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Abstract
Recent advances in programmatic weak supervi-
sion (WS) techniques allow to mitigate the enor-
mous cost and effort of human data annotation
for supervised machine learning by automating it
using simple rule-based labelling functions (LFs).
However, LFs need to be carefully designed, of-
ten requiring expert domain knowledge and ex-
tensive validation for existing WS methods to be
effective. To tackle this, we propose the Weak Su-
pervision Variational Auto-Encoder (WS-VAE), a
novel framework that combines unsupervised rep-
resentation learning and weak labelling to reduce
the dependence of WS on expert and manual engi-
neering of LFs. Our technique learns from inputs
and weak labels jointly to capture the input sig-
nals distribution with a latent space. The unsuper-
vised representation component of the WS-VAE
regularises the inference of weak labels, while a
specifically designed decoder allows the model to
learn the relevance of LFs for each input. These
unique features lead to considerably improved
robustness to the quality of LFs, compared to ex-
isting methods. An extensive empirical evaluation
on a standard WS benchmark shows that our WS-
VAE is competitive to state-of-the-art methods
and substantially more robust to LF engineering.

1. Introduction
One of the most severe bottlenecks in the successful de-
velopment of supervised learning methods, including deep
learning, is the cost of manual annotation of data. This
task is often extremely expensive and time consuming, es-
pecially for applications where labelling requires specific
domain expertise (Zhou et al., 2017; Zhang et al., 2022).
To overcome this limitation, the paradigm of programmatic
weak supervision (WS) has been proposed (Ratner et al.,

1Amazon 2Computer Science Department, University of
Sheffield. Correspondence to: Francesco Tonolini <tono-
lini@amazon.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

2016a; 2017), where supervised learning models are trained
without manual annotations, but using weak labels obtained
from manually constructed (i.e. programmatic) rules in-
stead. In a WS framework, domain experts do not need to
label each training example individually, but just define a
series of general rules, i.e., labelling functions (LFs). LFs
are subsequently applied to the training data in bulk and
combined to obtain estimates of the underlying true labels
(Zhang et al., 2022; Ratner et al., 2017; Bach et al., 2019;
Fu et al., 2020).

Despite their success, current programmatic WS techniques
require high quality LFs and large amounts of data to per-
form comparably to supervised models trained on relatively
smaller manually annotated datasets (Bach et al., 2019; Rat-
ner et al., 2016b). In particular, most approaches make
strong LF independence assumptions and require them to
combine high coverage and accuracy over the training set
(Ratner et al., 2017; Fu et al., 2020). This reliance on care-
ful engineering of LFs introduces a new bottleneck to the
application of deep learning at scale as designing and testing
programmatic rules can become cumbersome and costly.

To mitigate these issues, we introduce the Weak Supervision
Variational Auto-Encoder (WS-VAE); a new WS frame-
work based on VAEs (Kingma & Welling, 2013; Rezende
et al., 2014; Pu et al., 2016). Instead of inferring labels,
the WS-VAE models the distribution of weak labels and
inputs with an auto-encoder architecture. A neural network
encodes input features into representation vectors where one
dimension of these representation vectors is modelled as a
continuous relaxation of the true hidden label. Differently
from how semi-supervised VAEs handle labels (Kingma
et al., 2014), we design a novel weak labels decoder, which
learns to assign a different weight to each LF in each training
example, based on representation consistency. This archi-
tecture results in a weak labels-guided representation of the
data, where one dimension captures the task of interest.

The WS-VAE is more robust to LF design compared to
existing weak supervision approaches, mainly for two rea-
sons. Firstly, because it has to reconstruct input features,
it is encouraged to maintain mutual information between
features and inferred labels, which helps to ignore noise and
infer accurately where weak labels are scarce. Secondly,
the specifically designed weak labels decoder learns to give
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different importance to the available weak labels in the re-
trieval, allowing to rely more on the informative ones and
less on the inaccurate ones. In fact, our WS-VAE can even
explain certain weak labels as noise and completely ignore
them, if the corresponding inputs are recognised as incon-
sistent with the distribution of similarly labelled data. In
our extensive experimental evaluation, we find WS-VAE to
be a competitive WS approach with benchmark data sets
and demonstrate its superior robustness to LFs engineering
compared to several state-of-the-art WS methods in simu-
lation experiments. In summary, our contributions are the
following:

• We propose the use of modified VAE models to perform
WS. Modelling the input features distribution jointly
to inferring weak labels regularises WS and improves
its robustness to LFs quality.

• We introduce a novel VAE architecture, the WS-VAE,
which presents a specifically designed weak labels de-
coder that can adaptively assign LFs weights in differ-
ent inputs. This feature allows our model to unsuper-
visedly estimate when certain LFs are inaccurate and
further improves robustness to LFs engineering.

• We test several state-of-the-art WS models along with
our model in both established benchmarks and hun-
dreds of simulated experiments, artificially altering the
quality of the LFs in the data sets. Our results show
that WS-VAE is a competitive WS method (performing
on par or outperforming state-of-the-art in four out of
six tasks) while being substantially more robust to LFs
engineering compared to other methods.

2. Background and Related Work
2.1. Weak Supervision

The general aim of weak supervision (WS) is to harvest mul-
tiple manually constructed rule-based labelling functions,
which individually may have relatively low accuracy and
coverage over the training data, and use them in combina-
tion to infer labels with which to train supervised models.
Most WS frameworks include three main stages:

1. Design and apply labelling functions (LFs): Given
an unlabelled training set X , domain experts first de-
fine a series of heuristic rules, each of them labelling
the target data automatically, but with expected low
accuracy and scarce coverage. For example, a LF may
be designed to label an email as spam if a certain word
is contained in the text and abstain otherwise. Each of
these LFs is then applied to the whole training set, ob-
taining a list of weak labels Λi = {λ1,i, λ2,i, ..., λK,i}
for each training sample xi ∈ X .

2. Train a generative model (GM): The obtained weak
labels Λi ∈ Λ are combined to retrieve a probabilistic
or soft label p(yi|Λi) that approximates the true hidden
label yi ∈ Y . Models to perform this step are often
referred to as generative models (GMs) in the WS
literature.

3. Train an end model: Train a final learning model
to infer labels yi from inputs xi, using the estimates
obtained from the GM as targets. Some end mod-
els are trained with approximate hard labels ỹi =
argmax p(yi|Λi) (Ratner et al., 2017), while others
are designed to use the soft labels p(yi|Λi) directly
(Devlin et al., 2018).

Most of recent work in WS focuses on stage 2 for designing
GMs that efficiently combine the weak labels in a principled
way (Ratner et al., 2017; Bach et al., 2019; Varma et al.,
2019a; Fu et al., 2020). Different variations of GMs have
also been developed for various types of data and labels, in-
cluding multi-task learning (Ratner et al., 2019), sequential
data (Zhan et al., 2018; Varma et al., 2019b) and generalised
tasks, such as ranking and regression (Shin et al., 2021).
Other work aims to exploit different types of LFs, such as
continuous values (Chatterjee et al., 2019), multiple class
label candidates per LF (Yu et al., 2021) and unseen related
classes (Zhang et al., 2021a).

Some work also focuses on improving the other two stages
(i.e. 1 and 3). The Nemo framework was recently proposed
to formalise the LFs design in stage 1 as an interactive
process (Hsieh et al., 2022). Stage 3 often adopts domain
specific architectures to train the final model. For instance,
with text data it is common to use recurrent (Gers et al.,
2002) or attention based (Vaswani et al., 2017) methods
as the end model (Zhang et al., 2021b). Yu et al. (2020)
recently proposed an end model specifically designed for
WS, in which data not covered by the LFs is introduced into
training. The intersection of weak supervision and semi-
supervised learning has recently been explored including
methods that exploit a small amount of true labels in combi-
nation with large amounts of weak labels for learning (Kara-
manolakis et al., 2021; Awasthi et al., 2020; Maheshwari
et al., 2020). Similarly, other methods focus on exploiting a
small amount of noisy labels in combination with WS (Li
et al., 2020; Goel et al., 2022).

Other recent approaches also combine stages 2 and 3 (Ren
et al., 2020; Rühling Cachay et al., 2021). These approaches
train jointly a generative model and an end model by adding
an agreement cost between the two. In such a way, the gen-
erative model is influenced by the end model input features
during training and can derive more information from them.
Our proposed approach also retains this property and can
be used as a joint model. However, we incorporate unsuper-
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vised learning into the process to mitigate the reliance on
LFs of high quality.

2.2. Variational Auto-Encoders

VAEs are unsupervised models which aim to model the
distribution of observed data p(x) with a latent variable
structure p(x) =

∫
p(z)p(x|z)dz, where p(x|z) is typically

a neural network-based model to be learned, called the de-
coder. Learning the weights of p(x|z) is intractable in most
cases, hence VAEs make use of a tractable lower bound,
which they maximise in place of the exact likelihood:

log p(x) ≥ Eq(z|x) [log p(x|z)]−DKL(q(z|x)||p(z)) (1)

The recognition model q(z|x), or encoder, is also a neural
network and its weights are learned jointly with the decoder
weights. Training consists of maximising the above evi-
dence lower bound (ELBO) with respect to the encoder and
decoder weights (Kingma & Welling, 2013; Pu et al., 2016).

The latent space z of a trained VAE can often represent data
in a meaningful way and capture its sources of variation
with simple distributions, e.g. Gaussians (Sønderby et al.,
2016; Alemi et al., 2018). Significant efforts have been put
into improving this capability of VAEs, generally known
as disentanglement (Burgess et al., 2018; Chen et al., 2018;
Gao et al., 2019; Kim & Mnih, 2018; Tonolini et al., 2020;
Ding et al., 2020). In this paper, we aim to exploit such a la-
tent space to capture the complex dependencies of labelling
functions with each other and the input signals.

2.3. Weak Supervision and Generative Models

Weak labels have been used in combination with VAEs in re-
cent work, but in the context of improving disentanglement
(Vowels et al., 2020a; Margonis et al., 2020), or common
factor discovery for fairness (Vowels et al., 2020b), while
our method aims at modelling and retrieving the true labels
associated with a specific task for the first time.

Perhaps the closest approach to our own is that of the WS-
GAN, which introduces the use of a generative adversarial
network (GAN) to perform weak supervision (Boecking
et al., 2022). This work introduces an adaptive weak labels
weighting function which learns to infer the importance of
weak labels from input features. This results in an adap-
tive weak labels modelling similar to that of the WS-VAE
decoder. Differently from this approach, however, the WS-
VAE decoder infers the weak labels importance from the
latent space, employing a much simpler and smaller neural
network. Moreover, the WS-VAE derives this adaptive fea-
ture with a more principled approach, by modelling weak
labels as noisy observations of the true label and learning
the noise parameters.

Figure 1. Graphical models for standard WS generative models
compared to the proposed one: (a) standard weak supervision
generative model, e.g. Snorkel, FlyingSquid. (b) joint model, such
as Weasel, where the end model, mapping inputs x to labels y, is
trained alongside the weak labels generative model. (c) The WS-
VAE model, where both inputs x and weak labels Λ are modelled
with artificial latents z and hidden continuous true labels yc.

3. The Weak Supervision Variational
Auto-Encoder (WS-VAE)

We propose WS-VAE; a novel weak supervision generative
model based on VAEs, which models observed inputs and
weak labels jointly with a latent variable model (LVM).
The WS-VAE has an auto-encoding architecture, where
input signals are mapped to a latent representation space
through an encoder and subsequently reconstructed through
a decoder. To induce one of the latent dimensions to capture
the desired task, and hence perform WS, we design a novel
weak labels decoder architecture which infers the weak
labels with a specific conditional distribution.

The model is trained by maximising the ELBO which bal-
ances the reconstruction of the inputs, regularisation and
inference of the weak labels. Once the model is trained, the
encoder can be used to infer labels from new inputs. Our
framework operates in a fully unsupervised weak labelling
regime, i.e., with no access to training or validation ground-
truth labels. The WS-VAE is a joint model, where stages 2
and 3 (described in section 2.1) are combined, as the trained
encoder can directly serve as an end model.

3.1. Problem Statement

Given an unlabelled training set X = {x1, x2, ..., xN} with
no access to ground-truth labels, we aim to train a classifica-
tion model f(x) which infers labels Y = {y1, y2, ..., yN}.
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We assume to have access to K programmatic rules, i.e. the
LFs. Each LF assigns a weak label λi,k to inputs xi, approx-
imating the ground-truth label yi. In our setting, we take
positive and negative classes to be +1 and −1 respectively
and abstain to be 0, meaning that λ ∈ {+1, 0,−1}, y ∈
{+1,−1}. In this paper, we focus on the binary classifica-
tion case, leaving multi-class and inference extensions to
future work. After the LFs have been applied to the training
set X , each training input xi has a series of weak labels
assigned to it Λi = {λi,1, λi,2, ..., λi,K}. Given the training
set of inputs X = {x1, x2, ..., xN} and the corresponding
sets of weak labels Λ = {Λ1,Λ2, ...,ΛN}, we aim to train a
classifier f(x) to predict hidden ground-truth labels y from
new inputs x. In the technical sections that follow, we drop
the subscript i for simplicity, i.e. xi → x and Λi → Λ.

3.2. Generative Model

We take a generative modelling approach to perform WS
and retrieve estimates of the hidden labels y. We assume
that there is a model p(x,Λ) which captures the joint dis-
tribution of all the data we can observe, i.e., inputs x and
weak labels Λ. We also assume that a latent variable yc of
this model captures the source of variation in the observed
data associated with the task. To infer this model and hence
retrieve the latent yc, we formalise the joint distribution of
the inputs x and weak labels Λ as a LVM of the following
form:

log p(x,Λ) =

∫ ∫
p(z)p(yc)p(x|z, yc)p(Λ|z, yc)dzdyc.

(2)

yc is modeled to be a continuous version of the hidden true
label y, such that

y =

{
0, if yc ≤ 0

1, yc > 0.

This modelling choice allows us to exploit the VAE
reparametrisation trick (Kingma & Welling, 2013; Razavi
et al., 2019; Kingma et al., 2014). z is a set of latent vari-
ables, which we introduce to capture the sources of variation
in inputs x and weak labels Λ that are not described by the
continuous label yc, i.e. all information in the data which
is not associated with the task. Each component of the
generative model in equation 2 is described below:

Prior Distributions: The latent priors p(z) and p(yc) are
both chosen to be unit Gaussians. These distributions model
the distribution we assume z and yc to have, prior to seeing
any observed data. In practice, they introduce regularisation
in the continuous label yc and latent variables z.

Input Decoder: As in standard VAEs, the input decoder
p(x|z, yc) is defined as an isotropic Gaussian distribution

Figure 2. Architectures of the WS-VAE decoder and encoder: (a)
The decoder architecture: concatenated latent variable z and con-
tinuous label yc are passed through two distinct neural networks
(NNs); one outputting Gaussian moments in the input space x
and one outputting the temperatures t. The distributions of binary
weak labels Λ are Bernoulli with probabilities sigmoid(yc/t). (b)
The encoder architecture: Input signals x are passed through a NN
outputting moments of Gaussian distributions for both artificial
latent variables z and continuous hidden label yc.

over x, the moments of which are inferred by a neural net-
work taking the concatenated z and yc as input.

Weak Label Decoder: This component is designed to be
of a novel form, tailored to the WS setting. In order to
induce the continuous label yc to capture information from
the classification task and be a good predictor for the hidden
true labels y, the weak labels likelihood is as follows:

log p(Λ|z, yc) =
K∑
k

log(sigmoid(
λkyc

tk(z, yc)
)). (3)

Here tk(z, yc) are the temperatures of the logistic functions.
These are the outputs of a neural network taking as input
the latent variable z concatenated to the continuous label yc
and are constrained to be positive.

The weak labels decoder (equation 3) induces the con-
tinuous label yc to directly classify each of the weak la-
bels λk ∈ Λ. However, because the temperatures tk are
inferred through a neural network from latent encodings
(z, yc), the model can assign a different weight to each
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LF adaptively for each training example. This architecture
results in a similar adaptive LFs weighting to that of Kara-
manolakis et al. (2021) in semi-supervised settings, with
the important difference that our WS-VAE does not rely on
ground-truth labels to infer the weights. This generative
model structure also allows to model correlations amongst
LFs, as the common weak supervision conditional inde-
pendence assumption p(Λ|y) =

∏K
k p(λk|y) is relaxed to

p(Λ|y, z) =
∏K

k p(λk|y, z).

3.3. Inference Model and Training

To train our WS-VAE, we aim to maximise the log likeli-
hood of the observed data log p(x,Λ) with respect to the
model parameters, i.e. the weights of the decoders. Be-
cause directly maximising the log likelihood is intractable
(Kingma & Welling, 2013), we make use of a neural en-
coder to define a tractable lower bound (i.e., the ELBO) in
its place:

log p(x,Λ) ≥Eq(z|x)q(yc|x) [log p(x|z, yc) + log p(Λ|z, yc)]
−DKL(q(z|x)||p(z))−DKL(q(yc|x)||p(yc))

(4)

The encoders q(z|x) and q(yc|x) are both Gaussian, with
moments inferred by a neural network, taking as input the
feature representation x. The resulting auto-encoder struc-
ture jointly models the distribution of input features x and
infers the weak labels Λ, hence propagating label informa-
tion between similar inputs x. This allows the WS-VAE to
infer soft labels even for data not covered by any LF. Figure
2 illustrates the overall decoder and encoder architectures.
To train the WS-VAE, we maximise the ELBO of equation
4 with respect to the encoder and decoders weights (details
in supplementary A.1).

We hypothesise that this objective will result in improved ro-
bustness to the quality of LFs compared to existing methods
because of two main reasons:

1. Mutual Information Regularisation: The WS-VAE
ELBO (equation 4) combines a weak labels reconstruc-
tion likelihood, log p(Λ|z, yc) with the standard VAE
ELBO. The former induces inference of the weak la-
bels, similarly to existing WS methods, while the latter
encourages inferred continuous true labels yc from sim-
ilar inputs x to be close to each other. This encourages
mutual information between yc and x and helps to
correct erroneous weak labels.

2. Adaptive Weak Labels Cost: The model learns to
infer the temperatures tk(z, yc) for the weak labels
inference likelihoods (equation 3), which control the
importance given in the overall cost to each weak label

for each example. This allows the model to learn dur-
ing training for which inputs x a particular LF is likely
to make mistakes and adapt its importance accordingly
in the optimisation.

3.4. Inferring Soft Labels

Once the WS-VAE has been trained with the available train-
ing input features X and weak labels Λ, its encoder q(yc|x)
can be used to generate probabilistic labels for the binary
true variable y. The probability for each class is computed
as follows:

q(y = 0|x) =
∫ 0

−∞
q(yc|x)dyc =

1

2
+

1

2
erf(

−µyc

σyc

)

q(y = 1|x) =
∫ ∞

0

q(yc|x)dyc =
1

2
− 1

2
erf(

−µyc

σyc

)

(5)

Here erf() indicates the standard error function and µyc

and σyc
are the mean and standard deviation of the Gaussian

q(yc|x). In this way, the trained WS-VAE encoder q(yc|x)
can be used as a probabilistic classifier q(y|x) for a given
classification task directly. Architecture and training details
of the WS-VAE are presented in Supp. A.2 and B.2.

4. Experiments and Results
4.1. Data

We test our WS-VAE against several state-of-the-art WS
methods on Wrench (Zhang et al., 2021b), a standard pub-
licly available WS benchmark which consists of various
tasks. We use 6 binary classification data sets including: 3
text data sets, namely, YouTube (Alberto et al., 2015), SMS
(Gómez Hidalgo et al., 2006) and IMDB (Maas et al., 2011);
2 image data sets, namely Tennis Rally and Commercial
(Fu et al., 2020; Zhang et al., 2021b); and 1 tabular data set,
Census (Kohavi et al., 1996). Data sets details can be found
in supp. B.1. For text data, pre-trained BERT encodings
(Devlin et al., 2018) are taken as input features x, for image
data sets input features are extracted by a ResNet-101 model
pre-trained on ImageNet (He et al., 2016) and for the tabular
data set raw features are used as inputs to the WS-VAE and
the competing methods. WS-VAE implementation details
can be found in supp. B.2.

4.2. Baselines

We compare performance of the WS-VAE to 3 WS gener-
ative models, namely, majority voting (MV) (Zhang et al.,
2021b), Snorkel (SN) (Ratner et al., 2017) and Flying Squid
(FS) (Fu et al., 2020), in combination with a multi-layer
perceptron (MLP) end model for all data sets and also fine
tuning BERT (Devlin et al., 2018) for the text data sets.
Since the WS-VAE is a joint model, it can perform infer-
ence directly after training with the weak labels. Therefore,
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YouTube SMS IMDB Tennis Commercial Census

MV+MLP 0.83± 0.02 0.40± 0.06 0.74± 0.05 0.76± 0.07 0.90± 0.01 0.30± 0.01
MV+BERT 0.88± 0.04 0.40± 0.11 0.74± 0.01 - - -
SN+MLP 0.86± 0.01 0.38± 0.05 0.76± 0.01 0.82± 0.00 0.81± 0.05 0.42± 0.01
SN+BERT 0.87± 0.03 0.55± 0.11 0.74± 0.01 - - -
FS+MLP 0.81± 0.01 0.37± 0.02 0.77± 0.01 0.79± 0.01 0.89± 0.01 0.16± 0.01
FS+BERT 0.83± 0.01 0.46± 0.12 0.74± 0.00 - - -
Denoise 0.88± 0.01 0.86± 0.02 0.72± 0.02 0.80± 0.02 0.80± 0.03 0.14± 0.01
Weasel 0.91± 0.02 0.84± 0.06 0.71± 0.05 0.73± 0.05 0.67± 0.07 0.41± 0.02
WS-VAE (Ours) 0.90± 0.01 0.86± 0.02 0.77± 0.00 0.83± 0.01 0.89± 0.00 0.48± 0.06

Table 1. F1-scores of several WS methods compared to the proposed WS-VAE on benchmark data sets. Each experiment is repeated 5
times with a different random seed to obtain uncertainties.

YouTube SMS IMDB Tennis Commercial Census

MV+MLP 0.94± 0.03 0.66± 0.05 0.84± 0.03 0.89± 0.03 0.90± 0.01 0.82± 0.01
MV+BERT 0.97± 0.01 0.80± 0.07 0.62± 0.08 - - -
SN+MLP 0.96± 0.01 0.80± 0.04 0.84± 0.02 0.86± 0.00 0.81± 0.05 0.84± 0.02
SN+BERT 0.97± 0.01 0.84± 0.04 0.82± 0.02 - - -
FS+MLP 0.90± 0.02 0.74± 0.02 0.84± 0.02 0.86± 0.01 0.89± 0.01 0.77± 0.02
FS+BERT 0.96± 0.01 0.88± 0.03 0.81± 0.01 - - -
Denoise 0.97± 0.01 0.84± 0.02 0.72± 0.05 0.89± 0.01 0.80± 0.03 0.54± 0.04
Weasel 0.99± 0.01 0.90± 0.03 0.79± 0.04 0.87± 0.03 0.67± 0.07 0.85± 0.02
WS-VAE (Ours) 0.99± 0.00 0.95± 0.01 0.85± 0.01 0.89± 0.02 0.89± 0.00 0.89± 0.03

Table 2. AUC scores of several WS methods compared to the proposed WS-VAE on benchmark data sets. Each experiment is repeated 5
times with a different random seed to obtain uncertainties.

we also test against two recently proposed joint models;
Denoise (Ren et al., 2020) and Weasel (Rühling Cachay
et al., 2021). Baselines details can be found in supp. B.3.
In this paper, we test models under fully unsupervised WS
conditions, where we do not have access to any ground
truth labels, even for validation. Both the WS-VAE and all
baseline models are trained for a fixed number of iterations,
without validating with ground truth labels and hence rely
solely on weak labels. Details can be found in supp. B.2
and B.3.

4.3. Predictive Performance

We first test the WS-VAE on the original Wrench data, to
evaluate its performance against existing WS methods. Ta-
ble 1 reports the macro F1-score of end and joint models
in each data set. We also report the corresponding AUC
scores in table 2. Overall, we observe that our WS-VAE
model obtains consistently high performance across tasks.
Specifically, it matches or outperforms the F1-score of the
best baseline state-of-the-art model in four out of six data
sets (i.e., SMS, IMDB, Tennis and Census in table 1). In the
remaining two data sets (YouTube and Commercial), it is
the second best model, with an F1-score that is lower than
the best baseline by only 0.01. Conversely, all baselines

performed substantially lower than the average performance
of other models in at least one data set, meaning that there is
not a clear overall best choice amongst existing WS methods.
For example, Weasel performs quite competitvely overall,
being the best with the YouTube data set and second best
with the SMS data set, but under-performs a simple majority
voting strategy with the Commercial data set by 0.23 in
F1-score. This is not the case for the WS-VAE, which either
outperforms all baselines or under-performs only marginally
the best model. This result validates that WS-VAE is a com-
petitive WS method.

In particular, the WS-VAE is substantially advantageous in
the Census data set, where it provides an improvement of
0.06 in F1-score compared to the best baseline (SN+MLP).
We note that this large improvement is observed in the data
set where the overall WS performance is the lowest and
therefore the weak labels might be inaccurate and difficult
to learn from. This suggests that the WS-VAE is more robust
to these conditions and less reliant on the engineering of the
LFs, thanks to the features described in 3.3. In the rest of the
experimental section, we further investigate the robustness
of the WS-VAE in depth.
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Figure 3. Classification accuracy in various LFs degradation conditions with the YouTube data set: (a) Classification accuracy vs. ratio of
artificially added noise on the non-abstaining weak labels. (b) Classification accuracy vs. ratio of artificially abstained weak labels. (c)
Classification accuracy vs. number of appended copies of randomly labelling LF.

4.4. Testing the Robustness of WS Methods

In order to evaluate the sensitivity of the WS-VAE to the
engineering of LFs, we conduct a number of simulation
experiments, where weak labels from the benchmark data
sets are artificially modified to obtain different quality condi-
tions with respect to the LFs. Specifically, we explore three
aspects: accuracy, coverage and correlation. In real settings,
LFs design efforts focus primarily on these aspects, as we
want the resulting weak labels to be as correct as possible
(accuracy), apply to as much data as possible (coverage) and
measure different things in the data (correlation). We vary
these three properties as follows:

• Accuracy: To degrade the accuracy of the LFs, we
substitute a varying portion of the covered labels with
a random binary value (positive or negative class).

• Coverage: To simulate low coverage, a varying portion
of covered labels is set to abstain.

• Correlation: To simulate the effect of using uninfor-
mative LFs that are mostly correlated to each other, we
append copies of a random LF to the existing set.

4.4.1. TESTING INDIVIDUAL ROBUSTNESS PROPERTIES

First, we study the effect of these 3 artificial LFs degrada-
tion individually in the YouTube data set for demonstration
purposes. The YouTube weak labels are degraded as de-
scribed above, varying gradually the controlling variable in
each case and testing the WS-VAE and all baselines in each
condition. Results are shown inf Figure 3. We make the
following observations:

• Accuracy (Figure 3(a)): Overall, all methods suffer
by gradually increasing the noise in the weak labels as
expected. However, the WS-VAE remains more accu-
rate than competing methods, maintaining on average
80% accuracy with 50% of available labels substituted

with noise, while competing methods are between 65%
and 71% in the same condition - a 9% difference com-
pared to the second best (MV+BERT). This is because
the WS-VAE models the correlations between inputs
x and weak labels Λ and learns to ignore weak labels
which appear inconsistent.

• Coverage (Figure 3(b)): Most baselines degrade sig-
nificantly as coverage is reduced, as less labels are
available for training. Weasel and our WS-VAE are
instead essentially unaffected, maintaining an accu-
racy of around 90% across all tested conditions. This
is because both our model and Weasel are able to in-
corporate data not covered by any LF during training.
Hence, they greatly mitigate over-fitting issues.

• Correlation (Figure 3(c)): We also observe that base-
line WS methods severely degrade when correlated
noisy labels are added to the set of weak labels, with
accuracy varying between 50% and 70% using five
copies of a random LF. This is because the added LFs
introduce multiple random weak labels in perfect agree-
ment with each other. This leads to these random labels
constituting a stronger signal than any existing infor-
mative weak labels, causing the models to overfit to
them. Contrarily, the WS-VAE can capture such corre-
lations between LFs and ignore them in the modelling,
if they display no mutual information with the asso-
ciated inputs. As a result, the accuracy of WS-VAE
remains close to 90% as more copies of a random LF
are added.

Overall, the results of Figure 3 demonstrate that as the accu-
racy, coverage or independence of the set of weak labels is
degraded, our WS-VAE model retains substantially higher
performance than existing state-of-the-art WS methods in-
cluding generative and joint models. We further test the
robustness of the WS-VAE model to the number of defined
LFs in supplementary C.1.
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Figure 4. Distributions of macro F1-scores with randomly generated LFs properties. Distributions are built by performing 50 experiments
with each data set, each with different, randomly generated LFs accuracy, coverage and correlation.

4.4.2. TESTING ROBUSTNESS PROPERTIES COMBINED

To extensively test the robustness of WS-VAE compared to
the baselines, we combine all three robustness properties
(accuracy, coverage and correlation), with randomly chosen
intensity, on all six benchmark data sets. Given a bench-
mark data set with its originally computed LFs, we draw
uniformly at random a ratio of weak labels to be set ran-
domly (accuracy), a ratio of weak labels to be set to abstain
(coverage) and a number of random LF copies to append to
the set (correlation). We then test WS performance using
all the baselines and our WS-VAE by computing macro
F1-score in the test set of each task. This procedure is
repeated 50 times for each benchmark data set, obtaining
distributions of F1-scores with randomly altered weak labels
properties. These are shown in the box plots of Figure 4.
Experimental details are reported in supp. B.4.

Overall, we see that in all data sets, the distribution of F1-
scores for the WS-VAE spans higher values and in many
cases also displays lower variance. Differences are numeri-
cally quantified and tested for statistical significance in supp.
C.2. These experiments comprise 300 unique conditions (6
datasets × 50 random LFs degradations). In 66.3% of these,
the WS-VAE was the best performing model and displayed
an average F1-score improvement to the best baseline in
each experiment of 0.057. These results show how the WS-
VAE gives better and more consistent performance with
respect to different variations in weak labels quality, prov-
ing the superior robustness of WS-VAE to the engineering

Figure 5. Model performance vs. LFs quality for all data sets and
all experimental conditions. On the x-axis, we plot the macro
F1-score of the raw majority vote, which we take as a proxy of
the quality of the LFs used. On the y-axis, we plot the macro
F1-score of the labels obtained using the WS model to be tested,
which we take as a measure of model performance. The blue dots
correspond to the best performing model amongst the baselines,
chosen a-posteriori in each experiment. The red dots correspond
to the WS-VAE. The continuous lines are obtained by performing
a moving average in each case.
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of LFs, compared to existing WS methods.

We further prove this superior robustness by studying the dif-
ference in performance as a function of LFs quality. There
are several aspects that affect LFs quality, of which in this
paper we analysed what we believe to be the three most
important ones, and therefore it is difficult to define a sin-
gle measure. However, we can use the F1-score of the raw
majority vote as an approximate measure of quality. If the
LFs are well engineered, i.e., they already approximate well
the true labels and cover enough data, their majority vote
should be in good agreement with the ground truth. Using
this notion, in Figure 5 we plot WS model macro F1-score
vs. raw majority vote macro F1-score for all 300 unique ex-
perimental conditions tested. We plot both the best baseline
in each tested condition (blue) and the proposed WS-VAE
(red).

The difference in data sets and the combination of the dif-
ferent types of LFs degradations that are applied randomly
in each experimental setting result in significant variance
in the performance of tested models. However, in Figure
5, we can identify as a clear general trend, shown by the
moving averages solid lines, that the advantage of using the
WS-VAE is substantial in cases where the starting weak la-
bels are of poor quality (raw majority vote F1-score < 0.5).
The difference in models’ F1-score reduces as weak labels
improve and eventually performance is comparable with
LFs of high quality (raw majority vote F1-score ≥ 0.65).
This trend is evidence again of the superior robustness of
the WS-VAE. It performs comparably to the best baseline
when LFs are of high quality, but loses accuracy much less
rapidly as the quality of LFs degrades.

5. Limitations
In the form presented in this paper, the WS-VAE can per-
form programmatic weak supervision in the binary classifi-
cation setting only. Our method was also implemented with
fully connected networks, meaning that for text and image
modalities it is necessary to compute dense vectors with
pre-trained models first, such as BERT in the case of text
data. This may hinder performance for uncommon data dis-
tributions, such as satellite images or text in rare languages.
Because of the unique auto-encoder architecture, it is not
trivial to integrate domain specific models directly in the
WS-VAE, e.g., integrating pre-trained BERT into the VAE
architecture.

6. Conclusion ad Future Work
We proposed WS-VAE, a novel WS framework that com-
bines unsupervised representation learning and weak la-
belling. Thanks to the mutual information regularisation
provided by the VAE component of the model and the adap-

tive architecture of its weak labels decoder, the WS-VAE
is substantially more robust to the engineering of LFs. In
our experiments, we thoroughly evaluate this robustness,
comparing to several existing WS methods in hundreds of
unique experimental conditions, generated using six data
sets and tens of random modifications to their weak labels.
From these experiments, we found the WS-VAE to be sig-
nificantly more robust to the quality of training LFs in every
data set. Furthermore, we demonstrated the effectiveness of
WS-VAE by consistently matching or outperforming state-
of-the-art in the majority of data sets.

In future work, we aim to extend the WS-VAE model from
binary tasks to multi-class settings. This will require differ-
ent designs of the continuous labels and different decoder
components for the weak labels, e.g., categorical instead
of Bernoulli. An additional future direction is also the ex-
tension of the WS-VAE to semi-supervised WS, where we
can integrate a limited budget of ground-truth labels during
training. While this is outside the scope of this paper, the
LVM structure lends itself quite naturally to incorporate
partial supervision (Kingma et al., 2014).
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A. WS-VAE Cost and Architecture
A.1. Optimisation of the ELBO

As is common in many VAE architectures (Burgess et al.,
2018; Tomczak & Welling, 2018), we modify our ELBO to
allow re-balancing of each term with hyper-parameters. In
particular, we use a parameter γ to control the weight of the
weak labelling reconstruction component. The WS-VAE
ELBO is then maximised with respect to the different neural
networks’ weights:

argmax
θ1,θ2,ϕ

Eqϕ(z|x)qϕ(yc|x) [log pθ1(x|z, yc) + γ log pθ2(Λ|z, yc)]

−DKL(qϕ(z|x)||p(z))−DKL(qϕ(yc|x)||p(yc)).
(6)

Here θ1, θ2, ϕ are the weights of the neural networks con-
stituting the decoder and encoder shown in Figure 2. γ is
a real positive hyper-parameter which controls the weight
assigned to the reconstruction of weak labels Λ relative to
the standard ELBO components, i.e. reconstruction of x
and KL divergence. To train the WS-VAE, we perform the
maxmisation of equation 6 using the ADAM optimiser.

A.2. architecture of WS-VAE components

As schematically shown in figure 2, the WS-VAE architec-
ture consists of three neural networks components:

• Features Decoder: This component consists of a fully
connected neural network, which takes as input con-
catenated latent variables z and continuous label yc.
This neural network is made of an MLP of controllable
depth and units sizes. Two linear matrices map the last
hidden layer to the mean and log variance of features
µx and log σ2

x.

• Weak Labels Decoder: This component also consists
of a fully connected network, which takes as input
concatenated latent variables z and continuous label yc.
This neural network is made of an MLP of controllable
depth and uniots sizes. A single linear matrix maps the
hidden layer to the logistic temperatures t(z, yc).

• Features Encoder: Similarly to the features decoder,
this component consists of a fully connected neural
network, which takes as input features x. This neural
network is made of an MLP of controllable depth and
units sizes. Four linear matrices map the hidden layer
to the mean and log variance of latent variables µz and
log σ2

z and the mean and log variance of continuous
label µyc and log σ2

yc
.

B. Experimental Details
B.1. Data Sets

Our experiments are performed on the following 6 bench-
mark data-sets for binary classification tasks, made available
with pre-computed weak labels in the Wrench framework
(Zhang et al., 2021b):

• YouTube: Text data set of comments from YouTube
for spam classification (Alberto et al., 2015). It com-
prises 1586 training examples and 250 test examples.
10 LFs were designed for the task.

• IMDB: Text data set of movie reviews from IMdb
used for sentiment classification (Maas et al., 2011).
It comprises 20000 training examples and 2500 test
examples. 8 LFs were designed for the task.

• SMS: Text data set of mobile messages collected for
spam classification (Gómez Hidalgo et al., 2006). It
comprises 4571 training examples and 500 test exam-
ples. 73 LFs were designed for the task.

• Tennis Rally: Image data set of tennis match video
frames, where the task is to classify if the players are
in a rally (Fu et al., 2020). It comprises 6959 training
examples and 1098 test examples. 6 LFs were designed
for the task.

• Commercial: Image data set of television video
frames, where the task is to classify if the frame is
from a commercial (Fu et al., 2020). It comprises
64130 training examples and 7496 test examples. 4
LFs were designed for the task.

• Census: Tabular data set of census responses, where
the task is to classify high and low income. (Kohavi
et al., 1996). It comprises 10083 training examples
and 16281 test examples. 83 LFs were designed for
the task.

These data-sets span different training sample sizes, quantity
and quality of LFs and data types, allowing us to test the WS-
VAE in different regimes. Validation sample size is omitted
in the above descriptions, as we do not use validation labels
to fine-tune hyper parameters or perform early stopping.

B.2. WS-VAE Experimental Implementation

We keep hyper-parameters of models and training as consis-
tent as possible across all data sets and all tested conditions,
only changing layers sizes based on input features sizes.
In all experiments the WS-VAE is trained with the Tensor-
flow ADAM optimiser for 10, 000 iterations, a batch size of
32 and an initial training rate of 0.001. With these hyper-
parameters, the WS-VAE was observed to converge its cost
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function in all tested conditions and all data-sets. The op-
timiser is set to maximise the ELBO of equation 6 with
γ = 100 in all experiments, as we wish to approximately
balance the reconstruction term of the weak labels Λ (4
to 83-dimensional) and that of the text features x (100 to
2048-dimensional). These settings are consistent across all
data sets and experimental conditions tested. The latent
dimensionality is also kept the same for all experiment and
is equal to 10. The only difference of WS-VAE models
across different data sets is the hidden size of the encoders
and decoders; for the text data sets and the Census tabular
data set, the encoder and decoder each consist of an MLP
(as described in A.2) with a single 100-dimensional layer,
while the weak labels decoder which infers the temperatures
tk consists of a 20-dimensional single layer MLP. For the
image data sets, the structure is the same, with the differ-
ence that the encoder and decoder MLPs single layers are
1000-dimensional. These experimental settings were kept
consistent across all tested conditions in all the experiments
presented in this paper, with no fine-tuning or early stopping
using validation ground-truth. This choice is made to truly
test the robustness of the method and existing baselines to
unforeseen adverse properties of the weak labels employed
in truly unsupervised settings, where the labelling budget is
0.

B.3. Details of Baselines

As for the WS-VAE, in the absense of validation ground-
truths, we keep hyper-parameters of models and training as
consistent as possible across all data sets and all tested con-
ditions, only changing layers sizes based on input features
sizes.

WS Generative Models

• Majority Voting: Majority voting has no hyper-
parameters and was used as implemented in the
Wrench framework (Zhang et al., 2021b).

• Snorkel: In all experiments, the Snorkel algorithm
was implemented with parameters lr = 0.01, l2 = 0
and nepochs = 1000. The model is always optimised
for the whole training steps without any validated early
stopping, i.e. no validation with ground-truth labels.

• Flying Squid: In all experiments, the Flying Squid
algorithm was implemented with the same parameters
as Snorkel; lr = 0.01, l2 = 0 and nepochs = 1000.
as for Snorkel, no validtion for early stopping was
implemented.

End Models

• MLP: The MLP end model is trained within the
Wrench framework. A fully connected single layer

neural network takes as input the pre-trained BERT
features and outputs the class label. The model is
trained with the ADAM optimiser for 20, 000 itera-
tions with batch size 128 and initial training rate 0.001.
As for the components of the WS-VAE, the MLP is
composed of a single layer, which is 100-dimensional
for experiments with text data and the Census data set
and is 1000-dimensional with image data. This results
in the MLP end model to be directly comparable to
the WS-VAE encoder used for inference upon testing.
As for the WS-VAE and the GMs, this end model is
trained for the whole iterations, without performing
early stopping through validation.

• BERT: In experiments with text data, we also fine-
tune BERT as an end model, as is common in WS
settings (Zhang et al., 2021b). A pre-trained BERT
model for sequence classification (Devlin et al., 2018)
with 128 max tokens is fine-tuned with the training set
and the labels obtained with the WS generative models.
The model is trained with the ADAMW optimiser in
Wrench for 1, 000 iterations, with batch size 8 and
initial training rate 5× 10−5. Here too, no validation
ground-truth labels are assumed to be available and the
model is fine-tuned for the whole iteration count.

Details of Joint Models

We compare to two WS joint models; Denoise (Ren et al.,
2020) and Weasel (Rühling Cachay et al., 2021). Both
are implemented in the Wrench framework (Zhang et al.,
2021b). For text data sets, both models fine-tune a pre-
trained BERT model as their backbone, while for image
and tabular data sets they have a single layer MLP of 1000
and 100 units respectively. Denoise is implemented with
Snorkel as internal label model and is trained with ADAMW
for 10000 iterations, a batch size of 8, initial training rate
of 5 × 10−5 and hyper-parameters α = 0.6, c1 = 0.2 and
c2 = 0.7 (default in Wrench implementation with YouTube
data-set). Weasel is trained with ADAMW as well, for
4000 iterations, a batch size of 8 and initial training rate of
5× 10−5.

With all baselines, as with the proposed WS-VAE, we as-
sume no ground-truth labels are available, even for valida-
tion. This means that hyper-parameters are fixed across all
tested conditions, and largely also across data-sets, aside of
model differences due to size and nature of data, and are
not tuned or cross-validated with validation ground-truth
in each case. It also means that we cannot evaluate task
performance during training and perform early stopping at
the best performing model, but we train to the last iteration
in every experiment. This choice is to simulate and evaluate
robustness in the fully unsupervised WS case.
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Mean Diff. from Median Diff. from p-value w. Times Better than Times Better
Best Baseline Best Baseline Best Baseline Best Baseline than Any

YouTube +0.109 +0.156 2.0× 10−4 84% 72%
SMS +0.191 +0.194 2.0× 10−8 86% 66%
IMDB +0.144 +0.085 4.5× 10−4 94% 56%
Tennis +0.031 +0.018 3.5× 10−4 74% 58%
Commercial +0.252 +0.065 4.2× 10−7 70% 58%
Census +0.070 +0.067 4.1× 10−7 80% 80%

Table 3. Difference of macro F1-score distribution between WS-VAE and best baseline (chosen using highest mean F1-score). The table
reports (left to right) the difference in the means of F1-score distributions between WS-VAE and best baseline, the difference in F1-scores
distributions medians, the two-sample p-value between the two distribution, for statistical significance, the percentage of experiments in
which WS-VAE resulted in a higher F1-score than the best baseline and the percentage of experiments in which the WS-VAE resulted in a
higher F1-score than any baseline.

B.4. Details of LFs Degradation Experiments

Given a benchmark data set with its original weak labels
from the Wrench framework (Zhang et al., 2021b), the ex-
periments of Figure 4 were obtained by performing the
following steps:

• Alter Accuracy: A ratio η of weak labels to randomly
set to a random value is drawn from a uniform dis-
tribution between 0 and ηmax. The non-abstaining
training weak labels in the set are set to a random value
with probability η. For YouTube, Tennis and Commer-
cial ηmax = 0.5, while for SMS, IMDB and Census
ηmax = 0.25.

• Alter Coverage: A ratio τ of weak labels to randomly
set to abstain is drawn from a uniform distribution
between 0 and τmax. The non-abstaining training weak
labels in the set are set to abstain with probability τ .
For YouTube, Tennis and Commercial τmax = 0.8,
while for SMS, IMDB and Census τmax = 0.4.

• Add Correlated LFs: a full coverage random list of
weak labels is generated for the training set. Then,
an integer Nc is drawn from a uniform distribution
between 0 and 5. The list of random weak labels is
appended Nc times to the matrix of existing training
weak labels Λ.

• Train Models: The resulting weak labels, along with
the corresponding inputs, are used to train all baselines
WS methods and the proposed WS-VAE.

• Test Models: The final labelling models are run over
the test set and macro F1-scores with the test ground-
truth labels are computed.

This procedure is repeated with a different random seed 50
times per data set to obtain the distributions shown in Figure
4.

C. Additional Results
C.1. Number of Labelling Functions Ablation

We perform a similar ablation experiment to those of Figure
3, where we vary the number of available LFs to perform
programmatic WS on the YouTube data set. Experimental
conditions are generated as follows: i) a number NLF of
available LFs is selected, ii) we draw NLF LFs at random
from the available set and iii) we perform WS using all
baselines methods and the WS-VAE with the available weak
labels. We repeat this procedure 5 times with a different
random ssub-set of LFs to obtain error bars and gradually
increase NLF from 3 to 10 (All available LFs). Results are
shown in Figure

Figure 6. Classification accuracy on the YouTube data set test set
at varying number of available LFs. Error bars are obtained by
repeating experiments 5 times, each drawing a new random sub-set
of LFs to be made available.

The WS-VAE is, on average, more accurate when less LFs
are available (3-6) than competing baselines. All methods
perform similarly as more LFs are made available (7- 10),
when the quality and quantity of available weak labels is

14



Robust Weak Supervision with Variational Auto-Encoders

relatively high. This result is in line with the rest of the
ablation studies shown in Figure 3 and further proves the
superior robustness of the WS-VAE to the engineering of
LFs.

C.2. Comparison of Performance Distributions Under
LFs Degradation

We report in table 3 measures of difference between the
distributions of F1-scores computed in the combined degra-
dations experiments and shown as box plots in Figure 4. We
report several numerical metrics of the difference between
the distribution of performance obtained with the WS-VAE
and the best baseline, chosen as the baseline with the highest
mean F1 score.
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