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Abstract

Black box optimisation of an unknown function
from expensive and noisy evaluations is a ubiq-
uitous problem in machine learning, academic
research and industrial production. An abstrac-
tion of the problem can be formulated as a kernel
based bandit problem (also known as Bayesian
optimisation), where a learner aims at optimis-
ing a kernelized function through sequential noisy
observations. The existing work predominantly
assumes feedback is immediately available; an
assumption which fails in many real world situa-
tions, including recommendation systems, clini-
cal trials and hyperparameter tuning. We consider
a kernel bandit problem under stochastically de-
layed feedback, and propose an algorithm with
Õ(
√

Γk(T )T +E[τ ]) regret, where T is the num-
ber of time steps, Γk(T ) is the maximum informa-
tion gain of the kernel with T observations, and
τ is the delay random variable. This represents
a significant improvement over the state of the
art regret bound of Õ(Γk(T )

√
T + E[τ ]Γk(T ))

reported in Verma et al. (2022). In particular, for
very non-smooth kernels, the information gain
grows almost linearly in time, trivializing the ex-
isting results. We also validate our theoretical
results with simulations.

1. Introduction
The kernel bandit problem is a flexible framework which
captures the problem of learning to optimise an unknown
function through successive input queries. Typically, the
game proceeds in rounds where in each round the learner se-
lects an input point to query and then immediately receives
a noisy observation of the function at that point. This ob-
servation can be used immediately to improve the learners
decision of which point to query next. Due to its general-
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ity, the kernel bandit problem has become very popular in
practice. In particular, it enables us to sequentially learn to
optimise a variety of different functions without needing to
know many details about the functional form.

However, in many settings where we may want to use kernel
bandits, we also have to deal with delayed observations.
For example, consider using kernel bandits to sequentially
learn to select the optimal conditions for a chemical exper-
iment. The chemical reactions may not be instantaneous,
but instead take place at some random time in the future. If
we start running a sequence of experiments, we can start
new experiments before receiving the stochastically delayed
feedback from the previous ones. However, in this situation
we have to update the conditions for future experiments
before receiving all the feedback from previous experiments.
Similar situations arise in recommendation systems, clinical
trials and hyperparameter tuning, so it is of practical rele-
vance that we design kernel bandit algorithms that are able
to deal with delayed feedback. Moreover, a big challenge
for existing kernel bandit algorithms is the computational
complexity. Generally speaking, in each round t, algorithms
for kernel bandits require fitting a kernel model to the t
observed data points which can have an O(t3) complexity.
To reduce the complexity, there has been a recent interest
in considering batch versions of kernel bandit algorithms.
These algorithms select τ input values using the same model
then update the model after receiving all observations in the
batch. This corresponds to a delay of at most τ in receiving
each observation, and thus can be thought of as an instance
of delayed feedback in kernel bandits.

In this paper, we study the kernel bandit problem with
stochastically delayed feedback. We propose Batch Pure Ex-
ploration with Delays (BPE-Delay) —an adaptation of the
Batch Pure Exploration algorithm (Li and Scarlett, 2022)
to the delayed feedback setting—, and show that, under
mild assumptions on the unknown delay distribution, BPE-
Delay achieves near optimal regret. Indeed, we prove that
BPE-Delay enjoys regret scaling as Õ(

√
Γk(T )T +E[τ ]),1

where T is the number of time steps, Γk(T ) is the maximum
information gain of the kernel k with T observations (see
Section 2), and τ is the delay random variable. This result

1We use the notation O and Õ to denote order and order up to
logarithmic factors, respectively.
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essentially shows that the impact of delayed feedback on
the regret of this algorithm is independent of the horizon T
and the problem parameter Γk(T ). This desirable property
means that as T or Γk(T ) increase, the impact of the delay
remains the same.

We note that for linear models, Γk(T ) = O(d log(T )),
where d is the input dimension. In the case of very
smooth kernels such as Squared Exponential (SE), Γk(T ) =
poly log(T ). However Γk(T ) can become arbitrary close to
linear in T for less smooth kernels. For example, in the case
of a Matérn kernel with smoothness parameter ν, we have
Γk(T ) = Õ(T

d
2ν+d ) (Vakili et al., 2021c). Therefore, our

results represent a significant theoretical improvement over
the existing work on kernel bandits with delayed feedback,
where an Õ(Γk(T )

√
T + E[τ ]Γk(T )) regret bound was

shown for an algorithm based on upper confidence bound
(UCB) acquisition of observation points (Verma et al., 2022).
In particular, for non-smooth kernels, our result reduces the
delay penalty from possibly near Õ(E[τ ]T ) to just Õ(E[τ ]).
We demonstrate in Section 7 that these theoretical improve-
ments are also visible experimentally. In addition, when
applied to the special case of linear bandits (a kernel bandit
problem with linear kernel), our results improve the depen-
dency of the delay related term in the regret bound on the
input dimension by a d3/2 factor compared to the state of
the art in Howson et al. (2022). A detailed comparison with
related work is provided in Section 2.

2. Background and Related Work
In this section, we give an overview of the background
on kernel bandits with immediate feedback and delayed
feedback in simpler stochastic bandit formulations (namely
in K-armed and linear bandits). We then provide a detailed
comparison with the most related work on kernel bandits
with delayed feedback.

Kernel bandits with immediate feedback. In the typi-
cal kernel bandit setting with immediate feedback, classic
algorithms such as selecting the query points based on up-
per confidence bounds (GP-UCB) (Srinivas et al., 2010)
and Thompson Sampling (Chowdhury and Gopalan, 2017)
achieve a regret bound of Õ(Γk(T )

√
T ). This regret bound

is suboptimal (see, Vakili et al., 2021e, for details), and can
be improved to Õ(

√
Γk(T )T ) using more recent work. In

particular, Batch Pure Exploration (BPE) introduced in Li
and Scarlett (2022) and Threshold Domain Shrinking (GP-
ThreDS) proposed in Salgia et al. (2021) achieve this im-
proved regret bound. Here, Γk(T ) is a kernel specific com-
plexity term, which can be interpreted as the information
gain or the effective dimension.

Information gain and effective dimension. While the
feature space representation of common kernels is infinite di-
mensional, with a finite data set, only a finite number of fea-
tures have a significant effect on the kernel based regression.
That leads to the definition of the effective dimension. In par-
ticular, consider a finite set XT = {X1, . . . , XT } of obser-
vation points and a positive definite kernel k : X ×X → R.
Let KXT

= [k(Xt, Xt′)]
T
t,t′=1 be the kernel matrix result-

ing from the pairwise kernel values between the observation
points. The effective dimension for a given kernel and ob-
servation set is often defined as (Zhang, 2005; Valko et al.,
2013)

d̃k(T ) = tr
(
KXT

(KXT
+ λ2IT )

−1
)
, (1)

where λ > 0 is a free parameter and IT denotes an identity
matrix of dimension T .

It is also useful to define a related notion of information
gain. For this, assume f is a centered Gaussian Process
(GP) on the domain X with kernel k. Information gain
then refers to the mutual information I(yT ; f) between the
data values yT = [yt = f(Xt) + ϵt]

T
t=1 and f (assum-

ing the surrogate GP distribution and a zero mean Gaus-
sian noise ϵt with variance λ2). From the closed form
expression of mutual information between two multivari-
ate Gaussian distributions (Cover, 1999), it follows that
I(yT ; f) =

1
2 log det

(
IT + 1

λ2KXT

)
. We then define the

data-independent and kernel-specific maximum information
gain as follows (Srinivas et al., 2010):

Γk(T ) = sup
XT⊂X

I(yT ; f). (2)

It is known that the information gain and the effective di-
mension are the same up to logarithmic factors. Specif-
ically, we have d̃k(T ) ≤ I(yT ; f), and I(yT ; f) =
O(d̃k(T ) log(T )) (Calandriello et al., 2019). For specific
kernels, explicit bounds on Γk(T ) are derived in Srinivas
et al. (2010); Vakili et al. (2021b;c). We report our regret
bounds in terms of information gain that can be easily re-
placed by the effective dimension, up to logarithmic factors.

Regret lower bounds. For commonly used SE and
Matérn kernels, Scarlett et al. (2017) derived lower bounds
on regret (in the immediate feedback setting). In particu-
lar, they showed Ω(

√
T (log(T ))d/2) and Ω(T

ν+d
2ν+d ) lower

bounds on regret, in the case of SE and Matérn kernels, re-
spectively. These bounds are matched by the regret bounds
for GP-ThreDS (Salgia et al., 2021) and BPE (Li and Scar-
lett, 2022), up to logarithmic factors.

Delayed feedback in stochastic bandits. Delayed feed-
back has been studied significantly in the stochastic bandit
problem where there are K independent arms. Joulani et al.
(2013) provided a queue based wrapper algorithm which,
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when applied with any bandit algorithm, leads to an additive
penalty of E[τ ] in the regret compared to the non-delayed
setting. They also showed that using a UCB algorithm (Auer
et al., 2002) just with the observed data would lead to a sim-
ilar regret bound of Õ(

√
KT + E[τ ]). Mandel et al. (2015)

also provided a queue based algorithm with the same regret
bound. Vernade et al. (2017) developed a UCB algorithm
to deal with delayed feedback where some observations are
censored if their delay exceeds a threshold. We note that
we cannot directly extend these queue based approaches to
the kernel bandit problem where we have a large number of
dependent arms. However we show that the same additive
penalty can be maintained even in our more difficult setting.
Additionally, while it is possible to extend the UCB based
algorithms to our setting, in Section 7, we show that our
proposed algorithm performs better empirically than using
a delayed version of GP-UCB.

There has also been work studying the impact of delayed
feedback in generalised linear bandits. Zhou et al. (2019)
and Howson et al. (2022) provided adaptations of optimistic
(UCB) algorithms to account for delayed feedback with
sub-exponential delays. Zhou et al. (2019) obtained a re-
gret bound scaling with Õ(d

√
T +

√
dTE[τ ]), while How-

son et al. (2022) obtained an improved regret bound of
Õ(d
√
T + d

3
2E[τ ]), although here the delay penalty still de-

pends on the dimension which is not the case for the delayed
stochastic K-armed bandit problem. When applied to this
setting, we show that our proposed algorithm removes this
interaction between the dimension and the delay. Specifi-
cally, our results improve the delay related term in the regret
bound with a d

3
2 factor in the special case of linear bandits

(a kernel bandit problem with linear kernel). We also note
that Vernade et al. (2020) extended their work on delayed
feedback with censoring to the contextual linear bandit set-
ting, and Dudik et al. (2011) studied constant delays in the
the contextual bandit setting, although these settings are not
directly comparable to ours.

Delayed feedback in kernel bandits. The most relevant
work to ours is Verma et al. (2022) where the kernel ban-
dit problem with stochastically delayed feedback was also
considered. Verma et al. (2022) proposed algorithms based
on GP-UCB (Srinivas et al., 2010) and Thompson sam-
pling (Chowdhury and Gopalan, 2017) in the delayed feed-
back setting. In these algorithms, referred to as GP-UCB-
SDF and GP-TS-SDF (where SDF stands for Stochastic
Delayed Feedback), the unavailable feedback due to delay
are replaced by minimum function value (assuming it is
known). They provided a regret bound for this algorithm
of Õ(Γk(T )

√
T + E[τ ]Γk(T )). This is an improvement

over a naive application of the existing algorithms (which
would lead to a regret bound of O(Γk(T )

√
TE[τ ])), but

still suffers from a scaling of the term involving the delay

by Γk(T ). In comparison, our algorithm does not require
the additional knowledge of the minimum function value
(we simply disregard the unavailable observations). Further-
more, our results significantly improve upon Verma et al.
(2022), by completely decoupling the impact of the delay
and the problem parameters. Our regret bounds are also
order optimal and cannot be further improved for the cases
where a lower bound on regret is known, in particular, the
bounds given in Scarlett et al. (2017) for the SE and Matérn
kernels (under the immediate feedback setting).

Kernel bandits with batch observations can be considered
as a special case of our delayed feedback framework, with
constant (non-stochastic) delays. Specifically, the observa-
tions for the points in a batch are available with a fixed delay
that is at most the length of the batch. Notable examples
are Desautels et al. (2014); Vakili et al. (2021d); Daxberger
and Low (2017); Chowdhury and Gopalan (2019) which
are based on the hallucination technique introduced in De-
sautels et al. (2014). In this technique, the unavailable
observations are hallucinated to be the kernel based predic-
tion using only the available feedback. This is equivalent
to keeping the prediction unaffected by the unavailable ob-
servations, while updating the uncertainty estimate using all
selected observation points, including the ones with delayed
observations (Chowdhury and Gopalan, 2019). In contrast,
Verma et al. (2022) set the unavailable observations to the
minimum function value (assuming it is known). In our
algorithm, we simply disregard the unavailable observations
in the prediction, while using both variations of uncertainty
estimate (one updated using all observation points, and one
updated using only the observation points with available
feedback). Details are given in Section 5. Our regret bounds
also offer a significant improvement over the batch setting,
despite this being a significantly simpler setting due to the
fixed and known delays. In particular, in the batch setting,
the best known regret bounds by Chowdhury and Gopalan
(2019) are Õ(Γk(T )

√
T + τ

√
TΓk(T )), where with an

abuse of notation to enable comparison with our results, we
use τ for the batch size. Theorem 6.1 improves upon both
terms in this regret bound.

3. Problem Definition
Consider a positive definite kernel k : X × X → R sup-
ported on a compact d-dimensional set X ⊂ Rd . A Hilbert
spaceHk of functions on X equipped with an inner product
⟨·, ·⟩Hk

is called a reproducing kernel Hilbert space (RKHS)
with reproducing kernel k if the following is satisfied. For
all x ∈ X , k(·, x) ∈ Hk, and for all x ∈ X and f ∈ Hk,
⟨f, k(·, x)⟩Hk

= f(x) (reproducing property).

We consider a kernel bandit problem. We assume there ex-
ists an unknown objective function f : X → R of interest
in the RKHS of a known kernel k. This is a very gen-
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eral assumption, since the RKHS of common kernels can
approximate almost all continuous functions on compact
subsets of the Euclidean space (Srinivas et al., 2010). Our
aim is to find an input x∗ which maximises the unknown
function f , i.e. x∗ ∈ argmaxx∈X f(x). In order to do
this, we can sequentially query f at a chosen sequence of
observation points Xt ∈ X , t = 1, 2, . . . , and receive the
noisy feedback yt = f(Xt) + ϵt where ϵt is a sequence
of independently distributed sub-Gaussian noise with zero
mean.

We measure the performance of any procedure for this prob-
lem in terms of its regret. The regret is defined as

R(T ) =
T∑

t=1

f(x∗)− f(Xt) (3)

and represents the cumulative amount that we loose by
querying f at X1, . . . , XT rather than at an unknown max-
ima x∗ ∈ argmaxx∈X f(x).

In order to make the problem tractable, we make the follow-
ing assumptions which are common in the literature.

Assumption 3.1. The RKHS norm of the objective function
f is bounded, i.e., ∥f∥Hk

≤ Ck, for some Ck > 0, where
the notation ∥ · ∥2Hk

= ⟨·, ·⟩Hk
is used for the RKHS norm.

Assumption 3.2. The observation noise terms ϵt are inde-
pendent σ-sub-Gaussian random variables with zero mean.
That is, for all t ∈ N, for all η ∈ R, and for some
σ > 0, the moment generating function of ϵt satisfies
E[exp(ηϵt)] ≤ exp(η

2σ2

2 ).

Delayed feedback. In this work, we are interested in the
kernel bandit problem in a setting with stochastically de-
layed feedback. In this setting, at each time t, as well as
generating the observation yt, the environment also inde-
pendently generates a stochastic delay τt ≥ 0. The learner
receives the feedback for the decision made at time t at the
observation time t+τt. We assume that τ1, . . . , τT represent
a sequence of independent and identically distributed sub-
exponential random variables. For simplicity, we assume
that the τt random variables are discrete, although it is easy
to extend our results to continuous delays by considering
the events that τt + t ≤ s for all s ≥ t. Our assumption on
the delay distribution is formally stated below, and is the
same as that commonly made in the literature (Zhou et al.,
2019; Howson et al., 2022).

Assumption 3.3. The delays τt are i.i.d. sub-exponential
random variables. That is, for all t ∈ N, for some ξ, b >
0, for all |η| ≤ 1

b , the moment generating function of τt
satisfies E [exp (η(τt − E[τt]))] ≤ exp(η

2ξ2

2 ).

4. Confidence Bounds
Kernel based regression provides powerful predictors and
uncertainty estimates. Those could be used to form confi-
dence intervals for the unknown objective function f , that
are a crucial building block in developing algorithms for
the kernel based bandit problem. Consider a set of obser-
vation points Xt = {X1, . . . , Xt}, and the corresponding
vector of observation values yt = [y1, . . . , yt]

⊤. Recall
KXt = [k(Xs, Xs′)]

t
s,s′=1 the positive definite kernel ma-

trix resulting from the pairwise kernel values between the
observation points. We have the following predictor and
uncertainty estimate for f , which can be interpreted as the
mean and variance of a surrogate GP model for f with
kernel k, respectively (e.g., see, Rasmussen and Williams,
2006; Kanagawa et al., 2018)

µXt,yt(x) = k⊤
Xt

(x)(KXt + λ2It)
−1yt

σ2
Xt

(x) = k(x, x)

− k⊤
Xt

(x)(KXt
+ λ2It)

−1kXt
(x), (4)

where kXt
(x) = [k(x1, x), . . . , k(xt, x)]

⊤ is the kernel
values vector between observation points and the point of
interest and λ > 0 is a free parameter.

Equipped with the above predictor and uncertainty estimate,
we have the following confidence bounds.

Lemma 4.1. [(Vakili et al., 2021a)] Consider the predictor
and uncertainty estimate given in (4). Assume the obser-
vation set Xt is selected independent of the observation
noise ϵs, s = 1, . . . , t. Under Assumptions 3.1 and 3.2, the
following inequalities each hold with probability 1− δ for
any fixed x ∈ X ,

f(x) ≤ µXt,yt(x) + β(δ)σXt(x),

f(x) ≥ µXt,yt(x)− β(δ)σXt(x),

where β(δ) = Ck + σ
λ

√
2 log(1δ ), Ck and σ are the pa-

rameters given in Assumptions 3.1 and 3.2, and λ is the
parameter in (4).

If the domain X is finite, then uniform confidence bounds
readily follow from this result via a union bound, and δ

|X |
can be substituted for δ. For continuous domains, a technical
discretization argument can be used to extend Lemma 4.1 to
a uniform bound under the following continuity assumption.

Assumption 4.2. For each t ∈ N, there exists a discretiza-
tion X of X such that, for any f ∈ Hk with ∥f∥Hk

≤ Ck,
we have f(x)−f([x]) ≤ 1

t , where [x] = argminx′∈X||x′−
x||l2 is the closest point in X to x, and |X| ≤ cCd

k t
d, where

c is a constant independent of t and Ck.

Assumption 4.2 is a mild and technical assumption that
holds for typical kernels such as SE and Matérn with ν >
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1 (Srinivas et al., 2010; Chowdhury and Gopalan, 2017;
Vakili et al., 2021a).
Lemma 4.3 (A special case of Corollary 3.7 in Vakili et al.
(2022)). Under the setting and assumptions of Lemma 4.1,
under Assumption 4.2, the following inequalities each hold
uniformly in x ∈ X with probability at least 1− δ,

f(x) ≤ µXt,yt
(x) +

2

t
+ β′

δ(t)(σXt
(x) +

2√
t
),

f(x) ≥ µXt,yt(x)−
2

t
− β′

δ(t)(σXt(x) +
2√
t
),

where β′
δ(t) = β( δ

2Γt
), Γt = c(C̃k(

δ
2 ))

dtd, C̃k(δ) = Ck +

max{σ,kmax}
√
t

λ

√
2 log( 2tδ ), kmax = maxx∈X k(x, x).

Lemma 4.3 uses a high probability bound C̃k(δ) on the
RKHS norm of µXt,yt (that is a random variable due to
the random noise), together with applying the continuity
assumptions to µXt,yt

and σXt
to construct the confidence

bounds. Effectively, the multiplier of the width of the confi-
dence intervals, β′

δ(t), scales as

β′
δ(t) = O

(
Ck +

σ

λ

√
d log(

tCk

δ
)

)
. (5)

In the kernel bandit with delayed feedback setting, some
observations may not be available due to delayed feedback.
Let X̃t = {Xs ∈ Xt : s+ τs ≤ t} be the set of observation
points for which the feedback has arrived by time t, and note
that this is a random set of observations due to the stochastic
delays. Simplifying the notation, we use µt, σt for the pre-
dictor and uncertainty estimate using Xt,yt, and µ̃t, σ̃t for
the predictor and uncertainty estimate using X̃t, ỹt, where
ỹt = [f(Xs) + ϵs]

⊤
Xs∈X̃t

is the vector of available obser-
vations. We note that in the delayed feedback setting, we
can compute σt in addition to µ̃t, σ̃t since this only depends
on the chosen inputs, not the observations. On the other
hand, µt cannot be computed since it depends on some of
the missing feedback. All three available statistics µ̃t, σ̃t, σt
are used in designing our algorithm, BPE-Delay.

5. Batch Pure Exploration with Delays
In this section, we describe our proposed algorithm: Batch
Pure Exploration with Delays (BPE-Delay). The algorithm
proceeds in rounds r = 1, 2, . . . , R, where R is the total
number of rounds. Each round consists of tr time steps
so that

∑R
r=1 tr = T . During each round, the observation

points are selected based on a maximum uncertainty acqui-
sition function (defined in (7)). At the end of each round,
confidence intervals are used to remove the points which
are unlikely to be the maximiser of f .

The length tr of round r is increasing in r and is chosen care-
fully to balance the exploration needed in each round, taking

into account the stochastically delayed feedback, and the
number of rounds. In particular we set tr = ⌈qr + uT (δ)⌉
where uT (δ) is a 1 − δ upper bound on the delay random
variable, and qr =

√
qr−1T is determined recursively, for

r ≥ 1, initialized at q0 = 1. The delay related quantity is
set to uT (δ) = E[τ ] + ψT (

δ
2 ) with

ψt(δ) = min

{√
2ξ2 log(

3t

2δ
), 2b log(

3t

2δ
)

}
, (6)

where ξ and b are the parameters specified in Assump-
tion 3.3. In the analysis in Section 6, we will see that uT (δ)
is a 1− δ

2 upper confidence bound on the delay random vari-
able. It turns out that this choice of tr depending on uT (δ)
is crucial in enabling us to improve the delay dependence of
our algorithm. If we know there is no delay in the observa-
tions, we can set uT (δ) to zero. The length of the last round
can also be easily adjusted to ensure

∑R
t=1 tr = T .

BPE-Delay maintains a set Xr of potential maximisers of f .
This set is recursively pruned from Xr−1 using confidence
intervals around each x ∈ Xr−1 to remove those that are
sub-optimal with high probability. We start with the full
input space, X0 = X . During each round r, the k-th obser-
vation point Xk,r is selected from Xr based on a maximum
uncertainty acquisition:

Xk,r ← arg max
x∈Xr

σk−1,r(x), (7)

where σk,r(·) denotes the uncertainty estimate in (4) cal-
culated using the points Xk,r = {X1,r, X2,r, . . . , Xk,r}.
BPE-Delay uses only the inputs chosen in round r so far, to
calculate the acquisition function and choose the remainder
of the points in round r based on the uncertainty estimates.
While using entire past observations may be effective, es-
tablishing corresponding regret bounds becomes difficult.
The reason is that creating such dependency among obser-
vation points invalidates tight confidence intervals given in
Lemma 4.1. Nonetheless, Li and Scarlett (2022) showed in
experiments that discarding the data collected in previous
rounds, although may seem wasteful, does not significantly
harm the performance. From the definition of the uncer-
tainty estimate given in (4), we can see that it does not de-
pend on the observation values. Thus, σ2

k,r(·) is well defined,
despite not all observation values being available due to de-
lay. We use double index r = 1, 2, . . . , k = 1, 2, . . . , tr
for clarity of presentation. The observation points however
can be indexed using t = 1, 2, . . . by concatenating the
observation points in all rounds (see Algorithm 1).

To contrast the statistics derived from the entire set of ob-
servations in round r —ignoring the delay—, and the ones
using available observations —considering the delay—, we
recall the notations µ̃k,r and σ̃k,r for the statistics using
just the available observations. Specifically, µ̃k,r and σ̃k,r
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Algorithm 1 Batch Pure Exploration with Delays (BPE-
Delay)

Input: Action set X , number of steps T ;
Initialize: X1 ← X , q0 = 1, t = 1 ;
# Algorithm proceeds in rounds
r = 1, 2, . . ..
for r = 1, 2, . . . , until t ≤ T do
qr = ⌈

√
Tqr−1⌉ # qr is used to

determine tr
tr = ⌈qr + uT (δ)⌉ # tr is the length of
round r
for k = 1, . . . , tr do
# the points in each round are
chosen by a maximum uncertainty
acquisition function
Xk,r ← argmaxx∈Xr σk−1,r(x)
Xt ← Xk,r

t = t+ 1
end for
# Remove the input points which are
unlikely to be the maximiser of f,
using confidence intervals
Xr+1 ← {x ∈ Xr : Ur,δ(x) ≥ Lr,δ(z),∀z ∈ Xr}

end for

are the prediction and uncertainty estimate after selecting k
observation points in round r using the set X̃k,r = {Xs,r ∈
Xk,r : s+τs,r ≤ k} of points selected in round r, with avail-
able observations ỹk,r = [y = f(Xs,r) + ϵs,r]Xs,r∈X̃k,r

in
round r.

At the end of each round r, using the available observations
in round r, we create upper and lower confidence bounds
on f(·), Ur(·) and Lr(·) respectively. These are used to
remove points which are unlikely to be a maximiser of f .
In particular, if there exists a point z ∈ Xr for which the
lower confidence bound is larger than the upper confidence
bound for x ∈ Xr, then x is unlikely to be the maximiser of
f so we can remove it. The confidence interval widths are
selected in a way that all the confidence intervals used in the
algorithm hold true with high probability (see Theorems 6.1
and 6.2 for details).

We emphasize that while we use σk,r for selecting the obser-
vation points within each round, µ̃k,r and σ̃k,r are used for
forming the confidence intervals at the end of each round.
Using σk,r avoids selecting repetitive points due to unavail-
able feedback, while the valid confidence intervals can only
be formed using µ̃k,r and σ̃k,r.

The complete pseudo-code for the BPE-Delay algorithm is
given in Algorithm 1.

6. Analysis
In this section, we provide the analysis of the BPE-
Delay algorithm. Specifically, we prove a high probability
Õ(
√
TΓk(T )+E[τ ]) bound on its regret. This regret bound

completely decouples the effect of the delay from the domi-
nant time dependent regret term. We note that the additional
regret due to delay in our result is significantly smaller than
the existing work and matches what is seen in the simpler
K-armed bandit problem (Joulani et al., 2013).

We consider two cases of finite and continuous X sepa-
rately, due to minor differences in the confidence intervals
which lead to mild differences in the regret bounds. In
particular, when X is finite, the regret bound scales with
O(
√
log(|X |)). In the case of a continuous and compact

X ⊂ Rd, under Assumption 4.2, we prove a similar re-
gret bound which scales with an O(

√
d) factor instead of

O(
√
log(|X |)). While in the kernel bandit setting,

√
d is

typically hidden in theO notation as a constant not growing
with T , in the linear bandit setting, the dependency on d
should be pronounced and is important in evaluating the
algorithms.
Theorem 6.1. Consider the kernel based bandit problem
with delayed feedback described in Section 3. When X is fi-
nite, set the confidence intervals in BPE-Delay (Algorithm 1)
to

Ur,δ(x) = µ̃tr,r(x) + β̃(δ)σ̃tr,r(x),

Lr,δ(x) = µ̃tr,r(x)− β̃(δ)σ̃tr,r(x), (8)

with β̃(δ) = Ck + σ
λ

√
2 log(4R|X |

δ ). Under Assump-
tions 3.1, 3.2, 3.3, with probability at least 1− δ, the regret
of BPE-Delay is bounded by

R(T ) = O
(
β̃(δ) log log(T )

√
TΓk(T ) + E[τ ]

)
. (9)

Note that with a finite X , β̃(δ) = O(1), not depending on
problem parameters such as d and T . In the next theorem,
we bound the regret when X is not finite, but a compact
subset of Rd.
Theorem 6.2. Consider the kernel based bandit problem
with delayed feedback described in Section 3, under As-
sumptions 3.1, 3.2, 3.3 and 4.2. Set the confidence intervals
in BPE-Delay (Algorithm 1) to

Ur,δ(x) = µ̃tr,r(x) +
2

ur
+ β̃′

r(δ)(σ̃tr,r(x) +
2
√
ur

),

Ur,δ(x) = µ̃tr,r(x)+
2

ur
+ β̃′

r(δ)(σ̃tr,r(x)+
2
√
ur

), (10)

with β̃′
r(δ) = β′

ur
( δ
4R ) and β′

t given in Lemma 4.3. Then,
with probability at least 1− δ, the regret of BPE-Delay is
bounded by,

R(T ) = O
(
β̃′
R(δ) log log(T )

√
TΓk(T ) + E[τ ]

)
. (11)
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From Lemma 4.3, we can see that β̃′
R(δ) = O(Ck +

σ
λ

√
d log(TRCk

δ )). Thus the regret bound scales with

O(
√
d) that becomes particularly important when applied

to linear bandits.

Proof Sketch. By the choice of size tr of each round, the
number R of rounds is bounded as R = O(log log(T )). We
first show that the uncertainty estimate using tr observations
σ̃tr,r sufficiently shrinks. Using the confidence intervals,
we prove that i) the maximiser x∗ is not removed during any
round; i.e. x∗ ∈ Xr, for all r, and ii) the instantaneous regret
incurred by selecting each point Xk,r ∈ Xr is bounded.
The bound on f(x∗)− f(Xk,r) is based on the amount of
exploration in previous round, taking into account the delay.
Using the bound on instantaneous regret and the size tr of
round r we bound the regret in round r. A detailed proof is
provided in the appendix.

Theorem 6.1 can be specialized for many commonly used
kernels including Matérn and SE, as well as for the special
case of linear kernels.

Corollary 6.3. Under the setting of Theorem 6.2, the fol-
lowing hold with probability at least 1− δ,

• In the case of Matérn kernel with smoothness parame-
ter ν,

R(T ) = Õ
(
T

ν+d
2ν+d + E[τ ]

)
. (12)

• In the case of SE kernel,

R(T ) = O
(√

T (log(T ))d+1 log log(T ) + E[τ ]
)
. (13)

• In the case of linear kernel,

R(T ) = O
(
d
√
T log(T ) log log(T ) + E[τ ]

)
. (14)

Comparing to the lower bound in the case of linear ban-
dit (Lattimore and Szepesvári, 2020), and the lower bounds
for kernel bandit in the case of SE and Matérn kernels (Scar-
lett et al., 2017), the regret bounds shown in Corollary 6.3
are order optimal, up to logarithmic factors and the additive
delay penalty which is independent of all other problem
parameters. We thus reduced the delay related term in the
regret bounds to only E[τ ] without affecting the dominant
term in the regret bound. For comparison, in the (gener-
alized) linear setting the best known bound on the delay
related regret was O(d 3

2E[τ ]) (Howson et al., 2022); that is
improved with a d

3
2 factor in our results. In the kernel ban-

dit setting, we also improved the O(ΓTE[τ ]) delay related
regret (Verma et al., 2022) to only O(E[τ ]). This represents
a significant improvement considering that ΓT can become

(a) f1 (b) f2

Figure 1. Objective functions used in our experiments.

arbitrarily close to linear in T , in the case of a Matérn ker-
nel with a small ν and large d. This is in addition to the
improvement in the first term in regret from Õ(ΓT

√
T ) to

Õ(
√
ΓTT ).

7. Experiments
Following our theoretical analysis, we provide numerical
experiments on the performance of BPE-Delay and compare
it to the GP-UCB-SDF (Verma et al., 2022). We test the
algorithms on the objective functions f1 and f2 shown in
Figure 1. These functions are generated by fitting a kernel
based model to points randomly generated from a multivari-
ate Gaussian. This is a common technique to create RKHS
elements (e.g., see Chowdhury and Gopalan, 2017; Vakili
et al., 2021a; Li and Scarlett, 2022). We use a SE kernel
with a length scale parameter l = 0.8 for f1 and l = 1.0 for
f2 in order to generate these objective functions. The learner
can then choose from |X | = 2500 points over a uniform
50 × 50 grid. The sampling noise is zero mean Gaussian
with standard deviation σ = 0.02. The stochastic delay in
the feedback is generated from a Poisson distribution with
parameter λ. The calculation of ψt for BPE-Delay uses
ξ = 9 and b = 1 given in Assumption 4.2. The cumulative
regret curves are the average of 10 independent experiments.
The error bars indicate half a standard deviation. The code
for these experiments is provided in a GitHub repository.2

In Figure 2, we compare the regret performance of BPE-
Delay with GP-UCB-SDF introduced in the most related
work in the same setting as ours (Verma et al., 2022). The
figure shows a significant improvement in the regret perfor-
mance using BPE-Delay in both cases. In this experiment,
the delays are Poisson distributed with λ = 50.

In Figures 3 and 4, we show the effect of delay for these
two algorithms. Specifically, we vary the Poisson delay
parameter as λ = 0, 25 and 50, while maintaining the rest
of parameters as the previous experiment. BPE-Delay shows
a linear excess in the regret with the expected delay. GP-
UCB-SDF on the other hand shows dramatic jump in regret

2https://github.com/svakili89/delayed kernel bandit
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(a) f1

(b) f2

Figure 2. Comparing regret performance of BPE-Delay and GP-
UCB-SDF.

(a) f1

(b) f2

Figure 3. Regret performance of BPE-Delay for varying delay Pois-
son parameters.

even with moderate delay values. We also compare the
performance of the BPE-Delay and BPE (Li and Scarlett,
2022) which was designed for non-delayed settings. As we
can see from Figure 5, BPE-Delay naturally performs better
than BPE in a delayed setting.

8. Conclusion
There has been a great attention paid to kernel bandits due
to their numerous applications in machine learning, and
academic and industrial experimental design. In many real
world scenarios, e.g., recommender systems, the feedback
from the decisions are not immediately available, naturally
leading to the formulation of kernel bandits with stochas-

(a) f1

(b) f2

Figure 4. Regret performance of GP-UCB-SDF for varying delay
Poisson parameters.

(a) f1

(b) f2

Figure 5. Comparing the regret performance of BPE and BPE-
Delay in the delayed feedback setting.

tically delayed feedback. For this setting, we proposed
BPE-Delay which is able to efficiently deal with the delayed
feedback. We showed an order optimal regret bound for
BPE-Delay with a very small excess in regret due to the
delayed feedback, significantly improving upon the existing
work in the same setting. We also show that these theoretical
improvements are maintained in several simulation studies.
In addition, when applied to the special case of linear ker-
nels, our theoretical regret bounds improve the delay related
penalty by a factor of d

3
2 compared to the state of the art. In

all cases, our results are the first to show that the additive
delay penalty only depends on E[τ ]. This extends what is
known for the simpler K-armed bandit setting to the much
more realistic kernel bandit setting.
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A. Proofs
In this section, we provide detailed proofs for Theorems 6.1, 6.2 and Corollary 6.3. We structure the proof of theorems as
follows. We first overview the kernel based confidence intervals, the bounds on the delay and the number of rounds. After
formalizing these bounds, we proceed with the proof in three steps. In the first step, we bound the maximum uncertainty at
any point x ∈ Xr+1 at the end of each round r. In the second step, we bound the instantaneous regret for selecting a point in
each round. In the third step, we bound the total regret. At the end of the proof, we discuss Corollary 6.3.

Confidence Intervals. Recall the confidence intervals used in the BPE-Delay algorithm to update the set Xr of potential
maximisers in round r. Using Lemmas 4.1 and 4.3 and a probability union bound over rounds, all confidence intervals used
in the algorithm are valid with probability at least 1− δ

2 . Specifically, let us define the event

E = {Lr,δ(x) ≤ f(x) ≤ Ur,δ(x),∀r = 1, 2, . . . , R,∀x ∈ Xr}. (15)

Then, we have Pr[E ] ≥ 1− δ
2 .

Delay. Recall the definition of ψt(δ) given in (6). We have the following concentration for sub-exponential random
variables.
Lemma A.1 ((Howson et al., 2022)). Let τt − E[τt], t = 1, 2, . . . , be i.i.d. sub-exponential random variables with
parameters ξ and b as specified in Assumption 3.3. Then,

Pr [∀t ≥ 1, τt ≤ E[τ ] + ψt(δ)] ≥ 1− δ. (16)

Let τk,r denote the random delay for the k-th observation in round r of BPE-Delay. Let us define the event

E ′ = {∀r, ∀k ≤ qr : τk,r ≤ uT (δ)}. (17)

Using Lemma A.1 and definition of uT , we have Pr[E ′] ≥ 1− δ
2 .

We thus have the probability that both E and E ′ hold true Pr[E ∩ E ′] ≥ 1− δ.

We condition the rest of the proof on E ∩ E ′.

The number of rounds. The number R of rounds in BPE-Delay is bounded in the following lemma.
Lemma A.2. Recall the choice of round lengths tr in BPE-Delay. We have R = O(log log(T )).

The proof follows from similar steps as in the proof of Proposition 1 in (Li and Scarlett, 2022).

We now proceed to the main steps in the proof of theorems.

Step 1 (Maximum uncertainty at the end of each round). In each round r, the sum of uncertainties using all observations
(including the ones with delayed feedback) at the end of qr observations can be bounded using Γk(qr).
Lemma A.3. [(Srinivas et al., 2010)] Recall definition of Γk(t) given in (2), for a set of t observation Xt, we have

t∑
s=1

σ2
Xs−1

(Xs) ≤ c1Γk(t), (18)

where c1 = 2
log(1+ 1

λ2 )
.

Thus, considering the observation points in round r, we have
qr∑
k=1

σ2
k−1,r(Xk,r) ≤ c1Γk(qr), (19)

where c1 is the constant given in Lemma A.3. By the selection rule of observation points based on maximum uncertainty
acquisition (7), we have, for all x ∈ Xr, 1 ≤ k ≤ qr

σk−1,r(x) ≤ σk−1,r(Xk,r). (20)
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In addition, by positive definiteness of the kernel matrix, conditioning on a bigger set of observations reduces the uncertainty
(see (4)). Thus,

σqr,r(x) ≤ σk−1,r(Xk,r). (21)

Combining the last inequality with (19), we obtain

qr∑
k=1

σ2
qr,r(x) ≤ c1Γk(qr), (22)

that implies

σ2
qr,r(x) ≤

c1Γk(qr)

qr
. (23)

Recall the event E ′ given in (17). Under E ′, σ̃2
tr,r is conditioned on a larger set of observations compared to σ2

qr,r. The
positive definiteness of the kernel matrix implies that conditioning on a larger set of observations reduces the uncertainty.
Thus, we have σ̃2

tr,r(x) ≤ σ
2
qr,r(x),∀x ∈ Xr. As a result,

σ̃2
tr,r(x) ≤

c1Γk(qr)

qr
, ∀x ∈ Xr. (24)

Step 2 (Instantaneous regret). We can use the confidence intervals for RKHS elements given in Lemmas 4.1 and 4.3 to
bound the instantaneous regret as follows. Recall the event E defined in (15).

We first note that for all x ∈ Xr,

Ur,δ(x
∗) ≥ f(x∗)

≥ f(x)

≥ Lr,δ(x).

Thus, Ur,δ(x
∗) ≥ maxx∈Xr

Lr,δ(x) for all r, and x∗ will not be eliminated during any round of BPE-Delay. Therefore
x∗ ∈ Xr, for all r.

We now proceed to bounding the instantaneous regret under two different settings of finite X and continuous X , separately.
The two cases correspond to Theorems 6.1 and 6.2, respectively.

When X is finite (The setting of Theorem 6.1):

For all x ∈ Xr+1,

f(x∗)− f(x) ≤ Ur,δ(x
∗)− Lr,δ(x)

= µ̃tr,r(x
∗) + β̃(δ)σ̃tr,r(x

∗)− µ̃tr,r(x)− β̃(δ)σ̃tr,r(x∗)
= Lr,δ(x

∗)− Ur,δ(x) + 2β̃(δ)σ̃tr,r(x
∗) + 2β̃(δ)σ̃tr,r(x)

≤ 2β̃(δ)σ̃tr,r(x
∗) + 2β̃(δ)σ̃tr,r(x). (25)

The first and second equality follow from the choice of the confidence intervals in Theorem 6.1. The last line follows from
the choice of Xr+1 that ensures for all x, z ∈ Xr+1, Lr,δ(z) ≤ Ur,δ(x).

Combining with the bound on σ̃tr,r(x) obtained in the previous step, we bound the instantaneous regret for all x ∈ Xr+1 as
follows.

f(x∗)− f(x) ≤ 4β̃(δ)

√
c1Γk(qr)

qr
. (26)
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When X is continuous (The setting of Theorem 6.2):

Following similar steps as in the previous case, for all x ∈ Xr+1,

f(x∗)− f(x) ≤ Ur,δ(x
∗)− Lr,δ(x)

≤ µ̃tr,r(x
∗) +

2

qr
+ β̃′

r(δ)(σ̃tr,r(x
∗) +

2
√
qr

)

− µ̃tr,r(x) +
2

qr
+ β̃′

r(δ)(σ̃tr,r(x) +
2
√
qr

)

= Lr,δ(x
∗)− Ur,δ(x)

+
8

qr
+ 2β̃′

r(δ)

(
σ̃tr,r(x

∗) + σ̃tr,r(x) +
4
√
qr

)
≤ 8

qr
+ 2β̃′

r(δ)

(
σ̃tr,r(x

∗) + σ̃tr,r(x) +
4
√
qr

)
.

Combining with the bound on σ̃tr,r(x) obtained in the previous step, we bound the instantaneous regret for all x ∈ Xr+1 as
follows.

f(x∗)− f(x) ≤ 8

qr
+ 4β̃′

r(δ)

(√
c1Γk(qr)

qr
+

2
√
qr

)
. (27)

Step 3 (Bounding cumulative regret): LetRr =
∑tr

k=1(f(x
∗)− f(Xk,r)) be the total regret in round r. Then, we have

R(T ) =
∑R

r=1Rr. Summing up the regret in round r, we obtain the following.

When X is finite (The setting of Theorem 6.1):

Replacing the bound on instantaneous regret from (26), for r ≥ 2,

Rr ≤ 4trβ̃(δ)

√
c1Γk(qr−1)

qr−1

≤ 4⌈
√
Tqr−1 + uT (δ)⌉β̃(δ)

√
c1Γk(qr−1)

qr−1

≤ 4β̃(δ)
√
c1TΓk(qr−1) + (uT (δ) + 1)β̃(δ)

√
c1Γk(qr−1)

qr−1
.

The second inequality is obtained by the choice of tr.

When X is continuous (The setting of Theorem 6.2):

Replacing the bound on instantaneous regret from (27), for r ≥ 2,

Rr ≤ tr

(
8

qr−1
+ 4β̃′

r−1(δ)

(√
c1Γk(qr−1)

qr−1
+

2
√
qr−1

))

≤ ⌈
√
Tqr−1 + uT (δ)⌉

(
8

qr−1
+ 4β̃′

r−1(δ)

(√
c1Γk(qr−1)

qr−1
+

2
√
qr−1

))

≤ 4β̃′
r−1(δ)

√
c1TΓk(qr−1) + 8

√
T

qr−1
+ 2
√
T

+ (uT (δ) + 1)

(
8

qr−1
+ 4β̃′

r−1(δ)

(√
c1Γk(qr−1)

qr−1
+

2
√
qr−1

))
.
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We also note that f(x) = ⟨f, k(·, x)⟩ (reproducing property). Thus |f(x)| ≤ ∥f∥Hk
∥k(·, x)∥; i,e, |f(x)| ≤ Ckkmax. Thus,

the regret in the first round can be simply bounded using its length,

R1 ≤ t1Ckkmax

≤ ⌈
√
T + uT (δ)⌉Ckkmax.

Recall uT (δ) = O(E[τ ] + log(Tδ )) and note that, for r > 1,

8

qr−1
+ 4β̃′

r−1(δ)

(√
c1Γk(qr−1)

qr−1
+

2
√
qr−1

)
= O(1), (28)

since qr−1 ≥
√
T for r > 1.

Adding up the regret over all rounds r = 1, 2, . . . , R with R = log log(T ), we obtain

R(T ) = O
(
β̃(δ) log log(T )

√
TΓk(T ) + CkE[τ ]

)
, (29)

and,
R(T ) = O

(
β̃′
R(δ) log log(T )

√
TΓk(T ) + CkE[τ ]

)
, (30)

under the discrete and continuous X cases, proving Theorems 6.1 and 6.2, respectively.

Corollary 6.3 immediately follows from replacing the value of Γk, in particular, Γk(T ) = O(T
d

2ν+d (log(T ))
2ν

2ν+d ),
Γk(T ) = O((log(T ))d+1) and Γk(T ) = O(d log(T )), in the cases of Matérn, SE and linear kernels respectively (Srinivas
et al., 2010; Vakili et al., 2021c). In the case of linear kernel, we emphasize the O(

√
d) factor in β̃′

R(δ).
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