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Abstract
Generalization is one of the most fundamental
challenges in deep learning, aiming to predict
model performances on unseen data. Empirically,
such predictions usually rely on a validation set,
while recent works showed that an unlabeled vali-
dation set also works. Without validation sets, it
is extremely difficult to obtain non-vacuous gen-
eralization bounds, which leads to a weaker task
of finding generalization measures that monotoni-
cally relate to generalization error. In this paper,
we propose a new generalization measure REF
Complexity (RElative Fitting degree between sig-
nal and noise), motivated by the intuition that a
given model-algorithm pair may generalize well
if it fits signal (e.g., true labels) fast while fit-
ting noise (e.g., random labels) slowly. Empir-
ically, REF Complexity monotonically relates
to test accuracy in real-world datasets without
accessing additional validation sets, achieving
−0.988 correlation on CIFAR-10 and −0.960
correlation on CIFAR-100. We further theoret-
ically verify the utility of REF Complexity un-
der three different cases, including convex and
smooth regimes with stochastic gradient descent,
smooth regimes (not necessarily convex) with
stochastic gradient Langevin dynamics, and lin-
ear regimes with gradient descent. The code is
available at https://github.com/96208
6838/REF-complexity.

1. Introduction
Generalization is one of the most fundamental mysteries
in deep learning, measuring how the trained model per-
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forms on unseen data. By convention, people empirically
estimate generalization error via validation data that are
independently drawn from the population distribution. How-
ever, such validation data are obtained by splitting a portion
of training data, causing a shrink in the training set. Re-
cently, a line of work argues that labeled validation sets are
unnecessary in predicting generalization, and proposes to
predict generalization via an unlabeled validation set, e.g.,
RATT approach (Garg et al., 2021), disagreement-based
approaches (Jiang et al., 2022). However, the additional
dataset, even unlabeled, might be expensive. This naturally
leads to a question: can we estimate generalization error
without any additional dataset?

Directly answering the question can be extremely challeng-
ing (Jiang et al., 2020a). As a surrogate, people consider a
weaker task of finding generalization measures that mono-
tonically relate to generalization error (Jiang et al., 2020b;
Dziugaite et al., 2020). Unlike the predicting task that calcu-
lates the exact value of generalization error, generalization
measures are only required to sketch its trend. Such relax-
ation is meaningful in many scenarios, e.g., model selection
tasks (Zucchini, 2000; Johnson & Omland, 2004; Emmert-
Streib & Dehmer, 2019).

There are various types of generalization measures in the
existing literature, which can be roughly split into four
branches (Jiang et al., 2020b): (a) empirical measures, (b)
norm-based measures, (c) PAC-Bayesian and information-
based measures, (d) stability-based measures. However, (a)
may imply a spurious causal relationship between the mea-
sure and generalization (Dziugaite & Roy, 2017), (b) even
negatively correlate with generalization error (Jiang et al.,
2020b), (c) only applies in stochastic models instead of stan-
dard training scenarios. Therefore, (d) stands out due to
its algorithm-dependent property and is considered a poten-
tial approach to generalization measure analysis (Nagarajan
& Kolter, 2019; Jiang et al., 2020b). Existing works have
proposed meaningful generalization measures based on al-
gorithmic stability. For example, Hardt et al. (2016) theoret-
ically study algorithmic stability and argue that “train faster,
generalize better”, and Jiang et al. (2020b) observe that the
initial phase of optimization benefits the final generaliza-
tion. Although these arguments perform well empirically,
there still exist phenomena that the existing stability-based
measures cannot explain. For example, stochastic gradi-
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ent descent (SGD) usually generalizes better while trained
slower (with more iterations) than gradient descent (GD).

In this paper, we propose a new measure following stability-
based approaches, which (a) has theoretical backbones, (b)
empirically works, and (c) is applicable in standard training
scenarios, named REF Complexity (RElative Fitting degree
on signal and noise). The complexity is motivated by the
intuition that a given model-algorithm pair may generalize
better if it fits signal faster while fitting noise slower during
the training process. Empirically, one can treat the real-
world dataset as the signal and the same dataset with random
labels as the noise. Given the training set D and training
algorithm A, REF Complexity is informally derived as

Tn(D,A) =
The degree of fitting noise
The degree of fitting signal

, (1)

where n denotes the sample size. Intuitively, REF Complex-
ity measures the degree to which a model-algorithm pair
can distinguish between signal and noise during training,
and Tn(D,A) is anticipated to monotonically increase with
respect to generalization error since fitting noise usually
hurts generalization. Besides the property (a, b, c) above,
REF Complexity (d) does not require an additional dataset,
and (e) increases with the noise scale. Property (e) meets
the requirement that the generalization bound (and its corre-
sponding measure) should increase with the degree of noisy
labels, proposed in Nagarajan & Kolter (2019).

From the experimental perspective, REF Complexity mono-
tonically correlates with the generalization error (See Fig-
ure 1), demonstrated by experiments on CIFAR-10 and
CIFAR-100. We further show that REF Complexity ex-
plains several phenomena in deep learning. We take the
comparison between stochastic algorithms (e.g., SGD) and
deterministic algorithms (e.g., GD) as an example. SGD
usually fits signal and noise both slower than GD. How-
ever, we observe that SGD is trained significantly slower
when fitting noise compared to signal, leading to a smaller
REF Complexity. Therefore, SGD generalizes better than
GD under REF Complexity frameworks, which accords
with reality. As a comparison, existing measures including
stability-based measures cannot explain the phenomenon.

From the theoretical perspective, we validate the utility of
REF Complexity by deriving that generalization error can
be bounded using REF Complexity under several different
cases, including convex and smooth regimes with SGD, and
smooth regimes (not necessarily convex) with Stochastic
Gradient Langevin Dynamics (SGLD). The derivation is
inspired by the stability-based techniques in generalization
analysis. Informally, the degree of fitting noise ensures that
the training gradient cannot be extremely large, leading to
a guarantee for algorithmic stability. Similar conclusions
hold beyond SGD and SGLD, and we also derive a similar
bound under the regime of GD with overparameterized lin-

ear regression, following the benign overfitting techniques
proposed in Bartlett et al. (2020).

We list our contributions as follows:

1. We propose a new generalization measure named REF
Complexity, which quantifies how well a given model-
algorithm pair distinguishes between signal and noise
during training. REF Complexity extends the scope of
stability-based measures.

2. Experimental results on CIFAR-10 and CIFAR-100
demonstrate the effectiveness of REF Complexity,
where REF Complexity monotonically decreases with
respect to test accuracy with correlations of −0.988
and −0.960 on CIFAR-10 and CIFAR-100, respec-
tively.

3. We further theoretically validate the utility of REF
Complexity under several different regimes, including
convex and smooth loss with SGD, smooth loss (not
necessarily convex) with SGLD, and linear regimes
with GD.

2. Related Work
Algorithmic Stability is one of the most popular tech-
niques in generalization analysis (Bousquet & Elisseeff,
2002; Hardt et al., 2016). A line of works derives high
probability bounds based on algorithmic stability (Feldman
& Vondrák, 2019; Bousquet et al., 2020). Another line of
works derives algorithmic stability under various regimes,
e.g., unbounded gradient (Lei & Ying, 2020), non-smooth
loss (Bassily et al., 2020), stochastic gradient Langevin dy-
namics (Mou et al., 2018; Li et al., 2020). One of the proper-
ties of algorithmic stability is that the corresponding bound
usually increases with time, motivating the optimization-
based measures which quantify the number of iterations to
reach a given loss threshold (Jiang et al., 2020b).

Theoretical generalization measures. Besides stability-
based measures, there are many other theory-motivated
measures. A line of work focuses on the norm-based
measures (Neyshabur et al., 2015; Bartlett et al., 2017;
Neyshabur et al., 2018; Wei & Ma, 2020), but it may dra-
matically fail to show monotonically correlation with test
errors (Nagarajan & Kolter, 2019; Jiang et al., 2020b). An-
other line of work focus on PAC-Bayesian (McAllester,
1999; Dziugaite & Roy, 2017; Neyshabur et al., 2017) and
information-based analysis (Russo & Zou, 2016; Xu & Ra-
ginsky, 2017; Haghifam et al., 2020; 2021). This line of
work performs well numerically but requires changing the
training scheme with stochastic models (Jiang et al., 2020b).

Predicting generalization errors. Compared to general-
ization measure approaches, predicting the exact generaliza-
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(a) CIFAR-10 (b) CIFAR-100

Figure 1. Correlation between REF Complexity and test accuracy. We conduct over one hundred experiments with ResNet20, ResNet32,
and RseNet56 on CIFAR-10 and CIFAR-100, showing that REF Complexity negatively relates to test accuracy with correlations of
−0.988 and −0.960 on CIFAR-10 and CIFAR-100, respectively. We defer the experiment details to Section 5.

tion error is a more difficult task. Traditional approaches
split a holdout partition (namely, validation set) from the
available labeled data, where performances on the valida-
tion set directly imply generalization error. However, this
approach restricts the number of labeled data in the training
process. Recently, Garg et al. (2021) leveraged an unlabeled
dataset (with random labels) to augment the labeled dataset
and predict generalization via the different performances
on the two datasets. Besides, a line of work (Jiang et al.,
2022) focuses on the relationship between disagreement
and generalization, where the disagreement comes from the
different model performances (e.g., trained with different
training schemes) on unlabeled data. Despite not requiring
additional labeled datasets (validation set), these approaches
still need additional unlabeled datasets.

Empirical generalization measures. Besides those mea-
sures motivated by theoretical analysis, there are also em-
pirical approaches to finding generalization measures or
predicting generalization errors, including sharpness-based
techniques (Keskar et al., 2017), robustness on representa-
tions (Natekar & Sharma, 2020) and robustness on augmen-
tation (Aithal et al., 2021).

Distinguishing signal and noise. The structure of the re-
sponse is one of the basic data properties in generaliza-
tion analysis. For example, Nagarajan & Kolter (2019) ar-
gues that the generalization bound should increase with the
noise levels (e.g., the portion of random labels). However,
some generalization measures do not even distinguish signal
and noise (e.g., Rademacher complexity (Shalev-Shwartz
& Ben-David, 2014)), and therefore only return vacuous
generalization bound when the model can fit arbitrary ran-
dom noise (Zhang et al., 2021). A line of work implic-

itly considers different performances of signal and noise,
e.g., algorithmic stability can extract the output structure
since neural networks usually fit signal faster than fitting
noise (Zhang et al., 2021), and NTK-based data-dependent
measure grows with the potion of noise (Arora et al., 2019).
Besides, another line of work focuses on bounding the noise
tolerance (Rudin, 2005; Manwani & Sastry, 2013; Frénay
& Verleysen, 2014; Bansal et al., 2021), which analyzes the
training accuracy decrease when adding a portion of label
noise. This differs from our approach, where we aim at
bounding generalization using noise tolerance. Of partic-
ular relevance here is Teng et al. (2022), which explicitly
split the effects of signal and noise during the generaliza-
tion analysis. Both bounds are inspired by the intuition
that neural networks may learn simple patterns (e.g., signal)
faster than complex patterns (e.g., noise) (Arpit et al., 2017;
Rolnick et al., 2017; Rahaman et al., 2019). However, the
bound in Teng et al. (2022) cannot directly lead to a simple
generalization measure.

3. Preliminaries
This section introduces basic notations and necessary as-
sumptions. Some of the notations differ from the existing
literature because besides the original data distribution, we
also consider two parallel types of distributions: signal dis-
tribution and noise distribution. We subscript them by sig
and noi, respectively.

3.1. Basic Notations

Data Distribution. Let (x, y) ∼ P ⊂ Rd × R denote
the input and the corresponding response. We consider
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the ground truth function y = f(x;θ∗) + ϵ where ϵ ∈
R denotes the random noise, θ∗ ∈ Rp denotes the best
parameter, and f(·;θ∗) denotes a function f indexed by
parameter θ∗. In such regimes, we assume that E[ϵ|x] = 0.
Without loss of generality, assume that f(x;0) ≡ 0. Let
D = {(xi, yi)}i∈[n] denote the dataset with n data points
sampled from distribution P , where we omit the dependency
of n for simplicity. The corresponding signal dataset and
noise dataset are denoted by Dsig = {(xi, f(xi;θ

∗))}i∈[n]

and Dnoi = {(xi, ϵi)}i∈[n] with distribution Psig and Pnoi.

Loss. Let ℓ(θ; z) denote the loss function with pa-
rameter θ on sample z = (x, y), given the prediction
f(x;θ). The training loss is then denoted by Ln(θ;D) =
1
n

∑
zi∈D ℓ(θ; zi). The corresponding excess risk is then

denoted by E(θ;P) = Ez∼Pℓ(θ; z) − ℓ(θ∗; z), mea-
suring the distance between θ and the best parameter
θ∗. We assume that the excess risk is well-behaved,
namely, E(θ∗;P) ≤ E(θ;P), E(θ∗;Psig) ≤ E(θ;Psig),
and E(0;Pnoi) ≤ E(θ;Pnoi) for all θ.

Algorithm. Let At denote the algorithm which takes a
dataset D as an input and returns a parameter θ(t) =
At(D) ∈ Rp at step t. In the following text, we prefer
the notation At(D) to emphasize the dependency on dataset
D. The algorithm can be either deterministic (e.g., gradient
descent) or randomized (e.g., stochastic gradient descent).
When the context is clear, let A = {Aj}j∈[t] denote algo-
rithms in all steps. To simplify the discussion, we assume
that the algorithm starts from zero, namely, A0(D) = 0.
During the discussion, we are interested in the excess risk of
At(D), namely, E(At(D);P). Without loss of generality,
assume that A0(Dsig) = A0(D) and A0(Dnoi) = 0.

3.2. Algorithmic Stability

Algorithmic stability is one of the most popular approaches
to generalization (Bousquet & Elisseeff, 2002; Hardt et al.,
2016). Informally, algorithmic stability measures how the
model performance alters when changing a training sample,
which leads to generalization bound via Proposition 3.1.

Proposition 3.1 (Algorithmic stability, from Hardt et al.
(2016)). Assume that the algorithm At is γ-uniformly-
stable, namely, for any two datasets D and D′ with only one
different data point,

sup
z̃

EA[ℓ(At(D); z̃)− ℓ(At(D′); z̃)] ≤ γ. (2)

Then the following generalization bound holds

EA,D[Ez∼Pℓ(At(D); z)− Ln(At(D);D)] ≤ γ. (3)

One can generalize the results in Proposition 3.1 using other
types of algorithmic stability, e.g., on-average algorithmic
stability (Lei & Ying, 2020). A line of research derives

generalization measures under specific regimes based on
Proposition 3.1. Among them, the most popular one is
the bound derived in general convex and smooth regimes,
proposed in Proposition 3.2.

Proposition 3.2 (Convex and smooth regimes, from Hardt
et al. (2016)). Assume that the loss function ℓ(·; z) is convex,
M -smooth and L-Lipschitz for any sample z, it holds that

EAt,D[Ez∼Pℓ(At(D); z)− Ln(At(D);D)] ≤ 2ηt

n
L2,

(4)
where η denotes the constant stepsize satisfying η ≤ 2/M .

Based on Proposition 3.2, a t/n-type generalization mea-
sure directly follows, leading to the argument train faster,
generalize better (Hardt et al., 2016). In the next section, we
show a different generalization measure under the stability-
based framework, contrasting the signal and noise during
the training process.

4. Bounding Generalization via REF
Complexity

In this section, we derive generalization bound using REF
Complexity, providing theoretical guarantees for the metric.
We first introduce the formal notion of REF Complexity in
Section 4.1 and derive generalization bound under convex
and smooth regimes with SGD in Section 4.2. We then relax
the convex assumptions by considering smooth regimes with
SGLD in Section 4.3. We further validate that such bounds
hold beyond SGD and SGLD by considering GD under
overparameterized linear regression regimes in Section 4.4.
During the analysis, we consider the metric of excess risk
introduced before, which is widely considered in the related
literature (Bartlett et al., 2020; Teng et al., 2022).

4.1. REF Complexity

We first introduce the formal definition of REF Complexity,
which quantifies the ability of a model-algorithm pair to
distinguish between signal dataset Dsig and noise dataset
Dnoi. Motivated from Equation 1, for a given training dataset
D and training algorithm At, its theoretical REF Complexity
can be measured as

T α
n (D,At)

=
1− ELn(At(Dnoi);Dnoi)/Ln(A0(Dnoi);Dnoi)

1− Ln(At(Dsig);Dsig)/Ln(A0(Dsig);Dsig)
,

(5)

where the expectation is taken over the random noise in Dnoi.
The metric T α

n (D,At) becomes larger when fitting noise
more (with smaller Ln(At(Dsig);Dsig)), given the degree
of fitting signal.
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4.2. SGD under Convex and Smooth Regimes

This section introduces a generalization bound via REF
Complexity in convex cases with SGD, starting from the
basic notations. The core technique in the proof is algorith-
mic stability. The key intuition is that, one can bound the
algorithm stability using a cumulative gradient, which is
further bounded by the degree of fitting noise.

Settings. We follow the notations in Section 3 when the
context is clear. Additionally, we consider a specific algo-
rithm At: constant-stepsize SGD with replacement, where
the iteration performs as

At+1(D) = At(D)− η∇ℓ(At(D); zt), (6)

where zt is sampled uniformly from dataset D. We
sketch the gradient noise in step t as σ2

w(t;D) =
EA,D

1
n

∑
i∈[n] ∥ℓ(At(D); zi)∥2 − ∥∇Ln(At(D);D)∥2.

Similar notations are also used in optimization-relevant
papers (Shalev-Shwartz & Ben-David, 2014). We
assume a bounded gradient noise regime in the noise
training, where σ2

w(t;Dnoi) ≤ σ2
w = O(1) for any

step t. Besides, we assume that the gradient noise is
non-increasing during the noisy training process, namely,
EA,Dnoiσ

2
w(t;Dnoi) ≤ EA,Dnoiσ

2
w(j;Dnoi) for any j ≤ t.

This assumption is valid under convex regimes where the
gradient is approximately non-increasing (Li et al., 2020).

Additionally, we assume the following Decomposition con-
dition for the excess risk, aiming to decompose the influence
of signal and noise in the generalization analysis.

Assumption 4.1 (Excess Risk Decomposition). We assume
that the excess risk can be decomposed into its signal com-
ponent and noise component, namely, there exists a constant
c1 such that for any given time t ≥ T1,

EE(At(D);P)

≤c1 [EE(At(Dnoi);Pnoi) + EE(At(Dsig);Psig)] + ψ1(n),

where ψ1(n) → 0 as n→ ∞, and the expectation is taken
over both algorithm At and the dataset D.

Assumption 4.1 can hold in both linear and non-linear cases
under some additional assumptions, as demonstrated in Teng
et al. (2022). The next Assumption 4.2 sketches the proper-
ties of signal training and noise training.

Assumption 4.2 (Signal and Noise Training). We assume
that the signal training component satisfies for any t ≥ T2,
there exists a constant c2 such that

EE(At(Dsig);Psig) ≤ c2EE(At(Dnoi);Pnoi)+ψ2(n), (7)

where ψ2(n) → 0 as n→ ∞. Besides, we assume that the
noise training component satisfies that for any t ≥ T3,

ELn(At(Dnoi);Dnoi) ≤ ELn(A0(Dnoi);Dnoi). (8)

We additionally assume that the initial loss in noise training
is bounded, namely, there exists a constant c3 such that

Ln(A0(Dnoi);Dnoi) ≤ c3. (9)

The first part on signal implies that signal training is a rel-
atively simpler task than noise training, which is demon-
strated empirically (e.g., Arora et al. (2019); Zhang et al.
(2021)) and theoretically (e.g., Gaussian Mixture Mod-
els (Cao et al., 2021), overparameterized linear regression
and Hypercube Classifier (Negrea et al., 2020)). The sec-
ond part on noise requires that the training loss decreases
during noise training in expectation, without which REF
Complexity might become negative. This holds with a suf-
ficiently small learning rate, guaranteed by optimization
theory (Shalev-Shwartz & Ben-David, 2014).

We next show in Proposition 4.3 that overparameterized
linear regression regime with MSE loss satisfies the above
assumptions (Teng et al., 2022).

Proposition 4.3. Overparameterized linear regression
regimes satisfy both Assumption 4.1 and Assumption 4.2.
Specifically, when the optimal parameter ∥θ∗∥ = O(1) and
sample covariance ∥Σx∥ = O(1), we derive that

(a.) For all step t, it holds that EE(At(D);P) ≤
2[EE(At(Dsig);Psig) + EE(At(Dnoi);Pnoi)] ;

(b.) For t ≥ n, EE(At(Dsig);Psig) = O( 1√
n
) ;

(c.) With sufficiently small η, ELn(At(Dnoi);Dnoi) ≤
ELn(A0(Dnoi);Dnoi).

We are now ready to introduce the main theorem, which
bounds the excess risk using REF Complexity T α

n (D,At)
in general convex regimes.

Theorem 4.4 (Convex, smooth, with SGD). Assume that the
loss ℓ(θ; z) is convex and M -smooth with respect to θ for
any sample z. Consider the SGD training regime with con-
stant stepsize η. Under Assumption 4.1 and Assumption 4.2,
the following inequality holds when

∑
j∈[t] σ

2
w(j;Dnoi) =

o(n2), t ≥ max{T1, T2, T3}, and η ≤ 1√
t
,

ED,AtE(At(D);P)

≤
cmax

{
u, u2

}
√
t

ED,At
T α
n (D,At) + ψ(n),

(10)

where we define u ≜
√

1
n (1 +

t
n ) for simplicity, and the

term ψ(n) → 0 as n → ∞. The constant c > 0 denotes
a constant related to the constant c1, c2, c3,M in Assump-
tion 4.1 and Assumption 4.2.

Derived from Theorem 4.4, REF Complexity T α
n (D,At) is

valid from two aspects: (a) if T α
n (D,At) is relatively small,
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the excess risk is consistent and, therefore, would be rela-
tively small. Here we use consistency to represent a bound
that converges to zero as the sample size goes to infinity.
(b) if T α

n (D,At) is relatively large, the bound is dominated
by the first term. Therefore, T α

n (D,At) is a proper index
for generalization since the proposed upper bound shows an
approximate correlation. We refer to Figure 3 in Appendix F
for more illustration.

About the order in ψ. Besides the order of ψ1, ψ2 in As-
sumption 4.1 and Assumption 4.2, the order of ψ is also
closely related to the term 1

n2

∑
j∈[t] σ

2
w(j;Dnoi). To en-

sure the consistency, we assume that
∑

j∈[t] σ
2
w(j;Dnoi) =

o(n2). If t = o(n2) the assumption directly holds
since σ2

w(j;Dnoi) = O(1). However, the estimation on∑
j∈[t] σ

2
w(j;Dnoi) can be much better, since the gradient

norm usually decreases in expectation along the trajectory
under convex regimes (e.g., strong growth assumption in
Schmidt & Roux (2013); Cevher & Vu (2019). This would
lead to a weaker requirement on t.

About other assumptions. The convex and smooth as-
sumption used in Theorem 4.4 are also used in algorithmic
stability relevant papers (e.g., Lei & Ying (2020)). Be-
sides, the stepsize assumption is valid in SGD-relevant anal-
ysis (e.g., section 6.2 in Bubeck (2015)). We also remark
that the assumption

∑
j∈[t] σ

2
w(j;Dnoi) = o(n2) usually do

not contradict to the time requirement T1, T2, T3 used in
Assumption 4.1 and Assumption 4.2. For example, in over-
parameterized linear regression cases, the first assumption is
weaker than t = o(n2), and the second assumption requires
that t ≥ max{T1, T2, T3} = n. Therefore the bound is at
least valid in the region t ∈ (Ω(n), o(n2))1.

Here are three key steps during the proof. The first is to
decompose the excess risk into signal component and noise
component based on Assumption 4.1 and Assumption 4.2.
The second is to bound the algorithmic stability of the noise
part using the cumulative gradient, based on the convex
and smooth assumption. And the third is to bound cumu-
lative gradient using REF Complexity, which is derived
by smoothness assumption. We defer the whole proof to
Appendix A. We finally remark that we here provide the
generalization bound with the expectation version instead of
the high probability version, due to the inherent properties
of stability-based techniques. One can generalize the results
to high probability versions following Feldman & Vondrák
(2019); Bousquet et al. (2020).

Remark 4.5 (Comparison to algorithmic stability). The mea-
sures proposed in Theorem 4.4 are fundamentally different
from the stability-based approaches, although our bound is
derived via stability-based techniques. The measure pro-

1We here use the notation (Ω(n), o(n2)) to represent an in-
terval with lower bound in order Ω(n) and upper bound in order
o(n2).

posed in this paper explicitly quantifies the ability to dis-
tinguish signal and noise, which differs from the existing
measures. We finally remark that the goal of Theorem 4.4
is not to provide a tight bound but to validate the utility of
REF Complexity.

4.3. SGLD under Smooth Regime

In this section, we relax the convexity assumptions required
in Section 4.2. The reason we need convexity in Section 4.2
is the one-expansion property under convexity with SGD,
required by algorithmic stability analysis (See Lemma A.4
in Appendix). This property is easily violated under non-
convex regimes. Fortunately, the convexity assumption
can be avoided in Stochastic Gradient Langevin Dynam-
ics (SGLD) training (Mou et al., 2018; Li et al., 2020).

Settings. We follow the notations and basic assumptions in
Section 3 and Section 4.2 when the context is clear. Unlike
the SGD settings, the iteration of SGLD performs as

At+1(D) = At(D)− η∇ℓ(At(D); zt) +
σ√
2
nt,

where nt ∈ Rp follows a standard Gaussian distribution,
and zt is sampled uniformly from dataset D. We next intro-
duce the theorem based on SGLD, which does not require
convexity assumptions.

Theorem 4.6 (Smooth, with SGLD). Assume that the loss
ℓ(θ; z) is O(1)-bounded, L-Lipschitz, and M -smooth with
respect to θ for any sample z. Consider SGLD with noise
scale σ and stepsize η < min{ σ

20L ,
1
M }. Under Assump-

tion 4.1 and Assumption 4.2, if p = o(n
2

ηt ), the following

inequality holds when
∑

j∈[t] σ
2
w(j;Dnoi) = o(n

2σ2

η2 ) and
t ≥ max{T1, T2, T3},

ED,At
E(At(D);P) ≤ c′

√
η

nσ

√
T α
n (D,At) + ψ′(n), (11)

where the term ψ′(n) → 0 as n→ ∞. The constant c′ > 0
denotes a constant related to the constant c1, c2, c3,M in
Assumption 4.1 and Assumption 4.2.

Compared to Theorem 4.4, Theorem 4.6 has a milder as-
sumption on the gradient noise

∑
j∈[t] σ

2
w(j;Dnoi) for a

small learning rate. The benefit comes from the tighter
bound of SGLD compared to SGD. Unfortunately, one may
notice that there is an additional dimension-dependent term
in Theorem 4.6, namely, p = o(n

2

ηt ). This comes from the
noise term nt ∈ Rp where a large dimension would bring
more noise. We defer the whole proofs to Appendix B.

4.4. GD under Overparameterized Linear Regression

To validate the generality of REF Complexity, we prove a
similar argument under overparameterized linear regression
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Algorithm 1 Estimate REF Complexity in practice

Input: Training set D = {(xi, yi)}i∈[n], optimization algorithm At, training loss function Ln(·, ·).
1: Calculate the training loss on step 0 and step t for the real-world dataset, namely, Ln(A0(D);D) and Ln(At(D);D);
2: Generate m randomly labeled datasets D(j)

noi = {(xi, ỹ
(j)
i )}i∈[n], j ∈ [m], where ỹ(j)i denotes a random noise;

3: Calculate the training loss on step 0 and step t for the randomly labeled dataset, namely, Ln(A0(D(j)
noi );D

(j)
noi ) and

Ln(At(D(j)
noi );D

(j)
noi );

Output: T β
n (D,At) =

Ln(At(D);D)/Ln(A0(D);D)
1
m

∑
j∈[m] Ln(At(D(j)

noi );D
(j)
noi )/Ln(A0(D(j)

noi );D
(j)
noi )

.

regimes. One may generalize the results to kernel regression
regimes (e.g., neural tangent kernel), which is left for future
work. Our techniques in this section are inspired by Bartlett
et al. (2020); Xu et al. (2022).

Settings. We follow the notations in Section 3 when the
context is clear. Additionally, set f(x;θ∗) = x⊤θ∗ as the
ground truth function. Let Σx ≜ Exx⊤ denote the covari-
ance matrix with non-increasing eigenvalues λi, i ∈ [d]. Let
rk(Σ) =

∑
i>k λi

λk+1
denote the corresponding effective rank,

and k∗ = min{k ≥ 0 : rk(Σ) ≥ bn} for some constant
b > 0. Assume that the noise y − x⊤θ∗ is σ2

y-subGaussian,

and x = Σ
1/2
x z can be represented as linear transformation

of z where z denotes a random vector with independent and
σ2
x-subGaussian coordinate.

Theorem 4.7 (Overparameterized Linear Regression with
GD). Under overparameterized linear regression regimes,
assume that r0(Σ) = o(n) and k∗ = o(n). Besides, assume
that ∥θ∗∥2 = O(1), ∥Σx∥2 = O(1) in a constant scale. We
consider the GD training process with zero initialization
and constant stepsize η. For any given δ > 0 which does
not vary with sample size n and satisfies log(1/δ) = o(n),
for t = ω(1)2, with probability at least 1− δ,

E(At(D);D) ≤ c log(1/δ)σ2
yT α

n (D,At) + ψ̃(n), (12)

where ψ̃(n) → 0 as n→ ∞ and c > 0 denotes a constant.

We remark that the bound proposed here can be consistent
if T α

n (D,At) → 0 as n → ∞ for some given fixed t.
This usually holds when t = o(n) with constant stepsize.
Besides, different from the results proposed in Theorem 4.4,
Theorem 4.7 does not contain time dependency (t/n-type
term). This is due to the different techniques used in the
proof. Unfortunately, to our best known, the techniques used
in this section cannot be easily applied to general convex
regimes. We defer the whole proofs to Appendix C.

5. Experiment
This section provides experimental results to validate the
utility of REF Complexity, where we defer the experiment

2The statement t = ω(1) means that t → ∞ as n → ∞.

details in Appendix D. Before showing the experiment re-
sults, we first revisit the formal definition of REF Complex-
ity in Section 4.1. Notice that Equation 5 requires a clean
dataset Dsig. This simplifies the theoretical discussion but is
nearly impossible in practice, since real-world datasets usu-
ally mix signal and noise. Despite all this, a possible way is
to quantify a data-algorithm pair’s ability to distinguish the
real-world dataset and the randomly labeled dataset. Such a
metric implies the ability to distinguish between signal and
noise, since the real-world dataset usually contains enough
signal information. Besides, since we use the real-world
dataset to surrogate the signal dataset, it is safer to put the
related term in the numerator instead of the denominator.
Based on the discussion above, we formulate the REF Com-
plexity used in practice as T β

n (D,At), given the dataset D
and algorithm At,

T β
n (D,At) =

Ln(At(D);D)/Ln(A0(D);D)

ELn(At(Dnoi);Dnoi)/Ln(A0(Dnoi);Dnoi)
,

where n denotes the sample size, and the expectation
is taken over the randomness in Dnoi. REF Complex-
ity T β

n (D,At) becomes larger when fitting noise more.

We summarize the algorithm in Algorithm 1, which returns
the REF Complexity value T β

n (D,At). The construction of
random noise (Step 2) varies from task to task. For example,
we can use Gaussian random noise in regression problems
and uniform random labels in classification problems.

5.1. REF Complexity in CIFAR-10 and CIFAR-100

The first experiment aims to show the correlation between
REF Complexity and generalization metrics. Specifically,
we conduct over one hundred experiments on CIFAR-10
and CIFAR-100, and plot each regime’s test accuracy and
REF Complexity in Figure 1. Experimental results in Fig-
ure 1 illustrate that REF Complexity negatively correlates
to test accuracy with correlations of −0.988 and −0.960 on
CIFAR-10 and CIFAR-100, respectively.

As a comparison, the measures without noise terms (REF
w/o noi), Ln(At(D);D)

Ln(A0(D);D) only return correlations −0.585 and
−0.481, showing that the noise dataset is crucial in REF
Complexity. Besides, the measures without initial terms
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Table 1. Correlation between REF Complexity and test accuracy. A generalization measure performs well if the correlations are all
positive/negative, and their absolute values are close to one. The baseline measures follow Jiang et al. (2020b) (see Appendix D).

TYPE NORM-BASED MEASURES

MEASURE L2-NORM L2-DIST F-NORM INV-MARGIN SPECTRAL SPECTRAL/MARGIN

BATCH SIZE -0.935 0.899 -0.938 0.944 -0.957 -0.942
LEARNING RATE -0.910 0.980 -0.911 -0.959 -0.653 -0.982

DROPOUT 0.452 -0.072 0.449 0.676 -0.764 0.473

TYPE NORM-BASED SHARPNESS-BASED

MEASURE PATH-NORM PB-I PB-O PB-FLATNESS PB-M-I PB-M-O

BATCH SIZE -0.996 0.830 0.824 0.835 0.700 -0.909
LEARNING RATE -0.927 0.976 0.978 0.977 0.992 0.981

DROPOUT 0.452 -0.899 -0.895 -0.898 -0.647 -0.651

TYPE SHARPNESS-BASED STABILITY-BASED OURS

MEASURE PB-M-FLATNESS STEPS(1) STEPS(1.5) REF (W/O NOI) REF (W/O INIT) REF COMPLEXITY

BATCH SIZE 0.638 0.911 0.910 -0.782 -0.997 -0.998
LEARNING RATE 0.977 -0.985 -0.734 -0.501 -0.996 -0.997

DROPOUT -0.898 -0.908 -0.898 -0.766 -0.964 -0.965

(REF w/o init) Ln(At(D);D)
ELn(At(Dnoi);Dnoi)

also performs well (with
correlation −0.988 and −0.959), meaning that the initial
loss does not affect much.

5.2. Varying Only One Parameter

Besides the experiments in Section 5.1, we also evaluate
REF Complexity with only one varying parameter in Table 1.
Experiment results show the success of REF Complexity
from two aspects: (a) consistency, where the correlation of
REF Complexity is always negative, and (b) effectiveness,
where the correlation values of REF Complexity are stably
large (exceed 0.95).

Besides varying the batch size, learning rate, and dropout
as mentioned in Table 1, we also conduct additional ex-
periments to validate the effectiveness of REF Complexity
by varying sample size, label noise, width, and structure.
The results of these experiments are summarized in Table 2.
These additional experiments aim to demonstrate the con-
sistency and effectiveness of REF Complexity in different
scenarios. Since the baseline results were already inconsis-
tent, we do not present them in Table 2.

5.3. Phenomenon Explanation Under REF Complexity

We next show that REF Complexity helps explain the deep
learning phenomenon from a different perspective, taking
stochastic algorithms as an example. The success of stochas-
tic algorithms (e.g., SGD and its variants) is widely observed
in deep learning regimes. REF Complexity explains such
success, as Table 1 shows (where different batch sizes to

surrogate GD and SGD). For deterministic algorithms (e.g.,
GD), each iteration sees all samples, and therefore the train-
ing loss decreases in each iterate for both signal and noise
training. For stochastic algorithms (e.g., SGD), each iter-
ation only sees part of the samples. For signal training,
the model still learns useful information since each sample
shares the same pattern. However, things can be much more
different in noise training. The model may even oscillate
since the pattern in the first batch may damage the training
loss on the remaining samples. This leads to a better REF
Complexity for stochastic algorithms. We illustrate this
phenomenon in Appendix F (Figure 4). As a comparison,
original stability-based approaches (steps required to reach
a given loss) may even show a wrong correlation.

5.4. Effect on Training Epoch T

Previous experiment results in Section 5.1 and Section 5.2
demonstrate the effectiveness of REF Complexity under a
fixed training epoch. These findings align with the theoreti-
cal results presented in Section 4, where the upper bound is
associated with the training epoch.

In this section, we investigate the impact of the training
epoch T on the efficacy of complexity. Specifically, we
first establish that the correlation between REF Complexity
and test accuracy remains valid for epochs that are not ex-
cessively large. However, the correlation may substantially
deteriorate for extremely large epochs. Fortunately, even
for epochs where the correlation holds, the training loss has
already reached a considerably low level. For example, with
an epoch of T = 150, the training loss is around 0.01 and
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Table 2. Correlation between REF Complexity and test accuracy with varying parameters including sample size (n), additional label noise
(s), width (w) and structure. The correlation performs consistently for REF Complexity.

VARYING PARAMETER CORRELATION NOTE

SAMPLE SIZE n -0.9929 n = 4000, 10000, 20000, 40000
ADDITIONAL LABEL NOISE s -0.9824 s = 0.1, 0.2, 0.3, 0.4

WIDTH w -0.9204 w = 1, 2, 4, 8
STRUCTURE -0.9189 RESNET20, RESNET32, RESNET56, VGG16, VGG19

Table 3. Correlation between REF Complexity and test accuracy varies with different epochs. As the time T increases, the correlation
tends to decrease. Nevertheless, it is worth noting that even for relatively small T values, the training loss is already significantly
minimized. Consequently, despite the diminishing correlation, the concept of complexity remains practical and valuable in real-world
scenarios.

EPOCH T REF REF (W/O INIT) REF (W/O NOISE) REF (W/O SIGNAL) TRAINING LOSS

50 -0.9743 -0.9824 -0.2819 -0.0544 0.29067
100 -0.9487 -0.9551 -0.6394 0.2555 0.1465
150 -0.9044 -0.9141 -0.5129 0.1066 0.0871
200 -0.8866 -0.8974 -0.4487 0.0189 0.0633
250 -0.7733 -0.7816 -0.5873 0.353 0.0495
300 -0.6525 -0.664 -0.4353 0.2856 0.0351
400 -0.4958 -0.4983 -0.4682 0.3279 0.0284
500 -0.2202 -0.2142 -0.3107 0.1945 0.0250

the training accuracy exceeds 0.95. Thus, we argue that it
is still meaningful to utilize complexity in practical applica-
tions. We summarize the experiment results in Table 3.

5.5. Comparison to Rademacher Complexity

We close the section with the comparison between REF
Complexity and Rademacher complexity. Both metrics fo-
cus on the ability to fit noise. However, Rademacher com-
plexity measures the noise-fitting ability for a given func-
tion class, while REF Complexity measures it for a given
model-algorithm pair. Besides, REF Complexity distin-
guishes the signal influence and the noise influence, which
is not covered in Rademacher Complexity. As an algorithm-
independent and output-independent measure, Rademacher
complexity is inconsistent and vacuous since neural net-
works can fit arbitrary random noise (Zhang et al., 2021). In
comparison, REF Complexity is noise recognizable since
T β
n (D,At) becomes larger when the real-world dataset D

contains more noise, leading to a large generalization error.

6. Conclusion
This paper proposes a new generalization measure REF
Complexity under algorithmic stability frameworks, which
contains theoretical backbones and empirically works well
in standard training scenarios. The complexity is motivated
by the intuition that a model-algorithm pair may generalize
better if it quickly captures the signal while adapting to
the noise slowly. The success of REF Complexity inspires

several future directions. From the empirical view, one
may find more generalization measures using signal-noise
techniques. From the theoretical view, one may relax the
assumption on gradient noise used in Theorem 4.4, and the
dimension dependency in Theorem 4.6. Another interesting
direction is predicting exact generalization errors instead
of only the trend using REF Complexity frameworks. This
may potentially inspire new standards in practice parallel to
cross-validation. One can track the algorithmic performance
on a randomly labeled dataset during training, and compare
different models based on it. Additionally, REF Complexity
might have some inherent limitations. For example, it may
fail when the model completely fits both the signal and the
noise. It would be interesting to modify and improve REF
Complexity in such scenarios.
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Feldman, V. and Vondrák, J. High probability generaliza-
tion bounds for uniformly stable algorithms with nearly
optimal rate. In Beygelzimer, A. and Hsu, D. (eds.), Con-
ference on Learning Theory, COLT 2019, 25-28 June
2019, Phoenix, AZ, USA, volume 99 of Proceedings
of Machine Learning Research, pp. 1270–1279. PMLR,
2019. URL http://proceedings.mlr.press/
v99/feldman19a.html.

Frénay, B. and Verleysen, M. Classification in the presence
of label noise: A survey. IEEE Trans. Neural Networks
Learn. Syst., 25(5):845–869, 2014. doi: 10.1109/TNNL
S.2013.2292894. URL https://doi.org/10.110
9/TNNLS.2013.2292894.

Garg, S., Balakrishnan, S., Kolter, J. Z., and Lipton, Z. C.
RATT: leveraging unlabeled data to guarantee general-
ization. In Meila, M. and Zhang, T. (eds.), Proceedings
of the 38th International Conference on Machine Learn-
ing, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pp.
3598–3609. PMLR, 2021. URL http://proceedi
ngs.mlr.press/v139/garg21a.html.

Haghifam, M., Negrea, J., Khisti, A., Roy, D. M., and
Dziugaite, G. K. Sharpened generalization bounds based
on conditional mutual information and an application to
noisy, iterative algorithms. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.
cc/paper/2020/hash/712a3c9878efeae8f
f06d57432016ceb-Abstract.html.

Haghifam, M., Dziugaite, G. K., Moran, S., and Roy,
D. Towards a unified information-theoretic framework
for generalization. In Ranzato, M., Beygelzimer,
A., Dauphin, Y. N., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 26370–26381, 2021. URL
https://proceedings.neurips.cc/paper
/2021/hash/ddbc86dc4b2fbfd8a62e12096
227e068-Abstract.html.

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize
better: Stability of stochastic gradient descent. In Balcan,

M. and Weinberger, K. Q. (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, vol-
ume 48 of JMLR Workshop and Conference Proceedings,
pp. 1225–1234. JMLR.org, 2016. URL http://proc
eedings.mlr.press/v48/hardt16.html.

Jiang, Y., Natekar, P., Sharma, M., Aithal, S. K., Kashyap,
D., Subramanyam, N., Lassance, C., Roy, D. M., Dzi-
ugaite, G. K., Gunasekar, S., Guyon, I., Foret, P., Yak,
S., Mobahi, H., Neyshabur, B., and Bengio, S. Meth-
ods and analysis of the first competition in predicting
generalization of deep learning. In Escalante, H. J. and
Hofmann, K. (eds.), NeurIPS 2020 Competition and
Demonstration Track, 6-12 December 2020, Virtual Event
/ Vancouver, BC, Canada, volume 133 of Proceedings
of Machine Learning Research, pp. 170–190. PMLR,
2020a. URL http://proceedings.mlr.press/
v133/jiang21a.html.

Jiang, Y., Neyshabur, B., Mobahi, H., Krishnan, D.,
and Bengio, S. Fantastic generalization measures
and where to find them. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020b. URL https://openreview.net/forum
?id=SJgIPJBFvH.

Jiang, Y., Nagarajan, V., Baek, C., and Kolter, J. Z. Assess-
ing generalization of SGD via disagreement. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net
/forum?id=WvOGCEAQhxl.

Johnson, J. B. and Omland, K. S. Model selection in ecology
and evolution. Trends in ecology & evolution, 19(2):101–
108, 2004.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M.,
and Tang, P. T. P. On large-batch training for deep learn-
ing: Generalization gap and sharp minima. In 5th Inter-
national Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=H1oyRlYgg.

Lei, Y. and Ying, Y. Fine-grained analysis of stability and
generalization for stochastic gradient descent. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Re-
search, pp. 5809–5819. PMLR, 2020. URL http://pr
oceedings.mlr.press/v119/lei20c.html.

Li, J., Luo, X., and Qiao, M. On generalization error bounds
of noisy gradient methods for non-convex learning. In 8th

11

https://doi.org/10.3390/make1010032
http://proceedings.mlr.press/v99/feldman19a.html
http://proceedings.mlr.press/v99/feldman19a.html
https://doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1109/TNNLS.2013.2292894
http://proceedings.mlr.press/v139/garg21a.html
http://proceedings.mlr.press/v139/garg21a.html
https://proceedings.neurips.cc/paper/2020/hash/712a3c9878efeae8ff06d57432016ceb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/712a3c9878efeae8ff06d57432016ceb-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/712a3c9878efeae8ff06d57432016ceb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddbc86dc4b2fbfd8a62e12096227e068-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddbc86dc4b2fbfd8a62e12096227e068-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddbc86dc4b2fbfd8a62e12096227e068-Abstract.html
http://proceedings.mlr.press/v48/hardt16.html
http://proceedings.mlr.press/v48/hardt16.html
http://proceedings.mlr.press/v133/jiang21a.html
http://proceedings.mlr.press/v133/jiang21a.html
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=SJgIPJBFvH
https://openreview.net/forum?id=WvOGCEAQhxl
https://openreview.net/forum?id=WvOGCEAQhxl
https://openreview.net/forum?id=H1oyRlYgg
https://openreview.net/forum?id=H1oyRlYgg
http://proceedings.mlr.press/v119/lei20c.html
http://proceedings.mlr.press/v119/lei20c.html


Finding Generalization Measures by Contrasting Signal and Noise

International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview
.net/forum?id=SkxxtgHKPS.

Manwani, N. and Sastry, P. S. Noise tolerance un-
der risk minimization. IEEE Trans. Cybern., 43(3):
1146–1151, 2013. doi: 10.1109/TSMCB.2012.22234
60. URL https://doi.org/10.1109/TSMCB.
2012.2223460.

McAllester, D. A. Pac-bayesian model averaging. In Ben-
David, S. and Long, P. M. (eds.), Proceedings of the
Twelfth Annual Conference on Computational Learning
Theory, COLT 1999, Santa Cruz, CA, USA, July 7-9, 1999,
pp. 164–170. ACM, 1999. doi: 10.1145/307400.30743
5. URL https://doi.org/10.1145/307400.3
07435.

Mou, W., Wang, L., Zhai, X., and Zheng, K. Generalization
bounds of SGLD for non-convex learning: Two theoreti-
cal viewpoints. In Bubeck, S., Perchet, V., and Rigollet,
P. (eds.), Conference On Learning Theory, COLT 2018,
Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceed-
ings of Machine Learning Research, pp. 605–638. PMLR,
2018. URL http://proceedings.mlr.press/
v75/mou18a.html.

Nagarajan, V. and Kolter, J. Z. Uniform convergence may
be unable to explain generalization in deep learning.
In Wallach, H. M., Larochelle, H., Beygelzimer, A.,
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Appendix
We show the deferred proof of Theorem 4.4 in the Appendix A, the deferred proof of Theorem 4.6 in the Appendix B, and
the deferred proof of Theorem 4.7 in the Appendix C. When the notations are clear, σ2

w(j) denotes the gradient noise in
noisy training, namely, σ2

w(j;Dnoi). We then introduce experiment details in Appendix D, and show several special cases to
illustrate REF Complexity in Appendix E. We finally show the omitted illustration graph in Appendix F.

A. Proof of Theorem 4.4
Theorem 4.4 (Convex, smooth, with SGD). Assume that the loss ℓ(θ; z) is convex and M -smooth with respect to θ for
any sample z. Consider the SGD training regime with constant stepsize η. Under Assumption 4.1 and Assumption 4.2, the
following inequality holds when

∑
j∈[t] σ

2
w(j;Dnoi) = o(n2), t ≥ max{T1, T2, T3}, and η ≤ 1√

t
,

ED,At
E(At(D);P)

≤
cmax

{
u, u2

}
√
t

ED,At
T α
n (D,At) + ψ(n),

(10)

where we define u ≜
√

1
n (1 +

t
n ) for simplicity, and the term ψ(n) → 0 as n→ ∞. The constant c > 0 denotes a constant

related to the constant c1, c2, c3,M in Assumption 4.1 and Assumption 4.2.

Proof. Firstly, due to Assumption 4.1 and Assumption 4.2, the difficulties of bounding the excess risk falls in the noise
component, that is to say,

ED,At
E(At(D);P) ≤ [c1 + c1c2]EDnoi,At

E(At(Dnoi);Pnoi) + ψ1(n) + c1ψ2(n). (13)

We next focus on the excess risk of the noise component. The first step is to bound the excess risk via the generalization gap
via Lemma A.1,

EAt,DnoiE(At(Dnoi);Pnoi) ≤ EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]. (14)

The next step is to bound the generalization gap via Lemma A.2, where we use the notion of on-average model stability
proposed in Lei & Ying (2020). We derive that

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤EAt,Dnoi [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M2)]

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t).

(15)

We finally apply Lemma A.3, which leads to

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤EAt,Dnoi [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M2)]

2

η
E[Ln(A0(Dnoi))− Ln(At(Dnoi))]

+ [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M2)][2

∑
j∈[t]

σ2
w(j)] +

1

2c
σ2
w(t).

(16)

Due to Assumption 4.2 where the initial loss has a bound c3,

E[Ln(A0(Dnoi))− Ln(At(Dnoi))]

=E[Ln(A0(Dnoi))[1− Ln(At(Dnoi))/Ln(A0(Dnoi))]]

≤c3E[1− Ln(At(Dnoi))/Ln(A0(Dnoi))]

≤c3
1− ELn(At(Dnoi);Dnoi)/Ln(A0(Dnoi);Dnoi)

1− Ln(At(Dsig);Dsig)/Ln(A0(Dsig);Dsig)

=c3T α
n (D,At).

(17)
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The last inequality here would not cost much when the signal training performs well (that is, a small
Ln(At(Dsig);Dsig)/Ln(A0(Dsig);Dsig)).

Therefore, taking c =
√

(1+1/t+η2M2)n
(1+t/n)4eη2 , it holds that

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤E[
2eMη

n
(1 +

t

n
) +

2
√
e√
n

√
(1 +

t

n
)(
1

t
+ η2M2)]2c3T α

n (D,At)

+ [
2eM2η2

n
(1 +

t

n
) +

2
√
eη√
n

√
(1 +

t

n
)(
1

t
+ η2M2)]2

∑
j∈[t]

σ2
w(j) +

√
eη√
n

√
1 + t/n

1/t+ η2M2
σ2
w(t).

(18)

We consider the three parts separately:

For the first part, by setting η ≤ (1/
√
t), we derive that

E[
2eMη

n
(1 +

t

n
) +

2
√
e√
n

√
(1 +

t

n
)(
1

t
+ η2M2)]2c3T α

n (D,At)

≤4emax{M, 1}[ 1

n
√
t
(1 + t/n) +

1√
n

√
(1 +

t

n
)(1/t+ 1/t)]2c3T α

n (D,At)

≤4emax{M, 1} 1√
nt

[
1√
n
(1 +

t

n
) +

√
(1 +

t

n
]c3T α

n (D,At)

=4emax{M, 1} 1√
t
[
1

n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]c3T α

n (D,At)

≤8emax{M, 1} 1√
t
max{ 1

n
(1 +

t

n
),

√
1

n
(1 +

t

n
)}c3T α

n (D,At).

(19)

For the second part, we derive similarly that

[
2eMη2

n
(1 +

t

n
) +

2
√
eη√
n

√
(1 +

t

n
)(
1

t
+ η2M2)]2

∑
j∈[t]

σ2
w(j)

≤8emax{M, 1} 1√
n
[
1√
n
(1 +

t

n
) +

√
(1 +

t

n
]
1

t

∑
j∈[t]

σ2
w(j)

=8emax{M, 1}[ 1
n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]
1

t

∑
j∈[t]

σ2
w(j).

(20)

If t ≤ n2, it holds that

[
1

n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]
1

t

∑
j∈[t]

σ2
w(j) ≤ 4

1

t

∑
j∈[t]

σ2
w(j), (21)

which goes to zero for bounded gradient norm.

If t ≥ n2, it holds that

[
1

n
(1 +

t

n
) +

√
1

n
(1 +

t

n
)]
1

t

∑
j∈[t]

σ2
w(j) ≤ 4

1

n2

∑
j∈[t]

σ2
w(j), (22)

which goes to zero as long as
∑

j∈[t] σ
2
w(j) = o(n2).
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For the third part, notice that

√
eη√
n

√
1 + t/n

1/t+ η2M2
σ2
w(t)

=

√
e√
n

√
1 + t/n

1/(tη2) +M2
σ2
w(t)

≤
√
e√
n

√
1 + t/n

1/(tη2) +M2

1

t

∑
j∈[t]

σ2
w(j)

≤ 1

M

√
e

√
1

n
(1 +

t

n
)
1

t

∑
j∈[t]

σ2
w(j),

(23)

which also goes to zero as n goes to infinity, given that
∑

j∈[t] σ
2
w(j) = o(n2). Therefore, summarizing the above equations,

we have that

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤8ec3 max{M, 1} 1√
t
max{ 1

n
(1 +

t

n
),

√
1

n
(1 +

t

n
)}T α

n (D,At) + ψ3(n),
(24)

where ψ3(n) → 0 as n→ ∞.

Combining Equation equation 13, Equation equation 14, Equation equation 24 leads to the conclusion.

Lemma A.1 (Bounding excess risk via Generalization Gap). Let L(θ;P) denote the population risk of θ on distribution P
and Ln(θ;D) denote the empirical risk of θ on dataset D. Under the Assumptions in Theorem 4.4, we can bound the excess
risk via generalization gap,

EAt,DnoiE(At(Dnoi);Pnoi) ≤ EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]. (25)

Proof. Notice that the noise excess risk can be decomposed as

EAt,DnoiE(At(Dnoi);Pnoi)

=EAt,DnoiEz∼Pnoiℓ(At(Dnoi); z)− ℓ(θ∗
noi; z)

≜EAt,DnoiL(At(Dnoi);Pnoi)− L(θ∗
noi;Pnoi)

=EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]

+ EAt,Dnoi [Ln(At(Dnoi);Dnoi)− Ln(θ
∗
noi;Dnoi)] + EAt,Dnoi [Ln(θ

∗
noi;Dnoi)− L(θ∗

noi;Pnoi)],

(26)

where θ∗
noi denotes the parameter to minimize the excess risk on noise part. For the second term, note that A0(Dnoi) = 0

and θ∗
noi = 0, and EAt,DnoiLn(At(Dnoi);Pnoi)− Ln(A0(Dnoi);Pnoi) ≤ 0 by Assumption 4.2 , therefore,

EAt,DnoiLn(At(Dnoi);Pnoi)− Ln(θ
∗
noi;Pnoi) ≤ 0. (27)

Besides, notice that since θ∗
noi is unrelated to the training set Dnoi, we have

EAt,DnoiLn(θ
∗
noi;Dnoi)− L(θ∗

noi;Pnoi) = 0. (28)

Therefore, we conclude that

EAt,DnoiE(At(Dnoi);Dnoi) ≤ EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]. (29)
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Lemma A.2. Under the assumptions in Theorem 4.4, we derive that for any c > 0, we have that

EAt,DnoiL(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)

≤EAt,Dnoi [
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M2)]

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t).

(30)

Proof. Here we use the notion of on-average model stability proposed in Lei & Ying (2020), where we have

EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]

=EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

ℓ(At(D(i)
noi); zi)− ℓ(At(Dnoi); zi),

(31)

where D(i)
noi denotes the dataset with only the i-th sample different from Dnoi. The above equation holds because D(i)

noi does
not contain any information of zi, and therefore is equal to the test loss in expectation. Due to smoothness assumption, we
have that for any constant c > 0,

ℓ(At(D(i)
noi); zi)− ℓ(At(Dnoi); zi)

≤∥At(D(i)
noi)−At(Dnoi)∥∥∇ℓ(At(Dnoi); zi)∥+

M

2
∥At(D(i)

noi)−At(Dnoi)∥2

≤ c
2
∥At(D(i)

noi)−At(Dnoi)∥2 +
1

2c
∥∇ℓ(At(Dnoi); zi)∥2 +

M

2
∥At(D(i)

noi)−At(Dnoi)∥2

=[
M + c

2
]∥At(D(i)

noi)−At(Dnoi)∥2 +
1

2c
∥∇ℓ(At(Dnoi); zi)∥2.

(32)

where the first inequality is due to smoothness, the second inequality is due to 2ab ≤ ca2 + c−1b2,

We note that due to Lemma A.5, we have that for constant stepsize η

E∥At(D(i)
noi)−At(Dnoi)∥2 ≤ 4e(

1

n
+

t

n2
)η2

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2. (33)

Besides, due to Lemma A.6, we have that

1

n

∑
i∈[n]

∥∇ℓ(At(Dnoi); zi)∥2 ≤ (
1

t
+ η2M2)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 + σ2
w(t). (34)

Therefore, we have that

EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

ℓ(At(D(i)
noi); zi)− ℓ(At(Dnoi); zi)

≤EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

[
M + c

2
]∥At(D(i)

noi)−At(Dnoi)∥2 +
1

2c
∥∇ℓ(At(Dnoi); zi)∥2

≤EAt,Dnoi,D(i)
noi

1

n

∑
i∈[n]

[
M + c

2
]4e(

1

n
+

t

n2
)η2

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2

+
1

2c
(
1

t
+ η2M)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t)

=EAt,Dnoi,D(i)
noi
[
2e(M + c)η2

n
(1 +

t

n
) +

1

2c
(
1

t
+ η2M2)]

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

2c
σ2
w(t)

(35)
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Lemma A.3 (Bounding Cumulative Gradient). Assuming that Ln(·; z) is M -smooth, if the training stepsize η < 1/M
(constant stepsize), it holds that

E
1

n

∑
i∈[n]

∑
[j∈[t]]

∥∇ℓ(Aj(Dnoi), zi)∥2 ≤ 2

η
E[Ln(A0(Dnoi))− Ln(At(Dnoi))] + 2

∑
j∈[t]

σ2
w(j). (36)

where σ2
w(j) denotes the variance in gradient at step j.

Proof of Lemma A.3. Due to the smoothness assumption on the empirical loss (it could be done by the smoothness
assumption on each sample), we have that for all i,

ELn(Ai+1(Dnoi);Dnoi) ≤Ln(Ai(Dnoi);Dnoi) + E(Ai+1(Dnoi)−Ai(Dnoi))
⊤∇L(Ai(Dnoi);Dnoi)

+ E(
M

2
∥Ai+1(Dnoi)−Ai(Dnoi)∥2),

(37)

where the expectation is taken over the randomness on the gradient. Plugging in the iteration Ai+1(Dnoi) = Ai(Dnoi) +
ηi∇ℓ(Ai(Dnoi), z[i]), where z[i] denotes the chosen sample, we have

E[Ln(Ai+1(Dnoi))] ≤ Ln(Ai(Dnoi))− η∥∇Ln(Ai(Dnoi))∥2 + E(
M

2
η2∥∇ℓ(Ai(Dnoi), z[i])∥2). (38)

Due to the definition of variance that σ2
w = E∥∇ℓ(Ai(Dnoi), z[i])∥2 − ∥∇Ln(Ai(Dnoi))∥2, we have

E[Ln(Ai+1(Dnoi))] ≤Ln(Ai(Dnoi))− η∥∇ℓ(Ai(Dnoi), z[i])∥2 + ησ2
w + E(

M

2
η2∥∇ℓ(Ai(Dnoi), z[i])∥2).

≤Ln(Ai(Dnoi)) + ησ2
w + (−η + M

2
η2)E∥∇ℓ(Ai(Dnoi), z[i])∥2

≤Ln(Ai(Dnoi)) + ησ2
w − η

2
E∥∇ℓ(Ai(Dnoi), z[i])∥2,

(39)

where the last equation is due to η < 1/M . By telescoping and taking expectation, we rewrite it as

Eη
∑
[j∈[t]]

∥∇ℓ(Aj(Dnoi), z[j])∥2 ≤ 2E[Ln(A0(Dnoi))− Ln(At(Dnoi))] + 2
∑
j∈[t]

ησ2
w(j). (40)

Since each sample is sampled uniformly with probability 1/n, taking expectation leads to

E
∑
t

∥∇ℓ(Ai(Dnoi), z[i])∥2 =
1

n

∑
i∈[n]

∑
[j∈[t]]

∥∇ℓ(Aj(Dnoi), zi)∥2. (41)

Therefore, we have

1

n

∑
i∈[n]

∑
j∈[t]

∥∇ℓ(Aj(Dnoi), zi)∥2 ≤ 2

η
E[Ln(A0(Dnoi))− Ln(At(Dnoi))] + 2

∑
j∈[t]

σ2
w(j). (42)

Lemma A.4 (One-expansion under convexity, from Hardt et al. (2016) (arxiv version), Lemma 3.7 (argument 2)). Assume
that for all z, the function ℓ(z;w) is convex with respect to w and M -smooth, then for step size η < 2/M we have that
when not choosing the sample zi,

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥ ≤ ∥Aj(D(i)

noi)−Aj(Dnoi)∥. (43)

Lemma A.5 (Bound for stability parameter difference). Under the Assumptions in Theorem 4.4, We have that for any i

E∥At(D(i)
noi)−At(Dnoi)∥2 ≤ 4e(

1

n
+

t

n2
)
∑
j∈[t]

η2jE∥∇ℓ(Aj(Dnoi); zi)∥2. (44)

where i denotes the sample index and j denotes the time index.
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Proof of Lemma A.5. The proof is partly inspired by the proof of Lemma C.2 in Lei & Ying (2020).

Note that for any step j, if the chosen index is i, we have that

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥

=∥Aj(D(i)
noi)−Aj(Dnoi)− ηt∇ℓ(Aj(D(i)

noi); z̃i) + ηt∇ℓ(Aj(Dnoi); zi)∥
(45)

Therefore, due to the inequality (a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2 for any p > 0, we have that

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥2

≤(1 + p)∥Aj(D(i)
noi)−Aj(Dnoi)∥2 + η2t (1 + 1/p)∥∇ℓ(Aj(D(i)

noi); z̃i)−∇ℓ(Aj(Dnoi); zi)∥2

≤(1 + p)∥Aj(D(i)
noi)−Aj(Dnoi)∥2 + 2η2t (1 + 1/p)[∥∇ℓ(Aj(D(i)

noi); z̃i)∥
2 + ∥∇ℓ(Aj(Dnoi); zi)∥2],

(46)

for any p > 0.

If the chosen index is not i, due to the convexity of the loss , according to Lemma A.4, we have that

∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥2 ≤ ∥Aj(D(i)

noi)−Aj(Dnoi)∥2. (47)

Therefore, since each index is chosen uniformly, we have that

E∥Aj+1(D(i)
noi)−Aj+1(Dnoi)∥2

≤ 1

n
[(1 + p)E∥Aj(D(i)

noi)−Aj(Dnoi)∥2 + 2η2t (1 + 1/p)E[∥∇ℓ(Aj(D(i)
noi); z̃i)∥

2 + ∥∇ℓ(Aj(Dnoi); zi)∥2]]

+
n− 1

n
E∥Aj(D(i)

noi)−Aj(Dnoi)∥2

=(1 +
p

n
)E∥Aj(D(i)

noi)−Aj(Dnoi)∥2 + 2
η2t
n
(1 + 1/p)E[∥∇ℓ(Aj(D(i)

noi); z̃i)∥
2 + ∥∇ℓ(Aj(Dnoi); zi)∥2]

=(1 +
p

n
)E∥Aj(D(i)

noi)−Aj(Dnoi)∥2 + 4
η2t
n
(1 + 1/p)E∥∇ℓ(Aj(Dnoi); zi)∥2.

(48)

where the expectation is taken over the algorithm for the last step, and the dataset Dnoi,D(i)
noi . We use the fact that

E∥∇ℓ(Aj(Dnoi); zi)∥2 = E∥∇ℓ(Aj(D(i)
noi); z̃i)∥2. By iteration, we have that

E∥At(D(i)
noi)−At(Dnoi)∥2

≤4(1 + p−1)

n

∑
j∈[t]

η2j (1 + p/n)t−jE∥∇ℓ(Aj(Dnoi); zi)∥2.
(49)

By choosing p = n/t, we have that

(1 + p/n)t−j ≤ (1 + p/n)t = (1 + 1/t)t ≤ e.

Therefore, we have that

E∥At(D(i)
noi)−At(Dnoi)∥2 ≤ 4e(1 + t/n)

n

∑
j∈[t]

η2jE∥∇ℓ(Aj(Dnoi); zi)∥2. (50)

Lemma A.6 (Bound for the last iterate gradient).

1

n

∑
i∈[n]

∥∇ℓ(At(Dnoi); zi)∥2 ≤ (
1

t
+ η2M)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 + σ2
w(t). (51)
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Proof. We first notice that there exists ξ such that

∇Ln(At+1(Dnoi);Dnoi)

=∇Ln(At(Dnoi);Dnoi)−∇2Ln(ξ;Dnoi)[At+1(Dnoi)−At(Dnoi)]

=∇Ln(At(Dnoi);Dnoi)− η∇2Ln(ξ;Dnoi)[∇ℓ(At(Dnoi); zt)]

(52)

Therefore, we have that

∥∇Ln(At+1(Dnoi);Dnoi)∥2

=∥∇Ln(At(Dnoi);Dnoi)− η∇2Ln(ξ;Dnoi)[∇ℓ(At(Dnoi); zt)]∥2

=∥∇Ln(At(Dnoi);Dnoi)∥2 − 2η∇Ln(At(Dnoi);Dnoi)∇2Ln(ξ;Dnoi)∇ℓ(At(Dnoi); zt)

+ η2∇ℓ(At(Dnoi); zt)∇2Ln(ξ;Dnoi)∇2Ln(ξ;Dnoi)∇ℓ(At(Dnoi); zt).

(53)

By taking expectation on the chosen sample zt, we have that

E∥∇Ln(At+1(Dnoi);Dnoi)∥2

=∥∇Ln(At(Dnoi);Dnoi)∥2 − 2η∇Ln(At(Dnoi);Dnoi)∇2Ln(ξ;Dnoi)∇Ln(At(Dnoi);Dnoi)

+ η2E∇ℓ(At(Dnoi); zt)∇2Ln(ξ;Dnoi)∇2Ln(ξ;Dnoi)∇ℓ(At(Dnoi); zt)

≤∥∇Ln(At(Dnoi);Dnoi)∥2 + η2M2E∥∇ℓ(At(Dnoi); zt)∥2

=∥∇Ln(At(Dnoi);Dnoi)∥2 + η2M2 1

n

∑
i∈[n]

E∥∇ℓ(At(Dnoi); zi)∥2

(54)

By iteration, we have that

E∥∇Ln(At(Dnoi);Dnoi)∥2 ≤ η2M2 1

n

∑
i∈[n]

t∑
j=k

E∥∇ℓ(Aj(Dnoi); zi)∥2 + ∥∇Ln(Ak(Dnoi);Dnoi)∥2. (55)

The above equation indeed holds for any iteration k, and therefore by taking an average over all iterations, we have that

E∥∇Ln(At(Dnoi);Dnoi)∥2

≤η2M2 1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

t

∑
j∈[t]

∥∇Ln(Aj(Dnoi);Dnoi)∥2

≤η2M2 1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 +
1

t

∑
j∈[t]

1

n

∑
i∈[n]

E∥∇ℓ(Aj(Dnoi); zi)∥2

=(
1

t
+ η2M2)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2

(56)

Therefore, we have that

E
1

n

∑
i∈[n]

∥∇ℓ(At(Dnoi); zi)∥2

=E∥∇Ln(At(Dnoi);Dnoi)∥2 + σ2
w(t)

≤(
1

t
+ η2M2)

1

n

∑
i∈[n]

∑
j∈[t]

E∥∇ℓ(Aj(Dnoi); zi)∥2 + σ2
w(t).

(57)
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B. Proof of Theorem 4.6
Theorem 4.6 (Smooth, with SGLD). Assume that the loss ℓ(θ; z) isO(1)-bounded, L-Lipschitz, andM -smooth with respect
to θ for any sample z. Consider SGLD with noise scale σ and stepsize η < min{ σ

20L ,
1
M }. Under Assumption 4.1 and

Assumption 4.2, if p = o(n
2

ηt ), the following inequality holds when
∑

j∈[t] σ
2
w(j;Dnoi) = o(n

2σ2

η2 ) and t ≥ max{T1, T2, T3},

ED,AtE(At(D);P) ≤ c′
√
η

nσ

√
T α
n (D,At) + ψ′(n), (11)

where the term ψ′(n) → 0 as n → ∞. The constant c′ > 0 denotes a constant related to the constant c1, c2, c3,M in
Assumption 4.1 and Assumption 4.2.

Proof of Theorem 4.6. Similar to the proofs of Theorem 4.4, under Assumption 4.1 and Assumption 4.2, the core of the
proof is the bound for the generalization gap EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]. We next only focus on the
proof of the generalization gap.

Firstly, as shown in Li et al. (2020) (Theorem 11), if the loss ℓ(θ; z) is C-bounded, L-Lipschitz, and the learning rate
η < σ/20L, the generalization bound can be bounded using the cumulative gradient norm:

EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)] ≤
8.12C

n

η

σ

√√√√EAt,Dnoi [
∑
j∈[t]

1

n

∑
i∈[n]

∥∇ℓ(At(Dnoi), zi)∥2]. (58)

Besides, we derive by Lemma B.1 that:

EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]

≤8.12C

n

η

σ

√√√√EAt,Dnoi [
∑
j∈[t]

1

n

∑
i∈[n]

∥∇ℓ(Aj(Dnoi), zi)∥2]

≤8.12C

n

η

σ

√√√√2

η
ELn(A0(Dnoi))− Ln(At(Dnoi)) + 2

∑
j∈[t]

σ2
w(j) +

ptσ2

η
.

(59)

Notice that if
∑

j∈[t] σ
2
w(j) = o(n

2σ2

η2 ) and p = o(n
2

tη ), the final several terms becomes o(1), and therefore,

EAt,Dnoi [L(At(Dnoi);Pnoi)− Ln(At(Dnoi);Dnoi)]

≤
8.12

√
c3
√
2C

n

√
η

σ

√
ELn(A0(Dnoi))− Ln(At(Dnoi)) + ψ′(n)

≤8.12
√
2C

n

√
η

σ

√
T α
n (D,At) + ψ′(n).

(60)

The results of Theorem 4.6 directly holds by adjusting the constant term to c′3.

The following Lemma B.1 bounds the cumulative gradient, inspired by the proofs in Lemma A.3. Compared to the results in
Lemma A.3, the additional term ptσ2

η comes from the Gaussian noise in SGLD.

Lemma B.1. Under the Assumptions in Theorem 4.6, it holds that in SGLD, if η < 1/M ,

EAt,Dnoi

∑
j∈[t]

1

n

∑
i∈[n]

∥∇ℓ(Aj(Dnoi), zi)∥2 ≤ 2

η
ELn(A0(Dnoi))− Ln(At(Dnoi)) + 2

∑
j∈[t]

σ2
w(j) +

ptσ2

η
. (61)

Proof of Lemma B.1. The proof is similar to the proof of Lemma A.3. Firstly, due to the M -smoothness conditions, it holds
for all i that

ELn(Aj+1(Dnoi);Dnoi) ≤Ln(Aj(Dnoi);Dnoi) + E(Aj+1(Dnoi)−Aj(Dnoi))
⊤∇L(Aj(Dnoi);Dnoi)

+ E(
M

2
∥Aj+1(Dnoi)−Aj(Dnoi)∥2),

(62)
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where the expectation is taken over the randomness on the gradient. Plugging in the iteration Aj+1(Dnoi) = Aj(Dnoi) +
η∇ℓ(Aj(Dnoi), z[j]) +

σ√
2
nt, where z[j] denotes the chosen sample at iteration j, we have

E[Ln(Aj+1(Dnoi))] ≤ Ln(Aj(Dnoi))− η∥∇Ln(Aj(Dnoi))∥2 + E(
M

2
η2∥∇ℓ(Aj(Dnoi), z[j])∥2) +

σ2

2
p

= Ln(Aj(Dnoi))− η(E∥∇ℓ(Aj(Dnoi), z[j])∥2 − σ2
w(j) + E(

M

2
η2∥∇ℓ(Aj(Dnoi), z[j])∥2) +

σ2

2
p,

(63)

that is to say, by telescoping and taking expectation, it holds that

η(1− M

2
η)
∑
j∈[t]

E∥∇ℓ(Aj(Dnoi), z[j])∥2 ≤ ELn(A0(Dnoi))− Ln(At(Dnoi)) + η
∑
j∈[t]

σ2
w(j) +

ptσ2

2
. (64)

Besides, since η < 1/M , we have that∑
j∈[t]

E∥∇ℓ(Aj(Dnoi), z[j])∥2 ≤ 2

η
ELn(A0(Dnoi))− Ln(At(Dnoi)) + 2

∑
j∈[t]

σ2
w(j) +

ptσ2

η
. (65)

Note that the expectation here includes the randomness of the algorithm and the dataset here, by plugging into the randomness
of the chosen sample z[j],∑

j∈[t]

E∥∇ℓ(Aj(Dnoi), z[j])∥2 = EAt,Dnoi

∑
j∈[t]

1

n

∑
i∈[n]

∥∇ℓ(Aj(Dnoi), zi)∥2. (66)

C. Proof of Theorem 4.7
Theorem 4.7 (Overparameterized Linear Regression with GD). Under overparameterized linear regression regimes, assume
that r0(Σ) = o(n) and k∗ = o(n). Besides, assume that ∥θ∗∥2 = O(1), ∥Σx∥2 = O(1) in a constant scale. We consider
the GD training process with zero initialization and constant stepsize η. For any given δ > 0 which does not vary with
sample size n and satisfies log(1/δ) = o(n), for t = ω(1)3, with probability at least 1− δ,

E(At(D);D) ≤ c log(1/δ)σ2
yT α

n (D,At) + ψ̃(n), (12)

where ψ̃(n) → 0 as n→ ∞ and c > 0 denotes a constant.

Proof. Due to Lemma C.2, we derive that

E(At(D);D) ≤ 2E(At(Dsig);Dsig) + 2E(At(Dnoi);Dnoi). (67)

According to Lemma C.1, since t = ω(1), r0(Σx) = o(n) and log(1/δ) = o(n), we have that

lim
n→∞

E(At(Dsig);Dsig) = 0. (68)

Besides, due to Lemma C.3, we have that

lim
n→∞

E(At(Dnoi);Dnoi) ≤ c1 log(1/δ)σ
2
yT α

n (D,At), (69)

where we use the assumption that k∗ = o(n), and δ is unrelated to n. Therefore, we summarize the results as

E(At(D);D) ≤ c log(1/δ)σ2
yT α

n (D,At) + ψ̃(n), (70)

where ψ̃(n) → 0 as n→ ∞.
3The statement t = ω(1) means that t → ∞ as n → ∞.

22



Finding Generalization Measures by Contrasting Signal and Noise

Lemma C.1 (Bound for signal component, Lemma (A.7) in Xu et al. (2022)). Under the overparameterized linear regression
regimes,

E(At(Dsig);Dsig) ≤ c∥θ∗∥2
(

1

λt
+ ∥Σx∥max{

√
r0(Σx)

n
,
r0(Σx)

n
,

√
log(1/δ)

n
,
log(1/δ)

n
}

)
. (71)

Lemma C.2 (Decomposition lemma, Lemma 18 in Bartlett et al. (2020)). In overparameterized linear regression regimes,
we have that

E(At(D);D) ≤ 2E(At(Dsig);Dsig) + 2E(At(Dnoi);Dnoi). (72)

Proof. Due to the iteration of GD which is linear in y, we have that

At(D) = At(Dsig) +At(Dnoi). (73)

Note that

E(At(D);D) = ∥At(D)− θ∗∥2Σx
,

E(At(Dsig);Dsig) = ∥At(Dsig)− θ∗∥2Σx
,

E(At(Dnoi);Dnoi) = ∥At(Dnoi)∥2Σx
.

(74)

Therefore, due to the fact that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, we have that

E(At(D);D) ≤ 2E(At(Dsig);Dsig) + 2E(At(Dnoi);Dnoi). (75)

Lemma C.3 (Bound for noise component). Under the assumptions in Theorem 4.7, we have that with probability at least
1− δ

E(At(Dnoi);Dnoi) ≤ c log(1/δ)σ2
yT α

n (D,At) + c log(1/δ)σ2
y

k∗

n
, (76)

for a given constant c > 0 which is related to log(1/δ).

Proof. For the noise component, we first notice that from Lemma C.1 in Teng et al. (2022), we have that

At(Dsig) = X⊤[XX⊤]−1[I − [I − λ

n
XX⊤]t][Y −Xβ∗]. (77)

Therefore, due to the subGaussian assumption on Y −Xβ∗, we have that (we refer to Lemma 7 in Bartlett et al. (2020))

E(At(Dnoi);Dnoi) ≤ cσ2
y log(1/δ)Tr[C], (78)

where C = [[I − [I − λ
nXX

⊤]t]2[XX⊤]−1XΣxX
⊤[XX⊤]−1].

By denoting zi = Xvi/
√
λi, where λi, vi denotes the i-th eigenvalue and the corresponding eigenvector of matrix Σx, we

have that XΣxX =
∑

i λ
2
iziz

⊤
i

TrC = Tr
∑
i

λ2i [I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1. (79)
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We split the summation operator into two parts by k∗ = min{k ≥ 0, rk(Σx) ≥ bn}. For the first part

Tr
∑
i≤k∗

λ2i [I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1

=
∑
i≤k∗

λ2iTr[I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1

≤
∑
i≤k∗

λ2iTr[XX
⊤]−1ziz

⊤
i [XX⊤]−1

=
∑
i≤k∗

Trλ2i [XX
⊤]−1ziz

⊤
i [XX⊤]−1

=
∑
i≤k∗

λ2i z
⊤
i [XX⊤]−2zi

≤k
∗

n
,

(80)

where the first inequality comes from the fact that TrAB ≥ TrAC if A and B − C are both positive semi-definite. The
second inequality comes from Lemma 11 in Bartlett et al. (2020), given that log(1/δ) = o(n).

Before considering the remaining part, we first notice that when i > k∗, we have that λi ≤ 1
bn

∑
j>i λj∑

i>k∗

λ2iziz
⊤
i

≤
∑
i>k∗

[
1

bn

∑
j>i

λj ]λiziz
⊤
i

≤[
1

bn

∑
j>k∗

λj ]
∑
i>k∗

λiziz
⊤
i

=[
1

bn

∑
j>k∗

λj ]XX
⊤.

(81)

Therefore, for the remaining part, we have that

Tr
∑
i>k∗

λ2i [I − [I − λ

n
XX⊤]t]2[XX⊤]−1ziz

⊤
i [XX⊤]−1

=Tr[XX⊤]−1[I − [I − λ

n
XX⊤]t]2[XX⊤]−1

∑
i>k∗

λ2iziz
⊤
i

≤Tr[XX⊤]−1[I − [I − λ

n
XX⊤]t]2[XX⊤]−1[

1

bn

∑
j>k∗

λj ]XX
⊤

=Tr[
1

bn

∑
j>k∗

λj ][XX
⊤]−1[I − [I − λ

n
XX⊤]t]2

≤ c1
bn

Tr[I − [I − λ

n
XX⊤]t]2.

(82)

The last inequality uses the fact that XX⊤ ≥ 1
c1

∑
j>k∗ λj for a given constant c1 (see Lemma 10 in Bartlett et al. (2020)).

Besides, notice that since I − [I − λ
nXX

⊤]t is positive semi-definite, we have that

1

n
Tr[I − [I − λ

n
XX⊤]t]2 ≤ 1

n
Tr[I − [I − λ

n
XX⊤]2t]. (83)
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Besides, we notice that with high probability (concentration on y − x⊤θ∗), we have that there exists constant c2 such that

Ln(At(Dnoi);Dnoi) ≤ (1 + c2)σ
2
yTr[I − [I − λ

n
XX⊤]2t,

Ln(A0(Dnoi);Dnoi) ≥ (1− c2)σ
2
y > 0.

(84)

where we abuse the notation c as a constant different from the above text. Therefore, with high probability, we have that
there exists constant c3, such that

c3Tr[I − [I − λ

n
XX⊤]2t] ≤ 1− Ln(At(Dnoi);Dnoi)/Ln(At(Dnoi);Dnoi). (85)

Therefore, we have that

E(At(Dnoi);Dnoi)

≤cσ2
y log(1/δ)[

k∗

n
+ 1− Ln(At(Dnoi);Dnoi)/Ln(At(Dnoi);Dnoi)]

≤cσ2
y log(1/δ)

k∗

n
+ c log(1/δ)σ2

yT α
n (D,At).

(86)

for a constant probability δ, where we abuse the notation c as a constant independent of the data distribution and time t.

D. Detailed Experiment Setting
Our experiments contain two parts: Firstly, we conduct experiments on CIFAR-10 and CIFAR-100 with different hyperpa-
rameter settings to show the correlation between test accuracy and REF Complexity. More specifically, we use ResNets as
the basic architecture, and evaluate the test accuracy with different learning rates, batch sizes, weight decay, and depths.
We train each model for 150 epochs. To evaluate REF Complexity correctly, each noise training process is trained five
times, and we calculate the averaged REF Complexity as the metric. The results are shown in Figure 1. Here we list all the
hyperparameters in Table 4.

Table 4. Hyperparameters

hyperparameter value

learning rate 0.1, 0.01, 0.001
batch size 256, 512, 1024

weight decay 1e-5, 1e-6, 1e-7
architecture ResNet20, ResNet32, ResNet44, ResNet56

Secondly, we conduct experiments on CIFAR-10 to compare our REF Complexity and other relevant generalization measures.
We train ResNet-32 for 150 epochs using SGD with a weight decaying of 1e-5. The baseline algorithms can be categorized
into four classes as shown in Table 1. More specifically, the baselines include L2-norm of the final model (L2), L2-distance
from initialization (L2-DIST), Frobenius norm of the model (F-NORM) (Jiang et al., 2020b), inverse of the margin of
the logits between the labels (INV-MARGIN) (Dziugaite et al., 2020), spectral norm of the model (SPECTRAL) (Pitas
et al., 2018; Bartlett et al., 2017), sum of spectral norm over margin (SPECTRAL/MARGIN) (Jiang et al., 2020b), path-
norm of the model (PATH-NORM) (Neyshabur et al., 2015), PAC-Bayesian bounds using the origin and initialization as
reference tensors (PB-I and PB-O), PAC-Bayesian flatness (PB-FLATNESS) PAC-Bayesian Magnitude-aware Perturba-
tion Bounds (PB-M-I, PB-M-O) and Magnitude-aware PAC-Bayesian flatness (PB-M-FLATNESS) (Keskar et al., 2017;
Neyshabur et al., 2017; Jiang et al., 2020b), number of iterations required to reach cross-entropy equals 1.0/1.5 (STEP(1),
STEP(1.5)) (Jiang et al., 2020b). Additionally, we also report the results of F-distance from initialization (F-DIST), and
path norm over margin (PATH-NORM/MARGIN), which are omitted in the main text due to space limitations. Again, we
evaluate the correlation between generalization measures and test accuracy. Same as above, we searched hyperparameters
on batch size, learning rate and drouout rate. We repeated the experiment three times for every configuration, and the noise
training process of our algorithm runs three times. Full mean and standard deviation results are reported in Table 5. The full
correlation between generalization measures and test accuracy is summarized in Table 6. We run all the experiments on a
RTX2080Ti graphic card.
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Table 5. Detailed experiment results of REF Complexity and other baseline metrics.
batch size learning rate dropout test accuracy L2-NORM L2-DIST
1024 0.01 0 0.783±0.005 0.029±0 0.02±0
2048 0.01 0 0.716±0.016 0.03±0 0.019±0
256 0.005 0 0.822±0.014 0.029±0 0.021±0
256 0.01 0 0.835±0.015 0.029±0 0.023±0
256 0.01 0.1 0.839±0.007 0.028±0 0.022±0
256 0.01 0.2 0.835±0.012 0.028±0 0.022±0
256 0.01 0.5 0.825±0.016 0.028±0 0.022±0
256 0.05 0 0.871±0.008 0.028±0 0.027±0
256 0.1 0 0.874±0.01 0.028±0 0.03±0
512 0.01 0 0.825±0.009 0.029±0 0.021±0

F-NORM F-DIST INV-MARGIN SPECTRAL SPECTRAL/MARGIN PATH-NORM
0.194±0.001 0.09±0.001 0.004±0 11.463±0.195 11.379±0.194 6.377±0.43
0.199±0.001 0.083±0 0.003±0 12.673±0.215 12.319±0.171 11.374±1.106
0.189±0.001 0.1±0.001 0.007±0.001 10.214±0.07 10.597±0.207 3.532±0.276
0.182±0.001 0.115±0.001 0.007±0.002 8.936±0.158 9.386±0.331 1.508±0.102
0.175±0.001 0.112±0.001 0.005±0.001 8.562±0.333 8.658±0.55 1.264±0.076
0.173±0 0.112±0.001 0.004±0 8.645±0.197 8.471±0.21 1.128±0.055
0.172±0.001 0.113±0 0.002±0 8.979±0.201 8.276±0.123 1.107±0.07
0.171±0.001 0.166±0.001 0.002±0 8.172±0.166 7.173±0.246 0.396±0.024
0.177±0.001 0.195±0.001 0.001±0 9.321±0.232 7.611±0.17 0.387±0.024
0.188±0.001 0.1±0.001 0.007±0.001 10.036±0.06 10.45±0.18 3.066±0.098

PATH-NORM/MARGIN PB-I PB-O PB-FLATNESS PB-M-I PB-M-O
5.868±0.495 0.553±0.025 1.194±0.055 0.055±0.003 2.984±0.042 3.533±0.033
7.955±0.379 0.444±0.047 1.062±0.117 0.048±0.005 2.974±0.032 3.591±0.028
5.232±0.89 0.663±0.122 1.247±0.228 0.059±0.011 3.047±0.086 3.496±0.075
2.423±0.578 1.002±0.43 1.588±0.68 0.078±0.034 3.194±0.307 3.515±0.28
1.42±0.285 2.453±2.381 3.844±3.756 0.196±0.192 3.38±0.27 3.674±0.25
0.948±0.04 184.434±367.217 285.501±568.463 14.707±29.282 3.447±0.376 3.73±0.35
0.55±0.058 369.751±451.485 562.758±687.147 29.362±35.852 3.572±0.456 3.84±0.424
0.15±0.033 1361.635±4.512 1398.945±8.207 73.271±0 4.31±0.002 4.325±0.003
0.07±0.007 1596.66±4.923 1448.384±7.388 73.271±0 4.395±0.002 4.343±0.003
4.738±0.972 0.673±0.065 1.262±0.121 0.06±0.006 3.024±0.061 3.473±0.054

PB-M-FLATNESS STEPS(1) STEPS(1.5) REF (W/O NOI) REF (W/O INIT) REF COMPLEXITY
0.014±0.001 0.014±0.001 0.004±0 0.221±0.009 0.223±0.009 0.012±0.004
0.013±0.001 0.012±0 0.003±0 0.319±0.017 0.321±0.021 0.016±0.01
0.016±0.002 0.027±0 0.008±0 0.158±0.017 0.159±0.018 0.009±0.007
0.027±0.022 0.019±0.002 0.004±0 0.127±0.029 0.126±0.028 0.005±0.004
0.035±0.02 0.021±0.002 0.004±0 0.123±0.012 0.124±0.012 0.007±0.003
14.675±29.298 0.023±0 0.007±0.002 0.14±0.022 0.138±0.021 0.008±0.004
29.322±35.884 0.033±0.002 0.01±0.002 0.169±0.021 0.167±0.023 0.009±0.003
73.271±0 0.008±0 0.004±0 0.067±0.013 0.066±0.012 0.004±0.001
73.271±0 0.008±0 0.004±0 0.065±0.013 0.065±0.013 0.007±0.006
0.015±0.002 0.016±0 0.004±0 0.152±0.014 0.154±0.015 0.013±0.003

D.1. Additional Experiment on noise-fitting epochs

To reduce the computation of REF Complexity, we test REF Complexity under different noise-fitting epochs in Table 7
and found that our techniques are robust to the number of noise-fitting epochs. This suggests that one can use a decreasing
number of noise-fitting rounds to reduce computation costs without significant degradation in performance. The reason
might be that the initial fitting speed of noise might have contained enough information.

E. Discussion
We next consider several special cases, which help better understand REF Complexity in practice.
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Table 6. Correlation between REF Complexity and test accuracy. A generalization measure performs well if the correlations are all
positive/negative, and their absolute values are close to one. This table can be derived by Table 5.

TYPE NORM-BASED MEASURES

MEASURE L2-NORM L2-DIST F-NORM F-DIST INV-MARGIN SPECTRAL

BATCH SIZE -0.935 0.899 -0.938 0.889 0.944 -0.957
LEARNING RATE -0.910 0.980 -0.911 0.973 -0.959 -0.653

DROPOUT 0.452 -0.072 0.449 -0.071 0.676 -0.764

TYPE NORM-BASED SHARPNESS-BASED

MEASURE SPECTRAL/MARGIN PATH-NORM PATH-NORM/MARGIN PB-I PB-O PB-FLATNESS

BATCH SIZE -0.942 -0.996 -0.934 0.830 0.824 0.835
LEARNING RATE -0.982 -0.927 -0.960 0.976 0.978 0.977

DROPOUT 0.473 0.452 0.568 -0.899 -0.895 -0.898

TYPE SHARPNESS-BASED STABILITY-BASED

MEASURE PB-M-I PB-M-O PB-M-FLATNESS STEPS(1) STEPS(1.5)

BATCH SIZE 0.700 -0.909 0.638 0.911 0.910
LEARNING RATE 0.992 0.981 0.977 -0.985 -0.734

DROPOUT -0.647 -0.651 -0.898 -0.908 -0.898

TYPE OURS

MEASURE REF (W/O NOI) REF (W/O INIT) REF COMPLEXITY

BATCH SIZE -0.782 -0.997 -0.998
LEARNING RATE -0.501 -0.996 -0.997

DROPOUT -0.766 -0.964 -0.965

Table 7. Correlation between REF Complexity and test accuracy with different noise-fitting epochs.
EPOCH CORRELATION

25 -0.9883
50 -0.9881
75 -0.9877

100 -0.9871
150 -0.9824

Case 1: algorithm with constant output. If an algorithm performs like At(D) = θ, it will return constant REF Complexity
in the training process. This matches the fact that the generalization metric would not change during training.

Case 2: algorithm which returns constant output when detecting noise. In this case, an algorithm returns constant
output when detecting noise, and otherwise performs as usual. In this case, REF Complexity would ignore the model’s
performance on the noise dataset, and degenerate into stability-based measures. This will, of course, hurt the effectiveness
of REF Complexity. Fortunately, this algorithm is artificially designed and usually does not actually appear in practice
(since detecting whether the response is pure noise is not an easy task in practice).

Case 3: memorization case. If an algorithm memorizes both the real-world dataset and the noise dataset, REF Complexity
(T β

n (D,At)) would become a 0/0 type. This is invalid in the experiment. Fortunately, this usually does not appear in
practice. The reason is that: machine learning models usually fit noise slowly and require many epochs to fit noise datasets.
However, practical models usually cannot be trained with such many epochs and, therefore, cannot indeed memorize all the
noisy labels. Therefore, it is usually safe to apply REF Complexity in practical cases.

F. Illustration
This section introduces some intuitions omitted in the main text. We first show in Figure 2 the intuition of REF Complexity.
Specifically, for a noisy dataset, if a model-algorithm pair learn signal faster (small REF Complexity), it generalizes better
(Figure (b)), and vice versa. We also show in Figure 3 the relationship between the bound proposed in Theorem 4.4 and REF
Complexity. Additionally, we show in Figure 3 the comparison between stochastic algorithms (e.g., SGD) and deterministic
algorithms (e.g., GD). Specifically, for deterministic algorithms, each iteration reduces the training loss. However, for
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(a) Noised Sample (b) Learn Signal Faster (c) Learn Noise Faster

Figure 2. An illustration for REF Complexity. When the signal learning is faster, the learned decision boundary becomes close to the
ground truth. In opposite, if the noise learning is faster, the decision boundary becomes close to the noise thus hard to generalize

Figure 3. An illustration for the bound of REF Complexity

(a) GD+Signal (b) GD+Noise

(c) SGD+Signal (d) SGD+Noise

Figure 4. An illustration for Stochastic Algorithms

stochastic algorithms, signal training can reduce the training loss due to the same pattern, while noise training cannot.
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