t ↑ 1.49 1.77 1.52 1.57 1.62

2015 att prob ↓ 0.70 0.52 0.50 0.47 0.34
Samples w dist ↓ 0.32 - 0.11 0.03 0.05

AIN ↑ - - 0.1 0.2 0.53

Table 4: Unlearning results on UCI Electricity Load dataset. Loss: the Quantile loss used in training.

Forget Set Metric Original Retrained FineTune Gaussian Amn(Ours) Blindspot (Ours)

≤ −0.85

Loss on Dr
t ↓ 0.95 0.87 0.93 0.91 0.85

Loss on Df
t ↑ 0.87 0.90 1.40 1.40 1.25

att prob ↓ 0.49 0.13 0.34 0.28 0.26
w dist ↓ 15.43 - 0.54 2.25 0.13

≥ 0.85

Loss on Dr
t ↓ 0.82 0.61 0.71 0.77 0.74

Loss on Df
t ↑ 1.22 1.29 1.37 1.27 1.43

att prob ↓ 0.23 0.20 0.29 0.36 0.17
w dist ↓ 1.90 - 0.18 0.28 0.90

6.4. Results and Analysis

AgeDB and IMDBWiki. The unlearning result in AgeDB
and IMDBWiki dataset for the proposed and baseline meth-
ods is presented in Tables 1 and 2. In AgeDB, we conduct 3
runs of each experiment and report the standard deviation.
Overall, we found the results to be quite stable and conduct
single run of all experiments hereafter. We also report the
original and retrained model results for comparative analy-
sis. All the three methods obtain similar performance on the
retain set (err Dr

t ). However, on forget set, the FineTune
fares poorly in comparison to the proposed methods. The
performance on the forget set (err Df

t ) is ideally expected
to be close to the retrained model. The baseline methods
FineTune and NegGrad are not able to unlearn properly and
report error values much higher than the retrained model.
NegGrad may possibly lead to Streisand effect as it has a per-
fect 0 inference attack probability (att prob). FineTune has
the highest attack probability. In IMDBWiki 0-30 age band
unlearning, attack probabilities on FineTune, Gaussian Am-
nesiac, and Blindspot are 0.26, 0.14, and 0.07, respectively.
Whereas, our methods report attack probability closer to the
retrained model. While unlearning the age group 60-100
in AgeDB, retrained model’s error on forget set is 22.87.
The Gaussian Amnesiac and Blindspot unlearning are very
close with their respective errors as 21.01 and 25.8. The

FineTune method error is 13.5 i.e., it retains most of the ini-
tial performance on the forget set. NegGrad’s error is 34.87
which is much higher than the retrained model’s 22.87 and
thus, again suggesting Streisand Effect. The FineTune per-
forms poorly in terms of Wasserstein distance (w dist) as
well. The w dist of FineTune is the worst among all the
methods (e.g., 7.40 vs Gaussian Amnesiac’s 3.74 and 7.40
vs Blindspot’s 1.90 in AgeDB 0-30 band forgetting).

Figure 2 depicts the density curves for the relative difference
between forget data predictions by the unlearning meth-
ods and retrained model. The Gaussian Amnesiac has the
highest density around 0 in both cases, 0-30 forgetting and
60-100 forgetting. It is followed by the Blindspot method
and regular Amnesiac method. Fine-tuning and the original
model’s curves are farther from 0 and thus suggest a very
dissimilar prediction distribution from the retrained model.
We discuss the differences between the proposed Gaussian
Amnesiac and Regular Amnesiac (Graves et al., 2021) in
Appendix D.

We also compare the AIN metric for all the unlearning
methods. From Table 2 we can observe that the proposed
Blindspot method is quite similar to the retrained model in
terms of AIN. Our method has AIN closest to 1 in all the
cases in AgeDB 0-30 band forgetting. This is much better
in comparison to 0.33 AIN in FineTune and 0.66 AIN in
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Figure 2: Density curves for relative difference between predictions by the unlearning methods and the retrained model on
each forget sample in AgeDB. Density close to 0 represents a better unlearning method. Left: 0 to 30 age band forgetting,
Right: 60 to 100 age band forgetting

Gaussian Amnesiac.

STS-B SemEval 2017. The unlearning results on STS-B
dataset is presented in Table 12. Forgetting similarity bands
0-2 induces a significant impact on the forget set error and
the proposed Blindspot is the closest in this regard to the
retrained model (Error on forget set: Retrained model: 2.75,
Blindspot: 2.47, FineTune: 2.35, Gaussian Amnesiac: 2.30).
Similarly, Blindspot unlearning has the lowest att prob on
all unlearning cases. For example, while forgetting samples
from year 2015, att prob in Blindspot is 0.34. This is
much better in comparison to 0.50 and 0.47 of FineTune
and Gaussian Amnesiac, respectively. Our model also have
the lowest w dist from retrained model on the forget set
except in the case of forgetting year 2015 samples. Our
Blindspot method also reports significantly better AIN score
in comparison to other methods (Table 12) which shows that
it has achieved high-quality unlearning.

Electricity Load. Table 4 shows unlearning results in elec-
tricity load dataset. We unlearn 2 different bands of val-
ues from the fully trained model: the first quartile and the
last quartile. For both forget sets, the models obtained by
Blindspot has the lowest membership attack probability. For
example, when forgetting values >= 0.85, the att prob for
Blindspot is 0.17 vs 0.36 for Gaussian Amnesiac and 0.29
for Finetune. The performance on forget and retain set in
Blindspot is closest to the retrained model while unlearning
in the range <= −0.85. The quartile loss on the forget set is
the higher in FineTune and Gaussian Amnesiac. But this is
even higher as compared to the retrained model which may
lead to Streisand effect. In this case the w dist is also low-
est for the Blindspot method i.e., 0.13 vs 2.25 for Gaussian
Amnesiac and 0.13 vs 0.54 for Finetune. Unlearning results
in the band >= 0.85 are mixed and no particular method
gives the best result in all the metrics. This is due to the
presence of a lot of outliers in this data band. The FineTune
method gives the loss nearest to the retrained model in retain
set and Gaussian Amnesiac is the nearest in terms of loss on
forget set. The w dist of the Blindspot method is the lowest
for the first band (<= −0.85) but highest for the second

band (>= 0.85). The AIN score could not be calculated for
the forecasting models as the AIN requires the relearning
time of the retrained model to come within a specified range
of performance of the original model. The retrained models
for these were not able to reach the desired performance
even after training for very long period.

7. Conclusion
We introduce novel unlearning methods for selectively re-
moving information in deep regression models. To the best
of the our knowledge, this work presents first such methods
for deep regression unlearning. The proposed Blindspot
method use a partially trained model along with a copy of
the original model to the forget the query samples. The
copied model is optimized with three loss functions and the
forgetting is induced through the proposed weight optimiza-
tion process. A Gaussian Amnesiac learning method is also
proposed for deep regression unlearning. The experiments
and results show that the proposed methods are effective
and generalize well to different type of regression problems.
Robustness against several privacy attacks were measured
to check information leak in the model. Overall, the pro-
posed deep regression unlearning methods show excellent
performance on a variety of evaluation metrics measuring
the relearning effort, output distribution, and privacy attacks.
The proposed methods also outperform the baseline method
in four different datasets. The insights on the challenges
and the proposed approaches would inspire future works on
deep regression unlearning in other applications.
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Figure 3: Progression of the Wasserstein distance between the predictions of the Blindspot model and the retrained model on
the forget set of range 0-30 in AgeDB.

A. Information Bound for Unlearning using Blindspot Method
In Blindspot method, we use a blindspot model to guide the original model with respect to the forget set. The information
present in the unlearned model about the forget set after unlearning is bounded by the information present in the blindspot
model. Golatkar et al. (Golatkar et al., 2020a) apply read-out functions and use KL-Divergence between obtained distributions
of the unlearned and retrained models on the forget set as a measure of remaining information in classification problems. In
our regression setting, we use the identity function as our read-out function i.e., we use the predicted values themselves for
distribution comparison. Since KL-Divergence is not applicable until we model a probability distribution function, we use
Wasserstein Distance. Let the information present in a model M about a dataset D is denoted by I(M,D). The blindspot
model, retrained model, and unlearned model are denoted by Mb, Mr, Mu. Let the forget set is denoted by Df and W
denotes Wasserstein distance between two distributions then

I(Mu, Df ) ≈ I(Mb, Df ) (11)

I(Mb, Df ) ∝W (Mb(Df ),Mr(Df ) (12)

From Eq. 11 and Eq. 12,
I(Mu, Df ) = kW (Mb(Df ),Mr(Df ) (13)

where k is a constant of proportionality from Eq. 12. In Figure 3, we plot a graph to show the Wasserstein distance (between
blindspot model and retrained model) with respect to the increasing number of epochs. We observe that with increasing
epochs, the blindspot model is reaching closer to the prediction distribution of the retrained model on the forget set. We can
express W (Mb(Df ),Mr(Df ) as

W (Mb(Df),Mr(Df) ≤ ϵ (14)

and, ϵ ∝ 1/n

where n denotes the number of epochs for which blindspot model is trained. If we express ϵ as ϵ = c/n then

I(Mu, Df ) ≤ kc/n (15)

The amount of information the Blindspot method reveals is bounded by kc/n. This implies, more the blindspot model is
trained, less information is remaining about the forget set in the model. In our experiments we train the retrained models for
100 epochs, and show that training the blindspot model for as less as 2 epochs yields very good quality unlearning.

B. Evaluation on Additional Privacy Attacks
B.1. Inversion Attacks

As the datasets used in the main experiments in the paper do not have specific patterns that can be visually depicted. We
conduct regression experiments on MNIST dataset to evaluate robustness of our method to model inversion attacks. We
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Figure 4: From left to right: a sample image, inverted image from the original model, inverted image from the retrained
model, inverted image from the unlearned model

Figure 5: From left to right: a sample input, inverted image from the original model, inverted image from the retrained
model, inverted image from the unlearned model

train an AllCNN model which attains a final mean absolute error of 0.08. We evaluate unlearning after forgetting class 3 and
5. The inversion attack results and comparison are presented in Figure 4. The first image is a sample image from class 3
from the MNIST dataset. The second image is an inverted image from the fully trained model. It clearly captures the two
edges of 3 which the model is probably using to recognise the shape of 3. The next two images are of the retrained model
and the unlearned model, respectively. These two images do not contain any recognizable pattern.

Another instance of an inversion attack and results are presented in Figure 5. While unlearning the shape of 5, we can see
the image obtained after inverting from the fully trained model (second image) has a very recognizable pattern. Whereas,
the third and fourth images corresponding to the retrained model and the model obtained from Blindspot unlearning do not
have any identifiable patterns. This shows that our method is robust to model inversion attacks.

B.2. Backdoor Attacks

We conduct regression experiment on MNIST to observe how the poisoned samples impact the unlearning performance. We
add a 4x4 white patch in the bottom right corner on randomly selected 100 images from all classes except class 1 and assign
the label 1 to all the patched images. This acts as a backdoor trigger. We then measure the accuracy of the backdoor attack
on the model i.e., how many images with patches are predicted with label 1. The higher the accuracy, the more effective
is the attack. We unlearn all the images with patches. Besides, we also retrain a model from scratch without the patched
images. We compare these two models to observe the attack accuracy.

The original model trained with the poisoned samples has an attack accuracy of 98%. The model trained without these
samples has an attack accuracy of 0%. If we use Blindspot method to unlearn the poisoned samples from the original model,
the attack accuracy goes down to 0.33%. Thus, our unlearning method is successfully able to mitigate the backdoor attack
issue when unlearning poisoned samples.

C. Sequential Unlearning Requests
A model might receive multiple unlearning requests at different points in time. Therefore a good unlearning method should
perform robustly in case of multiple sequential unlearning requests. Such repeated unlearning should not cause excessive
damage to the performance on the retain set. Otherwise, the model might become unusable over the period of time. Figure 6
shows how the proposed Blindspot method handles sequential unlearning requests. The experiment is conducted on AgeDB
where first request is to forget 0-10 age band, second request is to forget 10-20 age band, and the third request is to forget
20-30 age band. The retrained model is the one trained from scratch without the 0-30 age band. As clearly visible in Figure 6,
Blindspot unlearning maintains the retain set accuracy after each unlearning request. The result is very much comparable to
the retrained model after request 3. This shows the viability of our method for unlearning in continual learning systems.
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Figure 6: Unlearning performance after repeated unlearning requests on AgeDB. Request-1 is to forget age band 0-10,
Request-2 is to forget age band 10-20, and Request-3 is to forget age band 20-30. The retrained model is trained from
scratch without the 0-30 age band. Our model maintains the retain set error even after Request-3 and the error is similar to
the retrained model.

Figure 7: Difference between Reg Amnesiac (right) and Gaussian Amnesiac (left) distribution comparison on forget set with
retrained model.

D. Gaussian Amnesiac Vs Regular Amnesiac for Regression Unlearning
As discussed in Section 4.2, we replace the labels of the samples in the forget set with incorrect ones. In (Graves et al.,
2021), the incorrect class is randomly sampled from a set of classes other than the correct one. We replicate this for a
regression task in Reg Amnesiac by replacing the labels from a uniform distribution of discrete values between [1,101]. In
our experiment, we unlearn the band [0,30] in AgeDB. In Gaussian Amnesiac, we use a normal distribution with mean and
standard deviation calculated from the labels of the samples in the dataset. Figure 7 shows how the prediction difference of
the Gaussian Amnesiac unlearned model is closer to the retrained model. This is much better in comparison to the unlearned
model obtained by Reg Amnesiac. Gaussian Amnesiac’s distribution has the highest density around 0 among all the methods.
The attack probability in Gaussian Amnesiac is also much lower at 0.13 vs 0.17 of Reg Amnesiac. The Wasserstein distance
of Gaussian Amnesiac is 3.74 as compared to 5.20 of Reg Amnesiac. These results establish the superiority and higher
quality unlearning obtained by Gaussian Amnesiac over Reg Amnesiac. Some additional ablation studies are also presented
later.
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Table 5: Classification unlearning comparison on CIFAR10+ResNet18. Class-level unlearning is done for simple interpreta-
tion of results. Class 0 is unlearned for 1-class unlearning, and classes 1-2 are unlearned for 2-class unlearning.

Method # Yf Accuracy Original Retrained Unlearned
Model Model Model

1 Dr ↑ 77.86 78.32 71.06
UNSIR Df ↓ 81.01 0 0

(Tarun et al., 2023) 2 Dr ↑ 78.00 79.15 73.61
Df ↓ 78.65 0 0

1 Dr ↑ 77.86 78.32 78.21
Amnesiac Df ↓ 81.01 0 0

(Graves et al., 2021) 2 Dr ↑ 78.00 79.15 79.52
Df ↓ 78.65 0 0

Fisher 1 Dr ↑ 77.86 78.32 10.85
Forgetting Df ↓ 81.01 0 0

(Golatkar et al., 2020a) 2 Dr ↑ 78.00 79.15 7.98
Df ↓ 78.65 0 0

1 Dr ↑ 77.86 78.32 77.71
Blindspot Df ↓ 81.01 0 10.5

Unlearning 2 Dr ↑ 78.00 79.15 80
(ours) Df ↓ 78.65 0 12.12

Figure 8: Time comparison of different unleaning methods on AgeDB (left) and IMDBWiki (right). Forgetting 0-30 band in
ResNet18. G-Amn: Gaussian Amnesiac. The Y-axis is in logarithmic scale in this figure).

E. Viability of Blindspot in Classification Unlearning Tasks
We perform class-level unlearning with the Blindspot method and show the results in Table 5. We compare the result
with existing classification unlearning methods (Tarun et al., 2023; Graves et al., 2021; Golatkar et al., 2020a). The forget
set accuracy in Blindspot is quite high in comparison with the existing methods. The Df accuracy in 1-class and 2-class
unlearning is 10.5% and 12.12%, respectively. These values should be closer to zero. It appears there is scope to extend the
Blindspot method and make it effective for classification unlearning as well. This could be a future scope of this work.

F. Efficiency Analysis
In all the experiments, we use NVIDIA Tesla A100, 80GB GPU. The training time comparison between different unlearning
methods are shown in Figure 8. The training run-time is computed for ResNet18 on AgeDB and IMDBWiki. The original
training and retraining is done for 100 epochs. The blindspot model is trained for 2 epochs and the unlearning step is run
for 1 epoch. In AgeDB, retraining takes 1666 seconds, fine tuning requires 84 seconds, Gaussian Amnesiac requires 27
seconds, and the Blindspot method requires 72 seconds. The proposed Blindspot method is > 20× faster than retraining and
Gaussian Amnesiac is > 60× times faster than retraining. Similarly, on IMDBWiki, the runtime is at least > 20× faster in
both Gaussian Amnesiac and Blindspot. The Gaussian Amnesiac is the most efficient in both cases, followed by Blindspot
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Table 6: Effect of using different values of λ for 0 to 30 age band unlearning in AgeDB. The results are reported after a
single run.

λ err Dr
t err Df

t att prob w dist AIN
0 7.53 14.73 0.11 3.16 0.33
5 7.38 16.74 0.12 2.91 0.33
10 7.37 17.23 0.08 2.89 0.67
25 7.55 17.81 0.10 2.47 0.33
50 7.63 18.27 0.02 1.90 1
75 7.67 18.34 0.03 1.96 1

100 7.69 17.98 0.04 2.10 1
125 7.61 18.02 0.03 2.02 0.33
150 7.78 16.98 0.19 3.12 1.33
175 7.81 18.13 0.02 2.73 1
200 7.71 18.74 0.01 2.87 0.67
250 7.59 18.06 0.05 2.12 1.33

Table 7: Effect of using different values of λ for 0 to 30 age band unlearning in AgeDB. The average wdist after three runs
are reported.

λ 0 5 10 25 50 75 100 125 150 175 200 250

wdist
2.17 1.78 1.59 1.68 1.71 1.81 2.09 2.07 2.51 2.33 2.21 2.74

± 0.21 ± 0.01 ± 0.02 ± 0.11 ± 0.09 ± 0.13 ± 0.02 ± 0.06 ± 0.05 ± 0.07 ± 0.15 ± 0.10

unlearning method. Note that in Figure 8 the Y-axis (time) is in logarithmic scale.

G. Additional Ablation Study
G.1. Effect of using different values of λ

We show Blindspot results with a variety of λ values in Table 6 and Table 7. The results are perceptually bad only in cases
of either very low values (0 and 5) or very high values (≥ 75) of λ. For other values of λ (10-50), the change in the λ value
does not drastically influence the performance.

G.2. Effect of using different % of retain data in blindspot model

Table 8 shows the experimental results on varying amount of retain data for AgeDB 0-30 forgetting. The amount of retain
data seems to be directly proportional to the quality of unlearning and Streisand Effect. Most Streisand Effect is observed
when no retain data (0% Dr) is used and this can be seen through Wasserstein Distance with the retrained model and AIN.
Wasserstein Distance decreases with an increase in the amount of retain data used. Membership Attack probabilities are 0.0,
and thus showcase the Streisand effect for all cases except 100% Dr.

G.3. Training with different epochs

We show the results by varying the number of epochs of training for the blindspot model and the number of overall unlearning
epochs in Table 9. The results are shown for AgeDB, 0 to 30 band forgetting from a ResNet18 model. In Table 9, we can see

Table 8: Effect of different proportions of retain data in Blindspot unlearning. The experiments are conducted for AgeDB,
0-30 forgetting.

Metric Original Retrain Blindspot Blindspot Blindspot Blindspot Blindspot
Model Model 0%ofDr 10%ofDr 25%ofDr 50%ofDr 100%ofDr

err Dr
t ↓ 7.69 7.54 9.29 7.31 7.25 7.18 7.63

err Df
t ↑ 8.11 15.1 9.99 12.44 12.02 12.47 18.27

att prob ↓ 0.72 0.07 0.0 0.0 0.0 0.0 0.02
w dist ↓ 11.39 - 9.25 6.14 6.36 5.82 1.90

AIN ↑ - - 6 0.33 0.33 0.33 1
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Table 9: We train the blindspot model for different epochs. We also perform overall unlearning for different epochs on
ResNet18+AgeDB (unlearning 0 to 30 age band).

Blindspot Unlearning
err Dr

t err Df
t att prob w dist AINEpochs Epochs

1

1

7.48 18.53 0.16 3.67 1.07
2 7.63 18.27 0.02 1.90 1
5 7.41 14.38 0.65 1.19 1.03

10 7.41 18.58 0.11 3.70 0.90
20 7.24 14.89 0.30 0.80 0.97
50 7.38 16.8 0.24 2.08 1.23

2

2 7.36 20.32 0.08 5.38 1.37
5 7.33 21.75 0.005 6.62 1.27
10 7.34 21.89 0.002 6.75 1.77
20 7.62 22.74 0.01 7.59 1.93
50 7.68 22.33 0.005 7.18 1.83

5 2 7.25 7.25 0.39 1.17 0.87
5 7.43 14.71 0.34 1.11 1.10

that increasing the number of epochs beyond 5 does not lead to any significant advantage when the number of unlearning
epochs is fixed at 1. Till epoch 5, we see a steady decrease in Wasserstein distance between the unlearned and the retrained
model’s prediction distribution. This is because the blindspot model becomes more and more similar to the retrained model.
Beyond 5 epochs, there is no significant difference between the predictions of the blindspot model and the retrained model.

In another setup, we vary the number of unlearning epochs with a fixed blindspot model training at 2 epochs in Table 9.
We observe an increase in the Wasserstein distance with increasing epochs. This is because the blindspot model is quite
far from the retrained model in terms of parameter and prediction distribution as we have only trained it for 2 epochs.
With more unlearning epochs, our final model moves closer to the blindspot model. This leads to large error and higher
Wasserstein distance which is not desirable. When we fix the number of epochs=5 for blindspot model training (Table 9),
more unlearning epochs lead to better unlearning. This is because the blindspot model’s parameters are very close to a
retrained model’s parameter distribution. More training brings the unlearned model closer to this distribution.

Takeaway: More training of the blindspot model brings it closer to the distribution of a retrained model. Whereas, more
unlearning epochs brings the unlearned model closer to the blindspot model on the forget set. There exists a trade-off
between the blindspot model training epochs, unlearning epochs and the corresponding unlearning time. We show that even
very few epochs yield very good results, but further unlearning can be obtained at the cost of compute time.

G.4. Results on multiple deep models per task

The main paper contains the results on ResNet18+AgeDB, ResNet18+IMDBWiki, LSTM+STS-B, and TFT (Temporal Fu-
sion Transformer)+Electricity Load. We conduct experiments with additional models per task as follows: AllCNN+AgeDB,
MobileNetv3+AgeDB, GRU+STS-B, DNN+STS-B. The unlearning results on AllCNN+AgeDB and MobileNetv3+AgeDB
is presented in Table 10 and Table 11, respectively. The results are in line with the obtained results for ResNet18 in the
main paper. The Blindspot consistently outperforms the Gaussian Amnesiac method across both AllCNN and MobileNetv3
models on AgeDB dataset.

For STS-B dataset, the results on GRU and DNN are presented in Table 12. Similar to the LSTM results, the Blindpsot
method gives better results in comparison to Gaussian Amnesiac for GRU and DNN models in text similarity benchmark.

G.5. Additional analysis with density curves

The density curves for difference between predictions by the unlearning methods and retrained model on IMDB-Wiki is
shown in Figure 9. Original model’s curve has the least density around 0. In case of 0-30 forgetting, Gaussian Amnesiac has
the highest density around 0, surprisingly followed by finetuning. For 60-100 forgetting, all the methods have very similar
density curves. Figure 10 depicts the density curves for STS-B SemEval 2017 dataset. We observe that Blindspot has the
highest density around 0 i.e., it is the most similar to the retrained model. Only exception is in random sample forgetting
where all the models have similar density curves. Figure 11 shows the density curve comparison between all the methods in
Electricity Load dataset. The proposed Blindspot method obtains the highest density around 0.
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Table 10: Unlearning results on AllCNN+AgeDB

Forget Metric Original Retrain FineTune Gaussian Blindspot
Set Model Model Amnesiac(Ours) (Ours)

0-30

err Dr
t ↓ 9.33 11.38 9.10 10.03 10.07

err Df
t ↑ 12.77 24.31 15.49 16.10 21.75

att prob ↓ 0.61 0.28 0.25 0.33 0.25
w dist ↓ 5.52 - 3.58 4.54 1.47

AIN ↑ - - 1.0 1.0 1.0

60-100

err Dr
t ↓ 9.69 10.09 8.24 8.85 9.14

err Df
t ↑ 12.95 28.37 20.48 25.76 28.49

att prob ↓ 0.53 0.08 0.21 0.09 0.06
w dist ↓ 9.85 - 4.32 1.37 1.09

AIN ↑ - - 0.25 2.5 1.07

Table 11: Unlearning results on MobileNetv3+AgeDB

Forget Metric Original Retrain FineTune Gaussian Blindspot
Set Model Model Amnesiac(Ours) (Ours)

0-30

err Dr
t ↓ 8.56 8.00 7.35 8.82 8.63

err Df
t ↑ 9.52 17.56 16.63 14.49 19.96

att prob ↓ 0.67 0.28 0.34 0.17 0.04
w dist ↓ 4.90 - 1.49 4.36 3.42

AIN ↑ - - 0.31 1.31 1.15

60-100

err Dr
t ↓ 7.79 7.84 7.13 8.07 9.47

err Df
t ↑ 11.58 20.68 17.92 17.20 30.40

att prob ↓ 0.62 0.30 0.25 0.45 0.28
w dist ↓ 5.04 - 1.46 3.63 16.44

AIN ↑ - - 0.02 0.71 0.17

Figure 9: Density curves for relative difference between predictions by the unlearning methods and the retrained model on
each forget sample in IMDB-Wiki. Left: 0 to 30 age band forgetting, Right: 60 to 100 age band forgetting

Figure 10: Distribution plots of differences between predictions by the respective methods and retrained model on each
sample of forget set for unlearning in STS-B SemEval-2017 dataset. Left: Band 0-2 forgetting, Middle: 1000 random
samples forgetting, Right: Year 2015 samples forgetting
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Table 12: Unlearning results on Semantic Text Similarly Benchmark (STS-B) SemEval-2017 dataset.

Model Forget Metrics Original Retrain FineTune Gaussian Blindspot
Set Model Model Amnesiac(Ours) (Ours)

GRU

0-2

err Dr
t ↓ 2.7 0.91 1.10 1.11 1.06

err Df
t ↑ 1.82 7.2 5.02 4.99 5.34

att prob ↓ 0.52 0.004 0.05 0.04 0.03
w dist ↓ 1.7 - 0.63 0.63 0.54

AIN ↑ - - 1 1 1
err Dr

t ↓ 2.08 2.07 2.13 2.13 2.21
Random err Df

t ↑ 1.63 2.14 1.58 1.59 1.59
Samples att prob ↓ 0.63 0.54 0.72 0.75 0.61

1000 w dist ↓ 0.20 - 0.16 0.08 0.26
AIN ↑ - - 0.03 0.03 0.03

err Dr
t ↓ 2.08 2.15 2.10 2.15 2.17

Year err Df
t ↑ 2.03 2.99 2.05 2.33 2.13

2015 att prob ↓ 0.57 0.56 0.4 0.42 0.36
Samples w dist ↓ 0.39 - 0.31 0.29 0.27

AIN ↑ - - 0.03 0.06 0.03

DNN

0-2

err Dr
t ↓ 2.79 1.02 1.19 1.37 1.17

err Df
t ↑ 1.98 7.0 5.78 4.71 5.74

att prob ↓ 0.54 0.01 0.05 0.05 0.04
w dist ↓ 1.39 - 0.30 0.55 0.29

AIN ↑ - - 0.75 0.75 0.75
err Dr

t ↓ 2.20 2.29 2.28 2.21 2.24
Random err Df

t ↑ 2.03 2.28 2.07 2.07 2.06
Samples att prob ↓ 0.63 0.49 0.67 0.58 0.56

1000 w dist ↓ 0.22 - 0.11 0.13 0.06
AIN ↑ - - 0.03 0.03 0.07

err Dr
t ↓ 2.20 2.37 2.21 2.22 2.24

Year err Df
t ↑ 2.56 3.58 2.90 2.90 2.97

2015 att prob ↓ 0.46 0.36 0.44 0.46 0.36
Samples w dist ↓ 0.35 - 0.27 0.27 0.22

AIN ↑ - - 1 .0 1.0 1.0

Figure 11: Density curves for difference between predictions by the unlearning methods and retrained model on each sample
of the forget set for unlearning on UCI Electricity load dataset. Left: forgetting samples with labels <= −0.85, Right:
forgetting samples with labels >= 0.85

19


