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Abstract
The manifold hypothesis, which assumes that data
lies on or close to an unknown manifold of low
intrinsic dimension, is a staple of modern ma-
chine learning research. However, recent work
has shown that real-world data exhibits distinct
non-manifold structures, i.e. singularities, that
can lead to erroneous findings. Detecting such
singularities is therefore crucial as a precursor to
interpolation and inference tasks. We address this
issue by developing a topological framework that
(i) quantifies the local intrinsic dimension, and
(ii) yields a Euclidicity score for assessing the
‘manifoldness’ of a point along multiple scales.
Our approach identifies singularities of complex
spaces, while also capturing singular structures
and local geometric complexity in image data.

1. Introduction
The ever-increasing amount and complexity of real-world
data necessitate the development of new methods to extract
less complex but still meaningful representations of the un-
derlying data. While numerous methods for approaching
this representation learning problem exist, they all share a
common assumption: the underlying data is supposed to be
close to a manifold with small intrinsic dimension, i.e. while
the input data may have a large ambient dimension N , there
is an n-dimensional manifold with n ≪ N that best de-
scribes the data. For some data sets, such as natural images,
this manifold hypothesis is appropriate (Carlsson, 2009).
However, recent research shows evidence that the mani-
fold hypothesis does not necessarily hold for complex data
sets (Brown et al., 2023), and that manifold learning tech-
niques tend to fail for non-manifold data (Rieck & Leitte,
2015; Scoccola & Perea, 2023). These failures are often
the result of singularities, i.e. regions of a space that viol-
ate the properties of a manifold (see Section 2 for details).
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Figure 1: Overview of our method. Given a space with
singularities, our Euclidicity score measures the deviation
from a space to a Euclidean model space. Here, Euclidicity
highlights the singularity at the ‘pinch point.’ Please refer
to Section 4 for more details.

For example, the ‘pinched torus,’ an object obtained by
compressing a random region of the torus (specifically, a
meridian) to a single point, fails to satisfy the manifold hypo-
thesis at the ‘pinch point:’ this point, unlike all other points,
does not have a neighbourhood homeomorphic to R2 (see
Fig. 1 for an illustration). Since singularities—in contrast
to outliers arising from incorrect labels, for example—often
carry relevant information (Jakubowski et al., 2020), new
tools for detecting and handling non-manifold regions in
spaces are needed.

Our contributions. We develop an unsupervised repres-
entation learning framework for detecting singular regions
in point cloud data. Our framework is agnostic with re-
spect to geometric or stochastic properties of the underlying
data and only requires a notion of intrinsic dimension of
neighbourhoods, which, crucially, is allowed to vary across
different points. Our approach is based on a novel formu-
lation of persistent local homology (PLH), a method for
assessing the shape of neighbourhoods at multiple scales
of locality. We use PLH to (i) estimate the intrinsic dimen-
sion of a point locally, and (ii) define Euclidicity, a novel
quantity that measures the deviation of a point from being
Euclidean. We also provide theoretical guarantees on the ap-
proximation quality for certain classes of spaces, including
manifolds. Euclidicity yields a complementary perspective
on data, highlighting regions where the manifold hypothesis
breaks down. We show the utility of this perspective ex-
perimentally on several data sets, ranging from spaces with
known singularities to high-dimensional image data sets.
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2. Mathematical Background
We first provide an overview of persistent homology, and
stratified spaces, as well as their relation to local homology.
The former concept constitutes a generic framework for
assessing complex data at multiple scales by measuring to-
pological characteristics such as ‘holes’ and ‘voids’ (Edels-
brunner & Harer, 2010), while the latter serves as a general
setting to describe singularities, in which our framework
admits advantageous properties.

Persistent homology. Persistent homology is a method for
computing topological features at different scales, capturing
an intrinsic notion of relevance in terms of spatial scale para-
meters. Given a finite metric space (X,d), the Vietoris–Rips
complex at step t is defined as the abstract simplicial com-
plex V(X, t), in which an abstract k-simplex (x0, . . . , xk)
of points in X is spanned if and only if d(xi, xj) ≤ t
for all 0 ≤ i ≤ j ≤ k.1 For t1 ≤ t2, the inclusions
V(X, t1) ↪→ V(X, t2) yield a filtration, i.e. a sequence of
nested simplicial complexes, which we denote by V(X, •).
Applying the ith homology functor to this collection of
spaces and inclusions between them induces maps on the
homology level f t1,t2

i : Hi(V(X, t1))→ Hi(V(X, t2)) for
any t1 ≤ t2. The ith persistent homology (PH) of X with
respect to the Vietoris-Rips construction is defined to be the
collection of all these ith homology groups, together with
the respective induced maps between them, and denoted by
PHi(V(X, •)). PH can therefore be viewed as a tool that
keeps track of topological features such as holes and voids
on multiple scales. For a more comprehensive introduction
to PH in the context of machine learning, see Hensel et al.
(2021). The so-called ‘creation’ and ‘destruction’ times
of these features are summarised in a persistence diagram
D ⊂ R×R∪{∞}, where any point (b, d) ∈ D corresponds
to a homology class that arises at filtration step b, and lasts
until filtration step d. The difference |d − b| is referred to
as the lifetime or eponymous persistence of this homology
class. There are several distance measures for comparing
persistence diagrams, one of them being the bottleneck dis-
tance, defined as dB(D,D′) := infγ supx∈D ∥x− γ(x)∥∞,
where γ ranges over all bijections between D and D′.

Stratified spaces. Manifolds are widely studied and par-
ticularly well-behaved topological spaces as they locally
resemble Euclidean space near any point. However, spaces
that arise naturally often violate this local homogeneity
condition (see Fig. 2 for an example). Stratified spaces gen-
eralise the concept of a manifold to address singular spaces.
Being intrinsically capable of describing a wider class of
spaces, we argue that stratified spaces are the right tool to

1For readers familiar with persistent homology, we depart from
the usual convention of using ϵ as the threshold parameter since we
use it for the scale of our persistent local homology calculations.
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Figure 2: (a): Non-manifold space. (b): Annulus around a
regular point x. (c): Annulus around a singular point. The
neighbourhood around y is different from all others.

analyse real-world data. In particular, the intrinsic dimen-
sion of points is allowed to vary in this setting, thus leading
to high flexibility in comparison to manifolds. Subsequently,
we define stratified spaces in the setting of simplicial com-
plexes. A stratified simplicial complex of dimension 0 is a
finite set of points with the discrete topology. A stratified
simplicial complex of dimension n is an n-dimensional sim-
plicial complex X , together with a filtration of closed sub-
complexes X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · ⊃ X−1 = ∅
such that Xi \Xi−1 is an i-dimensional manifold for all i,
and such that every point x ∈ X possesses a distinguished
local neighbourhood U ∼= Rk×c◦L in X , where L is a com-
pact stratified simplicial complex of dimension n−k−1 and
c◦ refers to the open cone construction (see Appendix A.1).

If there exists a neighbourhood U of x that is homeo-
morphic to Rn, we say that x is a regular point, otherwise
we call x a singularity.

If X is a manifold, then independently of the point under
consideration, L is given by a sphere since for a manifold,
any point is regular by definition. By contrast, a small
neighbourhood of the pinch point in a pinched torus can
be described as the open cone on the disjoint union of two
circles, and therefore the link L is given by S1 ⊔ S1 in
this case, whose homology is different from homology of
the link of any other point in the pinched torus (which is
just given by a circle for every other point). The insets in
Fig. 1 (left) depict the different neighbourhoods.

Local homology. We now formalise the idea of tracking
the homology of a link of a point, following the previous
description. Intuitively, the local homology of a point is ob-
tained by the homology of an infinitesimal small punctured
neighbourhood around the point (see Appendix A.3 for a
more rigorous description). One can show that the local
homology of a singularity usually differs from the local ho-
mology of a regular point. In particular, points that are of
different intrinsic dimensions with respect to the stratified
simplicial complex can be distinguished by local homology;
this includes the disjoint union of manifolds of possibly
varying dimensions. This observation motivates and justi-
fies using local homology for detecting neighbourhoods of
singular points, and serves as the primary motivation for our
novel Euclidicity measure in Section 4.2.
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3. Related Work
While manifold learning is concerned with the development
of algorithms that extract geometric information under the
assumption that the given data lie on a manifold, recent
work starts to question this assumption. Brown et al. (2023),
for instance, introduce the union of manifolds hypothesis,
which augments the manifold hypothesis to spaces that can
be modelled as (disjoint) unions of manifolds. Intrinsic
dimension is thus allowed to vary across connected compon-
ents of such a space. However, singularities are excluded
under this assumption, whereas our method detects the cor-
rect intrinsic dimension for large classes of singular spaces.
We assume a fundamental ‘singularity-centric’ perspective
in this paper and argue that a multi-scale analysis of the local
geometry and topology of data is necessary. In this context,
methods from topological data analysis have started attract-
ing attention in machine learning (Hensel et al., 2021). This
is particularly due to persistent homology, which captures
geometrical and topological properties of the underlying
data set on different scales (Bubenik et al., 2020; Turkeš
et al., 2022). The idea of tracking objects on multiple scales
can at least be traced back to (Koenderink & van Doorn,
1986; Lindeberg, 1994), with scale space theory playing an
eminent role in computer vision. However, the utility of
persistent homology in the context of geometric singularit-
ies in data only came up more recently, since early work in
persistent homology focuses predominantly on the simplific-
ation of functions on manifold domains (Edelsbrunner et al.,
2002). While some research already discusses the utility of
persistent homology for general unsupervised data analysis
workflows (Chazal et al., 2013; Rieck & Leitte, 2017; 2016;
2015), it focuses more on global structures, whereas singu-
larities are inherently local. We give a brief overview of
methods in the emerging field of topology-driven singularity
detection, outlining the differences to our approach below.

Topology-driven singularity detection. Several works as-
sume a local perspective on homology to detect information
about the intrinsic dimensionality of the data or the presence
of certain singularities. Rieck et al. (2020) use pre-defined
stratifications and persistent intersection homology, a tech-
nique developed by Bendich & Harer (2011), whereas Fasy
& Wang (2016) and Bendich (2008) both develop persistent
variants of local homology. By contrast, Stolz et al. (2020)
approximate local homology as the absolute homology of
a small annulus of a given neighbourhood, resulting in an
algorithm for geometric anomaly detection (which requires
knowing the intrinsic dimension of the data set). Moreover,
Bendich et al. (2007) employ persistence vineyards, i.e. con-
tinuous families of persistence diagrams, to assess the local
homology of a point in a stratified space, whereas Dey et al.
(2014) use local homology to estimate the (global) intrinsic
dimension of hidden, possibly noisy manifolds.

Key differences to existing approaches. While existing
methods overall underscore the relevance of a local perspect-
ive, as well as the use of notions such as stratified spaces,
our approach differs from them in essential components.
In comparison to all aforementioned contributions, we cap-
ture additional local geometric information: we consider
multiple scales of locality in a persistent framework for
local homology. Concerning the overall construction, Stolz
et al. (2020) is the closest to our method. However, the
authors assume that the intrinsic dimension is known and
the proposed algorithm uses one global scale, whereas our
approach (i) operates in a multi-scale setting, (ii) provides
local estimates of intrinsic dimensionality of the data space,
and (iii) incorporates model spaces that serve as a compar-
ison. We can thus measure the deviation from an idealised
manifold, requiring fewer assumptions on the structure of
the input data (see Appendix A.7 for a comparison).

4. Methods
Our framework TARDIS (Topological Algorithm for Robust
DIscovery of Singularities) consists of two parts: (i) a
method to calculate a local intrinsic dimension of the data,
and (ii) Euclidicity, a measure for assessing the multi-scale
deviation from a Euclidean space. TARDIS is based on the
assumption that the intrinsic dimension of data may not be
constant across the data set, and is thus best described by
local measurements, i.e. measurements in a small neighbour-
hood of a given point. Since there is no canonical choice for
the magnitude of such a neighbourhood, TARDIS analyses
data on multiple scales. Our main idea involves construct-
ing a collection of local (punctured) neighbourhoods for
varying locality scales, and calculating their topological
features. This procedure allows us to approximate local to-
pological features (specifically, local homology) of a given
point, which we use to measure the intrinsic dimensional-
ity of a space. Moreover, by calculating the distance to
Euclidean model spaces, we are capable of detecting singu-
larities in a large range of input data sets. For the subsequent
description of TARDIS, we only assume that data can be
represented as a finite metric space (i.e. as a point cloud).

4.1. Persistent Intrinsic Dimension

For a finite metric space (X,d) and x ∈ X, let Bs
r(x) :=

{y ∈ X | r ≤ d(x, y) ≤ s} denote the intrinsic annulus
of x in X with respect to radii r and s. Moreover, let
F denote a procedure that takes as input a finite metric
space and outputs an ascending filtration of topological
spaces—such as a Vietoris–Rips filtration. By applying
F to the intrinsic annulus of x, we obtain a tri-filtration
(F(Bs

r(x), t))r,s,t, where t corresponds to the respective
filtration step that is determined by F . Note that this tri-
filtration is covariant in s and t, but contravariant in r; we
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Figure 3: The intrinsic annulus Bs
r(x) around a point x in a

metric space (X,d), as well as one filtration step for some
choice of t. By adjusting r and s, we obtain a tri-filtration.

denote it by F(B•
•(x), •). Applying ith homology to this

filtration yields a tri-parameter persistent module that we
call ith persistent local homology (PLH) of x, denoted by
PLHi(x;F) := PHi(F(B•

•(x), •)). Fig. 3 illustrates how
to obtain an annulus from a data set and depicts one step of
the filtration process. To the best of our knowledge, this is
the first time that PLH is considered as a multi-parameter
persistence module. Since the Vietoris–Rips filtration is
the pre-eminent filtration in TDA, we will use PLHi(x) :=
PLHi(x;V) as an abbreviation. Before developing ways to
detect singularities, we first show that our PLH formulation
enjoys stability properties similar to the seminal stability
theorem in persistent homology (Cohen-Steiner et al., 2007),
making it robust to small parameter changes.

Theorem 1. Given a finite metric space X and x ∈
X, let Bs

r(x) and Bs′

r′ (x) denote two intrinsic annuli
with |r − r′| ≤ ϵ1 and |s − s′| ≤ ϵ2. Furthermore,
let D,D′ denote the persistence diagrams correspond-
ing to PHi(V(Bs

r(x), •)) and PHi(V(Bs′

r′ (x), •)). Then
1
2 dB(D,D

′) ≤ max{ϵ1, ϵ2}.

For a finite set of pointsX ⊂ RN , we define the persistent
intrinsic dimension (PID) of x ∈ X at scale ϵ as ix(ϵ) :=
max{i ∈ N | ∃ r < s < ϵ s.t. PHi−1(F(Bs

r(x), •)) ̸= 0}.
This measure characterises the intrinsic dimension of data
in a multi-scale fashion. We can also prove that we recover
the correct dimension in case our data set constitutes a
manifold sample.

Theorem 2. Let M ⊂ RN be an n-dimensional compact
smooth manifold and letX := {x1, . . . , xS} be a collection
of uniform samples from M . For a sufficiently large S and
F = V , there exist constants ϵ1, ϵ2 > 0 such that ix(ϵ) = n
for all ϵ1 < ϵ < ϵ2 and any point x ∈ X. Moreover, ϵ1 can
be chosen arbitrarily small by increasing S.

Theorem 2 implies that ix(ϵ) computes the correct intrinsic
dimension of M in a certain range of values ϵ > 0, provided
the sample size is sufficiently large. Moreover, ix(ϵ) per-
sists in this range, which suggests considering a collection
of ix(ϵ) for varying ϵ to analyse the intrinsic dimension of
x. We also have the following corollary, which specific-

ally addresses stratified spaces such as the ‘pinched torus,’
implying that our method can correctly detect the intrinsic
dimension of individual strata. PID is thus capable of hand-
ling large classes of ‘non-manifold’ data sets.
Corollary 1. Let X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · ⊃
X−1 = ∅ be an n-dimensional compact stratified simplicial
complex, s.t. Xi \Xi−1 is smooth for every i. For a fixed i,
letXi := {x1, . . . , xS} be a collection of uniform samples
from Xi \ Xi−1. For a sufficiently large S and F = V ,
there are constants ϵ1, ϵ2 > 0 such that ix(ϵ) = i for all
ϵ1 < ϵ < ϵ2 and any point x ∈ Xi. Moreover, ϵ1 can be
chosen arbitrarily small by increasing S.

4.2. Euclidicity

Knowledge about the intrinsic dimension of a neighbour-
hood is crucial for measuring to what extent such a neigh-
bourhood deviates from being Euclidean. We refer to this
deviation as Euclidicity, with the understanding that low
values indicate Euclidean neighbourhoods while high val-
ues indicate singular regions of a data set. Euclidicity can
be calculated without stringent assumptions on manifold-
ness, requiring only an estimate of the intrinsic dimension n
of x. The previously-described PID estimation procedure
is applicable in this setting and may be used to obtain n,
for example by calculating statistics on the set of ix(ϵ) for
varying locality parameters ϵ. Euclidicity can also use other
dimension estimation procedures, which is advantageous
when additional knowledge about the expected structures is
available (see Camastra & Staiano (2016) for a survey).

The main idea of Euclidicity involves assessing how far a
given neighbourhood of a point x is from being Euclidean.

To this end, we compare it to a Euclidean model space,
measuring the deviation of their corresponding persistent
local homology features. We first define the Euclidean annu-
lusEBs

r(x) of x for parameters r and s to be a set of random
uniform samples of {y ∈ Rn | r ≤ d(x, y) ≤ s} such that
|EBs

r(x)| = |Bs
r(x)|. Here, r and s correspond to the inner

and outer radius of the annulus, respectively. For r′ ≤ r and
s ≤ s′ we extend EBs

r(x) by sampling additional points
to obtain EBs′

r′(x) with |EBs′

r′(x)| = |Bs′

r′ (x)|. Iterating
this procedure leads to a tri-filtration (F(EBs

r(x), t))r,s,t
for any filtration F , following our description in Section 4.1.
We now define the persistent local homology of a Euclidean
model space as

PLHEi (x;F) := PHi(F(EB•
•(x), •)). (1)

Again, for a Vietoris–Rips filtration V , we use a short-
form notation, i.e. PLHEi (x) := PLHEi (x;V). Notice that
PLHEi (x) implicitly depends on the choice of intrinsic di-
mension n, and on the samples that are generated randomly.
To remove the dependency on the samples, we consider
PLHEi (x) to be a sample of a random variable PLHE

i (x).
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Let D(·, ·) be a distance measure for 3-parameter persist-
ence modules, such as the interleaving distance (Lesnick,
2015). We then define the Euclidicity of x, denoted by
E(x), as the expected value of these distances, i.e.

E(x) := E
[
D
(
PLHn−1(x),PLHE

n−1(x)
)]

. (2)

This quantity essentially assesses how far x is from admit-
ting a regular Euclidean neighbourhood. The choice of F
and D(·, ·) leaves us multiple ways of implementing Eq. (2)
in practice. In the following, we describe one particular
implementation with beneficial robustness properties.

Implementation. Calculating E(x) requires different
choices, namely (i) a range of locality scales, (ii) a filtration,
and (iii) a distance metric between filtrations D. Using a
grid Γ of possible radii (r, s) with r < s, we approximate
Eq. (2) using the mean of the bottleneck distances of fibred
Vietoris–Rips barcodes, i.e.

E(x) ≈ D
(
PLHi(x),PLH

E
i (x)

)
:=

1

C

∑
(r,s)∈Γ

dB
r,s (3)

where C is equal to the cardinality of the grid, and
dB

r,s := dB(PHi(V(Bs
r(x), •)),PHi(V(EBs

r(x), •))),
with PLHEi (x) referring to a sample from a Euclidean an-
nulus of the same size as the intrinsic annulus around x.
Eq. (3) can be implemented using effective persistent homo-
logy calculation methods (Bauer, 2021), thus permitting an
integration into existing TDA and machine learning frame-
works (The GUDHI Project, 2015; Tauzin et al., 2020).
Appendix A.4 provides pseudocode implementations, while
Section 5 discusses how to pick these parameters in practice.
We make our framework publicly available.2

As the following theorem shows, our approximation of
Eq. (3) is justified in the sense that for smooth manifolds,
E(x) tends to be arbitrarily small in a large-sample regime.

Theorem 3. Let M ⊂ RN be a smooth n-dimensional
manifold and letX ⊂M be a finite sample of size S := |X|.
For a given ϵ > 0, sufficiently large S and a point x ∈ X,
there exists sϵ > 0 that only depends on ϵ and the curvature
of x (w.r.t. M ), such that the approximation of E(x) via
Eq. (3) is bounded above by ϵ, for any grid Γ with maximum
outer radius sϵ.

Properties. The main appeal of our formulation is that cal-
culating both PID and Euclidicity does not require strong as-
sumptions about the input data: we only assume that the in-
trinsic dimension n of the data is significantly lower than the
ambient dimension N . Treating dimension as a local quant-
ity that may vary across multiple scales makes Euclidicity
broadly applicable. Moreover, as we showed in Section 4.1,

2See the supplementary materials for the code and experiments.

our method is guaranteed to yield the right values for man-
ifolds and stratified simplicial complexes. This increases
both the practical applicability and expressivity, enabling
our framework to handle unions of manifolds of varying
dimensions, for instance. Euclidicity thus generalises to a
larger class of spaces than existing approaches (Brown et al.,
2023), permitting a more fine-grained structural assessment.

Limitations. Our implementation of Euclidicity makes
use of the Vietoris–Rips complex, which is known to grow
exponentially with increasing dimensionality. While all
calculations of Eq. (2) can be performed in parallel—thus
substantially improving scalability vis-à-vis persistent ho-
mology on the complete input data set, both in terms of
dimensions and in terms of samples—the memory require-
ments for a full Vietoris–Rips complex construction may
still prevent our method to be applicable for some high-
dimensional data sets. This can be mitigated by using a
different filtration (Anai et al., 2020; Sheehy, 2013). Our
proofs do not assume a specific filtration, and we leave
the derivation of filtration-specific theoretical properties for
future work. Finally, we remark that the reliability of the
Euclidicity score depends on the validity of the intrinsic
dimension; otherwise, the comparison does not take place
with respect to the appropriate model space.

5. Experiments
We demonstrate the expressivity of TARDIS in different
settings, showing that it (i) calculates the correct intrinsic
dimension, and (ii) detects singularities when analysing data
sets with known singularities. We also conduct a brief com-
parison with one-parameter approaches, showcasing how
our multi-scale approach results in more stable outcomes.
Finally, we analyse Euclidicity scores of benchmark and
real-world datasets, giving evidence that our technique can
be used as a measure for the geometric complexity of data.

5.1. Parameter Selection

Since Eq. (2) intrinsically incorporates multiple scales
of locality, we need to specify an upper bound for the
radii (rmin, rmax, smin, smax) that define the respective an-
nuli in practice. Given a point x, we found the following
procedure to be useful in practice: we set smax, i.e. the
maximum of the outer radius, to the distance to the kth
nearest neighbour of a point, and rmin, i.e the minimum in-
ner radius, to the smallest non-zero distance to a neighbour
of x. Finally, we set the minimum outer radius smin and
the maximum inner radius rmax to the distance to the ⌊k3 ⌋th
nearest neighbour. While we find k = 50 to yield sufficient
results, spaces with a high intrinsic dimension may require
larger values. The advantage of using such a parameter
selection procedure is that it works in a data-driven manner,
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Table 1: Dimensionality estimates for the concatenation of
S1 and S2, denoted by S1 ∨ S2. Our PID measure is more
capable of detecting the changes in dimensionality that arise
from the concatenation.

METHOD MIN µ± σ MAX

1D

lpca 1.00 1.42±0.78 3.00
twoNN 0.83 1.00±0.07 1.20
DANCo 1.00 1.00±0.01 1.16
PID 1.00 1.12±0.24 1.97

2D

lpca 2.00 2.88±0.32 3.00
twoNN 1.01 1.90±0.36 2.53
DANCo 1.00 2.10±0.32 3.00
PID 1.52 1.95±0.06 2.08

accounting for differences in density. Since our approach is
inherently local, we need to find a balance between sample
sizes that are sufficiently large to contain topological in-
formation, while at the same time being sufficiently small
to retain a local perspective. We found the given range to
be an appropriate choice in practice. As for the number
of steps, we discretise the parameter range using 20 steps
by default. Higher numbers are advisable when there are
large discrepancies between the radii, for instance when
smax ≫ rmax.

5.2. Persistent Intrinsic Dimension is Expressive

We first analyse the behaviour of persistent intrinsic dimen-
sion (PID) on samples from a space obtained by concat-
enating S1 (a circle) and S2 (a sphere) at a gluing point.
Table 1 shows a comparison of PID with state-of-the-art
dimensionality estimators.3 We find that PID outperforms
all estimators in terms of mean and standard deviation for
the 2D points, thus correctly indicating that the majority of
all points admit non-singular 2D neighbourhoods. For the
1D points, the mean of the dimensionality estimate of PID
is still close to the ground truth, while its standard deviation
and maximum correctly capture the fact that some 1D points
are situated closer to the gluing point. Fig. 4 exemplifies
this behaviour and shows a comparison between one of the
estimators and our PID measure. PID is more nuanced in
capturing changes in local intrinsic dimension as one ap-
proaches the gluing point, correctly showing that points of
the sphere admit 2D neighbourhoods. This behaviour is in
line with our philosophy of considering dimensionality as
an inherently local phenomenon. In case such behaviour is
not desirable for a specific data set, Euclidicity calculations
support any dimensionality estimator; since such estimators

3Method names are taken from the scikit-dimension
toolkit. See Appendix A.6 for more details.

0.5 1 1.5 2 2.5

(a) twoNN

0.5 1 1.5 2 2.5

(b) PID

Figure 4: Dimensionality estimates. PID is more nuanced
in capturing changes in dimensionality, assigning ≈ 1 to
almost all points of the circle, i.e. S1, while highlighting that
points closer to S2 exhibit an increase in dimensionality.

do not come with strong guarantees such as Theorem 2,
their choice must be ultimately driven by the data set at
hand. See Appendix A.6 for a more detailed analysis of
these estimates.

In practice, the sample density may not be sufficiently high
for Theorem 2 to apply. This means that there may appear
artefact homological features in dimensions higher than the
intrinsic dimension of a given space. We thus recommend
to only consider features that exceed a certain persistence
threshold in comparison to the persistence of features of
lower dimension: for any data point x and the respective
intrinsic annulus Bs

r(x), we suggest to eliminate all topolo-
gical features whose lifetimes are smaller than the maximum
lifetime of features in one dimension below. This results in
markedly stable estimates of intrinsic dimension, which are
less prone to overestimations.

5.3. Euclidicity Captures Known Singularities

Before applying Euclidicity to high-dimensional spaces with
unknown characteristics, we first analyse its behaviour on
spaces with known singularities. Fig. 1 shows that Euclidi-
city is capable of detecting the singularity of the ‘pinched
torus.’ Of particular relevance is the fact that Euclidicity
also highlights that points in the vicinity of the singular
point are not fully regular. This is an important property for
practical applications since it implies that Euclidicity can
detect such isolated singularities even in the presence of
sampling errors.

Another prototypical example of singular spaces is given by
Sn ∨ Sn, the wedge of two n-dimensional spheres, which
is obtained by gluing them together at one point. Denoting
the gluing point by x0, for a suitable triangulation of X =
Sn ∨ Sn, this space can be stratified by X ⊃ {x0}. To
assess the utility of TARDIS, we apply it to samples of

6
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Figure 5: (a): Euclidicity scores of wedged spheres
for different dimensions. High values indicate singular
points/neighbourhoods. The Euclidicity of the singular point
always constitutes a clear positive outlier. In 2D, Euclidi-
city (b) results in a clearly-delineated singular region.

such wedged spheres of dimensions {2, 3, 4}, calculating
their respective Euclidicity scores. Since larger intrinsic
dimensions require higher sample sizes to maintain the same
density, we start with a sample size of 20000 in dimension
2 and increase it consecutively by a factor of 10. We then
calculate Euclidicity of 50 random points in the respective
data set, and additionally for the singular point x0.

Fig. 5a shows the results of our experiments. We observe
that the singular point exhibits a significantly higher Euclidi-
city score than the random samples. Moreover, we find that
Euclidicity scores of non-singular points exhibit a high de-
gree of variance across the data, which is caused by the fact
that the sampled data does not perfectly fit the underlying
space the points are being sampled from. This strengthens
our main argument: assessing whether a specific point is Eu-
clidean does not require a binary decision but a continuous
measure such as Euclidicity.

Stability. Theorem 1 predicts that Euclidicity estimates
are stable. Given the use of mini-batches in machine
learning, we first assess whether Euclidicity is robust to-
wards sampling: repeating the calculations for the ‘pinched
torus’ over different batches results in highly similar dis-
tributions that are not distinguishable according to Tukey’s
range test (Tukey, 1949) at the α = 0.05 confidence level.
Moreover, choosing larger locality scales still enables us
to detect singularities at higher computational costs and in-
corporating larger parts of the point cloud. Please refer to
Appendix A.5 for a more detailed discussion of this aspect.

Comparison to single-parameter approach. We find
that our Euclidicity measure also leads to significantly more
stable results than a comparable single-parameter approach
for geometry-based anomaly detection (Stolz et al., 2020).
We analyse this behaviour in more detail in Appendix A.7,
observing that a single-parameter approach, which exam-
ines data with a constant global scale, results in many ‘false
positives,’ i.e. points with high anomaly scores that in fact

(a) MNIST

(b) FASHIONMNIST

Figure 6: Euclidicity captures local sample complexity in
an unsupervised manner. From left to right: sample images
exhibiting low, median, and high Euclidicity, respectively.

do admit a Euclidean neighbourhood. This behaviour will
only be exacerbated in higher dimensions and sparser data,
highlighting that the use of multiple locality scales by Euc-
lidicity is advantageous.

The preceding experiments verified PID and Euclidicity in
terms of expressivity, i.e. detecting singularities in spaces
with a known ground truth, and robustness. Hence, our
subsequent experiments will proceed with the analysis of
high-dimensional spaces, exemplifying potential use cases
of Euclidicity.

5.4. Euclidicity of High-Dimensional Spaces

To test TARDIS in an unsupervised setting, we calculate
Euclidicity scores for the MNIST and FASHIONMNIST
data sets, selecting mini-batches of 1000 samples from a
subsample of 10000 random images of these data sets. We
‘flatten’ all greyscale images, thus representing each image
as a high-dimensional point, and a collection of images as a
point cloud, for which we can calculate Euclidicity values.
This procedure follows common practice in dimensionality
reduction (McInnes et al., 2018; Moor et al., 2020). Follow-
ing Pope et al. (2021), we assume an intrinsic dimension
of 10; moreover, we use k = 50 neighbours for local scale
estimation. To ensure that our results are representative, we
repeat all calculations for five different subsamples. Euclidi-
city scores range from [1.1, 5.3] for MNIST, and [1.3, 5.6]
for FASHIONMNIST. The scores of the two datasets appear
to be following different distributions (see Appendix A.8 for
a visualisation and a detailed depiction of the distributions).

Fig. 6 shows a selection of 9 images, corresponding to
the lowest, median, and highest Euclidicity scores, respect-
ively. We observe that high Euclidicity scores correspond

7
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Figure 7: A UMAP (McInnes et al., 2018) embedding of the
MNIST data, showing Euclidicity scores and class labels.

to images with a high degree of non-linearity, whereas low
Euclidicity scores correspond to images that exhibit less
complex structures: for MNIST, these are digits of ‘1.’
Interestingly, we observe the same phenomenon for FASH-
IONMNIST, where images with low Euclidicity (‘pants’)
possess less geometric complexity in contrast to images
with high Euclidicity. Since low Euclidicity can also be seen
as an indicator of how close a neighbourhood is to being
locally linear, this finding hints at the existence of simple
substructures in the data, prompting the use of Euclidicity
as an unsupervised measure of geometric complexity.

To analyse the relationship between geometric complexity
and Euclidicity, we focus on MNIST. Fig. 7 shows an em-
bedding of the data, with labels and normalised Euclidicity
scores (by the maximum) highlighted (Euclidicity was only
calculated on the raw data; the embedding is just used for
visualisation purposes). We find that low Euclidicity scores
are prevalent in clusters of ‘1’s, whereas ‘5’s are assigned
both lower than average and higher than average Euclidicity
scores (similar patterns hold for other classes). This lends
credence to considering MNIST to consist of a union of
manifolds, which are, however, not necessarily split along
the different classes of digits (meaning that, as our scores
indicate, even images having the same label may not ‘live’
on the same manifold).

To further assess this hypothesis, we analyse the connection
between a classifier’s ability to correctly classify a given
sample from the test set, and its corresponding normalised
Euclidicity score. To this end, we trained a simple neural
network classifier for both MNIST and FASHIONMNIST,
and subsequently compared Euclidicity scores of correctly
and incorrectly classified samples. We note that the misclas-
sified samples admit Euclidicity scores that are significantly
higher than a random equally-sized sample of the correctly
classified images. For MNIST, the average Euclidicity of
correctly classified samples is 0.33, whereas misclassified
samples admit an average score of 0.39. The respective av-
erages for FASHIONMNIST are 0.31 and 0.35, respectively.
Welch’s t-test indicates significance of these results; please

2

3

4

(a) 10,000 points (b) 5,000 points (c) 1,000 points

Figure 8: PHATE embeddings of a cytometry data set, with
colours based on Euclidicity. Euclidicity highlights dense
non-singular regions and remains stable under subsampling
the iPSC data set. Minor variations in the point cloud shape
are due to the PHATE embedding algorithm; Euclidicity
was always calculated on the raw data.

refer to Appendix A.8 for details on the model architecture
and statistical significance. This insight encourages future
uses of Euclidicity in models to improve or explain classi-
fication issues, either as an unsupervised preprocessing step,
or by incorporating Euclidicity into the model architecture
itself via appropriate loss terms.

5.5. Euclidicity of Cytometry Data

To highlight the utility of Euclidicity in unsupervised rep-
resentation learning, we also calculate it on an induced
pluripotent stem cell (iPSC) reprogramming data set (Zun-
der et al., 2015). The data set consists of 33 variables and
around 220,000 samples; it depicts a progression of so-
called fibroblasts diverging, and splitting into two different
lineages. The data set is known to contain branching struc-
tures (Bhaskar et al., 2022) that can best be extracted using
PHATE (Moon et al., 2019), a non-linear dimensionality
reduction algorithm. We only employ this algorithm for
visualisation purposes; all Euclidicity calculations are per-
formed on the original data. We use twoNN to estimate
dimensionality, obtaining a mean intrinsic dimension of 16,
and select parameters as described in Section 5.4.

Fig. 8a shows an embedding obtained via PHATE and the
Euclidicity scores of the original data. We find that high
Euclidicity scores occur in regions that exhibit a lower dens-
ity in the PHATE embedding; such points turn out to be
situated in lower-dimensional subspaces.4 We verify this
fact using the twoNN dimensionality estimates depicted in
Fig. 9. More specifically, we calculated the intrinsic di-
mension for the subsample, observing that the interquartile

4However, low-density regions in the PHATE visualisation
need not necessarily correspond to low-density regions in the
original dataset.
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Figure 9: A comparison of intrinsic dimension estimates
computed for points in the iPSC dataset that admit low (top)
and high (bottom) Euclidicity scores.

range for the 1,000 points with highest Euclidicity is around
12–14, whereas the interquartile range of the 1,000 lowest
Euclidicity points ranges between around 13–16. Again,
we used the twoNN algorithm for intrinsic dimensionality
estimates (using k = 50 nearest neighbours). Since lower-
dimensional points in a space can be considered singular in
the sense of stratified spaces, this is further evidence for Euc-
lidicity to be a useful tool for detecting non-manifold regions
in data. Finally, we remark that our Euclidicity estimates
remain stable under subsampling. Fig. 8 depicts subsamples
of different sizes for which we calculated Euclidicity (on
the raw data, respectively, using PHATE to obtain embed-
dings). Euclidicity distributions remain stable and the same
phenomena are highlighted for each subsample.

This analysis constitutes a proof of concept, showcasing how
to use Euclidicity to ‘probe’ data sets and enrich general
unsupervised data analysis workflows.

6. Discussion
We present TARDIS, a framework for locally estimating
(i) the intrinsic dimension via PID, the persistent intrinsic
dimension, and (ii) the ‘manifoldness’ via Euclidicity, a
multi-scale measure of the deviation from Euclidean space
of point clouds. Our method is based on a novel formu-
lation of persistent local homology as a multi-parameter
approach, and we provide theoretical guarantees for it in
a dense sample setting. Our experiments showed signific-
ant improvements of stability compared to geometry-based
anomaly detection methods with fixed locality scales, and
we found that Euclidicity can detect singular regions in
data sets with known singularities. Moreover, using high-
dimensional benchmark and real-world data sets, we also
find that Euclidicity can serve as an unsupervised measure
of geometric complexity.

Future work. For future work, we envision two relevant
research directions. First and foremost will be the inclu-
sion of Euclidicity into machine learning models to make
them ‘singularity-aware.’ In light of our experiments in
Section 5.4 and Section 5.5, we believe that Euclidicity will

be particularly useful in unsupervised scenarios, or provide
an additional weight in classification settings (to ensure that
singular examples are being given lower confidence scores).
Moreover, Euclidicity could be used in the detection of ad-
versarial samples—a task for which knowledge about the
underlying topology of a space is known to be crucial (Jang
et al., 2020). As a second direction, we want to further
improve the properties of Euclidicity itself. To this end, we
plan to investigate if incorporating custom distance meas-
ures for three-parameter persistence modules, i.e. different
metrics for Eq. (3), lead to improved results in terms of sta-
bility, expressivity, and computational efficiency. Moreover,
we hypothesise that replacing the Vietoris–Rips filtration
will prove beneficial in reducing the number of samples for
calculating Euclidicity (Anai et al., 2020; Sheehy, 2013).
Along these lines, we also plan to derive theoretical results
that relate specific filtrations and the expressivity of the
corresponding Euclidicity measure. Another direction for
future research concerns the approximation of a manifold
from inherently singular data, i.e. finding the best mani-
fold approximation to a given data set with singularities.
This way, singularities could be resolved during the train-
ing phase of models, provided an appropriate loss function
exists. Euclidicity may thus serve as a metric for assessing
data sets, paving the way towards more trustworthy and
faithful embeddings.
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A. Appendix
A.1. Notation

Symbol Meaning

ϵ local annulus scale parameter
R real numbers
Hi ith (ordinary) homology functor (with Z/2Z coefficients)
H̃i ith reduced homology functor (with Z/2Z coefficients)
inf infimum
sup supremum
| · |∞ uniform (infinity) norm
n intrinsic dimension of the space under consideration
N ambient dimension of the space under consideration
lim−→ (categorical) colimit
Sk k-dimensional sphere
c◦X := X × (0, 1]/X × {1} open cone of a topological space X

A.2. Proofs of the Main Statements in the Paper

We restate the theorems from the main paper for the convenience of readers, along with their proofs, which were removed
for space reasons. We first prove the stability theorem, first stated on p. 4 in the main text, which shows that our method
enjoys stability properties with respect to radius changes of the intrinsic annuli.

Theorem 1. Given a finite metric spaceX and x ∈ X, let Bs
r(x) and Bs′

r′ (x) denote two intrinsic annuli with |r − r′| ≤ ϵ1
and |s − s′| ≤ ϵ2. Furthermore, let D,D′ denote the persistence diagrams corresponding to PHi(V(Bs

r(x), •)) and
PHi(V(Bs′

r′ (x), •)). Then 1
2 dB(D,D

′) ≤ max{ϵ1, ϵ2}.

Proof. The Hausdorff distance of two non-empty subsets A,B ⊂ X is dH(A,B) := inf{ϵ ≥ 0 | A ⊂ Bϵ, B ⊂ Aϵ},
where Aϵ = ∪a∈A{x ∈ X; d(x, a) ≤ ϵ} denotes the ϵ-thickening of A in X . Set ϵ := max{ϵ1, ϵ2}. By assumption,
Bs

r(x) ⊂ Bs′

r′ (x)ϵ and Bs′

r′ (x) ⊂ Bs
r(x)ϵ, i.e. dH(Bs

r(x), B
s′

r′ (x)) ≤ ϵ. Using the geometric stability theorem of persistence
diagrams (Chazal et al., 2014), we have 1

2 dB(D,D
′) ≤ dH(B

s
r(x), B

s′

r′ (x)), which proves the claim.

Next, we prove that our persistent intrinsic dimension (PID) measure is capable of capturing the dimension of manifolds
correctly, provided sufficiently many samples are present. This theorem was first stated on p. 4.

Theorem 2. Let M ⊂ RN be an n-dimensional compact smooth manifold and letX := {x1, . . . , xS} be a collection of
uniform samples from M . For a sufficiently large S and F = V , there exist constants ϵ1, ϵ2 > 0 such that ix(ϵ) = n for all
ϵ1 < ϵ < ϵ2 and any point x ∈ X. Moreover, ϵ1 can be chosen arbitrarily small by increasing S.

Proof. Let x ∈ X be an arbitrary point. Since M is a manifold, x admits a Euclidean neighbourhood U . Since M is smooth,
we can assume U to be arbitrarily close to being flat by shrinking it. Thus, we can find ϵ2 > 0 with Bs

r(x) ⊂ U for all
r, s < ϵ2 such that Hi(V(Bs

r(x), t)) = 0 for all i ≥ n, and all t. Hence, PHi(V(Bs
r(x), •)) = 0 for all i ≥ n, and therefore

ix(ϵ2) ≤ n. By contrast, for S sufficiently large, and r, s as before, there exists a parameter t such that V(Bs
r(x), t) is

homotopy-equivalent to an (n−1)-sphere, and so Hn−1(V(Bs
r(x), t)) admits a generator, i.e. it is non-trivial. Consequently,

PHn−1(V(Bs
r(x), •)) ̸= 0, and ix(ϵ2) = n. By further increasing S, we can ensure that the statement still holds when we

decrease ϵ2, which proves the two remaining claims.

Finally, we prove that Euclidicity, an in particular its approximation in our implementation, i.e. Eq. (3), is consistent when
dealing with manifolds in that it correctly assigns every point an infinitesimally small Euclidicity, provided a sufficient
number of samples is available. This theorem was first stated on p. 5.

Theorem 3. Let M ⊂ RN be a smooth n-dimensional manifold and letX ⊂M be a finite sample of size S := |X|. For a
given ϵ > 0, sufficiently large S and a point x ∈ X, there exists sϵ > 0 that only depends on ϵ and the curvature of x (w.r.t.
M ), such that the approximation of E(x) via Eq. (3) is bounded above by ϵ, for any grid Γ with maximum outer radius sϵ.

12



Topological Singularity Detection at Multiple Scales

Proof. Since M is a manifold, every point x admits a Euclidean neighbourhood U . Moreover, as M is smooth, we may
assume U to be arbitrarily close to being flat (by potentially shrinking it). Thus, we can find an sϵ with the desired properties
such that (i) Bsϵ

0 (x) ⊂ U ∩X, and (ii) dH(Bsϵ
0 (x),EBsϵ

0 (x)) ≤ ϵ
2 , where the latter condition can be achieved by increasing

S if necessary. Consequently, dH(Bs
r(x),EB

s
r(x)) ≤ ϵ

2 for any 0 ≤ r ≤ s ≤ sϵ, and by making use of the geometric
stability theorem (Chazal et al., 2014), the right-hand side of Eq. (3) reduces to

1

C

∑
(r,s)∈Γ

dB(PHi(V(Bs
r(x), •)),PHi(V(EBs

r(x), •))) ≤
2

C

∑
(r,s)∈Γ

dH(B
s
r(x),EB

s
r(x)) ≤ ϵ

for any grid Γ with the properties specified in the statement. This concludes the proof.

A.3. Local Homology

Local homology quantifies topological properties of infinitesimal small neighbourhoods of a fixed point. For a topological
space X and x ∈ X , its ith local homology group is defined as the categorical colimit Hi(X,X \x) := lim−→U

Hi(X,X \U),
where the direct system is given by the induced maps on homology that arise via the inclusion of (small) neighbourhoods
of x. Heuristically, a local homology class can be thought of as a homology class of an infinitesimal small punctured
neighbourhood of a point. When X is a simplicial complex, we may view x as a vertex in X , using subdivision if necessary.
Its star St(x) is defined to be the union of simplices in X that have x as a face, whereas its link Lk(x) consists of all
simplices in St(x) that do not have x as a face. By the excision axiom for homology, we have

Hi(X,X \ x) ∼= Hi(St(x),St(x) \ x). (4)

Since St(x) is contractible, the long exact reduced homology sequence of the pair (St(x),St(x) \ x) records exactness of

0 = H̃i(St(x))→ Hi(St(x),St(x) \ x)→ H̃i−1(St(x) \ x)→ H̃i−1(St(x)) = 0

for all i, and therefore Hi(St(x),St(x) \ x) ∼= H̃i−1(St(x) \ x). By noting that St(x) \ x deformation retracts to Lk(x),
and by summarising the previous observations, we obtain

Hi(X,X \ x) ∼= H̃i−1(Lk(x)). (5)

The key takeaway here is that the homology of Lk(x) will usually differ from the homology of a sphere, once Lk(x) is not
homotopy-equivalent to a sphere. For example, when x is an isolated singularity in a stratified simplicial complex X of
dimension n, then its distinguished neighbourhood is given by U ∼= c◦L. Thus, Lk(x) = L and Hi(X,X \x) = H̃i−1(L) by
Eq. (5), which is usually different from H̃i−1(S

n−1), when x does not admit a Euclidean neighbourhood in the appropriate
dimension. In particular, points in a stratified simplicial complex that lie in strata of different dimensions can be distinguished
in such a way, since homology of a sphere Sk records precisely one non-trivial generator in homology degree k. This
observation motivates and justifies using local homology for detecting non-Euclidean neighbourhoods, and serves as the
primary motivation for our Euclidicity measure in Section 4.2.

A.4. Pseudocode

We provide brief pseudocode implementations of the algorithms discussed in Section 4. In the following, we use #Bari(X)
to denote the number of i-dimensional persistent barcodes ofX (w.r.t. the Vietoris–Rips filtration, but any other choice of
filtration affords the same description). Algorithm 1 explains the calculation of persistent intrinsic dimension (see Section 4.1
in the main paper for details). For the subsequent algorithms, we assume that the estimated dimension of the intrinsic
dimension of the data is n. We impose no additional requirements on this number; it can, in fact, be obtained by any choice
of intrinsic dimension estimation method. As a short-hand notation, for pi = PHn−1(V(EB•

•(x), •)) w.r.t. some sample of
{y ∈ Rn | r ≤ d(x, y) ≤ s}, we denote by pr,si = PHn−1(V(EBs

r(x), •)) the respective fibred persistent local homology
barcode (calculated w.r.t. the same sample). Algorithm 2 then shows how to calculate the Euclidicity values, following
Eq. (2) and one of its potential implementations, given in Eq. (3).

A.5. Stability of Euclidicity Estimates

Fig. 10 shows that Euclidicity is robust under sampling; repeating the calculations for smaller batches of the ‘pinched torus’
data set (500 points each) still lets us detect the singularity and its neighbours reliably. This robustness is an important
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Algorithm 1 An algorithm for calculating the persistent intrinsic dimension (PID)

Require: x ∈ X, smax, ℓ.
1: for s ∈ Γ do {Iterate over the parameter grid}
2: ix(s)← 0
3: for r < s ∈ Γ do
4: for i = 1, . . . , N − 1 do
5: Calculate #Bari(B

s
r(x))

6: if #Bari(B
s
r(x)) > 0 then

7: ix(s)← i+ 1
8: end if
9: end for

10: end for
11: return ix(s)
12: end for

Algorithm 2 An algorithm for calculating the Euclidicity values δjk

Require: x ∈ X, smax, ℓ, n, {p1, . . . , pm}.
1: for j = 1, . . . ,m do
2: for k = j + 1, . . . ,m do
3: for s ∈ Γ do
4: for r ∈ Γ, r < s do
5: Calculate dB(p

r,s
j , pr,sk ) {Calculate bottleneck distance}

6: return dB(p
r,s
j , pr,sk )

7: end for
8: end for
9: Calculate D(pj , pk) {Evaluate Eq. (3)}

10: return D(pj , pk)
11: end for
12: end for
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Figure 10: Boxplots of the Euclidicity values of different random samples of the ‘pinched torus’ data set. While each sample
invariably exhibits some degree of geometric variation, we are able to reliably identify the singularity and its neighbourhood.

14



Topological Singularity Detection at Multiple Scales
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(b) smax = 0.65
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Figure 11: Modifying the outer radius smax still enables us to detect the singularity of the ‘pinched torus.’ Larger radii,
however, progressively increase the field of influence of our method, thus starting to assign high Euclidicity values to larger
regions of the point cloud.
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Figure 12: Histograms of the Euclidicity values for the point clouds shown in Fig. 11. Larger radii result in the distribution
accumulating more probability mass at higher Euclidicity values, making the singularity detection procedure less local (but
still succeeding in detecting the singularity and its environs).
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Figure 13: Histograms of the Euclidicity values for varying point sample densities. Each diagram represents Euclidicity
values of 1000 random samples in the respective data space.
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(a) PID (b) twoNN

Figure 14: Even for large values of k, PID still does not overestimate the local dimensionality of the data, exhibiting a clear
distinction between the circle and the sphere, respectively.

property in practice where we are dealing with samples from an unknown data set whose shape properties we want to capture.
Euclidicity enables us to perform these calculations in a robust manner. Following the brief discussion in Section 5.1, we
show the results of varying smax, the outer radius of the local annulus, for the ‘pinched torus’ data set. Fig. 11 depicts
point clouds of 1000 samples; we observe that the singularity, i.e. the ‘pinch point,’ is always detected. For larger radii,
however, this detection becomes progressively more global, incorporating larger parts of the point cloud. Fig. 12 depicts
the corresponding histograms; we observe the same shift in probability mass towards the tail end of the distribution. For
extremely large annuli, we estimate that we lose a clear distinction between singular values and non-singular values. Our
data-driven parameter selection procedure is thus to be preferred in practice since it incorporates data density. However,
even for markedly varying densities, we find that Euclidicity leads to reasonably stable results, as can be seen in Fig. 13.
Here, we calculated Euclidicity scores for the pinched torus for varying data sample densities of 50000, 75000 and 100000
samples. Each diagram shows the histogram of Euclidicity values for 1000 random samples in the respective data space.
Although the histograms differ, the distributions exhibit the same overall characteristics.

A.6. Comparison of PID With Other Dimension Estimates

In order to assess the quality of PID, we decided to test its performance on a space that is both singular and has non-constant
dimension. The data space we chose consists of 2000 samples of S1 ∨ S2, i.e. a 1-sphere glued together with a 2-sphere at a
certain concatenation point. We then applied the PID procedure for a maximum locality scale that was given by the k nearest
neighbour distances, for k ∈ {25, 50, 75, 100, 125, 150, 175, 200}. We assigned to each point the average of the PID scores
at the respective scales that are less than or equal to the k nearest neighbour bound. Subsequently, we compared the results
with other local dimension estimates for the respective number of neighbours. The methods that were chosen for comparison
include lpca, twoNN, KNN, and DANCo; we used the respective implementation from the scikit-dimension Python
package.5

Fig. 14a shows the PID results for a maximum locality scale of 200 neighbours, with colours showing the estimated
dimension values for each point. Overall, the correct intrinsic dimension is detected for most of the points. However, points
that lie close to the singular point show a PID value between 1 and 2. Similarly to what we already discussed for Euclidicity,
PID should therefore also be interpreted as a measure that incorporates the intrinsic dimension of a point on multiple scales
of locality. For real-world data, the dimension will generally change when changing the locality scale. However, since there
is no canonical choice of scale, we believe that any such scale provides valuable information about the intrinsic dimension
that is worth being measured. We therefore argue that a multi-scale approach like ours is appropriate in practice, especially
in a regime that is agnostic with respect to the underlying intrinsic dimension. By contrast, Fig. 14b shows the corresponding

5https://scikit-dimension.readthedocs.io/en/latest/
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(a) 1-sphere dimension estimates (b) 2-sphere dimension estimates

Figure 15: Estimates of the local intrinsic dimension for points that are close to the 1D-sphere, i.e. the circle, or the
2D-sphere, respectively.

dimension estimates for twoNN, where we observe less stable and reliable results across the dataset.

Fig. 15a shows boxplots of the distributions of the dimension estimates, for all points that lie on the 1D-sphere. We see that
for PID, the mass is concentrated at a value of 1. Although there are outliers present, these correspond to points that are
close to the singularity, as it was expected. We note that other methods like KNN and lpca might highly overestimate the
dimension, and that the interquartile range is significantly higher for twoNN and KNN. Fig. 15b shows the same distributions
for the points that lie on the 2D-sphere. Again, lpca highly overestimates the dimension since the median lies at a value
of 3. Again, the interquartile range of PID is the tightest, and the estimates are closest to the ground truth. Moreover, the
lower-value outliers again correspond to points that are close to the singular gluing point.

Fig. 16a and Fig. 16b show average dimension estimate scores of all investigated methods for varying values of k, both
for points on the 1-sphere and the 2-sphere. We note that on average, only twoNN and DANCo lead to results which are
comparable with the reliability of our method. However, as we already saw in Fig. 15a and Fig. 15b, the variance of the
scores of our method is significantly lower, leading to more reliable outputs for each of the points.

A.7. Euclidicity is More Expressive than Single-Parameter Approaches

Fig. 17 depicts a comparison between Euclidicity, an inherently multi-parametric approach, and a single-parameter approach,
which assumes the same locality properties to hold for all points. This method is similar to the one described by Stolz et al.
(2020). We observe that both methods are capable of detecting the isolated singularity of S2 ∨ S2, with Euclidicity leading
to a score that more clearly delineates the region around the singularity. Notice that this behaviour will become even more
crucial in real-world data, which may exhibit strong sparsity patterns and varying density.

Further underscoring these findings, Fig. 18 shows the empirical distributions of Euclidicity scores for fixed locality
parameters (left) and for our proposed multi-scale locality approach (right). We see that the variance is significantly lower in
the multi-scale regime, indicating more stable and robust results. Moreover, the ratio of maximum and mean is higher in the
multi-parameter setting, where high Euclidicity scores correspond to data points that lie close to the singularity, resulting in
more reliable outcomes.

A.8. Euclidicity of MNIST and FASHIONMNIST

Fig. 19 and Fig. 20 show the Euclidicity results for the 4 additional runs on both the MNIST and FASHIONMNIST data
sets. Again, we depicted the 9 images with lowest (left), medium (middle), and highest (right) Euclidicity scores for the two
datasets. Moving from left to right, the images exhibit increases in the complexity of the local geometry, giving evidence for
the reproducibility of the observation we remarked in Section 5.4.
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(a) (b)

Figure 16: Dimension estimates of the 1D-sphere and the 2D-sphere for different methods, plotted as a function of the
number of neighours k.
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Figure 17: In 2D, Euclidicity (b) results in a clearly-delineated singular region (also shown in the main paper), when
compared to a single-parameter score (a).

(a) (b)

Figure 18: A comparison of Euclidicity values of a one-parameter approach (left) and our multi-parameter approach (right)
demonstrates that multiple scales are necessary to adequately capture singularities.
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(a) (b) (c)

Figure 19: From left to right: more examples of low Euclidicity values, median Euclidicity values, and high Euclidicity
values for the MNIST data set.
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(a) (b) (c)

Figure 20: From left to right: more examples of low Euclidicity values, median Euclidicity values, and high Euclidicity
values for the FASHIONMNIST data set.
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(a) MNIST Euclidicity scores for different choices of the intrinsic dimension.

Figure 21: Left to right: distribution of MNIST Euclidicity scores for intrinsic dimension of 5, 10, and 15, respectively. As a
consequence of the stability of our method, the distributions remain similar.

(a) MNIST Euclidicity scores for different choices of the nearest neighbour parameter k.

Figure 22: Left to right: distribution of MNIST Euclidicity scores for k ∈ {25, 50, 75}, respectively. As a consequence of
the stability of our method, the distributions remain similar.

Moreover, as Fig. 25 shows, the empirical distributions of the calculated Euclidicity scores differ significantly for the
MNIST and FASHIONMNIST data sets, with the distribution for MNIST exhibiting a bimodal behaviour, whereas the
FASHIONMNIST Euclidicity value distribution is unimodal. We hypothesise that this corresponds to regions of simple
complexity—and locally linear structures—in the MNIST data set, which are absent in the FASHIONMNIST data set.
Finally, we observe that Euclidicity values for MNIST are surprisingly stable with respect to specific choices of the intrinsic
dimension, as well as the nearest neighbour parameter k, which can be seen in Figs. 21 and 22. Here, we calculated
Euclidicity scores for MNIST for intrinsic dimensions of 5, 10 and 15, respectively, and k ∈ {25, 50, 75}. Although
the scale of locality for which Euclidicity is computed varies significantly for different k, the respective distributions of
Euclidicity values appear to be almost indistinguishable. We surmise that this is a consequence of the multi-scale nature of
our approach.

Euclidicity and anomaly scores. Fig. 23 shows a comparison of Euclidicity scores and the scores of
IsolationForest, an anomaly detection algorithm, for a UMAP projection of MNIST. Here, we used the implementa-
tion for IsolationForest from the scikit-learn Python package.6 The clusters correspond to the different classes
of MNIST, see Fig. 23a. Although the original purpose of Euclidicity is the detection of non-Euclidean neighbourhoods of
points, we observe a correlation of low Euclidicity scores (i.e. points that are closer to admitting a Euclidean neighbourhood)
and high IsolationForest scores (i.e. points that are less likely to be considered anomalies). This provides further
evidence that Euclidicity could be expected to serve as a powerful anomaly detection method, on top of its ability to capture
local geometric complexity. However, in our experiments we observe a (linear) correlation of only 0.5–0.7, indicating that
Euclidicity detects different anomalous behaviour than just plain outliers. We plan on investigating this in future work.

Details on neural network misclassification analysis. The neural network that we trained for the analysis in Section 5.4
consists of an input layer of 784 nodes, one dense hidden layer of 5 nodes and an output layer possessing 10 nodes,

6https://scikit-learn.org/stable/
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(a) UMAP with class labels (b) UMAP Euclidicity scores (c) UMAP Isolation Forest scores

Figure 23: Euclidicity correlates with Isolation Forest scores for MNIST samples. Notice that we switched the colour maps
because low Isolation Forest scores indicate anomalies.
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Figure 24: A comparison of Euclidicity scores for misclassified and correctly classified samples in two image data sets.

respectively. The same architecture was used for both MNIST and FASHIONMNIST, resulting in 3985 trainable parameters.
Accuracy scores are 0.777 for MNIST, and 0.714 for FASHIONMNIST. Neither these scores nor the accuracy itself are sup-
posed to be competitive; we merely use this network as an example to outline how Euclidicity could be potentially used to in-
form network training and highlight potentially problematic regions in data. Fig. 24 shows the respective results of Euclidicity
scores for misclassified versus correctly-classified samples. To compare the statistical significance of the respective means
for correctly and misclassified samples, we performed Welch’s t-test, as the samples are approximately normally distributed.
We obtained p-values of 2.8× 10−5 in the case of MNIST, and 5.7× 10−3 in the case of FASHIONMNIST. With respect
to the common rejection thresholds in the literature, this leads to a clear rejection of the null hypothesis, which assumes the
population means to be equal. However, we only claim a correlation between the likelihood for samples to be correctly
classified and their corresponding Euclidicity scores. A statement in terms of causality is to be investigated in future work.

A.9. Euclidicity Captures Geometric Complexity in Histology Data

Finally, we applied Euclidicity to a benchmark histology data set.7 The 96 × 96 pixel images were first scaled down to
60× 60 pixels, to speed up the computation. Moreover, since the images are inherently coloured, we transformed them
to greyscale images in order to naturally obtain a high-dimensional representation in Euclidean space, by flattening them.
We then randomly picked 1000 of the training images and calculated Euclidicity scores of these samples (with respect
to the whole space of training images). The intrinsic dimension was chosen to be 35, as suggested by twoNN. All the
other hyperparameters were chosen as in the setting of Appendix A.8. The results of images admitting different scores are
depicted in Fig. 26. Similarly to the observations in Appendix A.8, we see very different structural behaviour inside of the
images for different Euclidicity values: while low scores correspond to images that admit large voids, medium-score images
correspond to images with finer local geometric structure. Images of high Euclidicity scores, however, seem to admit both
large voids and regions of fine-grained geometric structure. We therefore hypothesise the potential utility of Euclidicity for
biological data, for instance to ensure data quality of (histology or biomedical) image datasets.

7https://github.com/basveeling/pcam
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(a) MNIST (b) FASHIONMNIST

Figure 25: Both MNIST and FASHIONMNIST exhibit markedly different distributions in terms of Euclidicity: MNIST
Euclidicity values are bimodal, whereas FASHIONMNIST Euclidicity values are unimodal.

Figure 26: Left to right: sample histology images exhibiting low, median, and high Euclidicity, respectively. All samples are
taken from the ‘PatchCamelyon’ benchmark data set.
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