
Conditional Tree Matching for Inference-Time Adaptation of Tree Prediction
Models

Harshit Varma 1 Abhijeet Awasthi 1 Sunita Sarawagi 1

Abstract
We present CTREEOT, a convergent, differen-
tiable algorithm for matching two trees when each
tree is conditioned on some input. Such condi-
tional tree matching is useful for light-weight,
few-shot adaptation of tree prediction models
without parameter fine-tuning. CTREEOT in-
cludes an alignment algorithm that extends the
popular Sinkhorn algorithm for matching tree
nodes while supporting constraints on tree edges.
The algorithm involves alternating between ma-
trix rescaling and message passing updates, and
can be efficiently expressed as GPU tensor op-
erations. The second part of CTREEOT is fine-
grained relevance-based reweighting of nodes that
makes the match scores useful for prediction tasks.
We demonstrate the usefulness of CTREEOT for
cross-schema adaptation of Text-to-SQL, a popu-
lar semantic parsing task. We show that compared
to state-of-the-art methods, we achieve significant
increase in adaptation accuracy.

1. Introduction
Recently, memory-based methods have been established as
a promising approach for inference time adaptation with a
few related examples (cases) in tasks like translation (Khan-
delwal et al., 2021; 2020), semantic parsing (Pasupat et al.,
2021; Gupta et al., 2021; Awasthi et al., 2023), and gam-
ing (Atzeni et al., 2022). Given an input text x, and a
few related labeled cases C = {(x̃1, ỹ1), . . . , (x̃C , ỹC)},
memory-based methods typically assign a match score
for a proposed prediction y for input x over each case
(x̃c, ỹc) ∈ C. The match score after suitable pooling over
all cases and the prediction model should score the correct
prediction higher than incorrect candidate predictions.

1Department of Computer Science and Engineering, Indian
Institute of Technology (IIT) Bombay. Correspondence to: Harshit
Varma, Sunita Sarawagi <{harshitvarma, sunita}@cse.iitb.ac.in>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

In tasks like semantic parsing, where the predicted y is a
tree, designing a sound conditional scoring function raises
several challenges. The score should be structure-aware, for
example, it should satisfy topological constraints imposed
by the tree, or reward preserving of tree edges. For efficient
training, the scoring function should be differentiable and
computationally efficient for scoring several candidates for
a given x. Further, the match of a tree y with another yc has
to be carefully conditioned on corresponding input text x
and xc respectively. Otherwise, the score may not be useful
for promoting the prediction of the correct y as against
several other incorrect y′, which may be more similar to
some case yc.

A standard approach is to assign to each tree y a contextual
embedding conditioned on its input x, and use vector simi-
larity to match them (Awasthi et al., 2023). This approach,
we will show, is too coarse-grained since it collapses an en-
tire tree into a fixed dimensional vector. Many methods have
been proposed for fine-grained node-level alignment-based
differentiable matching of graphs, but they are not designed
for conditional matching. Also, most earlier methods co-
embed the two graphs compared (Li et al., 2019; Zhang
et al., 2021), and are not suitable when the cross product of
number of cases and candidate trees is large.

In this paper, we propose an efficient, differentiable,
structure-aware, convergent, conditional tree matching
method called CTREEOT. Our method first independently
assigns embeddings to each node for each tree that is con-
textualized on the input x and other nodes of the tree. We
then align nodes of the two trees using a differentiable,
convergent algorithm by designing an extension of the well-
known set-based Sinkhorn algorithm for trees. Existing algo-
rithms that regularize the Sinkhorn method with graph con-
straints (Titouan et al., 2019), do not guarantee convergence,
unlike our extension. Further, we show that x-contextual
embeddings alone fail to provide precise conditional scor-
ing. We design a node-level relevance scoring model, that
when weighted with the alignment scores, provides more
discriminating conditional match scores. We provide an im-
plementation of the algorithm in terms of tensor operations
that can be efficiently executed on GPUs. Thus, we provide
a convergent tree matching layer that can be integrated in a
deep network.

1

Conditional Tree Matching

Contributions (1) We provide a new algorithm
CTREEOT for aligning two trees that extends the Sinkhorn
algorithm for matching tree nodes while supporting
edge-level constraints, e.g. penalizing topological order
violations. The algorithm is guaranteed to converge, and
can be efficiently implemented via tensor operations
on GPUs. (2) We propose a conditional tree matching
score that refines alignment weighted scores with learned
node-level relevance weights. (3) We present experiments
on inference time adaptation of the Text-to-SQL task and
obtain significant gains in accuracy compared to existing
methods.

2. Preliminaries
We use x ∈ X (space of sentences) to denote the input text.
Each x is associated with a gold tree y = {(y1, . . . , yn), E}
with n discrete nodes y1, . . . , yn and a set E of edges. We
use (yi, ys) ∈ E to denote that yi is a parent of ys. We
assume that the nodes are topologically ordered so that
i < s, ∀(yi, ys) ∈ E, and we denote it by yi ≺E ys. For
example, in a Text-to-SQL task, the trees could refer to the
relational algebra (RA) trees corresponding to SQL queries.

We assume a base model Mθ(x) that generates for an input
text x a set of candidate trees Yx. These could be the
result of a beam search on the tree prediction model. Each
candidate tree ŷ ∈ Yx, is assigned a score sθ(ŷ|x) from
the base model Mθ(x). We assume the model also assigns
to each node yi in a candidate tree an embedding vector
contextualized on the input x and other nodes in the tree as
zi = Embedθ(yi,y,x).

We use Cx = {(x̃1, ỹ1), . . . , (x̃C , ỹC)} to denote a set of
related cases available for an input text x. Typically, a re-
trieval model RΦ(x, L) might be used to find related cases
from a larger set of available labeled cases L. During de-
ployment L may include new labeled examples provided by
the user for few-shot adaptation. Specific instantiations of
the base model Mθ and retrieval model RΦ are discussed in
the experiment section. The framework we present here is
independent of the details of these components.

Our goal is to use the related cases Cx to assign scores
sψ(ŷ|x, Cx) so that sθ(ŷ|x) + sψ(ŷ|x, Cx) provides higher
accuracy than the base scores sθ alone by scoring correct
trees higher than incorrect trees.

3. Our Method
For computing the score sψ(ŷ|x, Cx) of a candidate tree
ŷ ∈ Yx using the cases we first individually treat each case
(x̃, ỹ) ∈ Cx and compute a conditional tree matching score
CTS(ŷ|x, x̃, ỹ) with respect to that. We then pool together
these scores and reweight them vis-a-vis the model scores.

Tree Prediction
Model ()

Candidates

Align

Scores

Retriever ()

All available cases ()

Retrieved cases ()

Relevance
Transformer

Text ()

CtreeOT

Alignments Relevance
Scores

Pool, Normalize, Rescale

Similarity

Figure 1. Overall working of CTREEOT

We describe how we pool the scores later in § 3.3. We
elaborate now on how we compute CTS(ŷ|x, x̃, ỹ). We
want the score to be high when ŷ and ỹ are similar and
they appear in similar contexts x and x̃. We achieve this by
combining two types of computation. (1) Alignment: First,
we define pairwise similarity between nodes of the two trees
using their contextual embeddings. Between nodes ŷi ∈
ŷ and ỹj ∈ ỹ we define Sim(ŷi, ỹj) as cosine similarity
between the contextualized representations ẑi and z̃j of the
respective nodes ŷi and ỹj . Thus, Sim(ŷi, ỹj) =

⟨ẑi,z̃j⟩
||ẑi||||z̃j || .

We align nodes of trees ŷ with ỹ based on similarity of node
embeddings, while imposing any penalties expressible as
edge costs, such as those that penalize violations of topo-
logical ordering in the alignments. We present an efficient
differentiable algorithm for this alignment in § 3.1. The
algorithm returns alignment πij ∈ [0, 1] for all node pairs
i, j in ŷ and ỹ respectively. (2) Relevance: Even if two
trees are structurally identical, we do not want to assign
them a high score if they are associated with very different
input texts x and x̃. Also, a case tree ỹ may be partially
relevant to a candidate tree ŷ. To allow for such fine-grained
relevance-aware matching, we associate with each node of
each case tree a relevance score rj given an x. Instead of
directly summing over the similarity of aligned nodes yj ,
we further weight each node in a case tree with a relevance
score rj ∈ [0, 1] to establish its relevance to the current
instance x, as per Equation 1. In § 3.2 we present how such
relevance weights are obtained. The final scoring equation
for each ŷ ∈ Yx is:

2

Conditional Tree Matching

CTS(ŷ|ỹ,x, x̃) =
∑
i,j

πi,j rj Sim(ŷi, ỹj) ∀ ỹ ∈ Cx (1)

We denote the pooling of the scores over all the cases as:

sψ(ŷ|x, Cx) = Pool({CTS(ŷ|ỹ,x, x̃)} : (x̃, ỹ) ∈ Cx)

Figure 1 shows a schematic diagram of the overall working
of our method.

3.1. Alignment of Candidate and Case Trees

We next present our algorithm for aligning nodes of trees
ŷ and ỹ, while penalizing edge-level constraints such as
topological ordering introduced by their edges Ê, Ẽ respec-
tively. We denote the cost of aligning a node yi ∈ ŷ with a
node yj ∈ ỹ with ϕi,j ∈ R. We define cost as negative of
node similarities Sim(ŷi, ỹj). We represent the alignment
between the nodes of ŷ (|ŷ| = m̂) and ỹ (|ỹ| = m̃) using
a m̂× m̃ boolean matrix π, where πi,j = 1 if ŷi is aligned
with ỹj and 0 otherwise. To allow nodes on each tree to not
align, we introduce m̃ disconnected dummy nodes in ŷ and
m̂ disconnected dummy nodes in ỹ with a cost of 0. Thus,
the total number of nodes in each tree is n = m̂+ m̃.

Our alignment algorithm supports edge-level costs attached
to alignments. We show how edge costs can be used to
penalize violations of topological ordering of nodes based
on their edges. For example, let nodes (ŷi, ŷs) in ŷ are
connected such that i ≺Ê s and (ỹj , ỹt) in ỹ are connected
such that j ≺Ẽ t. The alignments between nodes (ŷi, ỹt)
and (ŷs, ỹj), resulting in a crossover is undesirable, since
the aligned nodes do not respect the topological ordering
enforced by edges (ŷi, ŷs) and (ỹj , ỹt). We express this
constraint by assigning a cost ϕis,jt when node i ∈ ŷ is
aligned to j ∈ ỹ and node s ∈ ŷ is aligned to t ∈ ỹ. The
cost of violating topological order is expressed as:

ϕis,jt

{
= λ if i ≺Ê s and j ⪰Ẽ t

= 0 otherwise
(2)

where λ > 0 is a fixed cost for penalizing crossovers. Fur-
ther, a dummy node in ỹ preceeds all non-dummy nodes,
thus j ≺Ẽ t when j is dummy and t is non-dummy. Note
although the constraint needs to hold for all i ≺Ê s pairs in
ŷ, it suffices to enforce it only on the edges.

Combining the node and edge costs, the minimum cost
alignments between the trees ŷ and ỹ can be obtained as a
solution to the constrained optimization problem in Equa-
tion 3.

min
π∈{0,1}n2

∑
i,j

ϕi,jπi,j +
∑

(i,s)∈Ê

∑
(j,t)

ϕis,jtπi,jπs,t

s.t.
n∑
i=1

πi,j = 1 and
n∑
j=1

πi,j = 1

(3)

The optimization constraints ensure that each node yi ∈ ŷ
is matched with exactly one node in ỹj ∈ ỹ, and vice-versa.
However, solving this objective is inefficient. The objective
without the edge costs reduces to the well-known optimal
transport problem over discrete sets. Exact optimal solu-
tions to the OT problem have been attempted using linear
programs or network flow algorithms (Ahuja et al., 1993)
but these entail cubic cost and are not considered practically
useful for integration in a deep network. Other methods
based on solving the semi-dual using subgradients (Kita-
gawa et al., 2019) are also considered slow. Also, it is not
differentiable and not easily integrated as a layer in a deep
network. We next explore differentiable formulations.

A Differentiable Relaxed Formulation We propose two
modifications to the above objective (Equation 3) to make
the solution tractable and differentiable. First, following
prior work (Cuturi, 2013; Peyré & Cuturi, 2019), we allow
the alignment matrix π to take continuous values and we
regularize the objective in Equation 3 with a negative self-
entropy term over the elements of the alignment matrix π.
With these changes, our objective without the edge costs,
can be solved using the well-known Sinkhorn algorithm.
While regular Sinkhorn converges, convergence is not guar-
anteed with the edge costs expressed as the quadratic terms
in the objective of Equation 3. We propose an alternative
formulation by introducing new edge alignment variables
along with corresponding constraints to ensure consistency
with the node alignment variables. For each edge (i, s) ∈ Ê
we introduce variables πis,jt to denote that node i ∈ ŷ is
aligned to j ∈ ỹ and node s ∈ ŷ is aligned to t ∈ ỹ. Our
final formulation with these two types of variables is:

min
π

1

ϵ

∑
i,j

ϕi,jπi,j +
1

ϵ

∑
(i,s)∈Ê

∑
j,t

ϕis,jtπis,jt

+
∑
ij

πi,j(log πi,j − 1)

+
∑

(i,s)∈Ê

∑
j,t

πis,jt(log πis,jt − 1)

s.t.
n∑
i=1

πi,j = 1 ;
n∑
j=1

πi,j = 1

n∑
j=1

πis,jt = πs,t, ∀(i, s) ∈ Ê,∀t ∈ [n]

n∑
t=1

πis,jt = πi,j , ∀(i, s) ∈ Ê,∀j ∈ [n]

(4)

In the above, ϵ > 0 denotes the weight of the node costs
vis-a-vis the entropy regularizer, which is applied on both
the node-level and edge-level alignment variables. We in-
troduced two new constraints to make the edge alignment
variables consistent with the node alignment variables, much

3

Conditional Tree Matching

like in inference algorithm for graphical models. An advan-
tage of the above formulation is that we now have a strictly
convex objective with linear constraints. Strong duality
holds. A feasible solution is when all variables are uniform.
We solve the objective by writing its dual.

The Dual The dual of the above objective in terms of dual
variables {ui}ni=1, {vj}nj=1,

⋃
(i,s)∈Ê,j,t{ms→ij ,mi→st}

following standard techniques (Boyd & Vandenberghe,
2004) can be written as:

min
u,v,m

∑
i

ui +
∑
j

vj

+
∑
i,j

exp

−ϕi,j
ϵ
− ui − vj +

∑
s∈nbr(i)

ms→ij

+

∑
(i,s)∈Ê

∑
j,t

exp

(
−ϕis,jt
ϵ

−mi→st −ms→ij

)
(5)

where the primal alignments variables can be recovered
from the dual solutions as:

πij = exp

−ϕi,j
ϵ
− ui − vj +

∑
s∈nbr(i)

ms→ij

 (6)

The dual variables ui, vj are similar to the corresponding
variables in the Sinkhorn algorithm. The {mi→st} (and
{ms→ij}) variables can be viewed as message variables
that denote the message that node i sends to node s along
edge (i, s) on the score of aligning s to node t of the other
tree.

Dual Updates The dual variables are unconstrained, the
objective is convex on the dual variables, and we solve them
using block coordinate ascent. By taking the derivative
with respect to each type of dual variables and equating the
gradient to zero, we obtain the following updates:

ui = log
∑
j

exp

 ∑
s∈nbr(i)

ms→ij −
ϕi,j
ϵ
− vj

vj = log

∑
i

exp

 ∑
s∈nbr(i)

ms→ij −
ϕi,j
ϵ
− ui

mi→st =

1

2
log

∑
j

exp

(
−ms→ij −

ϕis,jt
ϵ

)

+
1

2

ϕs,t
ϵ

+ us + vt −
∑

i′∈nbr(s),i′ ̸=i

mi′→st

Convergence We iteratively perform these updates in a
loop until there is no change. The updates are guaranteed
to converge to the optimal since the dual objective is lower
bounded, convex and unconstrained.

Pseudocode of the Overall Algorithm These updates
can be expressed as tensor operations for efficient imple-
mentation on GPUs. Following Bixler & Huang (2018),
we derive the tensorized implementation of the dual up-
dates. For Φ ∈ Rn×n and Ψf ,Ψb ∈ Rn×n×|Ê| we define
Φ[i, j] = ϕj,i for all i, j ∈ [n], Ψf [j, t, (i, s)] = ϕis,jt, and
Ψb[t, j, (s, i)] = ϕis,jt for all (i, s) ∈ Ê and j, t ∈ [n]. We
further define two auxiliary tensors τ f , τ b ∈ R|Ê|×n as fol-
lows: τ f [(i, s), k] = 1 if k = s else 0 and τ b[(s, i), k] = 1

if k = i else 0 for all (i, s) ∈ Ê and k ∈ [n]. We store
uis in u ∈ R1×n, vjs in v ∈ Rn×1, the ‘forward’ (parent
to child) messages in mf ∈ Rn×|Ê|, and the ‘backward’
(child to parent) messages in mb ∈ Rn×|Ê|. More specif-
ically, u[1, i] = ui, v[j, 1] = vj , mf [t, (i, s)] = mi→st,
and mb[j, (i, s)] = ms→ij . Algorithm 1 shows the ten-
sorized updates performed iteratively using these tensors.
We assume broadcasting occurs implicitly between tensors
of different sizes. logsumexpd(·) denotes the logsumexp
operation performed on the input tensor along dimension d.

Algorithm 1 Tensorized CTREEOT
1: Parameters: Regularization parameter: ϵ > 0, maxi-

mum number of iterations: T , stopping threshold: δ
2: Inputs: Φ ∈ Rn×n, Ψf ,Ψb ∈ Rn×n×|Ê|, τ f , τ b ∈
{0, 1}|Ê|×n

3: Variables: u ∈ R1×n,v ∈ Rn×1, mf ,mb ∈ Rn×|Ê|

4: Initialize: u← 0, v← 0, mf ← 0, mb ← 0
5: for i = 1 to T do
6: Update u:
7: u(i−1) = u
8: u← logsumexp1 (mfτ f +mbτ b −Φ/ϵ− v)
9: Update v:

10: v← logsumexp2 (mfτ f +mbτ b −Φ/ϵ− u)
11: Update mf :
12: m′

f ← (mf+(u+v+Φ/ϵ−mfτ f−mbτ b)τ
t
f)/2

13: mf ←m′
f + logsumexp1 (−(mb +Ψf/ϵ)) /2

14: Update mb:
15: m′

b ← (mb+(u+v+Φ/ϵ−mfτ f−mbτ b)τ
t
b)/2

16: mb ←m′
b + logsumexp1 (−(mf +Ψb/ϵ)) /2

17: Check convergence:
18: if |u− u(i−1)|∞ < δ then
19: break
20: end if
21: end for
22: Π← exp ((mfτ f +mbτ b −Φ/ϵ− u− v))

23: Return Π⊤

4

Conditional Tree Matching

3.2. Relevance Weights

When designing a conditional tree matching score between
ŷ and ỹ, with corresponding input texts x, x̃, it is crucial
to ensure that the scores do not just reflect the similarity
of ŷ and ỹ, but also the relevance of the case (x̃, ỹ) to the
current input x. Also, a case tree may be partially relevant to
a case. Instead of assigning relevance scores to whole trees
based on similarity of the text strings, we design a more fine-
grained notion of relevance by attaching relevance scores to
subtrees rooted at each node of the case tree.

We refer to rj as relevance scores representing the likeli-
hood of appearance in the ground-truth y of the case sub-
tree rooted in ỹj . We design a module to assign relevance
scores rj = Pr(ỹj ∈ y|x, x̃, ỹ, j). To estimate rj , we use a
transformer model TXψ([x; x̃; ỹ]) that jointly encodes the
input utterance x, the case-utterance ỹ and the case-tree ỹ.
For each node ỹj ∈ ỹ we use a sigmoid activation to output
the relevance score Pr(ỹj ∈ y|x, x̃, ỹ, j).

Training rj : Given a training dataset D, for each example
(x,y) ∈ D and its case example (x̃, ỹ), we compute the
gold membership δ(ỹj ∈ y) for each subtree rooted at node
ỹj w.r.t. the gold tree y. This takes value 0 or 1 depending
on whether ỹj is present anywhere in y. Depending on
the application, the membership test can be modified. We
supervise the relevance scores by minimizing the cross-
entropy between Pr(·|x, x̃, ỹ, j) and δ(ỹj |y). The overall
training objective to train the parameters ψ of the relevance
transformer is:

min
ψ

∑
(x,y)∈D

∑
(x̃,ỹ)∈Cx

Loss(δ(ỹj ∈ y),Pr(·|x, x̃, ỹ, j))

(7)
In Section 5.1 we present the architecture of a specific rele-
vance transformer that we trained for an end application.

3.3. Pooling Scores

To get score of a candidate ŷ based on all the case examples
Cx, we aggregate scores over all the case examples using
the soft max operator as per Equation 8 below:

p(ŷ|x, Cx) = log
∑

(x̃,ỹ)∈C(x)

exp (CTS(ŷ|ỹ,x, x̃)) (8)

Next, we normalize the scores over all possible candidates
using softmax as per Equation 9 below.

p(ŷ|x, Cx) =
exp sψ(ŷ|x, Cx)∑

ŷ′∈Yx
exp sψ(ŷ′|x, Cx)

(9)

Finally, we assign a weight to the case scores relative
to the model scores. We depend on the supervised rele-
vance scores to assign these weights. First, for each case

we determine the mean relevance r(x, x̃, ỹ) of a case ex-
ample (x̃, ỹ) w.r.t. an input utterance x is computed as:
r(x, x̃, ỹ) = 1

n

∑
j r(ỹj |x, x̃, ỹ). Note this relevance score

is independent of the candidate trees. We then rescale the
case scores as follows:

w(x) = max
(x̃,ỹ)∈C(x)

r(x, x̃, ỹ)

sψ(ŷ|x, Cx) =
w(x)

(1− w(x))
p(ŷ|x, Cx)

Instead of directly using the the maximum over the
r(x, x̃, ỹ) values as the weight, we can also learn to re-
shape and translate it with a parameterized sigmoid function.
However, we found the above relevance weights alone to be
adequate in our experiments.

4. Related Work
Optimal Transport on Structured Data With the suc-
cess of the Sinkhorn algorithm for solving the optimal trans-
port problem of matching distributions over discrete ele-
ments (Cuturi, 2013), many follow up work attempt to ex-
tent the algorithm for matching structured objects. Titouan
et al. (2019); Chen et al. (2020); Xu et al. (2019) propose
an optimal transport algorithm for general graph structured
data. They extend the OT objective with a quadratic term
to regularize matching nodes pairs of one graph to another.
However, their algorithm does not provide guarantees to
converge to the global optima, in contrast to our extension
with edge variables and linear constraints. We discuss this
QP-based formulation in Appendix A.2. Lim et al. (2022)
incorporate order constraints in optimal transport but their
notion of ordering is different from ours arising out of topo-
logical ordering on matched trees.

Graph Matching There is extensive work (Li et al., 2019;
Zhang et al., 2021; Roy et al., 2022) on matching graphs
but this literature differs from our work in two ways. First,
they do not consider the problem of matching graphs condi-
tional on an input x. Hence their matches are not relevance
aware. We show in the experiment section the key role
of the relevance weightings in ranking correct trees higher
even in the presence of irrelevant trees. Second, many of
these either convert entire graph into a vector, or perform
joint embedding of the matched graphs. We consider a mid-
dle ground where we match structural node-embeddings.
Fei et al. (2022) uses matching of two trees to regularize
the training of dual models. However, they independently
match pairs of nodes across trees and do not maintain any
structural constraints.

Inference-Time Adaptation Prior work on inference time
adaptation of Text-to-Tree models largely relies on the stan-
dard sequence-to-sequence approach where the input-output

5

Conditional Tree Matching

SQL: SELECT country FROM AIRLINES WHERE
airline_name = 'JetBlue Airways'

Text: Which country does Airline "JetBlue Airways" belong to?

Relational Algebra Tree:

"JetBlue Airways"airlines.airline_name

airlines

airlines.country

Schema:
Table airlines: [airline_id, airline_name, country,
abbreviation]
Table airports: [city, airport_code, airport_name,
country]
Table flights: [airline, flight_number,
source_airport, destination_airport]

Figure 2. Example of trees arising in the Text-to-SQL task.

pairs from case examples are concatenated along with the
test-input to generate the target output (Pasupat et al., 2021;
Das et al., 2021; Gupta et al., 2021; Poesia et al., 2022). This
approach often disregards the tree-structure of the example
outputs by encoding the tree as a sequence. Awasthi et al.
(2023) show that explicitly leveraging the similiarity be-
tween candidate and case subtrees leads to better decoding
decisions. However, their method computes tree similarity
simply as a dot product between two embedding vectors.
Our method of aligning candidate and case subtrees and
aggregating similarity over all the aligned nodes leads to
consistently better results than Awasthi et al. (2023).

5. Experiments
We now present an empirical evaluation of CTREEOT both
in terms of the quality of our proposed conditional tree
matching score CTS and running time. We evaluate the
quality of CTS by deploying it for inference-time adapta-
tion of a real-life task of converting text utterances to SQL
represented as an abstract relational tree. We describe the
task next. The code for CTREEOT has been open-sourced1.

5.1. Inference-Time Adaptation of Text-to-SQL Models

Text-to-SQL is a type of semantic parsing task that converts
natural text question x on a specific database schema s to
an SQL query y that can be executed on the database. An
example is shown in Figure 2. The input to a Text-to-SQL
model is the text concatenated with the schema (x, s) and
output is a ranked list of SQL queries. Such models are
trained with text-SQL pairs on a few database schema in
the training data. However, they are often deployed on new

1https://github.com/hrshtv/CTreeOT

schema unseen during training. Inference-time adaptation
with few-shot labeled examples is particularly important for
the Text-to-SQL task since several previous studies have
shown the lack of cross-schema generalization (Suhr et al.,
2020; Lee et al., 2021; Hazoom et al., 2021) of Text-to-
SQL models. Fine-tuning the entire model is not an option
because the same model is often shared by several users
with different schema. This has led to much recent work on
online adaptation of a trained Text-to-SQL model with a few
labeled examples in a target schema. We will compare with
two recent SOTA online adaptation methods, two baseline
models, and CHATGPT as described next.

SMBOP (Rubin & Berant, 2021): As a base model Mθ

for this task we use the SMBOP model that performs semi-
autoregressive decoding to convert an input x, s into an
abstract SQL tree. The model generates the tree bottom-up
layer by layer and at the last step returns a ranked list of SQL
trees in its beam. We follow the authors’ implementation of
SMBOP2 and initialize the text encoder with a ROBERTA-
BASE model followed by 4 RAT layers (Wang et al., 2020)
for encoding the schema structure.

STRUCTCBR: Awasthi et al. (2023) recently extended SM-
BOP for online adaptation with a few labeled examples.
They rerank candidate trees at each layer based on similarity
with case trees Cx. This has been shown to lead to both
increased recall at the final beam, and increased accuracy
of top-1 tree. They compare similarity of two trees by col-
lapsing the tree into a single vector. Unlike Awasthi et al.
(2023), we train STRUCTCBR with 7 retrieved cases using a
ROBERTA-BASE-based retriever described in Appendix A.

T5: Both the above methods directly generate trees from
the model. We also compare our method with other popular
models that treat the SQL as a string and generate the output
as a string directly. As a base model for this approach, we
utilize UnifiedSKG’s (Xie et al., 2022) implementation3 of
a T5-LARGE model (Raffel et al., 2020)4.

T5-CONCAT: A popular method of online adaptation of
seq-to-seq models is by treating the cases as prompts that
are concatenated with the input and jointly encoded by the
encoder (Pasupat et al., 2021; Das et al., 2021; Gupta et al.,
2021; Poesia et al., 2022). We use the implementation of
(Awasthi et al., 2023) for this comparison.

CHATGPT: In addition to T5 and T5-CONCAT, we use
CHATGPT (GPT-3.5-TURBO)5 as another language model

2github.com/OhadRubin/SmBop
3github.com/HKUNLP/UnifiedSKG/blob/main/configure/

Salesforce/T5 large finetune spider with cell value.cfg
4github.com/google-research/text-to-text-transfer-

transformer/blob/main/released checkpoints.md#lm-adapted-
t511lm100k

5platform.openai.com/docs/guides/chat (March 2023 version)

6

https://github.com/hrshtv/CTreeOT
https://github.com/OhadRubin/SmBop
https://github.com/HKUNLP/UnifiedSKG/blob/main/configure/Salesforce/T5_large_finetune_spider_with_cell_value.cfg
https://github.com/HKUNLP/UnifiedSKG/blob/main/configure/Salesforce/T5_large_finetune_spider_with_cell_value.cfg
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k
https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k
https://platform.openai.com/docs/guides/chat

Conditional Tree Matching

Table 1. EM values on five different schemas of varying difficulty and domains from the SPIDER dataset.
Schema CHATGPT-ZS CHATGPT-FS T5 T5-CONCAT SMBOP STRUCTCBR CTREEOT
car 1 23.9 32.8 40.6 42.2 43.3 48.9 52.8
cre Doc Template Mgt 33.3 45.9 83.0 79.3 84.3 89.3 88.1
dog kennels 40.1 49.7 59.9 72.1 66.7 67.4 70.1
flight 2 34.7 51.0 59.9 61.9 56.5 59.2 61.9
world 1 27.0 36.0 46.4 48.3 46.1 47.6 49.1
Micro-average 30.9 41.8 56.1 58.7 57.3 60.3 62.2

approach. We evaluate it in a zero-shot (CHATGPT-ZS) and
few-shot setting (CHATGPT-FS). Similar to T5-CONCAT,
we concatenate the few-shot case examples along with the
input question in the prompt to CHATGPT. We show exam-
ples of prompts used in the zero-shot and few-shot setting
in Appendix A.7.

CTREEOT: We build our method upon STRUCTCBR. We
run STRUCTCBR for all steps except the final decoding step.
At the final decoding step, we discard STRUCTCBR’s beam
scores and rescore the beam using our improved scoring
mechanism discussed in § 3. We use ϵ = 10−3 and λ = 1.
The beam is of size 30 and serves as our set of candidate
trees Yx. This code also includes a retriever module that
given an input x retrieves 7 related trees at test time to serve
as the case set Cx. We use the embeddings assigned by this
model as the input contextual embeddings vector for each
node of the tree. The only additional model we train is the
Relevance transformer for assigning relevance scores rj that
we describe next.

Relevance Transformer: We train the relevance trans-
former independently, keeping the other modules frozen.
Our relevance transformer is a relatively lightweight mod-
ule consisting of approximately 3.3M parameters that is
trained from scratch without any pretraining. Note that
SMBOP with ROBERTA-BASE and four RAT layers has
approximately 133M parameters. Our relevance transformer
consists of four transformer blocks with a fully-connected
layer at the end to predict the scores. A single block is
a stack of self-attention (8 heads), feedforward, and layer
normalization layers. We use the base model’s embeddings
of the input and case text and concatenate them with the
uncontextualized node embeddings of the case tree given
by STRUCTCBR. Our relevance transformer, takes this con-
catenated sequence as an input and predicts the relevance
of all subtrees in the case tree. While training, we keep
the batch size as a multiple of the number of cases, and
design the batches such that for a candidate tree, the re-
maining |C| − 1 examples are from the same schema and
act as cases. We implement the matching using a hashing
function that ignores the DB constants in the leaf nodes so
that trees with identical structure but different DB constants
result in the same hash value. We use a retriever and keep
|C| = 8. Our relevance transformer achieves an average F1

score of 77.1 on the validation split after being trained for
75 epochs. F1 score is macro-averaged over all examples
and micro-averaged over all subtrees in all cases. We freeze
all other modules while training the relevance transformer
and supervise it via the cross-entropy loss, keeping other hy-
perparameters like the learning rate same as STRUCTCBR.

Datasets We adapt a Text-to-SQL model to five dif-
ferent target schemas from the SPIDER dataset (Yu
et al., 2018) without finetuning. The target schemas
were chosen have varying difficulties and domains. For
training, we use SPIDER’s train split containing 7000
Text-to-SQL examples from 140 schemas. For evalua-
tion, we follow Awasthi et al. (2023) and use examples
from the following five schemas from SPIDER’s develop-
ment set: {world 1, car 1, cre Doc Template Mgt,
dog kennels, flight 2}. Examples from these
schemas are excluded from the training and validation splits.
The remaining 576 examples from the SPIDER’s develop-
ment set are used for validation. Like Awasthi et al. (2023),
we divide a schema D randomly into Dtest and Dcases such
that Dtest ∪ Dcases = D and Dtest ∩ Dcases = ∅. The held
out examples serve as the set of cases used for adapting mod-
els to that schema. We do this for each of the five schemas
separately and evaluate on theDtest split. We report metrics
averaged over three random Dtest/Dcases splits for each
schema.

Evaluation Metrics Following Yu et al. (2018), we report
the Exact-Set-Match Accuracy (EM). EM is 1 if all clauses
in the gold and the predicted SQL match exactly (after
anonymizing the DB values) and 0 otherwise.

5.2. Overall Results

Table 1 shows the EM values by different methods on five
schemas of varying difficulty and domains from the SPI-
DER dataset. We make the following observations from this
table. (1) Compared to the base SMBOP model, inference-
time adaptation leads to accuracy increasing from 57.3% to
62.2%. On the most challenging schema (car 1) where the
base model provides only 43.3% accuracy, we are able to
boost by 9.5%. This shows the usefulness of inference-time
adaptation of Text-to-SQL models to new schema just with
30 labeled examples. (2) Compared to the SOTA adaptation

7

Conditional Tree Matching

Table 2. Ablation study showing the improvements obtained by different components of our proposed approach. CTREEOT–R denotes
the CTREEOT algorithm without the relevance transformer while our method without the tree constraints reduces to Sinkhorn+relevance
scoring. CTREEOT–A denotes our method with all alignments πi,j set to 1.

Schema CTREEOT–A CTREEOT–R Sinkhorn+R CTREEOT
car 1 46.7 50.0 52.8 52.8
cre Doc Templ. 78.6 84.9 88.1 88.1
dog kennels 64.0 62.6 69.4 70.1
flight 2 55.8 60.5 61.9 61.9
world 1 40.1 43.5 48.7 49.1
Micro-average 54.7 58.0 62.0 62.2

Table 3. EM values on nine additional schemas when using the bottom 7 retrieved cases.
Schemas SMBOP STRUCTCBR T5 T5-CONCAT CTREEOT
concert singer 71.1 80.0 86.7 35.6 80.0
employee hire evaluation 92.1 86.8 94.7 39.5 92.1
network 1 73.2 64.3 62.5 12.5 69.6
orchestra 85.0 82.5 90.0 42.5 82.5
pets 1 61.9 59.5 69.0 40.5 69.0
poker player 97.5 97.5 92.5 35.0 95.0
student transcripts tracking 48.7 48.7 62.8 23.1 48.7
tvshow 91.9 82.3 71.0 29.0 88.7
wta 1 82.3 74.2 59.7 29.0 79.0
Micro-average 76.2 72.8 73.9 30.2 76.0

method STRUCTCBR we boost accuracy by almost 2 point
in four out of five schema. This shows that matching whole
trees as a single vector in inadequate, and our fine-trained
tree matching helps. (3) T5-CONCAT follows a very dif-
ferent paradigm of online adaptation where the cases are
treated as prompts that are concatenated to the input. We
find that while they provide modest gains over their cor-
responding baseline (T5), overall their relative gains are
much worse. This shows that memory-based methods that
explicitly boost scores based on similarity with related cases
is more effective than standard methods that encode cases
with the inputs. We observe that the overall performance
of CHATGPT is much worse than CTREEOT. Even though
CHATGPT benefits from case examples, its overall accuracy
(EM) is much lower. Previously, (Rajkumar et al., 2022) and
(Poesia et al., 2022) have also observed poor Text-to-SQL
performance with GPT-3 based models

5.3. Ablation Study

We next evaluate the impact of two main features of
CTREEOT: the role of the tree constraints, and the role
of the relevance transformer. Table 2 shows an ablation with
each of the two features removed. Note, when we remove
the tree constraints our method reduces to the well-known
Sinkhorn algorithm (Cuturi, 2013) but with our relevance
scoring. We observe that including the relevance trans-
former improves the EM by up to 7.5% and on average by

4.2%. We also observe that our proposed alignment algo-
rithm that considers tree-based topological constraints pro-
vides gains over the topologically-unconstrained Sinkhorn
algorithm in two schemas.

5.4. Effect of Case Relevance

The accuracy of T5-CONCAT is quite sensitive to the rele-
vance of the input cases, and can get even worse than the
baseline. To bring out this brittleness of concat-based ap-
proaches further, we conduct experiments by providing the
bottom-7 cases (least relevant) as judged by the retrieval
module. As can be seen in Table 3, we observe a big drop
in accuracy of T5-CONCAT when presented with irrelevant
cases. The evaluation setting here differs slightly from ear-
lier experiments: for each example, we first randomly select
30 other examples from the same schema and then use the
retriever on these to obtain the bottom-7 cases. A substan-
tial drop is observed for STRUCTCBR too. In contrast,
CTREEOT is more robust and does not suffer that much
drop in accuracy in the presence of irrelevant cases, because
of the presence of the relevance transformer.

5.5. Results on Synthetic Data

To measure the run-time on increasing tree size and study
the number of topological constraints violated by CTREEOT
and Sinkhorn, we performed more extensive experiments on

8

Conditional Tree Matching

Figure 3. Variation in the run time (in seconds) of Sinkhorn and
CTREEOT with respect to the number of nodes.

Figure 4. Variation of the number of topological violations made
by Sinkhorn and CTREEOT with respect to the number of nodes.

synthetically generated trees. For each n, we generate 100
pairs of trees with n nodes each. We generate a tree level
by level starting from the root node. When adding nodes at
level (l + 1), we sample the number of nodes to be added
at that level uniformly from {1, . . . , 2nl}, where nl is the
number of nodes added at level l. Now, for all new nodes,
we uniformly sample its parent from the nl nodes at level
l. We continue to add new levels in the same way until the
total number of nodes become n. To assign costs to a pair of
synthetic trees, we first create a matrixD ∈ [−1, 1]n×n with
Dij sampled uniformly from [−1, 1]. Then, we compute
C = (D +Dt)/2 and use it as the cost. Recall that for an
alignment π we want πi,jπs,t = 0 whenever i ≺Ê s and
t ⪯Ẽ j. To decide whether such constraints are violated,
we check whether πi,jπs,t > δ. In our experiments, we
set δ = 10−6 and test for all possible constraints. We vary
n from 10 to 75, generate two trees and then compute the
average running time and the average number of constraints
violated for n when running our CTREEOT algorithm and
the unconstrained Sinkhorn algorithm. These experiments
were performed on a single NVIDIA RTX A6000 GPU
and the algorithms were implemented in PyTorch. Figure 3
shows how the running times of CTREEOT and Sinkhorn
vary with respect to the number of nodes in the input trees.
Figure 4 shows the number of topological violations made

Figure 5. Variation of the objective value achieved by Sinkhorn,
QP (λ = 10), and CTREEOT with respect to the number of nodes.

by Sinkhorn and CTREEOT as a function of the tree size n.
We observe that while our method is slower than Sinkhorn
it scales in roughly the same manner. Once all the tensors fit
in GPU memory, the running time does not increase linearly.
The increased running time is justified by the better quality
alignments produced by CTREEOT as measured by the
number of topological constraint violations. In Figure 5,
we also show the objective values achieved by CTREEOT,
Sinkhorn, and the QP-based formulation that is discussed
in detail in Appendix A.2. We observe that in most cases
the resultant CTREEOT objective is much lower than that
achieved by the QP-based formulation and Sinkhorn.

6. Conclusion
We presented CTREEOT, a convergent, differentiable al-
gorithm for matching trees conditioned on separate inputs.
We applied CTREEOT for the task of cross-schema adapta-
tion of Text-to-SQL models and showed how conditionally
matching trees is useful for light-weight, few-shot adapta-
tion of trained tree prediction models without parameter
fine-tuning. We further demonstrated how the relevance-
based reweighting makes the alignments useful for matching
in prediction tasks, and also benefit from fine-grained partial
overlap from related trees. Compared to the state-of-the-art
method, CTREEOT achieves a significant increase in adap-
tation accuracy measured on schemas of varying difficulty
and domains. In future, we plan to analyze theoretically the
convergence rate of our alignment algorithm, and deploy it
on other tasks.

Acknowledgements We gratefully acknowledge support
from the IBM AI Horizon Networks-IIT Bombay initiative.
Abhijeet thanks Google for the PhD Fellowship. We thank
Soumen Chakrabarti for initial discussions.

9

Conditional Tree Matching

References
Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network

flows - theory, algorithms and applications. 1993.

Atzeni, M., Dhuliawala, S. Z., Murugesan, K., and
SACHAN, M. Case-based reasoning for better general-
ization in text-adventure games. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=ZDaSIkWT-AP.

Awasthi, A., Chakrabarti, S., and Sarawagi, S. Structured
case-based reasoning for inference-time adaptation of
text-to-sql parsers. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2023.

Bixler, R. and Huang, B. Sparse-matrix belief propagation.
In Conference on Uncertainty in Artificial Intelligence,
2018.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-
bridge University Press, March 2004.

Chen, L., Gan, Z., Cheng, Y., Li, L., Carin, L., and
Liu, J. Graph optimal transport for cross-domain
alignment. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 1542–1553. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/chen20e.html.

Cuturi, M. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information
processing systems, 26, 2013.

Das, R., Zaheer, M., Thai, D., Godbole, A., Perez, E.,
Lee, J. Y., Tan, L., Polymenakos, L., and McCallum,
A. Case-based reasoning for natural language queries
over knowledge bases. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pp. 9594–9611, Online and Punta Cana, Domini-
can Republic, November 2021. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2021.emnlp-main.
755. URL https://aclanthology.org/2021.
emnlp-main.755.

Fei, H., Wu, S., Ren, Y., and Zhang, M. Matching struc-
ture for dual learning. In Chaudhuri, K., Jegelka, S.,
Song, L., Szepesvari, C., Niu, G., and Sabato, S. (eds.),
Proceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 6373–6391. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/fei22a.html.

Gupta, V., Shrivastava, A., Sagar, A., Aghajanyan,
A., and Savenkov, D. Retronlu: Retrieval aug-
mented task-oriented semantic parsing. arXiv preprint
arXiv:2109.10410, 2021.

Hazoom, M., Malik, V., and Bogin, B. Text-to-SQL
in the wild: A naturally-occurring dataset based on
stack exchange data. In Proceedings of the 1st Work-
shop on Natural Language Processing for Programming
(NLP4Prog 2021), pp. 77–87, Online, August 2021. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/
2021.nlp4prog-1.9. URL https://aclanthology.
org/2021.nlp4prog-1.9.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L., and
Lewis, M. Generalization through memorization: Nearest
neighbor language models. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=HklBjCEKvH.

Khandelwal, U., Fan, A., Jurafsky, D., Zettlemoyer, L., and
Lewis, M. Nearest neighbor machine translation. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=7wCBOfJ8hJM.

Kitagawa, J., Mérigot, Q., and Thibert, B. Convergence
of a newton algorithm for semi-discrete optimal trans-
port. Journal of the European Mathematical Society,,
21(9):2603–2651, 2019.

Lee, C.-H., Polozov, O., and Richardson, M. KaggleD-
BQA: Realistic evaluation of text-to-SQL parsers. In
Proceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Process-
ing (Volume 1: Long Papers), pp. 2261–2273, Online,
August 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.acl-long.176. URL https:
//aclanthology.org/2021.acl-long.176.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
matching networks for learning the similarity of graph
structured objects. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 3835–3845. PMLR,
2019.

Lim, Y. C. F., Wynter, L., and Lim, S. H. Order constraints
in optimal transport. In Chaudhuri, K., Jegelka, S., Song,
L., Szepesvari, C., Niu, G., and Sabato, S. (eds.), Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 13313–13333. PMLR, 17–23 Jul

10

https://openreview.net/forum?id=ZDaSIkWT-AP
https://openreview.net/forum?id=ZDaSIkWT-AP
https://proceedings.mlr.press/v119/chen20e.html
https://proceedings.mlr.press/v119/chen20e.html
https://aclanthology.org/2021.emnlp-main.755
https://aclanthology.org/2021.emnlp-main.755
https://proceedings.mlr.press/v162/fei22a.html
https://proceedings.mlr.press/v162/fei22a.html
https://aclanthology.org/2021.nlp4prog-1.9
https://aclanthology.org/2021.nlp4prog-1.9
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM
https://aclanthology.org/2021.acl-long.176
https://aclanthology.org/2021.acl-long.176

Conditional Tree Matching

2022. URL https://proceedings.mlr.press/
v162/lim22b.html.

Pasupat, P., Zhang, Y., and Guu, K. Controllable semantic
parsing via retrieval augmentation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 7683–7698, 2021.

Pawlik, M. and Augsten, N. Efficient computation of the tree
edit distance. ACM Transactions on Database Systems
(TODS), 40(1):1–40, 2015.

Pawlik, M. and Augsten, N. Tree edit distance: Robust
and memory-efficient. Information Systems, 56:157–173,
2016.

Peyré, G. and Cuturi, M. Computational optimal trans-
port: With applications to data science. Foundations
and Trends® in Machine Learning, 11(5-6):355–607,
2019. ISSN 1935-8237. doi: 10.1561/2200000073. URL
http://dx.doi.org/10.1561/2200000073.

Poesia, G., Polozov, A., Le, V., Tiwari, A., Soares, G.,
Meek, C., and Gulwani, S. Synchromesh: Reliable
code generation from pre-trained language models. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=KmtVD97J43e.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang,
S., Matena, M., Zhou, Y., Li, W., and Liu, P. J. Ex-
ploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020. URL http://jmlr.
org/papers/v21/20-074.html.

Rajkumar, N., Li, R., and Bahdanau, D. Evaluating the
text-to-sql capabilities of large language models. ArXiv,
abs/2204.00498, 2022.

Roy, I., Velugoti, V. S., Chakrabarti, S., and De, A. Inter-
pretable neural subgraph matching for graph retrieval. In
AAAI Conference on Artificial Intelligence, 2022.

Rubin, O. and Berant, J. Smbop: Semi-autoregressive
bottom-up semantic parsing. In Proceedings of the 2021
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 311–324, 2021.

Suhr, A., Chang, M.-W., Shaw, P., and Lee, K. Exploring
unexplored generalization challenges for cross-database
semantic parsing. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
pp. 8372–8388, 2020.

Titouan, V., Courty, N., Tavenard, R., Laetitia, C., and
Flamary, R. Optimal transport for structured data with ap-
plication on graphs. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 6275–6284. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/titouan19a.html.

Wang, B., Shin, R., Liu, X., Polozov, O., and Richard-
son, M. RAT-SQL: Relation-aware schema encod-
ing and linking for text-to-SQL parsers. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 7567–7578, Online,
July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.677. URL https:
//aclanthology.org/2020.acl-main.677.

Xie, T., Wu, C. H., Shi, P., Zhong, R., Scholak, T., Ya-
sunaga, M., Wu, C.-S., Zhong, M., Yin, P., Wang, S. I.,
et al. Unifiedskg: Unifying and multi-tasking structured
knowledge grounding with text-to-text language models.
arXiv preprint arXiv:2201.05966, 2022.

Xu, H., Luo, D., Zha, H., and Duke, L. C. Gromov-
Wasserstein learning for graph matching and node em-
bedding. In Chaudhuri, K. and Salakhutdinov, R. (eds.),
Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 6932–6941. PMLR, 09–15 Jun
2019. URL https://proceedings.mlr.press/
v97/xu19b.html.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D.,
Li, Z., Ma, J., Li, I., Yao, Q., Roman, S., Zhang, Z.,
and Radev, D. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 3911–3921, Brussels, Belgium, October-
November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1425. URL https:
//aclanthology.org/D18-1425.

Zhang, Z., Bu, J., Ester, M., Li, Z., Yao, C., Yu, Z., and
Wang, C. H2mn: Graph similarity learning with hierar-
chical hypergraph matching networks. Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery
& Data Mining, 2021.

11

https://proceedings.mlr.press/v162/lim22b.html
https://proceedings.mlr.press/v162/lim22b.html
http://dx.doi.org/10.1561/2200000073
https://openreview.net/forum?id=KmtVD97J43e
https://openreview.net/forum?id=KmtVD97J43e
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://proceedings.mlr.press/v97/titouan19a.html
https://proceedings.mlr.press/v97/titouan19a.html
https://aclanthology.org/2020.acl-main.677
https://aclanthology.org/2020.acl-main.677
https://proceedings.mlr.press/v97/xu19b.html
https://proceedings.mlr.press/v97/xu19b.html
https://aclanthology.org/D18-1425
https://aclanthology.org/D18-1425

Conditional Tree Matching

A. Appendix
A.1. Case Retriever

We follow Awasthi et al. (2023) for the implementation of a ROBERTA-BASE-based case retriever Rϕ(x, L). Given an
input text x and a set of cases L = {(x̃l, ỹl)}|L|l=1, the retriever assigns scores to the cases based on the cosine similarity
between the embeddings of x and x̃. During inference, we retrieve the top-C cases based on these scores. The retriever is
trained independently of the Text-to-SQL models and is supervised using the normalized tree-edit-distance (TED) between
the y and ỹ that is computed using the APTED library (Pawlik & Augsten, 2015; 2016)6. The normalized tree-edit-distances
lie in [0, 1] and are independent of the leaf constants and values. Like Awasthi et al. (2023), for a candidate (xi,yi), we
sample 15 pairs {(x̃j , ỹj)}15j=1 and then compute the cosine similarities {CSimϕ(xi, x̃j)}15j=1 and the tree-edit-distances
{TED(yi, ỹj)}15j=1. We supervise these scores as per the below loss.

wi,j =
exp(1− 2TED(yi, ỹj))∑
j′ exp(1− 2TED(yi, ỹj′))

L = −
∑
i,j

wi,j log
exp(CSimϕ(xi, x̃j))∑
j′ exp(CSimϕ(xi, x̃j′))

(10)

A.2. Comparing with the Quadratic Formulation

We can directly relax the formulation in Equation 3 with the entropic regularizer and obtain the below formulation:

min
π

1

ϵ

∑
i,j

ϕi,jπi,j +
1

ϵ

∑
(i,s)∈Ê

∑
j,t

ϕis,jtπi,jπs,t +
∑
ij

πi,j(log πi,j − 1)

s.t.
n∑
i=1

πi,j = 1 ;
n∑
j=1

πi,j = 1

(11)

We can solve the above QP using algorithms proposed in earlier work (Chen et al., 2020) for the Gromov-Wasserstein
Distance between graphs. For each time step k, the algorithms proposed for these iteratively compute a cost matrix ϕki,j as
follows.

ϕki,j = ϕi,j +
∑

(i,s)∈Ê

∑
t

ϕis,jtπ
k−1
s,t

They then invoke the well-known Sinkhorn algorithm to obtain the updated alignments πk with the above cost matrix.

Note that this objective is not convex. We deliberately remove the quadratic term and introduce additional edge variables to
get a convex objective in Equation 4. This algorithm is therefore not guaranteed to converge to a global minima unlike ours.
This approach repeatedly calls the Sinkhorn routine whereas we alternate between tree message passing and Sinkhorn. We
can observe the difference empirically too. In the plot in Figure 6(a), we show the value of the objective on synthetic trees of
Section 5.5 (λ = 1). We observe that in most cases the resultant CTREEOT objective is much lower than that achieved by
the QP-based formulation. In fact, in most cases, the QP formulation provides the same solution as the baseline Sinkhorn
without any edge cost. Only for large values of edge cost (λ = 10) does it do better as can be seen in Figure 6(b).

Another difference in our work is the application. We perform conditional matching of two output trees (y, y′) given two
different inputs (x, x′). In contrast, Chen et al. (2020) aligns x with y. In our work, in addition to aligning, we score aligned
nodes based on the similarity of their respective input contexts that are implicitly aligned by the relevance transformer.
Thus, in some sense, we handle a four-way match where the (x, x′, y′) alignment is handled implicitly by the relevance
transformer. To the best of our knowledge, all prior work on graph optimal transport has reasoned about only two-way
matches.

6https://pypi.org/project/apted/

12

https://pypi.org/project/apted/

Conditional Tree Matching

We further evaluate our method on Barabási-Albert (BA) graphs as done in (Xu et al., 2019). Even though we did not
consider general graphs when designing CTREEOT, we observe that our formulation provides better local optimums than
the QP-based formulation, as can be seen in Figure 7.

(a) (b)

Figure 6. Variation of the objective value achieved by Sinkhorn, QP (λ = 1 and 10 respectively), and CTREEOT with respect to the
number of nodes in tree.

Figure 7. Variation of the objective value achieved by Sinkhorn, QP, and CTREEOT with respect to the number of nodes in the graph.

13

Conditional Tree Matching

A.3. Effect of λ

Figure 8 shows how the objective value and the number of constraint violations changes with different edge costs. Note that
the objective value is being computed with λ = 1 for all methods. Increasing λ leads to fewer constraint violations but a
worse objective value.

(a) (b)

Figure 8. Variation of the objective value and the number of constraint violations with different edge costs.

A.4. Additional Experiments

Experiments on Additional Schemas The performance on various schemas can vary a lot depending on the difficulty of
the schema and the queries. We perform experiments on nine additional schema comparing CTREEOT with the baselines.

Table 4. EM values on nine additional schemas.
Schemas SMBOP STRUCTCBR T5 T5-CONCAT CTREEOT
concert singer 71.1 84.4 86.7 73.3 82.2
employee hire evaluation 92.1 92.1 94.7 86.8 97.4
network 1 73.2 75 62.5 71.4 73.2
orchestra 85 97.5 90 95 97.5
pets 1 61.9 61.9 69 52.4 73.8
poker player 97.5 100 92.5 95 97.5
student transcripts tracking 48.7 51.3 62.8 57.7 52.6
tvshow 91.9 91.9 71 75.8 93.5
wta 1 82.3 80.6 59.7 72.6 82.3
Micro-average 76.2 79.3 73.9 73.7 80.8

A.5. Sensitivity of CTREEOT to hyperparameters

We report accuracy (EM) values for top-3 retrieved cases for ϵ ∈ {1, 10−1, 10−3, 10−5} and λ ∈ {1, 106} in Table 5. We
observe that CTREEOT is reasonably robust to these hyperparameters for this task.

Table 5. EM values for top-3 retrieved cases for different values of ϵ and λ

ϵ ↓ λ→ 1 106

1 79.7 79.0
10−3 85.8 87.8
10−5 87.8 87.8
10−7 87.5 87.5

14

Conditional Tree Matching

A.6. The Sinkhorn Algorithm

The conventional optimal transport problem without any pairwise constraints can be written as per Equation 12. Solving this
in the same way by computing the Dual gives us the well-known iterative Algorithm 2 (Cuturi, 2013).

min
π

∑
i,j

ϕi,jπi,j + ϵ
∑
i,j

πi,j log πi,j

s.t.
n∑
i=1

πi,j = 1 ∀ j ;
n∑
j=1

πi,j = 1 ∀ i ;πi,j ≥ 0 ∀ i, j
(12)

Algorithm 2 Tensorized Sinkhorn
1: Parameters: Regularization parameter: ϵ > 0,

maximum number of iterations: T , stopping threshold: δ
2: Inputs: Φ ∈ Rn×n
3: Variables: u ∈ Rn×1,v ∈ R1×n

4: Initialize: u← 0, v← 0
5: for i = 1 to T do
6: Update u:
7: u(i−1) = u
8: u← ϵ logsumexp2 (−Φ/ϵ− v/ϵ)− ϵ
9: Update v:

10: v← ϵ logsumexp1 (−Φ/ϵ− u/ϵ)− ϵ
11: Check convergence:
12: if |u− u(i−1)|∞ < δ then
13: break
14: end if
15: end for
16: Π← exp ((−Φ− u− v) /ϵ− 1)
17: Return Π

15

Conditional Tree Matching

A.7. Examples of Prompts used for CHATGPT evaluation

Zero-Shot Prompt:

Suppose a database has tables: [‘continents‘, ‘countries‘, ‘car_makers‘, ‘model_list‘, ‘
car_names‘, ‘cars_data‘].

Table ‘continents‘ has columns: [‘ContId‘, ‘Continent‘] with primary key ‘ContId‘.
Table ‘countries‘ has columns: [‘CountryId‘, ‘CountryName‘, ‘Continent‘] with primary key

‘CountryId‘.
Table ‘car_makers‘ has columns: [‘Id‘, ‘Maker‘, ‘FullName‘, ‘Country‘] with primary key ‘

Id‘.
Table ‘model_list‘ has columns: [‘ModelId‘, ‘Maker‘, ‘Model‘] with primary key ‘ModelId‘.
Table ‘car_names‘ has columns: [‘MakeId‘, ‘Model‘, ‘Make‘] with primary key ‘MakeId‘.
Table ‘cars_data‘ has columns: [‘Id‘, ‘MPG‘, ‘Cylinders‘, ‘Edispl‘, ‘Horsepower‘, ‘Weight

‘, ‘Accelerate‘, ‘Year‘] with primary key ‘Id‘.
Foreign key from countries.Continent to continents.ContId.
Foreign key from car_makers.Country to countries.CountryId.
Foreign key from model_list.Maker to car_makers.Id.
Foreign key from car_names.Model to model_list.Model.
Foreign key from cars_data.Id to car_names.MakeId.
Convert the following English question into SQLite queries on this database: ’How many car

models are produced by each maker ? Only list the count and the maker full name .’.
Return the best/top 8 SQLs as a Markdown ordered/numbered list, ranked from 1 to 8. Do not

provide any explanations or details or any additional text, just provide the list of
SQL queries.

Few-Shot Prompt:

Suppose a database has tables: [‘continents‘, ‘countries‘, ‘car_makers‘, ‘model_list‘, ‘
car_names‘, ‘cars_data‘].

Table ‘continents‘ has columns: [‘ContId‘, ‘Continent‘] with primary key ‘ContId‘.
Table ‘countries‘ has columns: [‘CountryId‘, ‘CountryName‘, ‘Continent‘] with primary key

‘CountryId‘.
Table ‘car_makers‘ has columns: [‘Id‘, ‘Maker‘, ‘FullName‘, ‘Country‘] with primary key ‘

Id‘.
Table ‘model_list‘ has columns: [‘ModelId‘, ‘Maker‘, ‘Model‘] with primary key ‘ModelId‘.
Table ‘car_names‘ has columns: [‘MakeId‘, ‘Model‘, ‘Make‘] with primary key ‘MakeId‘.
Table ‘cars_data‘ has columns: [‘Id‘, ‘MPG‘, ‘Cylinders‘, ‘Edispl‘, ‘Horsepower‘, ‘Weight

‘, ‘Accelerate‘, ‘Year‘] with primary key ‘Id‘.
Foreign key from countries.Continent to continents.ContId.
Foreign key from car_makers.Country to countries.CountryId.
Foreign key from model_list.Maker to car_makers.Id.
Foreign key from car_names.Model to model_list.Model.
Foreign key from cars_data.Id to car_names.MakeId.
Convert the following English question into SQLite queries on this database: ’How many car

models are produced by each maker ? Only list the count and the maker full name .’.
Return the best/top 8 SQLs as a Markdown ordered/numbered list, ranked from 1 to 8. Do not

provide any explanations or details or any additional text, just provide the list of
SQL queries.

Examples of converting an English question into a single SQL query:

Input: What is the maximum accelerate for different number of cylinders?
Output: SELECT max(Accelerate) , Cylinders FROM CARS_DATA GROUP BY Cylinders;

Input: For a volvo model, how many cylinders does the version with least accelerate have?
Output: SELECT T1.cylinders FROM CARS_DATA AS T1 JOIN CAR_NAMES AS T2 ON T1.Id = T2.

MakeId WHERE T2.Model = ’volvo’ ORDER BY T1.accelerate ASC LIMIT 1;

Input: What are the names and ids of all countries with at least one car maker?
Output: SELECT T1.CountryName , T1.CountryId FROM COUNTRIES AS T1 JOIN CAR_MAKERS AS T2

ON T1.CountryId = T2.Country GROUP BY T1.CountryId HAVING count(*) >= 1;

16

