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Abstract

Predictive black-box models can exhibit high-
accuracy but their opaque nature hinders their up-
take in safety-critical deployment environments.
Explanation methods (XAI) can provide con-
fidence for decision-making through increased
transparency. However, existing XAI methods are
not tailored towards models in sensitive domains
where one predictor is of special interest, such as a
treatment effect in a clinical model, or ethnicity in
policy models. We introduce Path-Wise Shapley
effects (PWSHAP), a framework for assessing the
targeted effect of a binary (e.g. treatment) variable
from a complex outcome model. Our approach
augments the predictive model with a user-defined
directed acyclic graph (DAG). The method then
uses the graph alongside on-manifold Shapley
values to identify effects along causal pathways
whilst maintaining robustness to adversarial at-
tacks. We establish error bounds for the identified
path-wise Shapley effects and for Shapley values.
We show PWSHAP can perform local bias and
mediation analyses with faithfulness to the model.
Further, if the targeted variable is randomised
we can quantify local effect modification. We
demonstrate the resolution, interpretability and
true locality of our approach on examples and a
real-world experiment.

1. Introduction
Recent years have seen an increase in the demand for trans-
parency on machine learning-based decisions. In safety-
sensitive settings particularly, practitioners need to under-
stand how a model reasons in order to ensure its safe de-
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ployment in the future. In many scenarios, their attention
focuses on assessing the importance of a specific predictor
variable such as a treatment in a clinical model, or ethnicity
with regards to model fairness. Ultimately, as humans natu-
rally have a causal approach to model explainability, users
may want to understand how the treatment1 causally im-
pacts the outcome i.e. through what mechanisms and if this
matches their prior assumptions on the causal relationships
in the data. Here, we focus on the following question: in
the presence of a general black-box ML model, how can we
compute feature attributions according to the causal beliefs
encapsulated by the posited DAG? We provide a framework
for locally explaining a treatment’s effect in such settings,
with the following goals: reliability, safety, interpretability
and high resolution.

Reliability, safety, interpretability in XAI An XAI model
should aim at generating explanations that are reliable, safe
and interpretable. Reliability, also known as being “true
to the model”, implies that the explanations do reveal the
functional dependence of the model and are robust to dis-
tributional shifts. Safety relates to the ability to protect the
framework from hazard, in particular attempts to fool mod-
els with deceptive data, also known as adversarial attacks.
As defined in (Miller, 2019), interpretability is the degree to
which a human can understand the cause of a decision.

High resolution for safety-critical XAI In addition to the
XAI goals cited above, resolution is often necessary when
explaining a model to ensure its fairness. Following (Chi-
appa, 2019), we illustrate our point using a simple causal
structure inspired by the Berkeley admissions dataset. Con-
sider a predictive model for college entry with three features:
sex, exam results and department. The sensitive attribute,
sex, potentially impacts the predicted admission through
both fair and unfair causal pathways. Sex may indirectly
and fairly impact admission due to some individuals apply-
ing to more competitive departments. However, there may
also be an effect through an unfair direct path, representing
prejudice on the part of the admissions officer. This moti-
vates path-specific measures of feature importance, instead
of an overall single score that groups all paths together.

1We use the example of “treatment” in clinical models as illus-
trative of a central binary predictor variable.
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Our solution: Path-Wise Shapley (PWSHAP)

We introduce a method for explaining the local effect of
a binary treatment under an assumed causal graph. We
assume that (i) the treatment is an ancestor of the outcome
in the directed acyclic graph (DAG) and that (ii) the DAG is
compatible with the data, i.e. that it respects all conditional
independences that could be found by running conditional
independence tests in the data. The posited DAG may come
from prior domain knowledge, or indeed be learnt from
data and represents the user’s beliefs. Our aim is not to
understand the model’s “internal DAG”, and thus we do not
assume that the posited DAG corresponds to the DAG of the
underlying model.

We show how augmenting the predictive model with such a
causal DAG supports a novel targeted extension of SHAP
values, allowing for the decomposition of the black-box
treatment effect into interpretable path-wise Shapley effects.
We provide stand-alone theoretical results for decomposing
the original on-manifold Shapley value (i.e. Shapley with a
conditional reference distribution) of a treatment feature into
path-wise local causal effects. We claim that our method
achieves the four goals presented above: reliability, safety,
interpretability and high resolution. Our contributions are
as follows:

• We introduce Path-Wise Shapley (PWSHAP) effects, an
extension of on-manifold Shapley values for locally ex-
plaining treatment effect under a causal DAG. Robustness
to adversarial attacks (and thus safety) is guaranteed by
the adoption of a conditional reference distribution. Reli-
ability is ensured by the acknowledgment of the causal
structure. As such, PWSHAP reconciles both safety and
reliability.

• We show how our method can be used as a non-
parametric alternative to mediation and bias analysis.We
further show how PWSHAP can be used for fairness stud-
ies when the causal graph involves a mixture of fair/unfair
paths, and under randomised treatment to assess effect
modification (also referred to as moderation). We further
show that Causal Shapley (Heskes et al., 2020), the clos-
est method to ours, does not acknowledge moderation.

• We establish error bounds (i) from the outcome model
to the Shapley values and PWSHAP effects (ii) from
the Shapley values and treatment model (referred to as
propensity score) to the PWSHAP effects.

To the best of our knowledge, we are the first to interro-
gate the link between the Shapley feature importance of a
treatment, and the standard notion of the treatment effect
as defined within the causal inference literature, as the ex-
pected difference between potential outcomes under the two
treatments.

2. Shapley Values
Shapley values are a local feature attribution method. They
quantify the importances of the features {1, . . . ,m} of a
complex machine learning model f : Rm → Rl at an in-
stance x ∈ Rm, given only black-box access to the model.
The local prediction f(x) is formulated as a sum of indi-
vidual feature contributions: f(x) = φf0 (x) +

∑M
i=1 φ

f
i (x),

where φfj (x) is the contribution of feature j to f(x) and
φf0 (x) = E[f(X))] is the averaged prediction with the ex-
pectation over the observed data distribution. The Shap-
ley value of a feature j captures the change in model out-
come comparing the prediction when the feature value xj
is included to when it’s removed from the input. This
change is computed from the difference in value func-
tion v when setting feature j equal to the instance feature
value xj , averaged over all possible coalitions S of fea-
tures excluding feature j. If a feature is included in the
coalition its value is set to the observed instance value xj .
To model feature removal, the value function takes the ex-
pectation of the black-box algorithm at observation x over
the non-included features S using a reference distribution
r(X |xS) such that vf (S, x) = Er(X | xS)[f(xS , XS)] for
S := {1, . . . ,m}\S and the operation (xS , xS) denoting
the concatenation of its two arguments. Binomial weights
|S|!(m− |S| − 1)!/(m − 1)! take account of all possible
orderings. The Shapley value of feature j is thus:

φfj (x) =

m−1∑
i=0

1

m
(
m−1
i

) ∑
S 63j
|S|=i

[vf (S ∪ {j}, x)− vf (S, x)],

i.e. φfj (x) = Ep(S|j /∈S)[φ
f
j,S(x)] where φfj,S(x) := vf (S ∪

{j}, x)−vf (S, x) and ∀j, p(S | j /∈ S) = 1/m(m−1
|S| ). Shap-

ley values have become a gold standard amongst explanation
models due to their desirable properties (model agnostic,
additive) and axioms (Symmetry, Efficiency, Linearity and
Dummy—see Supplement D.1 for details). However, the
method has not been adopted in critical settings due to the
considerable limitations of both possible reference distribu-
tions (Janzing et al., 2020; Chen et al., 2020; Sundararajan
& Najmi, 2020).

Limitations of Shapley values On the one hand, on-
manifold Shapley values (Aas et al., 2021) use a condi-
tional reference distribution, conditioning on xS to bet-
ter account for correlations between features r(X |xS) :=
p(X |XS = xS). Sampling from a conditional distribution
forces the model to be evaluated on plausible instances that
lie on the data manifold. It thus improves the adversarial
robustness and thus the safety of the method (Slack et al.,
2020). However, on-manifold Shapley values have been
shown to be unreliable as they can generate misleading
explanations (Janzing et al., 2020; Sundararajan & Najmi,
2020). On the other hand, off-manifold Shapley values use
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a marginal reference distribution, that is r(X |xS) := p(X)
(Lundberg and Lee, 2017). The resulting explanations re-
veal the functional dependence better, also known as being
“true to the model” (Chen et al., 2020). However, sampling
from the marginal distribution breaks the dependence be-
tween features. Consequently, off-manifold Shapley values
are sensitive to adversarial robustness and thus deemed un-
safe (Slack et al., 2020). Note that adversarial robustness
is key for fairness studies. If an unfair model undergoes
an adversarial attack, it may “counterbalance” its poten-
tial prejudice on real-world data by forming predictions
favourable to disadvantaged groups on implausible inputs.
Since only the marginal distribution is used, the resulting
Shapley value of a sensitive attribute might look fair even
though the model would predict unfairly on real-world data
(Slack et al., 2020). Ultimately, Shapley values can’t pro-
vide both reliable and safe explanations, which may hinder
their adoption in safety-critical settings (see further details
on Shapley values in Supplements A).

Shapley values also have limited interpretability. The attri-
bution of a target feature j is the result of model evaluations
averaged over all coalitions excluding j. The goal of this
procedure is to acknowledge all the correlations amongst
features. However, if some features are assumed to be in-
dependent, this assumption fails. Averaging over coalitions
with/without independent features may generate redundan-
cies and unbalance the resulting attribution. Also, the inter-
pretation of on-manifold and off-manifold Shapley values
is agnostic to the assumed causal structure, if any. When a
specific treatment is of interest, causal interpretation of its
Shapley values should be done in light of the relative roles
of other features: confounder, moderator or mediator; see
Supplement B for a definition of these notions. Interpreting
Shapley values causally would be a case of the “Table 2
fallacy” (Westreich & Greenland, 2013), where all coeffi-
cients of a model are misleadingly interpreted as adjusted
causal effects. Thus we claim that under a posited DAG, the
Shapley value of a feature should be computed according
to the assumed statistical dependencies, i.e. the edges in the
DAG, and interpreted in light of its causal links with other
variables, i.e. the directions of the arrows in the DAG.

In PWSHAP, we use a conditional reference distribution to
ensure the robustness to adversarial attacks and safety of
our method. Meanwhile, we are able to generate feature
attributions that are both reliable and interpretable, thanks to
the tailored causal interpretations of the effects we compute.

3. Path-Wise SHAP (PWSHAP)
The intuition behind the introduced method is two-fold.
First, we decompose the Shapley value as a weighted sum
of quantities that can be interpreted causally as treatment
effects along coalitions. Second, by only considering rele-

vant coalitions, we are able to deduce quantities that can be
interpreted causally along paths. Since the treatment T is of
special interest, we separate it from the other variables, that
we call covariates C, such that X = (C, T ).

3.1. Problem Setup

Let C denote covariates, T a binary treatment and Y an
outcome of interest. We assume that Y = f∗(C, T ) + ε,
with E[ε|C, T ] = 0. Our black-box f is an arbitrary function
of X = (C, T ) which aims at predicting f∗. We aim at
explaining the specific effect of the treatment variable T on
the predictions made by the black-box f for an individual
with values c of covariates C. To do so, we first decompose
the Shapley value of T into a weighted sum of “Shapley
effects” which are inspired by conditional average treatment
effects, commonly used in the causal literature. We refer to
a coalition S excluding treatment T as a subset of covariates
and note the value function as vf (S ∪ {T}, cS , t) when it
is taken over the coalition S ∪ {T} and vf (S, cS) when
taken over S. Notations are summarised in Section C, with
a running example to illustrate them all in Supplement I.

PWSHAP relies on two assumptions: (i) the treatment of
interest is a causal ancestor of the outcome (no anti-causal
learning) and (ii) the DAG is compatible with the observed
data i.e. all conditional independence constraints implied
by graphical d-separation relations hold in the data. The
user-supplied DAG thus only encodes the conditional depen-
dences and is not assumed to be identical to the underlying
model behavior. The “direction” of the arrows in the DAG
is only used for causally interpreting the PWSHAP values.

3.2. Decomposition into Shapley Effects

First, we notice a connection between value functions vf of
the black-box f and conditional average treatment effects
using coalition-wise Shapley values.

Definition 3.1 (Coalition-wise Shapley effect). We define
the coalition-wise Shapley effect2 of T on Y along the
covariates CS indexed by the subset of covariates S as:

Ψf
T→Y |CS (cS) = vf (S∪{T}, cS , 1)− vf (S∪{T}, cS , 0)

The coalition-wise Shapley effect can be understood as a
generalisation of conditional average treatment effects. In-
deed, for the true model f∗, the RHS is equal to E[Y |CS =
cS , T = 1] − E[Y |CS = cS , T = 0]. Under the typical
causal treatment effect identification assumptions, i.e. no
interference, consistency, and conditional exchangeability
given C (Imbens & Rubin, 2010), this is the conditional
average treatment effect (CATE) (Rubin, 2005) (definition
in Supplement B) when S is the complete coalition, i.e.

2Note that our Shapley effects are orthogonal to those intro-
duced by (Iooss & Prieur, 2017) for numerical models .
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containing all covariates. In addition, Ψf
T→Y |∅ is the “base”

treatment effect, i.e. a population-wide estimate of treatment
effect. Its exact causal interpretation depends on the struc-
ture of the DAG, but in some cases it equates to the Average
Treatment Effect (ATE) as defined by (Rubin, 2005) (defini-
tion in Supplement B). The coalition-specific Shapley effect
can be linked to the original Shapley values as follows.

Property 3.1 (Decomposing Shapley values into Shap-
ley effects). The coalition-wise Shapley value φfT,S(c, t) is
equal to a weighted estimate of a local treatment effect,

φfT,S(c, t) = w∗S(cS , t) ·Ψf
T→Y |CS (cS), (1)

where w∗S(c, t) denotes what we call the “propensity
weights” defined by w∗S(c, t) = t − p(T = 1|CS = cS).
This name follows the fact that these weights are related to
whether the sample is an outlier or not.

The proof can be found in Supplement J.1. Property 3.1
shows that each coalition-specific term in the original on-
manifold Shapley value is equal to the product of two terms.
The first is a weight that depends on the propensity score.
The second is a measure of the treatment effect, namely the
coalition-specific Shapley effect. As a result, the overall
Shapley value φfT (c, t) can be decomposed as

φfT (c, t) = Ep(S|T /∈S)[w
∗
S(cS , t) ·Ψf

T→Y |CS (cS)].

3.3. Path-Wise Shapley (PWSHAP) Effects

Although we connected Shapley values to coalition-wise
Shapley effects the latter still only apply to coalitions and
not specific paths. However, the coalition-wise Shapley
effect Ψf

T→Y |CS (cS) can be understood as the causal flow
from T to Y through a set of covariates S. Thereby, we
define the causal flow along the (undirected) path from
T to Y through Ci as the difference between the causal
flow through all covariates and the causal flow through all
covariates but Ci. See Supplement G for a generalisation of
paths of length 3 or more.

Definition 3.2 (Path-wise Shapley effect). Let S∗ be the
coalition with all covariates. We refer to the following
quantity as the path-wise Shapley effect of T on Y along
the path from T to Y through Ci:

Ψf
Ci

(c) = Ψf
T→Y |CS∗

(c)−Ψf
T→Y |CS∗\{i}

(cS∗\{i}).

For instance in the fairness example from Section 1, the
path-wise Shapley effect of sex on admission (Adm) me-
diated by the chosen department (Dpt) Ψf

Sex→Dpt→Adm is
Ψf
Sex→Adm|Dpt,Exam −Ψf

Sex→Adm|Exam.

Path-wise Shapley effects thus quantify the change in model
outcome when specifying the feature values along a specific

path, compared to when all features are specified but the
ones on the path of interest. As such, PWSHAP measures
the effect of the treatment on the outcome through a causal
pathway. Ultimately, conditioning on all other features re-
inforces the locality of our result. It can also be seen as
a contribution to the shift from a global estimated “base”
treatment effect to an individual estimated treatment effect.
However, note that PWSHAP violates the efficiency prop-
erty i.e. they do not sum up to an interpretable quantity like
the original Shapley feature attributions do. Moreover, Prop-
erty 3.2 shows that integrating PWSHAP effects can help
isolate covariates that are conditionally independent on the
treatment given other covariates (the Supplement J.2 for the
proof). As shown in Section 6, the actual causal meaning of
this conditional independence depends on the posited DAG
of the data, however.

Property 3.2 (Integration of the PWSHAP effects). Let
Ci be a covariate such that Ci ⊥⊥ T |C−i where C−i :=
CS∗\{i}. Then for any function f and any value c−i of C−i,

E[Ψf
Ci

(Ci, c−i)|C−i = c−i] = 0

3.4. Estimation of Shapley Effects from Shapley Values

Using Property 3.1, we can express the coalition-wise Shap-
ley effects Ψf

T→Y |CS from the coalition-wise Shapley val-

ues φfT,S(c, t) as Ψf
T→Y |CS (cS) = φfT,S(c,t)/w∗S(c,t). There-

fore, the path-wise Shapley effects Ψf
Ci

are computed as:

Ψf
Ci

(c) =
φfT,S∗(c, t)

w∗S∗(c, t)
−
φfT,S∗\{i}(c, t)

w∗S∗\{i}(c, t)
.

In practice, path-wise Shapley effects are computed by re-
placing the true propensity weights with weights that use
an estimate of the propensity score. For this, we further
need to assume positivity holds. The path-wise Shapley
effect of T on Y through Ci is thus estimated in three
steps: (i) computing the coalition-wise Shapley values for
S∗ the entire set of covariates and S∗\{i}; (ii) dividing
each of these terms by an estimate of their corresponding
propensity weight; (iii) taking the difference between the
two resulting quantities (also known as coalition-specific
Shapley effects) to isolate the effect along the path through
Ci. Note that division by weights requires overlap, that is
∀c, 0 < p(T = 1|C = c) < 1.

4. Related Work
4.1. Conceptual Distinction Between Local

Explanations Models and Causal Inference

Causal inference aims at assessing the effect of a feature at
a global scale (e.g. ATE) or within subgroups (e.g. CATE).
Contrastingly, Shapley values assess the local effect of a
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feature value compared to the values taken by that feature in
the reference distribution. Therefore, to identify path-wise
local effects, we consider a path to be “deactivated” when
the covariate value gets sampled from the reference distri-
bution, i.e. the covariate is not in the coalition. Conversely,
specifying a covariate value, i.e. when the covariate is in
the coalition, “activates” a path. Thereby, coalition-wise
effects are conditional treatment effects marginalised over
covariates that aren’t in the coalition. In the admission ex-
ample from Section 1, the coalition-specific Shapley effect
for {Exam}, Ψf

Sex→Adm|{Exam} corresponds to the treat-
ment effect along two paths: the direct path Sex→ Adm
and the path from Sex to Adm through Exam.

4.2. Comparison of PWSHAP with Existing Methods

We compare our method to two baseline explanation meth-
ods. Our first baseline is Causal Shapley (CS) (Heskes et al.,
2020), another method aiming to explain a model under
an assumed causal DAG. Like PWSHAP, Causal Shapley
splits Shapley attributions, although the split is binary (di-
rect/indirect effect). In Causal Shapley, the indirect effect of
a feature j, the distribution of the ‘out-of-coalition’ features
changes due to the do-operator (see Suppl. A and D.2 for
further details). Our second baseline is on-manifold Shapley,
a natural choice given that PWSHAP augments the origi-
nal method. Section D.3 details other graph based Shapley
methods (Wang et al., 2021; Singal et al., 2021), which are
not appropriate baselines here due to structural differences.

Higher model fidelity, lower reliance on causal assump-
tions than Causal Shapley We claim that PWSHAP has
higher model fidelity and relies less on the assumed causal
structure than Causal Shapley. As the direct/indirect effect
split is based on do-calculus in Causal Shapley, the com-
putation of the attributions depends on the assumed DAG
(both the edges and their directions). In contrast, PWSHAP
computations only depend on the hypothesised feature de-
pendencies i.e. the edges in the DAG. Only the causal inter-
pretation of PWSHAP depends on the direction of the edges.
We view the fact that our approach is agnostic to the choice
of a (compatible) DAG as a strength, as it allows different
experts to explain the black-box model output according
to their own causal beliefs about the data or phenomenon
being studied (see D.5 for a detailed discussion on this). Ul-
timately, by applying do-calculus, Causal Shapley computes
feature attributions according to preconceptions of how the
model should reason, and as such is “forcing” explanations
to fit to a presumed causal structure. To further illustrate
the limitations of relying on the causal assumptions and
show that PWSHAP has higher fidelity to the model, let
us consider a black-box with a single covariate C, and a
treatment T . If we wrongly assume C to be a confounder
instead of a mediator, the indirect effect of treatment i.e. the
mediation of treatment through C would be null according

to Causal Shapley (see Property D.1 in Supplement D.2).
By contrast, only the causal interpretation of the PWSHAP
effect through C would be incorrect, but its value would
remain unaltered.

Increased resolution, better interpretability Compared
to both Causal and on-manifold Shapley, PWSHAP has
higher resolution—as it is path-specific instead of feature-
specific—and improved interpretability. In Causal Shapley
and on-manifold Shapley values, feature attributions result
from taking an average over coalitions, whereas PWSHAP
only considers coalitions used to compute effects. Ulti-
mately, evidence has shown that on-manifold Shapley values
and Causal Shapley values can generate misleading inter-
pretations (Sundararajan & Najmi, 2020). In on-manifold
Shapley values the attribution of a feature that does not
appear in the algebraic formulation of the model can be
non-zero, depending on how the data is distributed. This
is induced by both the conditional reference distribution,
the average taken over multiple coalitions. By providing an
exact interpretation for the computed quantities, PWSHAP
overcomes this unreliability issue. If a PWSHAP effect Ψf

Ci
is null, it means that specifying the covariate Ci = ci has
had no impact on the treatment effect compared to marginal-
ising it, according to our black-box (see Lemma 6.2 and
Property 6.1). Meanwhile, PWSHAP remains robust to ad-
versarial attacks, as it samples from a conditional reference
distribution (Slack et al., 2020). PWSHAP thus reconciles
safety and reliability. However, a limitation of PWSHAP
compared to both baselines is that it violates the efficiency
property (see Suppl. D).

5. Error Bounds
We now show how to obtain error bounds for quantities
like path-wise Shapley effects from other quantities like
the outcome model, according to Figure 1. To the best of
our knowledge, these are the first results regarding error
bounds for on-manifold Shapley values. In the following,
(f̂N ) denotes a sequence of estimators of f∗. The proofs
can be found in Supplements J.3 and J.4

Property 5.1 (Convergence of the outcome model im-
plies convergence of Shapley values and PWSHAP ef-
fects). If ∀c, t,N, |f̂N (c, t)− f∗(c, t)| ≤ eoutcome

N then:

1. Convergence of the coalition-specific Shapley terms:
∀c, t,N, |φf̂NT,S(c, t) − φf

∗

T,S(c, t)| ≤ 2eoutcome
N .

which implies the convergence of the Shapley value of
the estimated model to that of the true model.

2. Convergence of the path-wise Shapley effects:
∀i, c,N, |Ψf̂N

Ci
(c)−Ψf∗

Ci
(c)| ≤ 4eoutcome

N .

Property 5.2 (Convergence of estimated coalition-spe-
cific Shapley values and propensity score implies con-
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T
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Figure 1: DAGs for Building Blocks (Up) and Error Bound
(Down, Cvg=Convergence, SV=Shapley value)

vergence of estimated PWSHAP effects). Assuming that:
(1) the arbitrary propensity score model πN and the true
propensity score model π∗ verify ε-strong overlap,
(2) ∀c,N |πN (c)− π∗(c)| ≤ epropensity

N

(3) ∀S s.t. T /∈ S, c,N, |φ̂N,f̂NT,S (c, t)− φf
∗

T,S(c, t)| ≤ eShap
N ,

with wNS (c, t) = t − Ep(CS̄ |CS = cS)[πN (cS , CS̄)] we
show the convergence of the estimated PWSHAP effects to
the true PWSHAP effects, ∀i, c, t,N,

|Ψ̂N,f̂N

Ci
(c)−Ψf∗

Ci
(c)| ≤

4eShap
N

ε
+

4||f∗||∞ · epropensity
N

ε2
.

6. Causal Interpretations
PWSHAP effects are interpreted by revisiting causal infer-
ence concepts of confounding, moderation and mediation at
a local scale. As our method stands on theoretical grounding,
we first provide objective evidence using explicit equations.

6.1. Local Bias Analysis

Under DAG (2) of Figure 1, PWSHAP effects are causally
interpreted as follows:

φf
∗

T = w∗12/3 · CATE(c1, c2) + w∗1/6 · "CATE"C1(c1)

+ w∗2/6 · "CATE"C2(c2) + w∗/3 · Diff. in means

where "CATE"CS (cs) = E[Y |T = 1, CS = cS ]−E[Y |T =
0, CS = cS ]. We refer to these terms as “CATE”s, in an
abuse of notation, but note that they are not true causal
conditional average treatment effects, as they include con-
founded paths. The term “Diff. in means” stands for
E[Y |T = 1] − E[Y |T = 0]. To isolate the spurious ef-
fect of the confounders, we further assume that the two
confounders are not effect moderators.
Definition 6.1 (Local confounding effect). In this example,
we call the PWSHAP effect of C2 the “local confound-
ing effect of C2” and note it Ψf

T←C2→Y . In other words,
Ψf
T←C2→Y := Ψf

C2

Notably, for the true model f∗, Ψf∗

T←C2→Y (c1, c2) =
CATE(c1, c2)− "CATE"C1(c1). This quantity has been re-
ferred to as the bias due to unmeasured confounding (assum-
ing we observeC1 but notC2) in a segment of the sensitivity
analysis literature (Veitch and Zaveri, 2020). Therefore, our
measure of confounding effect is a local equivalent of this
bias. Indeed, integrating out this difference over C1, C2

yields ATE−E[E[Y |T = 1, C1]−E[Y |T = 0, C1]] where
ATE is the Average Treatment Effect. However, if a covari-
ate is both a confounder and an effect modifier, its path-wise
attribution will cover both phenomena and the two effects
will be indiscernible. Ultimately, PWSHAP contrasts with
sensitivity analysis methods which are meant for quantify-
ing unobserved confounding, whereas our method measures
the impact of an observed confounder. Further details on
such techniques can be found in the Supplement D.6.

Lemma 6.2 (Integration of the local confounding effect,
true model). Let C1, C2 be two pre-treatment covariates
such that ignorability given C1, C2 holds, i.e. ∀t, Y (t) ⊥⊥
T |C1, C2. If, additionally, C2 is not a confounder, i.e. C1

alone guarantees ignorability or ∀t, Y (t) ⊥⊥ T |C1, then the
integral of the local confounding effect of f∗ w.r.t. C2 on
the joint distribution of covariates is null:

E[Ψf∗

T←C2→Y (C1, C2)] = 0.

The proof can be found in Supplement J.5. For a variable
that is not actually a confounder, the integration of the local
confounding effect thus yields zero. This can be generalised
to any number of confounding pre-treatment covariates, by
grouping all of them in C1. For any blackbox f , a stricter
condition yields the same result as a corollary of Proposition
3.2. We give that result and an example of local bias analysis
in Supplement E.2. Further, if the local confounding effect
is zero for all individuals in the training set, then we can
hypothesise that the model did not learn to predict through
the confounding path T ← C2 → Y .

6.2. Local Moderation Analysis Under Randomised
Treatment

Here, “moderation” refers to an effect modification as in
(Boruvka et al., 2018). In the setting represented in Figure
1, causal graph (1), where treatment is assumed to be un-
confounded, we interpret the PWSHAP decomposition as
follows:

φf
∗

T = 1/3 · w∗12 · CATE(c1, c2) + 1/6 · w∗1 · CATEC1(c1)

+ 1/6 · w∗2 · CATEC2(c2) + 1/3 · w∗ · ATE

Definition 6.3 (Local moderating effect). In this example,
we call the PWSHAP effect of C2 the “local moderating
effect of C2” and denote it Ψf

C2:T→Y . In other words,
Ψf
C2:T→Y := Ψf

C2
.

PWSHAP assesses the local effect modification induced
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by C2 by “unspecifying” this feature. Having null local
moderating effect would mean that C2 did not act as a
moderator for this specific subject, according to our fit-
ted black-box. Unlike previous methods (Imai and Ratkovic,
2013; Athey and Imbens, 2016; Wang and Rudin, 2017),
our PWSHAP approach to moderation analysis does not
involve subgroup finding—a technique known to be under-
powered (Holmes and Watson, 2018)—and is nonparametric
(see Supplement D.6 for a review of moderation analysis).
Ultimately, we show that in the presence of pre-treatment
moderators, Causal Shapley compounds the main effect of
treatment and its effect via moderation into a single “direct”
effect, whereas PWSHAP explanations are able to distin-
guish the added treatment effect due to moderation from the
main effect. We compare PWSHAP with Causal Shapley
on an example as shown in DAG (1) of Figure 1 assuming
Y = βT + γ1C1 + γ2C2 + α1TC1 + α2TC2 + ε with
E[ε|T,C1, C2] = 0 and where C1, C2 are two independent
moderators with C1, C2 ∼ Uniform(0, 1). Treatment is ran-
domised: T ∼ Bernoulli(p). Details about the following
are given in Supplement E.1. PWSHAP yields:

Ψf∗

T→Y |C1,C2
= β + α1c1 + α2c2

Ψf∗

C1
:= Ψf∗

C1:T→Y = α1(c1 − 1/2)

Ψf∗

T→Y |∅ = β + α1/2 + α2/2

Ψf∗

C2
:= Ψf∗

C2:T→Y = α2(c2 − 1/2)

where E[C1] = E[C2] = 1/2. PWSHAP effects through
C1 and C2 are null if C1 = C2 = 1/2. The PWSHAP
approach thus matches the default behaviour of local ex-
planation methods: paths through effect moderators are
given zero attribution if the moderator value is equal to
the population average. This highlights the true local-
ity of our method. Furthermore, one can check that the
moderating effects integrate to 0. Again, this is coher-
ent with the overall definition of randomised treatment in
causal inference. By contrast, moderation by C1 and C2

is overlooked in Causal Shapley as φf
∗,CS
T,indirect = 0. Further,

φf
∗,CS
T,direct = (t−p){β+ α1

2 · (c1 + 1
2 )+ α2

2 · (c2 + 1
2 )} which

does not reflect the local behaviour of the model.

6.3. Local Mediation Analysis

Under DAG (3) of Figure 1, i.e. with unconfounded treat-
ment and two mediators only depending on it, the causal
interpretation of the PWSHAP approach to mediation is:

φf
∗

T = 1/3 · w∗12CDEC1,C2
(c1, c2) + 1/6 · w∗2CDEC2

(c2)

+ 1/6 · w∗1CDEC1
(c1) + 1/3 · w∗ATE

where CDE refers to the Controlled Direct Effect (definition
in Supplement B), with CDECS (cs) = E[Y |T = 1, CS =
cs] − E[Y |T = 0, CS = cs]. We claim that the difference

in CDE is able to isolate the local effect of a given mediator
and has a causal interpretation, as outlined by the local
mediating effect introduced below.

Definition 6.4 (Local mediating effect). Here, we call the
PWSHAP effect of C2 the “local mediating effect of C2”
and note it Ψf

T←C2→Y . So, Ψf
T→C2→Y := Ψf

C2
.

Property 6.1 (Ancestors of outcome). Let M1,M2 be two
post-treatment and pre-outcome variables. Assuming that
variables C include all confounders of the relationships
between T , Y and (M1,M2) and that M2 ⊥⊥ T,M1|C,
then for any value c of C and m1 of M1,

E[ΨT→M2→Y (c,m1,M2) | C = c] = 0.

In other words, if M2 is not mediating the effect of T on Y
because M2 ⊥⊥ T |C, and M2 is independent of M1 condi-
tionally on T,C, then integrating the local mediating effect
of M2 yields 0 which is coherent with our intuition. The
proof can be found in Suppl. J.6. See Suppl. D.6 for further
comparisons with the traditional Natural Effects approach
(definition in Supplement B) and with Causal Shapley.

7. Experiments: Synthetic Data
In the following two experiments, we show PWSHAP’s
ability to capture confounding and mediation on synthetic
datasets. We infer path-specific Shapley effects following
the procedure from Section 3.4 and compute the absolute
values of their averages Ψ̄ across the testing set. We divide
these values by the empirical standard deviation of outcome
σY on the training set to mitigate variation due to the scale
of the outcome. We follow the same process for Causal
Shapley’s direct and indirect effects w.r.t. the treatment.
Results are averaged over 25 randomly sampled datasets,
with standard errors shown in parentheses. More details are
given in Supplement H.

Local bias analysis. We consider the previous model with
two pre-treatment covariates C1 and C2 described in DAG
(2) of Figure 1, and with results derived in Section 6.1.
We look at three scenarios: (i) neither C1 nor C2 are con-
founders, (ii) C1 is a confounder but C2 is not, (iii) both are
confounders. Results are shown in Table 1. Local confound-
ing effects are significantly higher for confounding vari-
ables compared to non-confounding variables. This shows
how these effects can isolate individual confounders in pre-
treatment covariates, in accordance with Lemma 6.2. Con-
versely, we do not notice any significant change in Causal
Shapley’s direct effect. Causal Shapley’s indirect effect is
even lower - as it is expected to be zero from Property D.1.

Local mediation analysis. We consider DAG (3) of Fig-
ure 1, applied to a college admission example where we

7
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Table 1: Results on local bias analysis.

Scenario
|Ψ̄fT←C1→Y

|
σY

|Ψ̄fT←C2→Y
|

σY

|φ̄f,direct, CS
T |
σY

|φ̄f,indirect, CS
T |
σY

C1, C2

non-conf.
0.057

(0.011)
0.064

(0.013)
0.069

(0.010)
0.006

(0.001)

C1 conf.,
C2 not

0.505
(0.057)

0.054
(0.009)

0.067
(0.008)

0.002
(0.000)

C1, C2

conf.
0.322

(0.037)
0.277

(0.034)
0.076

(0.010)
0.006

(0.003)

Table 2: Results on local mediation analysis.

Scenario
|Ψ̄fT→Q→Y |

σY

|Ψ̄fT→D→Y |
σY

|φ̄f,direct, CS
T |
σY

|φ̄f,indirect, CS
T |
σY

Q,D
non-med.

0.056
(0.012)

0.041
(0.007)

0.072
(0.012)

0.033
(0.003)

D med.,
Q not

0.059
(0.010)

0.715
(0.073)

0.080
(0.011)

0.091
(0.019)

Q,D
med.

0.948
(0.117)

0.354
(0.065)

0.112
(0.014)

0.089
(0.015)

investigate the effect of sex—noted T — on the logit of the
probability of admission, mediated by exam results C1 = Q
and department choice C2 = D. Details are in Supplement
E.3. We look at three scenarios : (i) neither is a mediator,
(ii) the former is a mediator but the latter is not, (iii) both
are mediators. Results are presented in Table 2. Local medi-
ating effects are significantly higher for mediating variables
compared to non-mediating variables. This shows that these
effects can isolate individual mediators in post-treatment
covariates, in accordance with Property 6.1. Conversely,
Causal Shapley’s indirect effect seems to capture the pres-
ence of mediators - but not which variables are mediators.

7.1. Robustness to Adversarial Attacks

We empirically show that on-manifold Shapley values
are more robust to adversarial attacks than off-manifold
Shapley values, as they are computed using a conditional
reference distribution. Consequently, PWSHAP effects
which marginalise over a conditional reference distribu-
tion are also more robust to adversarial attacks than off-
manifold Shapley values. We compare the three expla-
nation methods on a synthetic fairness study. Here, we
consider three black-box models: a fair model, an unfair
model, and an “attacker model” that returns fair predic-
tions on instances classified as on the data manifold and
unfair predictions on instances classified as not belonging
to the data manifold. We generate a gender sensitive at-
tribute as T ∼ U(0, 1), a departmental difficulty indicator
D ∼ Bernoulli(π(1− T ) + (1− π)T ), with π = 0.99. We
also define a continuous test result Q ∼ U(0, 1). Notably,
D = 1−T with high probability, so we take a classifier clas-

Table 3: Results on Census Income Data.

Causal SHAP φdirect < 0.001(0.003)

φindirect 0.004(0.006)

PWSHAP Ψ
Race

total−−→Inc
−0.005(0.003)

ΨRace→Capg→Inc 0.077(0.004)

ΨRace→M.Stat→Inc 0.361(0.004)

sifying a given unit (q, d, t) as belonging to the manifold iff
t = 1 − d. The fair model is defined f fair(t, q, d) = q,
the unfair model as f unfair(t, q, d) = t+td

2 , and the at-
tacker model as f attacker(t, q, d) = 1{t=1−d}f

unfair(t, q, d) +
1{t=d}f

fair(t, q, d). Figure 2 shows the explanations given
by off-manifold Shapley values w.r.t. T , on-manifold Shap-
ley values w.r.t. T , base PWSHAP effects ΨT→Y |∅, and
PWSHAP effets wrt the path T → D → T ΨT→D→Y on
for the three types of black-box models in Figure 2. The
on-manifold Shapley values and PWSHAP effects return
very similar boxplots for the unfair and attacker models.
Both methods also capture that the unfair model and the
attacker model make predictions from the sensitive attribute
T while generating a low attribution to T for the fair model.
However, note that the boxplot of ΨT→D→Y for the un-
fair model does not match the theoretical expectation (from
Suppl. E.3), a limitation that is most likely due to use of
a potentially imprecise iterative imputer to fit conditional
distributions, combined with division by small weights. Fit-
ting conditional probabilities well to impute missing values
remains an active topic of research (Lin & Tsai, 2020). For
the attacker model, the off-manifold Shapley values are
between that for the unfair model and the fair model, as
approximately half of the data with columns generated inde-
pendently is classified as belonging to the manifold and half
is not. This illustrates how off-manifold Shapley values are
less robust to adversarial attacks than on-manifold Shapley
values and derived methods like PWSHAP effects.

8. Experiments : Real-World Data
We present a local mediation analysis experiment on the
Adult data set from UCI (Asuncion & Newman, 2007), us-
ing the causal graph from (Frye et al., 2019). Further results
and experimental details can be found in the Supplement H.
The binary outcome denotes whether an individual’s income
exceeds $50,000 per year. The causal structure of the data is
described in the DAG in Figure 3. Race was dichotomised
into white/non-white. Our individual of interest is a white
38-year-old born in the US, whose marital status (M.Stat) is
divorced and Relationship (Rltnshp) is unmarried, and who
has a managerial occupation and no capital gain (Capg).

Our aim is to check how (i.e through which paths) being
white has influenced our model’s prediction of a 0.53 proba-
bility of high income for this individual, which is approx-
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(a) (b) (c) (d)

Figure 2: Boxplots of (a) off-manifold Shapley values w.r.t. T , (b) on-manifold Shapley values w.r.t. T , (c) base PWSHAP
effects ΨT→Y |∅, (d) PWSHAP effects on the path through D ΨT→D→Y , each for the unfair, attacker and fair models.

Income M.Stat

Race
Capg

Country Age

Occ

Rltnshp

Figure 3: DAG of the Census Income Dataset.

imately 30 points higher than the average probability in
the cohort. Results are shown in Table 3, with mean and
standard deviation computed by subsampling. PWSHAP
shows that the local mediating effect of race through marital
status is predominant. Specifying marital status increases
the effect of race by 0.361, as modeled by our black-box.
Causal Shapley results in negligible direct and indirect ef-
fects, however we can’t readily interpret these quantities
obtained from averaging over many coalitions. This exam-
ple illustrates three key attributes of PWSHAP compared
with Causal Shapley, but also traditional Shapley methods
overall: higher resolution, better interpretability of the re-
sulting attributions, true locality of our explanations. The
latter characteristic may explain why the effect of moder-
ation by marital status is not captured by Causal Shapley.
Here, our individual is an outlier as a large portion of white
divorced individuals in the cohort have non-zero capital
gain. Both the indirect and direct parts of Causal Shapley
are a sum over all coalitions. This implies that for a majority
of terms in Causal Shapley race and/or marital status are
marginalised over, instead of being set to their feature val-
ues. The local effect of race via marital status is thus most
likely “blurred” amongst all the coalitions that are “causally
redundant” w.r.t. race i.e. where we add/drop features that
are independent of race. By contrast, PWSHAP conditions
on features that are independent of race (e.g. occupation),
which ultimately increases the locality of our method.

9. Discussion
PWSHAP shows how Shapley values can generate granu-
lar causal explanations for local treatment effects under a
posited causal graph. Our results on both simulated and

real data show the applicability and locality of our method.
The interpretability and safety of PWSHAP make it a strong
candidate method for evaluating algorithms in sensitive envi-
ronments, assuming treatment is binary and a known cause
of the outcome. Practitioners could use PWSHAP explana-
tions to identify inequity or unfairness, prior to deployment.
However, our method heavily relies on the cumbersome es-
timation of the conditional distributions and on the assumed
statistical dependencies. Further, dividing by propensity
weights can bias the results if the weights are close to zero,
and our approach is limited to binary treatments. Follow-
ing (Chen et al., 2018), a potential extension of our work
may acknowledge the proximity of features in the DAG,
instead of only considering features with a direct edge to the
target variable. Deriving weights to recover the efficiency
property of Shapley is another perspective for future work.
PWSHAP could also be used to help guide causal discovery
as it can reveal possible conditional independence relation-
ships between variables. Finally, although PWSHAP is
a promising alternative to address rising ethical concerns
in AI, note that fairness studies rely on the availability of
sensitive data, which can be challenging for practical, eth-
ical or legal reasons (Custers, 2010). We further caution
against relying exclusively on XAI when causal knowledge
is insufficient or for black-box without high-accuracy, as
misleading interpretations may have negative social impact.
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A. Shapley Values: Definitions
Off-manifold Shapley values

φfj (x) =

m−1∑
i=0

1

m
(
m−1
i

) ∑
S 63j
|S|=i

[E[f(xS∪{j}, XS∪{j})]− E[f(xS , XS)]]

On-manifold Shapley values

φfj (x) =

m−1∑
i=0

1

m
(
m−1
i

) ∑
S 63j
|S|=i

[E[f(xS∪{j}, XS∪{j}) | XS∪{j} = xS∪{j}]− E[f(xS , XS)] | XS = xS ]

Causal Shapley values

φfj (x) =

m−1∑
i=0

1

m
(
m−1
i

) ∑
S 63j
|S|=i

[E[f(xS∪{j}, XS∪{j}) | do(XS∪{j} = xS∪{j})]− E[f(xS , XS)] | do(XS = xS)]

where the contribution of feature j, φfj,S(x), is decomposed into a direct and an indirect effect as follows:

φfj,S(x) = E[f(xS∪{j}, XS∪{j}) | do(XS∪{j} = xS∪{j})− E[f(xS , XS)] | do(XS = xS)]

= E[f(xS∪{j}, XS∪{j}) | do(XS = xS)]− E[f(xS , XS)] | do(XS = xS)]

+ E[f(xS∪{j}, XS∪{j}) | do(XS∪{j} = xS∪{j})]− E[f(xS∪{j}, XS∪{j}) | do(XS = xS)]

where, in the last equality, the first line is the direct effect and the second line the indirect effect. See Section D.2 for details.
Note that “interventional” Shapley values in Equation 3 of (Chen et al., 2020) are not causal Shapley values but actually
off-manifold Shapley values : the do-operator is written in Equation 3, but it is misleading as the do-operator is said to
intervene “by breaking the dependence between features in [the coalition] and the remaining features”, i.e. making the
expectation marginal as in off-manifold Shapley values.

B. Causal Inference Background
Confounder A confounder is a variable that is associated with both the exposure and the outcome, causing a spurious
correlation. For instance, summer is associated with eating ice cream and getting sunburns, but there is no causal relationship
between the two.

Mediator A mediator is a variable that is both an effect of the exposure and a cause of the outcome. In presence of a
mediator, the total effect can be broken into two parts: the direct and indirect effect.

Moderator A mediator is a pre-exposure variable for which the causal effect is heterogeneous in subgroups.

Propensity score model A propensity score model is a function that predicts exposure from the observed covariates. We
note it π∗(c) = P (T = 1|C = c) and note π an estimate of π∗.

Potential outcome As defined by the Rubin causal model (Rubin, 2005), a potential outcome Y (t) is the value that Y
would take if T were set by (hypothetical) intervention to the value t.
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Identification assumptions

• No interference For a given individual i, this assumption implies that Yi(t) represents the value that Y would have
taken for individual i if T had been set to t for individual i, i.e the potential value of Yi if Ti had been set to t.

• Consistency For a given individual i, Ti = t ⇒ Yi = Yi(t). This means that for individuals who actually received
exposure level t, their observed outcome is the same as what it would have been had they received exposure level t via
an hypothetical intervention.

• Conditional exchangeability For a given individual i, we assume that conditional on C, the actual exposure level T is
independent of each of the potential outcomes:
Y (t) ⊥ T | C,∀t

Average Treatment Effect (ATE)The Average Treatment Effect for a binary treatment is the average difference in potential
outcomes: E[Y (1)− Y (0)].

Conditional Average Treatment Effect (CATE)The Conditional Average Treatment Effect for a binary treatment, condi-
tioned on C is the average difference in potential outcomes: E[Y (1)− Y (0)|C = c]. If C is a sufficient adjustment set, i.e.
conditional exchangeability w.r.t. C holds then the CATE can be identified as E[Y |T = 1, C = c]− E[Y |T = 0, C = c].

Controlled Direct Effect Let Y (t,m) be the potential outcome under exposure level T = t and mediator level M = m.
The controlled direct effect of T on outcome Y comparing T = t with T = t∗ and setting M to m measures the effect of T
on Y not mediated through M i.e. the effect of T on Y after intervening to fix the mediator to some value m. The controlled
direct effect for individual i is then CDEi(t, t

∗,m) = Yi(t,m)− Yi(t∗,m) (VanderWeele and Vansteelandt, 2009)

Natural Direct Effect The natural direct effect is defined as the difference between the value of the counterfactual
outcome if the individual were exposed to T = t and the value of the counterfactual outcome if the same individual were
instead exposed to T = t∗, with the mediator M taking whatever value it would have taken at the reference value of the
exposure T = t∗: Y (t,M(t∗))˘Y (t∗,M(t∗)) (VanderWeele and Vansteelandt, 2009)

Natural Indirect Effect The natural indirect effect is the difference, having set the exposure to a fixed level T = t,
between the value of the counterfactual outcome if the mediator M took whatever value it would have taken at a level of the
exposure T = t and the value of the counterfactual outcome if the mediator assumed whatever value it would have taken at
a reference level of the exposure T = t∗: Y (t,M(t))˘Y (t,M(t∗)) (VanderWeele and Vansteelandt, 2009)

C. Notations
• Coalition-wise Shapley *values* φfS,T are the individual terms for a coalition in the weighted sum of the original

definition of Shapley value, hence the term, *value*. It is common to use φ -even if specific to a coalition S- in
reference to Shapley values.

• Coalition-wise Shapley *effects* ΨT→Y |CS are the causal *effects* identified in coalition-wise Shapley *values* after
dividing by the propensity weights. We use Ψ for effects, and describe the effect of T on Y along the multiple paths
through the covariates CS . We symbolise this by using the subscript T → Y |CS .

• Path-wise Shapley *effects* ΨCi are similar to coalition-wise *effects* since they are also obtained after dividing by
the weights. However, the conditioning is only on the features on a single causal pathway. We thus still use Ψ as it is
an effect, but show that the conditioning only bears upon a path using the subscript Ci.

D. Further Related Work
D.1. Shapley Values: Axioms

In this section, in line with Section 2, the Shapley value φfj (x) is always taken with respect to value function v, unless
specified otherwise. In the latter case, if the value function is v′, then the Shapley value is noted φfj (x; v′) instead. Shapley
values have been shown to satisfy the four following axioms.

Dummy: A feature j receives a zero attribution if it has no possible contribution, i.e. vf (S ∪ {j}, x) = vf (S, x) for all
S ⊆ {1, . . . ,m}.
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Symmetry: Two features that always have the same contribution receive equal attribution, i.e. vf (S ∪ {i}, x) =

v(S ∪ {j}, x) for all S not containing i or j then φfi (x) = φfj (x).

Efficiency: The attributions of all features sum to the total value of all features. Formally,
∑
j φ

f
j (x) = vf ({1, ..,m}, x).

Linearity: For any value function v that is a linear combination of two other value functions u and w (i.e. v(S) =
αu(S) + βw(S) ), the Shapley values of v are equal to the corresponding linear combination of the Shapley values of u and
w (i.e. φfi (x; v) = αφfi (x;u) + βφfi (x;w)

)
.

D.2. Causal Shapley Values

Heskes et. al introduced the Causal Shapley values in 2020 (Heskes et al., 2020). For a coalition S, the contribution of
feature j φfj,S(x) is decomposed into a direct and an indirect effect:

φfj,S(x) = E[f(xS∪{j}, XS∪{j}) | do(XS∪{j} = xS∪{j})− E[f(xS , XS)] | do(XS = xS)]

= E[f(xS∪{j}, XS∪{j}) | do(XS = xS)]− E[f(xS , XS)] | do(XS = xS)]

+ E[f(xS∪{j}, XS∪{j}) | do(XS∪{j} = xS∪{j})]− E[f(xS∪{j}, XS∪{j}) | do(XS = xS)]

where, in the last equality, the first line is the direct effect and the second line the indirect effect. The direct effect measures
the expected change in prediction when the stochastic feature Xj is replaced by its feature value xj , without changing the
distribution of the other ’out-of-coalition’ features. The indirect effect measures the difference in expectation when the
distribution of the other ’out-of-coalition’ features changes due to the additional intervention do (Xj = xj). The direct and
indirect parts of Shapley values are then be computed by taking a, possibly weighted, average over all coalitions.

We note that in the problem setup of Section 3.1 , if all covariates are pre-treatment then under mild assumptions the indirect
effect of the treatment will be zero, as outlined in the following Proposition.

Property D.1 (Indirect part of Causal Shapley). Let S be a coalition containing pre-treatment covariates only. We assume
that an unobserved (latent) variable generates all pre-treatment covariates. Then the indirect part of the Causal Shapley
values of an exposure is null, i.e. we have

E [f (CS̄ , cS , t) | do(CS = cS , T = t)]− E [f (CS̄ , cS , t) | do(CS = cS)] = 0. (2)

The proof can be found in Supplement J.7.

D.3. Edge-Based/Flow-Based Approaches to Shapley Values

Given that the proposed approach is model-agnostic, in this paragraph we will not review model-specific approaches that
are considered to be "bespoke in nature and do not solve the problem of explainability in general" (Frye et al., 2019).
Similarly, we do not review methods that violate implementation invariance3. Pan et. al (Pan et al., 2021) leverage Shapley
values computation to define a new quantity that distributes credit for model disparity amongst the paths in a causal graph.
However, the resulting quantity isn’t a Shapley value itself. Shapley Flow (SF) assigns credits to "sink-to-node" paths.
To do so, SF only considers orderings that are consistent with a depth first search. Furthermore, SF modifies the original
definition of Shapley values by only explaining within successive cuts of the graphs or "explanation boundaries". Such cuts
are considered as alternative models to be explained. Given this modification, it is unclear what connection the explanations
generated by SF exhibit with the overall model. Recursive Shapley (Singal et al., 2021) is an edge-based approach which
only considers active edges. Although it provides useful insights for mediation analysis, this method overlooks the impact of
confounders. Ultimately, unlike our approach both Shapley Flow and Recursive Shapley aren’t additive methods, but instead
hold the property of "flow conservation" which allows a parent node to split its credit amongst its children. In contrast, the
efficiency axiom of Shapley values ensure that the attributions of all features sum up to the model outcome f(x). We argue
that Shapley efficiency is more relevant in a regression setting, whereas flow conservation should be used for analysis of
data with intrinsic ordering.

3Implementation invariance imposes that two black-box models that compute the same mathematical function have identical attributions
for all features, regardless of how being implemented differently.
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D.4. Other Causal Approaches to Interpreting Black-Box Models

Explaining black-box models in a causal manner remains challenging to this day. Zhao et. al (Zhao and Hastie, 2021)
expand on the use of partial dependence plot (PDP), where the dependence on a set of covariates is computed by taking the
expectation of the model over the marginal distribution of all other covariates. They note that the PDP formula is similar to
Pearl’s back-door adjustment. More specifically, marrying Shapley values with causal reasoning has been an active research
question. Janzing et. al (Janzing et al., 2020) considers the model’s prediction process itself to be a causal process: from
features to model inputs and ultimately model output. The authors claim that marginal Shapley values can be apprehended
in terms of do-calculus, if we consider that setting a feature to a given value is equivalent to intervening on it. As such,
marginal or so-called off-manifold Shapley values may be sufficient to explain that specific causal process but this approach
is contrived as it does not consider the real-world causal relationships between features. This approach however does not
acknowledge any underlying causal structure from the real world. New causality based formulations of Shapley values have
been proposed to compute feature attributions from a hypothesised causal structure of the data. Asymmetric Shapley values
(Frye et al., 2019) use conditioning by observation but only consider causally-consistent coalitions i.e coalitions such that
known causal ancestors precede their descendants. The resulting explanations quantify the impact a given feature has on
model prediction while its descendants remain unspecified. As a result, they ignore downstream effects in favour of root
causes (Wang et al., 2021).

Below is a table showing a summary comparison of existing causality-based or graph-based Shapley approaches with
PWSHAP. Node efficiency refers to the original efficiency property of Shapley values: f(x) = φf0 (x) +

∑M
i=1 φ

f
i (x), where

φfj (x) is the contribution of feature j to f(x) and φf0 (x) = E[f(X))] is the averaged prediction with the expectation over
the observed data distribution. By game at each node/within each boundary we describe the fact that Shapley Flow and
Recursive Shapley consider successive cuts from the graphs. Flow conservation or cut efficiency is the equivalent efficiency
property, within such a cut. We refer the reader to the corresponding papers for further details.

Table 4: Comparison between PWSAP and existing causality-based or graph-based Shapley approaches

Shapley Flow Recursive Shapley Asymmetric Shapley Causal Shapley PWSHAP

Flow conservation or
cut efficiency X X

Node efficiency X X X

Node-based X X X

Edge-based X

Source-to-sink
path-based X

Path-based X

Game at each node or
within each boundary
of explanation

X X

Ignores direct effects X

Fidelity to original Shapley
X

(but violates symmetry axiom) X X

Ultimately, in a previous work (Sani et al., 2020), Sani et. al (2020) introduce an XAI method which uses auxiliary
interpretable labels that are assumed to be readily available. Although their method has shown to perform well, it relies
on the latter strong assumption which limits its applicability. Note that, like in PWSHAP, this approach further requires
external information (besides the model and input/output data). We believe Sani et. al’s method can be complementary to
ours. For instance, in settings where the causal quantity of interest is identified from the obtained Partial Ancestral Graph,
one may train a model regressing predictions on the interpretable labels and apply PWSHAP to the resulting model. We
thank our anonymous reviewers for this remark.
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D.5. Further discussion on an XAI model’s dependency to the DAG

We view the fact that our approach is agnostic to the choice of (compatible) DAG as a strength, as it allows different experts
to explain the black-box model output according to their own causal beliefs about the data or phenomenon being studied.
For example, take the classical DAG with confounders, a treatment and an outcome (in Figure 1, graph 2). The black-box
model takes all confounders and the treatment as inputs. However it does not “know” whether the covariates are actually
confounders or mediators, and generates its output regardless. In PWSHAP, given that we have the additional (external)
knowledge of the DAG representing our beliefs, we would interpret the output as a conditional average treatment effect.
More generally, a model only gives indications about causal quantities that are already identified with statistical quantities
according to prior causal assumptions, as in the causal roadmap by Petersen and van der Laan (2014) (Petersen and van der
Laan, 2014)). Although causal discovery using both the model outputs and the data can yield a set of candidate DAGs that
share the same edges, in the form of a Partial Ancestral Graph (PAG), some directions may be missing and one may still
need to choose a DAG amongst multiple alternatives.

D.6. Bias, Mediation and Moderation Analysis

Our approach has added value compared to existing methods for sensitivity, mediation and moderation analysis. In the
following paragraph, we review the state of the art with regards to each of these objectives.

Moderation analysis A common approach to assess moderation is to (i) fit an Heterogeneous Treatment Effect (HTE)
model that predicts an individual’s treatment effect from a set of covariates (ii) find subgroups with similar treatment
effects. Subgroups can be infered directly from the data (Imai and Ratkovic, 2013; Wang and Rudin, 2017), from the
individual predicted treatment effects (Foster et al., 2011) or using statistical hypothesis tests (Athey and Imbens, 2016;
Song and Chi, 2007; Holmes and Watson, 2018). The main drawback of subgroup findings methods is that they are prone
under-powered and time-consuming. Holmes et. al (Holmes and Watson, 2018) introduce a partitioning method which
controls the type I error, however it is still limited to comparing subgroups two by two. Another approach to moderation
analysis is to use interpretable models to predict HTEs. Nilsson et. al (Nilsson et al., 2019) build two potential outcomes
models (treated/untreated) and fit a regression model to predict their difference from the covariates of interest. Regression
coefficients are ultimately used as a measure of moderation, but this solution is prone to model misspecification. Explanation
methods, and in particular feature attribution models allow for a finer-grained understanding of the sources of heterogeneity.
More recently, Wu et. al suggested to use Distillation to generate explanations of HTE models and assess moderation
induced by each covariate (Wu et al., 2021). However, explanation models such as Distillation that involve building a simpler
surrogate model have received criticism for approximating the target black-box function instead of explaining it (Rudin,
2019). Ultimately, HTE models are built without taking the causal structure into consideration the causal structure e.g. not
conditioning on post-treatment features. To the best of our knowledge, our approach is the first method that can assign
attribution to moderators directly from the outcome regression model whilst acknowledging the posited causal structure and
the rules of do-calculus by Pearl.

Sensitivity analysis In most treatment effect estimation studies, it is assumed that all confounders of treatment and
outcome are observed. This is a strong assumption and one might wonder whether results will be greatly perturbed or not by
the presence of an unobserved confounder. Sensitivity analysis generally aims at determining what the impact of a given
amount of unobserved confounding would be on causal conclusions of the study. In particular, as we have no access to the
unobserved confounder, we make assumptions about its relationship with treatment and outcome. One line of work is to
assume parameters for this relationship and infer the rest of the model when values of these parameters are fixed, e.g. via
maximum likelihood (Veitch and Zaveri, 2020; Rosenbaum and Rubin, 1983; Imbens, 2003). As a result, one can check
the change in treatment effects with fixed values of the unobserved confounder (Rosenbaum and Rubin, 1983) or draw
contour plots showing the bias depending on the parameters (Veitch and Zaveri, 2020; Imbens, 2003). Another line of work
assumes a fixed ratio between the propensity score with only observed covariates and a variation of the propensity score that
also includes unobserved confounders (Rosenbaum, 2005; Tan, 2006; Jesson et al., 2022). This ratio quantifies how much
hidden confounding is present (with a ratio of 1 being no hidden confounding) and is set by the user. As a result, one can
deduce intervals for inference quantities like p-values or treatment effects from a given ratio. This can be leveraged to find
the lowest ratio that makes the interval reach thresholds invalidating causal conclusions, e.g. 0.05 for a p-value or zero for
the treatment effects. The higher the ratio has to be, the more robust to unobserved confounding the study. This idea is
close to the E-value, a scalar metric representing the minimal amount of unobserved confounding needed to fully explain
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away the treatment-outcone relationship (VanderWeele and Ding, 2017). Although sensitivity analysis can also be applied to
assess the role of a given observed confounder (Veitch and Zaveri, 2020; Imbens, 2003), it remains different from our local
bias analysis approach that only applies to observed confounders. However, unlike most sensitivity analysis methods, our
approach does not rely on parameters or assumptions other than the joint distribution of the data, and it summarises the
confounding of a given pre-treatment covariate in a single bias scalar.

Mediation analysis The state-of-the-art approach to mediation analysis is based on Natural Direct and Indirect Effects
(VanderWeele and Vansteelandt, 2009). Computation of Natural Direct/Indirect Effects requires four assumptions (Vander-
Weele and Vansteelandt, 2009) : 1) no unmeasured confounding for the exposure-outcome relationship, 2) no unmeasured
confounding for the mediator-outcome relationship, 3) no unmeasured confounding for the exposure-mediator relationship,
4) no mediator-outcome confounding that is itself affected by the exposure. These are strong hypotheses, with the latter
typically being considered to be unrealistic. PWSHAP also implicitly relies on these assumptions. However, it is common
to assume unconfoundedness of the exposure-outcome relationship. Indeed, the exposure is naturally or experimentally
randomised in many mediation analysis settings, such as fairness studies (e.g. when sex or race are the exposure). Thus,
without confounders, PWSHAP effects are causal in these settings. Further, our approach to mediation analysis is more
faithful to causal inference than Causal Shapley. By comparing CDEs, we assess the effect of setting the given mediator to
its value. By contrast, Causal Shapley breaks the relationship between treatment and mediator when intervening on the
mediator in the indirect effect. A local mediation analysis example is given in Supplement E.3. Supplement F details the
application of PWSHAP to dependent mediators or in presence of both confounders and mediators.

E. Detailed Results for the “Building Blocks” Examples
E.1. Local Moderation Analysis

In the following, we prove the result of the first example where treatment is randomised
We assume the following model

C1, C2 ∼ Uniform(0, 1), C1 ⊥⊥ C2

Y = βT + γ1C1 + γ2C2 + α1TC1 + α2TC2 + ε

with E[ε|T,C1, C2] = 0. Assuming the true outcome model is known, our aim is to explain the following black-box:
f∗(c1, c2, t) = βt + γ1c1 + γ2c2 + α1tc1 + α2tc2. We further assume that treatment is randomised by taking T ∼
Bernoulli(p).

We note that, from Property 3.1,

φf
∗,obs
T,{C1,C2}(c1, c2, t) = φf

∗,causal
T,{C1,C2}(c1, c2, t) = (t− p)(β + α1c1 + α2c2)

φf
∗,obs
T,{C1}(c1, t) = φf

∗,causal
T,{C1} (c1, t) = (t− p)(β + α1c1 + α2/2)

φf
∗,obs
T,{C2}(c2, t) = φf

∗,causal
T,{C2} (c2, t) = (t− p)(β + α1/2 + α2c2)

φf
∗,obs
T,∅ (t) = φf

∗,causal
T,∅ (t) = (t− p)(β + α1/2 + α2/2)

All of these Causal Shapley values only correspond to direct effects, as the indirect effect is zero from Property D.1.

E.2. Local Bias Analysis

We compare PWSHAP with Causal Shapley on a bias analysis example where C1 and C2 are distributed as before, but we
assume instead that treatment allocation depends only on one covariate C1: E[T |C1, C2] = Cα1 which implies that C1 is
both a confounder and a moderator whereas C2 only acts as a moderator. PWSHAP effects are then given as:

Ψf∗

T←C1→Y,
C1:T→Y

= α1(c1 −
α+ 1

α+ 2
)− γ1

α+ 1

2(α+ 2)
Ψf∗

C2:T→Y = α2(c2 −
1

2
)
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Ψf∗

T→Y |∅ = β + γ1
α+ 1

2(α+ 2)
+ α1

α+ 1

α+ 2
+
α2

2
.

We note that E[Ψf∗

C2:T→Y (C1, C2)] = 0 but E[Ψf∗

T←C1→Y,
C1:T→Y

(C1, C2)] 6= 0. This illustrates not only Lemma 6.2, but also to

the following corollary where we do not assume the model is true.

Corollary E.1 (Integration of the local confounding effect, black-box model). Let C1, C2 be two pre-treatment covariates
such that C2 ⊥⊥ T |C1. Then the integral of the local confounding effect w.r.t. C2 on the joint distribution of covariates is null

E[Ψf
T←C2→Y (C1, C2)] = 0.

The proof can be found in Supplement J.8. By comparison, in Causal Shapley values, only the direct part is non null:

φf
∗,causal
T,direct = β

(
t− cα1

2
− 1

2(α+ 1)

)
+ α1

(c1
2

(t− cα1 ) +
1

2
(
t

2
− 1

α+ 2
)
)

+ α2

(
(
c2
3

+
1

12
)(t− cα1 ) + (

c2
6

+
1

6
(t− 1

α+ 1
)
)
.

Proof : First let’s note that

E[Y |T = 1, C1 = c1, C2 = c2]− E[Y |T = 0, C1 = c1, C2 = c2] = β + α1c1 + α2a2

Then we show that :

E[Y |T = 1, C1 = c1]− E[Y |T = 0, C1 = c1] = β + α1c1 +
a2

2

E[Y |T = 1, C2 = c2]− E[Y |T = 0, C2 = c2] = β + γ1
α+ 1

2(α+ 2)
+ α1

α+ 1

α+ 2
+ α2c2

E[Y |T = 1]− E[Y |T = 0] = β + γ1
α+ 1

2(α+ 2)
+ α1

α+ 1

α+ 2
+
α2

2

First, let us note that, using independence of C1 and C2,

E[T |C1 = c1] = E[E[T |C1 = c1, C2]|C1 = c1] = E[cα1 |C1 = c1] = cα1

E[T |C2 = c2] = E[E[T |C2 = c2, C1]|C2 = c2] = E[Cα1 |C2 = c2] =
1

α+ 1

E[T ] =
1

α+ 1

By Bayes’s rule and independence of C1 and C2,

p(c2|c1, t = 1) =
p(t = 1|c1, c2)p(c1)p(c2)

p(t = 1|c1)p(c1)
=
p(t = 1|c1, c2)

p(t = 1|c1)
=
cα1
cα1

= 1

and, similarly,

p(c2|c1, t = 0) = 1

As a result,

E[C2|c1, t = 1] = E[C2|c1, t = 0] =
1

2
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E[C2|c1, t = 1]− E[C2|c1, t = 0] = 0

and

E[Y |T = 1, C1 = c1]− E[Y |T = 0, C1 = c1] = β + γ2(E[C2|c1, t = 1]− E[C2|c1, t = 0]) + α1c1 + α2E[C2|c1, t = 1]

= β + α1c1 +
a2

2

which proves the first equality. For the second equality, we have

p(c1|c2, t = 1) =
p(t = 1|c1, c2)p(c1)p(c2)

p(t = 1|c2)p(c2)
=

cα1
1

α+1

= (α+ 1)cα1

and, similarly,

p(c1|c2, t = 0) =
1− cα1

1− 1
α+1

Thereby, we obtain

E[C1|c2, t = 1] =
α+ 1

α+ 2

E[C1|c2, t = 0] =
α+ 1

2(α+ 2)

E[C1|c2, t = 1]− E[C1|c2, t = 0] =
α+ 1

2(α+ 2)

and

E[Y |T = 1, C2 = c2]− E[Y |T = 0, C1 = c1] = β + γ1(E[C1|c2, t = 1]− E[C1|c2, t = 0])

+ α2c2 + α1E[C1|c2, t = 1]

= β + γ1
α+ 1

2(α+ 2)
+ α2c2 + α1

α+ 1

α+ 2

Similarly, for the third equality, we note that, as before,

p(c2|t = 1) = 1

p(c2|t = 0) = 1

p(c1|t = 1) = (α+ 1)cα1

p(c1|t = 0) =
1− cα1

1− 1
α+1

which leads to, as before,

E[C2|t = 1] =
1

2

E[C2|t = 0] =
1

2
E[C2|t = 1]− E[C2|c1, t = 0] = 0

E[C1|t = 1] =
α+ 1

α+ 2

E[C1|t = 0] =
α+ 1

2(α+ 2)
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E[C1|t = 1]− E[C1|c2, t = 0] =
α+ 1

2(α+ 2)

thereby

E[Y |T = 1]− E[Y |T = 0] = β + γ1(E[C1|T = 1]− E[C1|T = 0])

+ γ2(E[C2|T = 1]− E[C2|T = 0])

+ α1E[C1|T = 1] + α2E[C2|T = 1]

= β + γ1
α+ 1

2(α+ 2)
+ α1

α+ 1

α+ 2
+
a2

2

Now, for Causal Shapley values, we can show that

E[Y |do(t, c1, c2)]− E[Y |do(c1, c2)] = (t− cα1 )(β + α1c1 + α2c2)

E[Y |do(t, c1)]− E[Y |do(c1)] = β(t− cα1 ) + α1c1(t− cα1 ) + α2(
t

2
− cα1

2
)

E[Y |do(t, c2)]− E[Y |do(c2)] = β(t− 1

α+ 1
) + α2c2(t− 1

α+ 1
) + α1(

t

2
− 1

α+ 2
)

E[Y |do(t)]− E[Y ] = β(t− 1

α+ 1
) + α1(

t

2
− 1

α+ 2
) + α2(

t

2
− 1

2(α+ 1)
)

as E[TC1|c1] = cα+1
1 , E[TC1|c2] = E[TC1] = 1

α+2 , E[TC2|c1] =
cα1
2 , E[TC2|c2] = c2

α+1 , E[TC2] = 1
2(α+1)

E.3. Local Mediation Analysis

We compare PWSHAP with Causal Shapley on a mediation analysis example inspired by the Berkeley dataset (Bickel et al.,
1975). An algorithm predicts the probability of success of an applicant to a college. In this example, X = (T,Q,D) where
T is the gender of the applicant Q is an exam result and D is the department. We assume Q ∼ Uniform(0, 1), D|T = 0 ∼
Bernoulli(0.8) and D|T = 1 ∼ Bernoulli(0.2). D is a mediator of gender however Q is only an ancestor of the outcome,
and not a mediator. Our black-box is the true outcome model, and Y = αQQ+ αDD + αTT + αDTDT + αQTQT + ε,
with E[ε|D,Q, T ] = 0.

Ψf∗

T→D→Y = 0.6αD + αDT (d− 1

5
) Ψf∗

T→Q→Y = αQT (q − 1

2
)

Ψf∗

T→Y |∅ = αT − 0.6αD +
αDT

5
+
αQT

2

φf
∗,causal
T,direct = αT (t− 1

2
) + αDT [

d

2
(t− 1

2
) +

1

2
(
t

2
− 1

10
)] +

αQT
2

(t− 1

2
)(q +

1

2
)

φf
∗,causal
T,indirect =

αD
2

(
3

10
− 3t

5
)

We note that
∫
q

Ψf∗

T→Q→Y (p, q)dp(q) = 0 but
∫
d

Ψf∗

T→D→Y (p, q)dp(d) 6= 0.

Proof : Coalition-wise Shapley effects are :

Ψf∗

T→Y |D,Q(d, q) = CDE(d, q)

= E[Y |T = 1, D = d,Q = q]− E[Y |T = 0, D = d,Q = q]

= αT + αDT d+ αQT q

Ψf∗

T→Y |D(d) = CDE(d)

= E[Y |T = 1, D = d]− E[Y |T = 0, D = d]
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= αT + αDT d+ αQTE[Q|T = 1]

= αT + αDT d+ αQTE[Q]

= αT + αDT d+ αQT
1

2

Ψf∗

T→Y |Q(q) = CDE(q)

= E[Y |T = 1, Q = q]− E[Y |T = 0, Q = q]

= αT + αDTE[D|T = 1] + αQT q + αD(E[D|T = 1]− E[D|T = 0])

= αT +
αDT

5
+ αQT q − αD

3

5

Ψf∗

T→Y |∅(q) = ATE

= E[Y |T = 1]− E[Y |T = 0]

= αT + αDTE[D|T = 1] + αQTE[Q|T = 1] + αD(E[D|T = 1]− E[D|T = 0])

= αT +
αDT

5
+
αQT

2
− αD

3

5

As a result, we deduce path-wise effects

Ψf∗

T→D→Y = Ψf∗

T→Y |D,Q −Ψf∗

T→Y |Q = 0.6αD + αDT (d− 1

5
)

Ψf∗

T→Q→Y = Ψf∗

T→Y |D,Q −Ψf∗

T→Y |D = αQT (q − 1

2
)

Causal Shapley values are :

φf
∗,causal
T,{D,Q},direct(d, q, t) = (αT + αDT d+ αQT q)(t−

1

2
)

= E[f(d, q, t)|do(d, q)]− E[f(d, q, T )|do(d, q)]

= αT (t− E[T ]) + αDT (dt− dE[T ]) + αQT (qt− qE[T ])

= (t− 1

2
)(αT + αDT d+ αQT q)

φf
∗,causal
T,{D,Q},indirect(d, q, t) = E[f(d, q, t)|do(d, q, t)]− E[f(d, q, t)|do(d, q)]

= 0

φf
∗,causal
T,{D},direct(d, t) = E[f(d,Q, t)|do(d)]− E[f(d,Q, T )|do(d)]

= αT (t− E[T ]) + αDT (dt− dE[T ]) + αQT (E[Q]t− E[QT ])

= (αT + αDT d+
αQT

2
)(t− 1

2
)

φf
∗,causal
T,{D},indirect(d, t) = E[f(d,Q, t)|do(d, t)]− E[f(d,Q, t)|do(d)]

= 0

φf
∗,causal
T,{Q},direct(q, t) = E[f(D, q, t)|do(q)]− E[f(D, q, T )|do(q)]

= αT (t− E[T ]) + αDT (E[D]t− E[DT ]) + αQT (qt− qE[T ])

= αT (t− 1

2
) + αDT (

t

2
− 1

10
) + αQT q(t−

1

2
)

φf
∗,causal
T,{Q},indirect(q, t)

= E[f(D, q, t)|do(q, t)]− E[f(D, q, t)|do(q)]
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= αD(E[D|t]− E[D])

= αD(
3

10
− 3t

5
)

φf
∗,causal
T,∅,direct(t) = E[f(D,Q, t)]− E[f(D,Q, T )]

= αT (t− E[T ]) + αDT (E[D]t− E[DT ]) + αQT (E[Q]t− qE[QT ])

= αT (t− 1

2
) + αDT (

t

2
− 1

10
) +

αQT
2

(t− 1

2
)

φf
∗,causal
T,∅,indirect(t)

= E[f(D,Q, t)|do(t)]− E[f(D,Q, t)]

= αD(E[D|t]− E[D])

= αD(
3

10
− 3t

5
)

Summing them altogether with appropriate binomial weights, we have

φf
∗,causal
T,direct = αT (t− 1

2
) + αDT [

d

2
(t− 1

2
) +

1

2
(
t

2
− 1

10
)] +

αQT
2

(t− 1

2
)(q +

1

2
)

φf
∗,causal
T,indirect =

αD
2

(
3

10
− 3t

5
)

F. Further Results for Complex “Building Blocks” DAGS
F.1. A Mix of Confounders and Mediators

We now assume the model :

C1 ∼ Bernoulli(
1

2
)

C2 ∼ Bernoulli(
1

2
)

Q|C1 ∼ Bernoulli(1− C1)

T |C1 ∼ Bernoulli(C1)

D|T,C1 ∼ Bernoulli(
4

5
− 3

5

T + C1

2
)

Y = αQQ+ αDD + αTT + α1C1 + α2C2 + αDTDT + αQTQT

+ α1TC1T + α2TC2T + ε, with E[ε|D,Q, T ] = 0.

We have,

Ψf∗

T→Y |C1,C2,D,Q
(c1, c2, d, q) = αT + αDT d+ αQT q + α1T c1 + α2T c2

Ψf∗

T→Y |C1,C2,Q
(c1, c2, q) = αT + αDTE[D|T = 1, c1, c2, q] + αQT q + α1T c1 + α2T c2

+ αD(E[D|T = 1, c1, c2, q]− E[D|T = 0, c1, c2, q])

= αT + αDT (
1

2
− 3c1

10
) + αQT q + α1T c1 + α2T c2 −

3αD
10

Ψf∗

T→Y |C1,C2,D
(c1, c2, d) = αT + αDT d+ αQTE[D|T = 1, c1, c2, d] + α1T c1 + α2T c2

+ αQ(E[Q|T = 1, c1, c2, d]− E[Q|T = 0, c1, c2, d])

= αT + αDT d+ αQT (1− c1) + α1T c1 + α2T c2
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Ψf∗

T→Y |C1,D,Q
(c1, d, q) = αT + αDT d+ αQT q + α1T c1 +

α2T

2

Ψf∗

T→Y |C2,D,Q
(c2, d, q) = αT + αDT d+ αQT q + α2T c2 + α1TE[C1|T = 1, d, q]

+ α1(E[C1|T = 1, d, q]− E[C1|T = 0, d, q])

with, in the general case, E[C1|T = t, d, q] 6= 0 ∀t
and E[C1|T = 1, d, q]− E[C1|T = 0, d, q] 6= 0

Thereby,

1. Local mediating effects are given as

Ψf∗

Q (c1, c2, d, q) = αQT (q − (1− c1)) and Ψf∗

D (c1, c2, d, q) =
3αD
10

+ αDT (
3c1
10
− 1

2
)

so E[Ψf∗

Q (c1, c2, d,Q)|c1, c2] = 0 but E[Ψf∗

D (c1, c2, D, q)|c1, c2] 6= 0. This illustrates the relevance of Property 6.1 to
isolate the fact that Q is not an actual mediator conditionally on confounders.

2. Local confounding effects are given as

Ψf∗

C2
(c1, c2, d, q) = α2T (c2 −

1

2
)

Ψf∗

C1
(c1, c2, d, q) = α1(E[C1|T = 0, d, q]− E[C1|T = 1, d, q])− α1TE[C1|T = 1, d, q]

so E[Ψf∗

C2
(C1, C2, d, q)] = 0 but E[Ψf∗

C1
(C1, C2, D, q)] 6= 0. This illustrates the relevance of the two following results,

which themselves generalise results of Section 6.1, to isolate the fact that C2 is not an actual confounder of the
relationship between treatment-outcome, treatment-mediator and mediator-outcome relationships.

Lemma F.1 (Integration of the local confounding effect with mediators, true model). Let M denote post-treatment and
pre-outcome variables. DefineH(C) as follows :

H(C) : ∀t,m, Y (t,m) ⊥⊥ T |C and Y (t,m) ⊥⊥M |T,C,

or, in other words, C includes all confounders of the treatment-outcome and mediator-outcome relationships. We further
assume consistency of the potential outcome, i.e. Y (T,M) = Y . Let C1, C2 be two pre-treatment covariates such that
H(C1, C2) holds. If, additionally, C2 is not a confounder, i.e.H(C1) holds, then the integral of the local confounding effect
of f∗ w.r.t. C2 on the joint distribution of covariates for fixed values of mediators is null, i.e.

∀m, E[Ψf∗

C2
(C1, C2,m)] = 0.

Corollary F.2 (Integration of the local confounding effect with mediators, black-box model). Let C1, C2 be two
pre-treatment covariates and M post-treatment and pre-outcome variables such that C2 ⊥⊥ T,M |C1. Then
the integral of the local confounding effect w.r.t. C2 on the joint distribution of covariates is null, i.e.

∀m, E[Ψf
C2

(C1, C2,m)] = 0.

The proofs can be found in Supplements J.9 and J.10

F.2. Dependent Mediators

We now assume the model :

Q ∼ Uniform(0, 1)

T ∼ Bernoulli(0.5)

D|T,Q ∼ Bernoulli(
4

5
− 3

5

T +Q

2
)

Y = αQQ+ αDD + αTT + αDTDT + αQTQT + ε, E[ε|D,Q, T ] = 0.
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We have

Ψf∗

T→Y |D,Q(d, q) = αT + αDT d+ αQT q

Ψf∗

T→Y |Q(q) = αT + αDTE[D|T = 1, q] + αQT q + αD(E[D|T = 1, q]− E[D|T = 0, q])

= αT + αDT (
1

2
− 3q

10
) + αQT q −

3αD
10

Ψf∗

T→Y |D(d) = αT + αQ(E[Q|T = 1, d]− E[Q|T = 0, d]) + αDT d+ αQTE[Q|T = 1, d]

= αT −
3αQ

(13− 6d)(7 + 6d)
+ αDT d+ αQT

7− 4d

13− 6d

Ψf∗

T→Y |∅ = αT + αDTE[D|T = 1] + αQT q + αD(E[D|T = 1]− E[D|T = 0])

= αT +
7αDT

20
+ αQT q −

3αD
10

where we used

E[Q|T = 1, d] =
7− 4d

13− 6d

E[Q|T = 0, d] =
4 + 2d

7 + 6d

E[Q|T = 1, d]− E[Q|T = 0, d] =
−3

(13− 6d)(7 + 6d)

which we prove from

p(d|q, t) = dp(d = 1|q, t) + (1− d)p(d = 0|q, t)

= d(
4

5
− 3

10
(t+ q)) + (1− d)(

1

5
+

3

10
(t+ q))

p(d|t) = E[p(d|Q, t)|t]
= E[p(d|Q, t)] as Q ⊥⊥ T

=
7

20
+

3t

10
+

3d

5
(
1

2
− t)

p(q|d, t) =
p(d|q, t)p(q|t)p(t)

p(d|t)p(t)

=
p(d|q, t)
p(d|t)

=
1 + 3

2 (t+ q) + 3d(1− t− q)
7
4 + 3t

2 + 3d( 1
2 − t)

E[Q|T = 1, d] =

∫
1 + 3

2 + 3q
2 − 3dq

7
4 + 3

2 −
3d
2

qdq

=
1
2

5
2 + 1

3 ( 3
2 − 3d)

13
4 −

3d
2

=
7− 4d

13− 6d

E[Q|T = 0, d] =

∫
1 + 3d+ q( 3

2 − 3d)
7
4 + 3d

2

qdq

=
1
2 (1 + 3d) + 1

3 ( 3
2 − 3d)

7
4 + 3d

2

=
4 + 2d

7 + 6d
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Thereby,

Ψf∗

Q (d, q) = Ψf∗

T→Y |D,Q(d, q)−Ψf∗

T→Y |D(D)

=
3αQ

(13− 6d)(7 + 6d)
− αQT

7− 4d

13− 6d

Notably, we note that E[Ψf∗

Q (d,Q)] 6= 0. Thereby, the local mediating effect as defined in Definition 6.4 is not able to
isolate the absence of mediation from Q. However, defining

Ψf
Ci,alternative(q) := Ψf

T→Y |Ci(ci)−Ψf
T→Y |∅ (3)

we note that E[Ψf∗

Q,alternative(Q)] = 0 and E[Ψf∗

D,alternative(D, q)] 6= 0. Thereby, an alternative definition of the local mediating
effect, as given in 3, is able to isolate the absence of mediation from Q. This actually holds in a more general setting.

Property F.1 (Ancestor of outcome). Let M be a post-treatment and pre-outcome variable. Assume that M ⊥⊥ T , or in
other words M is not really a mediator. Then,

E[Ψf
T→M→Y (M)] = 0

The proof can be found in Supplement J.11. Thereby, the original definition of the local mediating effect is not always suited
for mediation analysis. However, picking up the alternative definition given above will mean we will not be able to use the
same quantity for mediation, bias analysis and mediation analysis. Solving this dilemma is left for future work.

G. Generalisation to a Path of Length 3 or More
Assume the path p of length L(p) + 1 is defined as T � Cp(1) � Cp(2) � · · ·� Cp(L(p)) → Y where � is either← or
→ and there are no other paths from T into any of Cp(1), · · · , Cp(L(p)) or from any of Cp(1), · · · , Cp(L(p)) into Y . Then the
path-wise Shapley effect with respect to p is

Ψf
p(c) = Ψf

T→Y |CS∗
(c)−Ψf

T→Y |CS∗\{p(1),...,p(L(p))}
(cS∗\{p(1),...,p(L(p))}) (4)

where the second term takes the coalition with all covariates in the path removed. Local confounding and moderating
effects (Definitions 6.1 and 6.3, respectively) can be generalized to paths p such that T ← Cp(1), and local mediating effects
(Definition 6.4) to paths p such that T → Cp(1). Lemma 6.2 and Property 6.1 can be generalized with these effects, by
replacing covariates in the conditional independence statements with all covariates in either path.

If there are other paths of the form T → Cp(k) or Cp(k) → Y , then the effect from Equation 4 represents the effect of
both p and the paths T � Cp(1) � Cp(2) � · · · � Cp(k) → Y for all such k, as by grouping Cp(1), · · · , Cp(L(p)) into
C{p(1),...,p(L(p))}, all these paths would be merged into a single path T � C{p(1),...,p(L(p))} → Y .

H. Further Experimental Results and Details
The code used for experiments is available at https://github.com/oscarclivio/pwshap.

H.1. Details of Experiments on Synthetic Datasets

Models : We model the outcome and propensity models using linear and logistic regression, respectively. Conditional
distributions for PWSHAP are inferred by training an iterative imputer. Linear regressions with second order polynomial
features are used to infer outcome models and logistic regressions for propensity models.

Causal Shapley : Regarding Causal Shapley, we model the E
[
f
(
XS̄ , xS∪{j}

)
| do (XS = xS)

]
term that is added and

subtracted to obtain the direct and indirect effects (see Supplement D.2) by using an iterative imputer on the dataset obtained
by removing the treatment column from the original dataset. do−distributions are modelled differently depending on the
situation. They involve making variables independent from others. This is made by reshuffling the columns of these variables
in the train set, then training the imputer on this modified dataset again.

Datasets : datasets are generated according to the models in Supplement E.2 for local bias analysis and in Supplement E.3
for local mediation analysis. 200 samples are generated and between training and testing sets as a 50/50 split. We change
the links between treatment and covariates to model confounding and mediation, in the following way :
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Table 5: Results for additional experiment on Census Income dataset where treatment is the individual’s occupation. Note
that Ψf

Occ←Cntr→Capg→Inc
Occ←Cntr→ Inc

is defined according to the generalization from Section G.

Causal SHAP PWSHAP

φdirect φindirect Ψf
Occ→Inc Ψf

Occ←Cntr→ Inc Ψf
Occ←Cntr→Capg→Inc
Occ←Cntr→ Inc

Ψf
Relation:Occ→Inc

0.132 (0.22) 0 (0.027) 0.152 (1.98) 0.083 0.147 (1.13) 0.217 (0.831)

• Local bias analysis :
– No confounders : p(T = 1|C1, C2) = 0.5
– C1 is a confounder, C2 is not : p(T = 1|C1, C2) = C1

– C1 and C2 are confounders : p(T = 1|C1, C2) = C1C2

• Local mediation analysis :
– No mediators : Q|T ∼ Uniform(0, 1), D|T ∼ Binomial(0.5).
– D is a mediator but not Q : Q|T ∼ Uniform(0, 1), D|T ∼ Binomial( 4

5 −
3
5T )

– Q and D are mediators : D|T ∼ Binomial( 4
5 −

3
5T ) and Q = 3

5 · T · U + (1 − T ) · ( 3
5 · U + 2

5 ) where
U ∼ Uniform(0, 1)

H.2. Further Results on the UCI Dataset

In an additional experiment, we consider the treatment of interest to the occupation of the individual. We focus on the
question: “Under what mechanisms did having a managerial occupation impact the model prediction?”. Results comparing
PWSHAP with Causal Shapley are shown in Table 5. Occupation seems to have a considerable impact throughout the cohort,
with the base treatment effect showing that having a managerial job increases the predicted probability of high income by
15.2 points. Moderation by relationship status had a predominant effect in the model prediction for our individual. Being
unmarried has increased the positive effect of having a managerial occupation by another 21.7 points. CausalSHAP does
not capture this phenomenon as all the effect of occupation is deemed direct by definition. This further shows the high
resolution of PWSHAP and impossibility of explaining. The local confounding effect of the pathway through country and
capital gain also had an important impact.

H.3. Experimental Details on UCI

UCI dataset The UCI dataset –also known as "Census Income" dataset– predicts whether income exceeds $50K/yr based
on census data. It includes 11 features and 32,561 individuals. We select a random subsample of 5000 individuals and
only consider the following 7 features: age, capital gain, native country, income, marital status, race and relationship. The
occupation (Occ) and race variables were dichotomised, respectively into managerial/non-managerial and white/non-white.
Other categorical features, namely native-country, marital status and relationship were encoded into numerical values. The
URL for this dataset is https://archive.ics.uci.edu/ml/datasets/adult.

Pre-processing and model performance We use a Random Forest with 500 estimators and balanced class weights for
all three models: the outcome model, the race propensity score model, the occupation propensity score model. We further
used a Bayesian Ridge to learn the joint distribution on all covariates. Note that we could have inferred a propensity score
model from the Bayesian Ridge but decided to fit a separate model so both weights and outcome models would be modelled
with a classification tree.
The 5000 observations in the set were subsampled again 10 times, by taking out 20% of the sample. Each time, we use
the subsample as both a training and testing set for our models. We further use it as a reference population. The goal is to
explain how the model learned on this set, therefore using the same training set for testing isn’t problematic. We ultimately
want a model that has high accuracy whilst limiting the compute time. Means and standard deviations over all 10 subsamples
are reported.

The accuracy of our outcome model is 0.827 and the AUC 0.944.
The accuracy of our race propensity score model is 0.894 and the AUC 0.950.
The accuracy of our occupation propensity score model is 0.757 and the AUC 0.863.
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Good customer

Age
Credit amount

Loan Duration

Gender

Figure 4: DAG of the German Credit Dataset.

Table 6: Results on the German Credit Dataset. Note that the last PWSHAP effect follows the generalisation from Appendix
G.

Causal SHAP φdirect 0.025

φindirect 0.004

PWSHAP Ψ
Gender

total−−→Good
0.069

ΨGender→Amount→Good −0.1819

ΨGender→Amount→Duration→Good
Gender→Amount→Good

−0.2371

Computation and packages Random Forest and Bayesian Ridge were implemented using the sklearn package. We
use the dataset_fetcher function from the Explanation GAME (Merrick and Taly, 2020), available at https:
//github.com/fiddler-labs/the-explanation-game-supplemental (no license). Experiments were
ran using a 2,6 GHz 6-Core Intel Core i7. The amount of compute time was approximately 2,500 clock-time seconds.

H.4. Experiments on the German Credit Dataset

Here, we apply PWSHAP to a local mediation analysis example on the German Credit Dataset (Karimi et al., 2021). This
dataset assigns people described by age and gender (1 for male, 0 for female) and seeking a loan with a certain credit amount
and a certain duration to a label about whether they are good customers (1 for yes, 0 for no). The DAG is given in Figure 4.

We consider a male candidate, aged 42, asking for a loan with credit amount 5507 euros and duration 24 years. This
individual’s loan application gets a probability of 0.713 from the black-box model, which is below the average probability
of 0.728 in the training set. Results are shown in Figure 6. PWSHAP suggests that although the total effect of gender
on decisions is slightly positive, the effect of gender on decisions through credit amount, or through credit amount and
loan duration, is negative. This suggests that although being male might give a slight advantage to this individual, it is
compensated by high credit amount and loan duration, which are in the 65-th and 81-th percentiles, respectively, producing
a relatively bad prediction compared to the average. Causal Shapley notes both a positive direct effect and a small positive
indirect effect of gender on credit amount, which is not consistent with the finding that the predicted probability of being a
good customer is lower than average for this individual.

H.5. Computational Complexity

Complexity of PWSHAP effects : For ease of notation, assume that the size of the data and the number of Monte-Carlo
samples for expectations are all of size O(n). We denote by p the number of covariates. We also assume the black-box
model and the propensity score model require O(p) steps to be evaluated, as e.g. in linear/logistic regression, that we have
access to all conditional distributions and that sampling any feature from other features can be done in O(p) too (e.g. if,
again, all conditional distributions are GLMs).

For any sample i and any path of length l + 1 (with the treatment, l covariates and the outcome), computing the path-wise
PWSHAP effect mostly requires evaluating expectations of the black-box or propensity score model, where :

• we take O(n) Monte-Carlo samples of l (when the treatment is observed) or l + 1 (when the treatment is missing)
variables considered to be missing from other covariates (complexity O(nlp)) ;

• we evaluate and aggregate the black-box for all these imputed points (complexity O(np)).

Thus, the PWSHAP effect on a path of size l + 1 for one sample has a complexity O(nlp). Aggregated over all samples,
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Figure 5: DAG for the running example

the PWSHAP of this path is of complexity O(n2lp). Aggregated over all paths for all l, we have a complexity of at most
O(n2p22p). However, this can be reduced to O(n2p2) if the number of paths is small.

All of this assumes that we have access to conditional distributions. In practice, we do not and resort to an iterative imputer
that relies on the MICE algorithm. Although, we could not find details on its complexity, scikit-learn documentation4

suggests that imputation and thus sampling from the conditional distribution can be done in polynomial factors w.r.t. n and
p too. If training the imputer is polynomial, then the overall complexity of computing all PWSHAP effects will remain
polynomial in n and p.

Thus, the method might not scale well with p, but with few paths in the DAG it would scale better than exact classical
observational/marginal Shapley values whose complexities have a 2p factor.

Complexity of other Shapley value methods : with the same assumptions, exact on-manifold and off-manifold Shapley
values have a O(n2p22p) or O(n2p2p) complexity, respectively. Although the general computational complexity of the
approximation made by KernelSHAP (Lundberg and Lee, 2017) is not explicited in their work, we expect it to give better
complexity at the cost of further approximating Shapley values compared to direct evaluation of expectations. TreeSHAP
(an explanation model for tree ensemble models only) (Lundberg et al., 2018) reduces the 2p factor by a square factor in the
maximal depth of trees, however this method isn’t model agnostic like most Shapley approaches, including PWSHAP.

I. Running Example
Using the causal structure described in the DAG in Figure 5 as a running example, we illustrate our concepts. Here, we
consider three variables: Sex (binary, denoting the female sex), Surg (binary, denoting the execution of a surgery) and Preg
(binary, denoting whether the subject is pregnant). We denote Death the logit of the probability of death as a result of the
surgery, of its absence. We analyse the effect of the sensitive attribute Sex on the Death outcome, with regards to model
fairness. The model is as follows:

E[Sex] = 0.5

E[Preg|Sex] = pPreg · Sex
E[Surg|Sex] = pSurg · Sex

E[Death|Sex, Surg, Preg] = f(Sex, Surg, Preg) := αSexSex + αSurgSurg + αPregPreg

We outline a few definitions and concepts applied to this example :

• On-manifold Shapley value for Sex on the empty coalition :

φf,obs
Sex,∅(sex) = (αSexsex + αSurgE[Surg|sex] + αPregE[Preg|sex])

− (αSexE[Sex] + αSurgE[Surg] + αPregE[Preg])

4https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
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• Off-manifold Shapley value for Sex on the empty coalition :

φf,off-manifold
Sex,∅ (sex) = (αSexsex + αSurgE[Surg] + αPregE[Preg])

− (αSexE[Sex] + αSurgE[Surg] + αPregE[Preg])

= αSex(Sex− E[Sex])

• Causal Shapley value for Sex on the empty coalition :

φf,causal
Sex,∅ (sex) = (αSexsex + αSurgE[Surg|do(Sex)] + αPregE[Preg|do(Sex)])

− (αSexE[Sex] + αSurgE[Surg] + αPregE[Preg])

= (αSexsex + αSurgE[Surg|sex] + αPregE[Preg|sex])

− (αSexE[Sex] + αSurgE[Surg] + αPregE[Preg])

= φf,obs
Sex,∅(sex) for this value in this specific example.

• Coalition-specific Shapley effect (for Sex, our treatment of interest) on the empty coalition : one can note that the
on-manifold Shapley value can be decomposed as

φf,obs
Sex,∅(sex) = (sex− E[Sex])(αSex + αPreg · pPreg + αSurg · pSurg)

where the second factor on the right-hand side is the coalition-specific Shapley effect, which here is written as

Ψf
Sex→Death|∅ = E[f(sex = 1,Surg,Preg)]− E[f(sex = 0,Surg,Preg)]

• Path-wise Shapley effect of Surg : here it is expressed as

Ψf
Surg = Ψf

Sex→Death | Surg, Preg(surg, preg)−Ψf
Sex→Death| Preg(preg)

We can interpret as an effect through the path Sex→ Surg→ Death, re-noting it as Ψf
Sex→Surg→Death.

J. Proofs of Properties and Lemmas
J.1. Proof of Property 3.1

It suffices to show that

φfT,S(c, t) = w∗S ×
(
vf (S ∪ {T}, c, 1)− vf (S ∪ {T}, c, 0)

)
where

vf (S ∪ {T}, c, t) = vf (S ∪ {T}, cS , t) = Ep(CS̄ |cS ,t)[f(cS , Cs̄, t)]

vf (S, c) = Ep(CS̄ ,T |cS)[f(cS , Cs̄, T )]

w∗S = w∗(cS , t) = t− P (T = 1|CS = cS)

In other words we want to show that

φfT,S(c, t) = (t− p(T = 1|CS = cS))×
(
Ep(CS̄ |cS ,1)[f(cS , Cs̄, 1)]− Ep(CS̄ |cS ,0)[f(cS , Cs̄, 0)]

)
We note that

vf (S, c) = E[f(cS , CS̄ , T )|cS = cS ]

= E[E[f(cS , CS̄ , T )|cS = cS , T ]|cS = cS ]

= p(T = t|cS)× E[f(cS , CS̄ , t)|cS = cS , T = t]

+ p(T = 1− t|cS)× E[f(cS , CS̄ , 1− t)|cS = cS , T = 1− t]
= p(T = t|cS)× vf (S ∪ {T}, c, t)
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+ p(T = 1− t|cS)× vf (S ∪ {T}, c, 1− t)

and, from 1 = p(T = t|cS) + p(T = 1− t|cS),

vf (S ∪ {T}, c, t)− vf (S, c)

= p(T = t|cS)vf (S ∪ {T}, c, t) + p(T = 1− t|cS)vf (S ∪ {T}, c, t)
− p(T = t|cS)vf (S ∪ {T}, c, t)− p(T = 1− t|cS)vf (S ∪ {T}, c, 1− t).

So terms in p(T = t|cS) cancel out and we get:

vf (S ∪ {T}, c, t)− vf (S, c) = p(T = 1− t|cS)× [vf (S ∪ {T}, c, t)− vf (S ∪ {T}, c, 1− t)]
= (t− π∗S(cS))× [vf (S ∪ {T}, c, 1)− vf (S ∪ {T}, c, 0)]

where π∗S(cS) = P (T = 1|Cs = cS) and the second equality comes from t ∈ {0, 1}.

J.2. Proof of Property 3.2

Let c−i be a value of C−i. It suffices to show that E[Ψf
T→Y |Ci,C−i(Ci, c−i)|C−i = c−i] = Ψf

T→Y |C−i(c−i), which is true
as

E[Ψf
T→Y |Ci,C−i(Ci, c−i)|C−i = c−i]

=

∫
ci

(vf (S∗ ∪ {T}, ci, c−i, 1)− vf (S∗ ∪ {T}, ci, c−i, 0))dp(ci|c−i)

=

∫
ci

(f(ci, c−i, 1)− f(ci, c−i, 0))dp(ci|c−i)

=

∫
ci

f(ci, c−i, 1)dp(ci|c−i)−
∫
ci

f(ci, c−i, 0)dp(ci|c−i)

=

∫
ci

f(ci, c−i, 1)dp(ci|c−i, t = 1)−
∫
ci

f(ci, c−i, 0)dp(ci|c−i, t = 0) as T ⊥⊥ Ci|C−i

= E[f(Ci, c−i, 1)|C−i = c−i, T = 1]− E[f(Ci, c−i, 0)|C−i = c−i, T = 0]

= vf ((S∗\{i}) ∪ {T}, c−i, 1)− vf ((S∗\{i}) ∪ {T}, c−i, 0)

= Ψf
T→Y |C−i(c−i)

which completes the proof.

J.3. Proof of Property 5.1

We assume that

∀c, t,N, |f̂N (c, t)− f∗(c, t)| ≤ eoutcome
N

Then, for any coalition S without T , c and N ,

|Ψf̂N
T→Y |CS (c)−Ψf∗

T→Y |CS (c)|

≤ |(Ep(CS̄ |CS=cs,T=1)[f̂N (cS , CS̄ , 1)]− Ep(CS̄ |CS=cs,T=0)[f̂N (cS , CS̄ , 0)])

− (Ep(CS̄ |CS=cs,T=1)[f
∗(cS , CS̄ , 1)]− Ep(CS̄ |CS=cs,T=0)[f

∗(cS , CS̄ , 0)])|

= |(Ep(CS̄ |CS=cs,T=1)[f̂N (cS , CS̄ , 1)− f∗(cS , CS̄ , 1)]

− Ep(CS̄ |CS=cs,T=0)[f̂N (cS , CS̄ , 0)− f∗(cS , CS̄ , 0)])|

≤ |Ep(CS̄ |CS=cs,T=1)[f̂N (cS , CS̄ , 1)− f∗(cS , CS̄ , 1)]|

+ |Ep(CS̄ |CS=cs,T=0)[f̂N (cS , CS̄ , 0)− f∗(cS , CS̄ , 0)]| from the triangle inequality
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≤ Ep(CS̄ |CS=cs,T=1)[|f̂N (cS , CS̄ , 1)− f∗(cS , CS̄ , 1)|]

+ Ep(CS̄ |CS=cs,T=0)[|f̂N (cS , CS̄ , 0)− f∗(cS , CS̄ , 0)|] from Jensen’s inequality
≤ Ep(CS̄ |CS=cs,T=1)[e

outcome
N ] + Ep(CS̄ |CS=cs,T=0)[e

outcome
N ] by assumption

= 2eoutcome
N

which shows bound 1. Now, let S as before, c, t, N,

|φf̂NT,S(c, t)− φf
∗

T,S(c, t)|

= |w∗S(t, cS) · (Ψf̂N
T→Y |CS (c)−Ψf∗

T→Y |CS (c))|

= |w∗S(t, cS)||Ψf̂N
T→Y |CS (c)−Ψf∗

T→Y |CS (c)|

≤ |Ψf̂N
T→Y |CS (c)−Ψf∗

T→Y |CS (c)| as |w∗S(t, cS)| ≤ 1

≤ 2eoutcome
N from the previous bound

which proves bound 2. Now, for any covariate feature i as before, c,N

|Ψf̂N
Ci

(c)−Ψf∗

Ci
(c)|

= |Ψf̂N
T→Y |CS∗

(c)−Ψf̂N
T→Y |CS∗\{i}

(cS∗\{i})− (Ψf∗

T→Y |CS∗
(c)−Ψf∗

T→Y |CS∗\{i}
(cS∗\{i}))|

≤ |Ψf̂N
T→Y |CS∗

(c)−Ψf∗

T→Y |CS∗
(c)|

+ |Ψf̂N
T→Y |CS∗\{i}

(cS∗\{i})−Ψf∗

T→Y |CS∗\{i}
(cS∗\{i})|

from the triangle inequality
≤ 2eoutcome

N + 2eoutcome
N from the bound on the coalition-wise Shapley effect

which proves bound 3.

J.4. Proof of Property 5.2

We assume that

∀S s.t. T /∈ S, c,N, |φ̂N,f̂NT,S (c, t)− φf
∗

T,S(c, t)| ≤ eShap
N ,

that the arbitrary propensity score model πN and π∗ verify ε-strong overlap, ie ε ≤ πN ≤ 1− ε, and ε ≤ π∗ ≤ 1− ε , and
that we have ∀c,N, |πN (c)− π∗(c)| ≤ epropensity

N .

Then, for any S s.t. T /∈ S, we note that ε-strong overlap for πN and π∗ implies ε-strong overlap for πNS (cS) :=
Ep(CS̄ |CS=cS)[π

N (cS , CS̄)] and P (T = 1|CS = cS) = Ep(CS̄ |CS=cS)[π
∗(cS , CS̄)] (by taking the expectation

w.r.t. p(CS̄ |cS)) and also Jensen’s inequality yields

∀c,N, |Ep(CS̄ |CS=cS)[π
N (cS , CS̄)]− P (T = 1|CS = cS)| ≤ epropensity

N ,

which further gives ∀t, c,N, |wNS (c, t)− w∗S(c, t)| ≤ epropensity
N .

So for any S s.t. T /∈ S, c, N ,

|wNS (c, 0)| = | − πNS (c)| = πNS (c) ≥ ε
|wNS (c, 1)| = |1− πNS (c)| = 1− πNS (c) ≥ ε
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Thereby, for any S s.t. T /∈ S, t, c, N ,

1

|wNS (c, t)|
≤ 1

ε

and, similarly,

1

|w∗S(c, t)|
≤ 1

ε
.

We also show that |φf
∗

T,S(c, t)| ≤ 2||f∗||∞: indeed,

|φf
∗

T,S(c, t)| = |w∗S(c, t)||Ep(CS̄ |CS=cs,T=1)[f
∗(cS , CS̄ , 1)]− Ep(CS̄ |CS=cs,T=0)[f

∗(cS , CS̄ , 0)]|
≤ Ep(CS̄ |CS=cs,T=1)[|f∗(cS , CS̄ , 1)|] + Ep(CS̄ |CS=cs,T=0)[|f∗(cS , CS̄ , 0)|]

from |w∗S(c, t)| ≤ 1 and the triangle inequality and Jensen’s inequality
≤ Ep(CS̄ |CS=cs,T=1)[||f∗||∞] + Ep(CS̄ |CS=cs,T=0)[||f∗||∞]

= 2||f∗||∞

In the end, we have

|Ψ̂N,f̂N
T→Y |CS (c)−Ψf∗

T→Y |CS (c)|

= |
φ̂N,f̂NT,S (c, t)

wNS (c, t)
−
φf
∗

T,S(c, t)

w∗S(c, t)
|

= |
φ̂N,f̂NT,S (c, t)− φf

∗

T,S(c, t)

wNS (c, t)
+ φf

∗

T,S(c, t)(
1

wNS (c, t)
− 1

w∗S(c, t)
)|

= |
φ̂N,f̂NT,S (c, t)− φf

∗

T,S(c, t)

wNS (c, t)
+ φf

∗

T,S(c, t)
w∗S(c, t)− wNS (c, t)

w∗S(c, t)wNS (c, t)
|

≤
|φ̂N,f̂NT,S (c, t)− φf

∗

T,S(c, t)|
|wNS (c, t)|

+ |φf
∗

T,S(c, t)| |w
∗
S(c, t)− wNS (c, t)|
|w∗S(c, t)||wNS (c, t)|

from Jensen’s inequality

≤
2eShap
N

ε
+ 2||f∗||∞ ·

epropensity
N

ε2

which proves bound 4. Bound 5 is proven similarly to bound 3 above.

J.5. Proof of Lemma 6.2.

If unconfoundess w.r.t. C1, C2 holds then

E[Ψf∗

T→Y |C1,C2
(C1, C2)] = E[E[Y |T = 1, C1, C2]− E[Y |T = 0, C1, C2]] = ATE.

If unconfoundess w.r.t. C1 also holds then

E[Ψf∗

T→Y |C1
(C1)] = E[E[Y |T = 1, C1]− E[Y |T = 0, C1]] = ATE

In the end,

E[Ψf∗

T←C2→Y (C1, C2)] = E[Ψf∗

T→Y |C1,C2
(C1, C2)−Ψf∗

T→Y |C1
(C1)] = ATE− ATE = 0.

J.6. Proof of Property 6.1

Let c and m1 be values of C and M1, respectively. We note that

E[Ψf
T→M2→Y (c,m1,M2)|C = c]
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= E[Ψf
T→M2→Y (c,m1,M2)|C = c,M1 = m1] as M1 ⊥⊥M2|C

= 0 from Property 3.2 as M1 ⊥⊥ T |M2, C

which completes the proof.

J.7. Proof of Property D.1

If a latent variable generates all pre-treatment covariates of T , then we can factorise the distribution of
(T,CS , CS̄ , f (CS̄ , cS , t)) in the ADMG with those variables as nodes and edges CS ↔ CS̄ → f (CS̄ , cS , t) and
CS̄ → T ← CS . We aim to apply rule 3 of Pearl’s do-calculus. If we remove edges pointing into CS and T , we
obtain an ADMG with only the edge CS̄ → f (CS̄ , cS , t). In this graph T and f (CS̄ , cS , t) are m-separated by CS̄ .
Therefore, rule of 3 of do-calculus applies and we can remove the T = t term in the do-operator of the left-hand term,
yielding the right-hand term. Hence the indirect effect is zero.

J.8. Proof of Corollary E.1

We note that

E[Ψf
T←C2→Y (C1, C2)] = E[E[Ψf

T←C2→Y (C1, C2)|C1]] from the tower property

= E[0] from Property 3.2 as C2 ⊥⊥ T |C1

= 0

J.9. Proof of Lemma F.1.

Let m be a value of M . IfH(C) holds then for any t = 0, 1

E[Y (t,m)] = E[E[Y (t,m)|C]]

= E[E[Y (t,m)|C, t]] from Y (t,m) ⊥⊥ T |C
= E[E[Y (t,m)|C, t,m]] from Y (t,m) ⊥⊥M |T,C
= E[E[Y |C, t,m]] from consistency.

so

E[Ψf∗

T→Y |C,M (C,m)] = E[E[Y |C, t = 1,m]]− E[E[Y |C, t = 0,m]]

= E[Y (1,m)]− E[Y (0,m)] from the above
= CDE(m).

So if bothH(C1, C2) andH(C1) hold then

E[Ψf∗

C2
(C1, C2,m)] = E[Ψf∗

T→Y |C1,C2,M
(C1, C2,m)−Ψf∗

T→Y |C1,M
(C1,m)]

= CDE(m)− CDE(m)

= 0.

J.10. Proof of Corollary F.2

First, let’s note that C2 ⊥⊥ T,M |C1 implies C2 ⊥⊥M |C1 and C2 ⊥⊥ T |C1,M . Let m be a value of M . We note that

E[Ψf
C2

(C1, C2)] = E[E[Ψf
C2

(C1, C2)|C1]] from the tower property
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= E[E[Ψf
C2

(C1, C2)|C1,M ]] from the property C2 ⊥⊥M |C1

= E[0] from Property 3.2 as C2 ⊥⊥ T |C1,M

= 0

which completes the proof.

J.11. Proof of Property F.1

It suffices to show that E[Ψf
T→Y |M (M)] = Ψf

T→Y |∅, which is true as

E[Ψf
T→Y |M (M)]

=

∫
m

(vf ({M,T},m, t = 1)− vf ({M,T},m, t = 0))dp(m)

=

∫
m

(E[f(C,m, t = 1)|m, t = 1]− E[f(C,m, t = 0)|m, t = 0)dp(m)

=

∫
m

E[f(C,m, t = 1)|m, t = 1]dp(m)−
∫
m

E[f(C,m, t = 0)|m, t = 0]dp(m)

=

∫
m

E[f(C,m, t = 1)|m, t = 1]dp(m|t = 1)− E[f(C,m, t = 1)|m, t = 0]dp(m|t = 0) as M ⊥⊥ T

= E[f(C,M, t = 1)|t = 1]− E[f(C,M, t = 1)|t = 0]

= vf (T, t = 1)− vf (T, t = 0)

= Ψf
T→Y |∅

which completes the proof.
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