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Abstract

We study efficient mechanisms for differentially
private kernel density estimation (DP-KDE). Prior
work for the Gaussian kernel described algorithms
that run in time exponential in the number of di-
mensions d. This paper breaks the exponential
barrier, and shows how the KDE can privately be
approximated in time linear in d, making it fea-
sible for high-dimensional data. We also present
improved bounds for low-dimensional data.

Our results are obtained through a general frame-
work, which we term Locality Sensitive Quantiza-
tion (LSQ), for constructing private KDE mech-
anisms where existing KDE approximation tech-
niques can be applied. It lets us leverage several
efficient non-private KDE methods—like Ran-
dom Fourier Features, the Fast Gauss Transform,
and Locality Sensitive Hashing—and “privatize”
them in a black-box manner. Our experiments
demonstrate that our resulting DP-KDE mecha-
nisms are fast and accurate on large datasets in
both high and low dimensions.

1. Introduction
Private analysis of massive-scale data is a prominent current
challenge in computing and machine learning. On the one
hand, it is widely acknowledged that big datasets drive ad-
vances and progress in many important problem spaces. On
the other hand, when the data contains sensitive information
such as personal or medical details, it is often necessary to
preserve the privacy of individual dataset records. Scalable
methods for private computations are therefore crucial for
progress in medical, financial and many other domains.

Differential privacy (DP) (Dwork et al., 2006) is a rigor-
ous and powerful notion of privacy-preserving computation,
widely accepted in machine learning. Unfortunately, it often
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comes at a high computational cost, and many DP compu-
tations are dramatically less efficient than their non-private
counterparts. This makes them infeasible for use on data of
the size and dimensionality that matches present-day scale.

DP-KDE. In this paper we focus on private density estima-
tion, a fundamental problem with numerous applications in
data analysis and machine learning. A popular way to con-
vert a collection of data points into a smoothed probability
distribution is the kernel density method, wherein a certain
probability measure—say, a Gaussian—is centered at each
data point, and the mixture of these measures is formed over
the space. The kernel density estimate (KDE) at every point
y is the mean of all such Gaussians evaluated at y. This
method has a long history in statistics and machine learning
(e.g., (Shawe-Taylor et al., 2004; Hofmann et al., 2008)).
Under private computation, it has recently been used for pri-
vate crowdsourcing and location sharing (Huai et al., 2019;
Cunningham et al., 2021).

The associated algorithmic task is: given a dataset X ⊂ Rd,
return a map êX : Rd → R that approximates the KDE map
y 7→ 1

|X|
∑

x∈X e−∥x−y∥2
2/σ

2

. In DP-KDE, êX must also
be private w.r.t. X , no matter how many times it is queried.

Absent privacy limitations, the Gaussian KDE at a point
y can be evaluated in time O(nd), where n is the number
of data points and d is their dimension. Many efficient ap-
proximation methods have been developed to speed this up
even further for large-scale data (e.g., (Greengard & Strain,
1991; Rahimi & Recht, 2007; Charikar & Siminelakis, 2017;
Phillips & Tai, 2020). In sharp contrast, in the DP setting,
existing methods for privately estimating the Gaussian KDE
have running time exponential in d (Hall et al., 2013; Hall,
2013; Wang et al., 2016; Alda & Rubinstein, 2017). This
makes them infeasible in many important cases where KDE
is utilized in high-dimensional feature spaces.

In this paper, we close this gap by systematically studying
efficient mechanisms for DP-KDE, and obtain improved
results in both the high and low dimensional regimes.

1.1. Our Results

We focus on the Gaussian kernel, although we will discuss
other kernels as well. Our first result is an ϵ-DP function
release mechanism for Gaussian KDE (see Sections 1.2
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Table 1. ϵ-DP KDE function release mechanisms for the Gaussian kernel, that satisfy (α, η)-approximation (Definition 1.3). The dataset
contains n points in Rd. Where n appears in the curator time, note that it must be at least as large as the sample complexity. (*) SmallDB,
PMW and LSQ-FGT assume that all points lie in a ball of radius Φ. (**) EvenTrig and Bernstein assume that all points lie in [−1, 1]d,
and their performance depends on the bandwidth σ under this scaling. (†) For EvenTrig, η = exp(−Ω(nd/(2d+O(σ2)))).

MECHANISM CURATOR TIME SAMPLE COMPLEXITY

Prior

SmallDB exp

(
min{
√

d log(1/α),1/α}·d2 log2(Φ/α)

ϵ·α2

)
O

(
min{
√

d log(1/α),1/α}·d log(Φ/α)

ϵ·α2

)
(*)

PMW Õ
(
d · (Φ/α)d

)
Õ
(

d2 log2(Φ/α)
ϵ·α3

)
(*)

EvenTrig O
(
2d + dn1+d/(2d+Θ(σ2))

)
O
(

1
(ϵ·α)1+Θ(d/σ2)

)
(**), (†)

Bernstein O
(
dn ·

(
2d + ( ϵ·n

log(1/η) )
d/(d+Θ(σ2))

))
O
(

log(1/η)

ϵ·α1+Θ(d/σ2)

)
(**)

Ours
LSQ-RFF O(dn · log(1/η)ϵ·α2 ) O( log(1/η)ϵ·α2 )

LSQ-FGT (dn+ ( Φ√
d
)d) ·O(log(1/α))d · log(1/η) log(1/η)

ϵ·α · (log(1/α))O(d) (*)

and 1.3 for formal definitions), whose running time is only
linear in d, making it suitable for high-dimensional data.

Theorem 1.1 (Gaussian DP-KDE in high dimensions).
There is an ϵ-DP function release mechanism for (α, η)-
approximation of Gaussian KDE on datasets in Rd of size
n ≥ O(log(1/η)/(ϵα2)), and:

• The curator runs in time O(nd log(1/η)/α2).

• The output size is O(d log(1/η)/α2).

• The client runs in time O(d log(1/η)/α2).

Our second result is a Gaussian DP-KDE mechanism for
low-dimensional data, if the points reside in a bounded
region. It improves the dependence on α to nearly linear.

Theorem 1.2 (Gaussian DP-KDE in low dimensions).
There is an ϵ-DP function release mechanism for (α, η)-
approximation of Gaussian KDE on datasets in Rd of size
n ≥ log(1/η)·(log(1/α))O(d)/(ϵα) and that are contained
in a ball of radius Φ, and:

• The curator runs in time (nd + ( Φ√
d
)d) ·

O(log(1/α))O(d) · log(1/η).
• The output size is O((1 + Φ√

d
)(log(1/α)))d log(1/η).

• The client runs in time (log(1/α))O(d) log(1/η).

Our approach. We obtain our results by introducing a
framework we call locality sensitive quantization (LSQ). It
captures a certain type of KDE approximation algorithms,
which are based on point quantization. On the one hand, we
show that the LSQ properties are by themselves sufficient to
imply an efficient DP-KDE mechanism. On the other hand,

we show that many popular approximation methods for
KDE already possess these properties—including random
Fourier features (RFF) (Rahimi & Recht, 2007), the Fast
Gauss Transform (FGT) (Greengard & Strain, 1991), and
locality sensitive hashing (LSH) (Charikar & Siminelakis,
2017). Thus, by plugging each of these methods into the
LSQ framework, we immediately get efficient DP-KDE
mechanisms for the kernels they approximate.

The key properties highlighted in the LSQ framework are
quantization (i.e., the dataset is quantized into a small num-
ber of values), range (these values are bounded), and spar-
sity (each single point affects only a small number of values).
As mentioned, several non-private KDE algorithms oper-
ate in this manner, as it can lead to efficient and accurate
approximation. The reason it is also useful for efficient
DP mechanisms is roughly that quantization lets us add
noise to a compact representation of the data, saving time;
bounded range means the noise can have small magnitude;
and sparsity ensures the noise does not add up too much.

On a broader conceptual level, there is a fundamental con-
nection between DP and non-private approximation algo-
rithms based on sketching (or quantization). Indeed, many
recent works have uncovered such connections (Blocki et al.,
2012; Feldman & Talwar, 2021; Aumüller et al., 2021; Cole-
man & Shrivastava, 2021; Pagh & Thorup, 2022; Nikolov,
2023). Our work adds to this growing line of research.

1.2. Preliminaries: Kernel Density Estimation (KDE)

A kernel is a function k : Rd × Rd → [0, 1] that measures
similarity between points in Rd. Popular kernels include:
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• Gaussian kernel: k(x, y) = exp(−∥x− y∥22/σ2)

• Laplacian kernel: k(x, y) = exp(−∥x− y∥1/σ)
• Cauchy kernel: k(x, y) =

∏d
j=1 2/(1 + (xj − yj)

2/σ2)

Here, σ > 0 is the bandwidth parameter. For simplicity, we
set σ = 1 throughout; this does not limit generality, as we
can scale the point coordinates accordingly.

Let X ⊂ Rd be a finite dataset. The kernel density estima-
tion (KDE) map KDEX : Rd → [0, 1] is defined as

KDEX(y) =
1

|X|
∑
x∈X

k(x, y).

Our goal will be to approximate the KDE map in the follow-
ing formal sense.

Definition 1.3. Let ê : Rd → [0, 1] be a randomized map-
ping, and let α, η ∈ (0, 1). We say that ê is an (α, η)-
approximation for KDEX if for every y ∈ Rd,

Pr[|ê(y)−KDEX(y)| ≤ α] ≥ 1− η.

1.3. Preliminaries: Differential Privacy (DP)

Differential privacy (Dwork et al., 2006) is a setting that
involves communication between two parties: the curator,
who holds a dataset X , and the client, who wishes to obtain
the result of some computation on the dataset. We say that
two datasets X,X ′ are neighboring if omitting a single data
point from one of them yields the other.

Definition 1.4. Let M be a randomized algorithm (called a
mechanism) that maps an input dataset to a range of outputs
O. For ϵ, δ > 0, we say that M is (ϵ, δ)-DP if for every
neighboring datasets X,X ′ and every O ⊂ O,

Pr[M(X) ∈ O] ≤ exp(ϵ) · Pr[M(X ′) ∈ O] + δ.

The case δ = 0 is called pure differential privacy, and in
that case we say that M is ϵ-DP.

In this paper we focus on pure differential privacy—given
a desired privacy level ϵ > 0, the curator is only allowed
to release the results of ϵ-DP computations on X . See
Appendix C.3 for a discussion of non-pure DP-KDE.

Function release. We focus on the differentially private
function release communication model. In this model, the
curator releases an ϵ-DP description of a function ê(·) that
satisfies Definition 1.3 for the dataset X , without seeing any
queries in advance. The client can then use this description
to compute ê(y) for any query y. Note that since ê(·) itself is
ϵ-DP, the client can use it for infinitely many queries without
compromising the privacy of the dataset. However, as more
queries are computed, the overall number of inaccurate
estimates is expected to grow (as only an expected (1− η)-
fraction of them is guaranteed to have error within ±α).

Sample complexity. There is an inherent trade-off between
privacy and approximation (or utility). It can be expressed
as the minimal dataset size for which both are simultane-
ously possible—a quantity known as the sample complexity.
Intuitively, the larger the dataset is, the easier it is to main-
tain the privacy of each point while releasing accurate global
information. Formally, given ϵ, α, η > 0, the sample com-
plexity sc(M) of a mechanism M is the smallest s such that
M is both ϵ-DP and satisfies (α, η)-approximation for all
datasets of size at least s.

The sample complexity affects the running time: On the
one hand, the dataset size n must be at least sc(M). On
the other hand, since the KDE at any query point is the
mean of values in [0, 1], the curator can initially subsample
the dataset down to size O(log(1/η)/α2) while maintain-
ing (α, η)-approximation, by Hoeffding’s inequality. The
upshot is that w.l.o.g., n can always be assumed to satisfy
sc(M) ≤ n ≤ O(max{sc(M), log(1/η)/α2}).

Computational efficiency. In addition to privacy and utility,
we also want the curator and client algorithms to be time-
efficient, and the curator output size to be space-efficient.

1.4. Prior Work

Generic linear queries. KDE queries belong to a broader
class of linear queries, which are extensively studied in
the DP literature. Two classical mechanisms for them are
SmallDB (Blum et al., 2013) and Private Multiplicative
Weights (PMW) (Hardt & Rothblum, 2010; Gupta et al.,
2012). These mechanisms are designed for the DP query
release model, where the curator only releases responses
to queries provided by the client. Nonetheless they can be
adapted to the more general function release model, if the
KDE problem is restricted to points contained in a ball of
radius Φ. We provide more details on this transformation in
Appendix C. In either the query or function release model,
these mechanisms run in time at least exponential in d.

DP-KDE in low dimensions. Several authors explored
mechanisms specifically for DP-KDE. (Hall et al., 2013)
presented a non-pure DP mechanism, based on noise corre-
lation, in the query release model. However, when used for
function release, its running time is exponential in d (see
Appendix C.3 for details). (Wang et al., 2016) introduced an
ϵ-DP function release mechanism for (α, η)-approximation
of smooth functions, assuming all points lie in [−1, 1]d,
using a basis of even trigonometric polynomials. Its per-
formance for DP-KDE depends the bandwidth σ (under
scaling the data into [−1, 1]d), and has a fixed value for η.
It also entails computations that do not admit a closed form
and require numerical methods. (Alda & Rubinstein, 2017)
introduced the Bernstein mechanism, based on Bernstein
basis polynomials, and obtained similar guarantees with any
η ∈ (0, 1) and in a closed-form computation. The running
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time of both of these mechanisms is exponential in d.

Locality sensitive hashing (LSH). Recently, (Coleman &
Shrivastava, 2021) broke the exp(d) barrier for DP-KDE
by using LSH (Indyk & Motwani, 1998). The usefulness
of LSH for non-private KDE has been observed in (An-
doni & Indyk, 2009), and recently regained much attention
(Charikar & Siminelakis, 2017; Siminelakis et al., 2019;
Coleman & Shrivastava, 2020; Backurs et al., 2019; 2021).
Then, (Coleman & Shrivastava, 2021) showed it is also use-
ful for DP-KDE. They obtained an ϵ-DP mechanism with
(α, η)-approximation and running time only linear in d.

However, their result does not apply to the Gaussian kernel.
It is restricted to kernels that satisfy a property known as
LSHability, which roughly means they can be accurately
described by LSH (see Section 3.3 for the formal definition).
While some popular kernels possess this property—perhaps
most notably, the Laplacian kernel (Rahimi & Recht, 2007;
Andoni & Indyk, 2009; Backurs et al., 2019)—other impor-
tant kernels, like Gaussian and Cauchy, are not known nor
believed to be LSHable (see, e.g., (Backurs et al., 2018)).
See Appendix C.4 for specific LSHable kernels.

Comparison to our results. The comparison is summa-
rized in Table 1. Our LSQ-RFF mechanism runs in time
linear in d and polynomial in 1/α. Its sample complexity
and computational efficiency match those of (Coleman &
Shrivastava, 2021), but it works for a wider class of kernels.
For the Gaussian kernel, it is the first to avoid an exponential
dependence on d in the running time. Furthermore, it does
not require the data to be contained in a bounded region.
In the low-dimensional setting d = O(1), our LSQ-FGT
mechanism is the first to attain a nearly linear dependence
of O(α−1logO(1)(α−1)) on the error α.1

Adaptive queries. The transformation of SmallDB and
PMW from query release to function release, mentioned
above, in fact endows them with a stronger property than
Definition 1.3: not only they succeed on every query with
probability 1− η, but they succeed on all queries simulta-
neously with a fixed probability (say 0.9). This enables
the client to adaptively choose queries based on the re-
sults of previous queries, which is useful for data explo-
ration, among other benefits (see (Cherapanamjeri & Nel-
son, 2020)). The same transformation can be applied to our
mechanisms as well; see Appendix C.2.

2. Locality Sensitive Quantization
The following is the main definition for this paper.

Definition 2.1. Let Q,S ≥ 0 be integers and α,R > 0. Let

1Note that this is the dependence on α in both the sample
complexity and the curator running time, since n is lower bounded
by the sample complexity.

Algorithm 1 : LSQ Mechanism for DP-KDE
Curator

Input: Dataset X ⊂ Rd; (Q,R, S)-LSQ family Q; pri-
vacy parameter ϵ > 0; integers I ≥ J > 0.
for i = 1, . . . , I do

Sample (fi, gi) ∼ Q
Fi ← 1

|X|
∑

x∈X fi(x) // note: Fi ∈ [−R,R]Q

F̃i ← Fi with an i.i.d. sample from
Laplace(IRS/(ϵ|X|)) added to each coordinate
release fi, gi, F̃i for all i = 1, . . . , I .

Client
Input: Query point y ∈ Rd; the released {fi, gi, F̃i}Ii=1.
I ′ ← ⌊I/J⌋
for j = 1, . . . , J do

mj ← 1
I′

∑I′j
i=I′(j−1)+1 F̃

T
i gi(y)

return ê(y) := median(m1, . . . ,mJ).

Q be a distribution over pairs (f, g) such that:

• f and g are maps f, g : Rd → [−R,R]Q.

• For every x, y ∈ Rd, the Q-dimensional vectors f(x)
and g(y) have each at most S non-zero entries.

We say that Q is an α-approximate (Q,R, S)-locality sen-
sitive quantization (abbrev. (Q,R, S)-LSQ) family for a
kernel k : Rd × Rd → [0, 1], if for every x, y ∈ Rd,∣∣k(x, y)− E(f,g)∼Q[f(x)

T g(y)]
∣∣ ≤ α.

We call k an α-approximate (Q,R, S)-LSQable kernel. If
α = 0, we say that Q is an exact (Q,R, S)-LSQ family for
k, and that k is (Q,R, S)-LSQable.

Intuitively, an LSQ family expresses the kernel as the ex-
pected inner product between vectors with a small number of
entries (Q), bounded range (R), and bounded sparsity (S).
The definition is reminiscent of random features, Fast Multi-
pole Methods (Greengard & Rokhlin, 1987), and LSHability
(Definition 3.3)—indeed, as we will see, it captures all of
these. Its goal is to form an abstraction of the key properties
that on the one hand “automatically” suffice for an efficient
DP-KDE mechanism, and on the other hand are already
shared by many prominent KDE methods.

2.1. LSQ Mechanism for DP-KDE

Let k be a kernel with an α-approximate (Q,R, S)-LSQ
family Q. The LSQ mechanism for DP-KDE is specified
in Algorithm 1. It is parameterized by the privacy level ϵ,
and by integers I ≥ J > 0 that govern the efficiency/utility
trade-off. We discuss their role and how to set them in more
detail in Appendix E.1. The formal properties of the mecha-
nism are stated next, with proofs deferred to Appendix A.
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Lemma 2.2 (privacy). The mechanism is ϵ-DP.

Lemma 2.3 (efficiency). Denote by TQ the time to sample
(f, g) ∼ Q, by Tf , Tg the time to compute f(x), g(y) given
x, y ∈ Rd respectively, and by LQ the description size in
machine words of a pair (f, g) sampled from Q. Then,

• The curator runs in time O(I(TQ + |X|Tf +Q)).
• The curator output size is O(I(LQ +Q)).
• The client runs in time O(I(Tg + S)).

For utility, we start with bounding the simpler case where
Q contains just a single pair of functions.

Lemma 2.4 (single pair utility). SupposeQ is supported on
a single pair (f, g), and the mechanism is run with I = J =
Θ(log(1/η)). For every y ∈ Rd, with probability 1− η, the
client output ê(y) that satisfies

|ê(y)−KDEX(y)| ≤ α+O

(
S1.5R2 log( 1η )

ϵ|X|

)
.

The next utility bound is for large or infinite Q.

Lemma 2.5 (utility). Suppose the mechanism is run with
J = Θ(log(1/η)) and I = Θ(J/α2). For every y ∈ Rd,
with probability 1− η, the client output ê(y) that satisfies

|ê(y)−KDEX(y)| < α+O

(
αSR2 +

S1.5R2 log( 1η )

αϵ|X|

)
.

3. DP-KDE for LSQable Kernels
3.1. DP-KDE via Random Fourier Features (RFF)

We recall the construction of RFF for the Gaussian kernel.
To sample a random feature, one draws ω ∼ N(0, Id) and
β uniformly at random over [0, 2π), and defines the Fourier
feature zω,β : Rd → R as zω,β(x) =

√
2 cos(

√
2ωTx+ β).

For every x, y,∈ Rd it holds that

e−∥x−y∥2
2 = Eω,β [zω,β(x) · zω,β(y)].

This clearly implies an LSQ family Q, given by sampling
ω and β as above and returning the pair (zω,β , zω,β). Since
zω,β takes values in [−

√
2,
√
2], we obtain,

Proposition 3.1. The Gaussian kernel admits an exact
(1,
√
2, 1)-LSQ family.

This leads to our first Gaussian DP-KDE mechanism.

Proof of Theorem 1.1. Privacy is guaranteed by Lemma 2.2.
For accuracy we use Lemma 2.5, plugging S = 1, R =√
2 and |X| ≥ O(log(1/η)/(ϵ · α2)) which holds by the

theorem’s premise. We get that for every y ∈ Rd, the
client outputs ê(y) that with probability 1− η is off by an
additive error of O(α) from the subsampled KDE, and we

can scale α by the appropriate constant. For computational
efficiency, note that sampling (f, g) ∼ Q means sampling
ω ∼ N(0, Id) and β ∼ [0, 2π), and takes time O(d); the
pair (f, g) can be specified by the d + 1 machine words
ω, β; and evaluating f or g on a point in Rd takes O(d)
time. Plugging these with I = O(log(1/η)/α2) (from
Lemma 2.5) into Lemma 2.3, we obtain Theorem 1.1.

Other kernels. (Rahimi & Recht, 2007) showed that ran-
dom Fourier features exist all shift-invariant positive definite
kernels. For those kernels, the LSQ framework yields DP-
KDE mechanisms with the same error and sample complex-
ity guarantees as the Gaussian kernel in Theorem 1.1. How-
ever, their computational efficiency may be different, de-
pending on their specific RFF distribution. See Appendix D.

3.2. DP-KDE via the Fast Gauss Transform (FGT)

We review the Fast Gauss Transform. Let all data and query
points be contained in a ball BΦ of radius Φ > 0. Let G
be the grid with side-length 1 in Rd whose nodes are Zd.
Let GΦ denote the set of G-grid cells that intersect BΦ. For
every cell H ∈ GΦ, let zH ∈ Rd denote its center point.

The FGT is based on the Hermite expansion of the Gaussian
kernel. Let ξ : R → R be defined as ξ(x) = e−x2

, and
let ξ(r) denote the rth derivative of ξ for every r ≥ 0.
The Hermite function hr : R → R is defined as hr(x) =
(−1)rξ(r)(x). By substituting Taylor series, it can be shown
(see Appendix B.1) that for any given z ∈ Rd, the Gaussian
kernel over points in Rd admits the Hermite expansion,

e−∥x−y∥2
2 =

∞∑
r1=1

. . .

∞∑
rd=1

d∏
j=1

(xj − zj)
rj · 1

rj !
hrj (yj − zj) .

Truncating each of the d sums after ρ = O(log(1/α)) terms
leads to an additive error of at most α. We can then define
the following pair of functions f, g on Rd. Each of their
coordinates is indexed by a pair H ∈ GΦ and r ∈ Rd, where
r has coordinates in {0, . . . , ρ}, and is set as follows:

fH,r(x) =

{∏d
j=1

(
xj − zHj

)rj if x ∈ H

0 otherwise,

gH,r(y) =

{∏d
j=1

1
rj !

hrj

(
yj − zHj

)
if ∥y − zH∥22 ≤ ρ

0 otherwise.

For usual FGT, one may compute F (X) = 1
|X|
∑

x∈X f(x)

on the dataset X , and return F (X)T g(y) given a query
point y. To our end, we view (f, g) as an LSQ “family”
with just one pair. In Appendix B.1 we show the following.

Proposition 3.2. Let α > 0 be smaller than a suffi-
ciently small constant, and suppose d = O(log(1/α)).
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The Gaussian kernel over points contained in a Eu-
clidean ball of radius Φ in Rd admits an α-approximate
(O((1 + Φ√

d
)(log(1/α)))d, O(1)d, (log(1/α))O(d))-LSQ

family, supported on a single pair of functions (f, g). Fur-
thermore, the evaluation times of f on x ∈ Rd and of g on
y ∈ Rd are both (log(1/α))O(d).

This yields our second Gaussian DP-KDE mechanism.

Proof of Theorem 1.2. We may assume w.l.o.g. that
d = O(log(1/α)), since otherwise Theorem 1.1 subsumes
Theorem 1.2. Privacy follows from Lemma 2.2. For util-
ity we use Lemma 2.4. By plugging R,S from Proposi-
tion 3.2, the additive error is, with probability 1 − η, at
most α+(ϵ|X|)−1 log(1/η) ·(log(1/α))O(d). By the lower
bound on |X| in the theorem statement, this error is at most
O(α), and we can scale α by a constant. For efficiency, note
that having only one pair in Q means that TQ = O(1) and
LQ = 0. Plugging these and Q,R, S, Tf , Tg from Proposi-
tion 3.2 into Lemma 2.3 yields the theorem.

3.3. DP-KDE via Locality Sensitive Hashing (LSH)

In this section we observe that if a kernel is LSHable then it
is also LSQable, thereby recovering the results of (Coleman
& Shrivastava, 2021) for LSHable kernels (which do not
include the Gaussian kernel) within the LSQ framework.
We recall the relevant definition of kernel LSHability:

Definition 3.3. A kernel k : Rd × Rd → [0, 1] is α-
approximate LSHable if there is a distributionH over hash
functions h : Rd → {0, 1}∗, such that for every x, y ∈ Rd,∣∣∣∣k(x, y)− Pr

h∼H
[h(x) = h(y)]

∣∣∣∣ ≤ α.

Suppose the hash functions inH map points in Rd to one of
B hash buckets. For every h ∈ H, let fh : Rd → {0, 1}B
map x to the indicator vector of h(x). To get an LSQ family
Q from H, we may sample h ∼ H and return the pair
(fh, fh). For all x, y ∈ Rd we thus get fh(x)T fh(y) = 1 if
h(x) = h(y) and fh(x)

T fh(y) = 0 if h(x) ̸= h(y), hence
E(f,g)∼Q[f(x)

T g(y)] = Prh∼H[h(x) = h(y)]. Therefore,

Proposition 3.4. If k is α-approximate LSHable with B
hash buckets, then k is α-approximate (B, 1, 1)-LSQable.

This does not immediately lead to efficient DP-KDE, since
B can be very large. For example, all known LSHability
results for the Laplacian kernel use B = exp(d) (Rahimi &
Recht, 2007; Andoni & Indyk, 2009; Backurs et al., 2019).
This issue does not typically interfere with non-private ap-
plications of LSH, due to sparsity (only one bucket is non-
empty per point), but in the DP case, this would disclose
information about which buckets are empty. Our LSQ mech-
anism adds noise to each bucket, which would take time

proportional to B. Nonetheless, this can be remedied by
standard universal hashing; see Appendix B.2.

Proposition 3.5. If k is α-approximate LSHable, then k is
2α-approximate (⌈1/α⌉, 1, 1)-LSQable.

Together with Lemmas 2.2 to 2.5, this recovers the DP-KDE
results for LSHable kernels within the LSQ framework. As
a concrete example, we re-derive a result of (Coleman &
Shrivastava, 2021) for the Laplacian kernel.

Theorem 3.6. There is an ϵ-DP function release mechanism
for (α, η)-approximation of Laplacian KDE on datasets in
Rd of size n ≥ O(log(1/η)/(ϵα2)), and:

• The curator runs in time O(nd log(1/η)/α2).

• The output size is O(d log(1/η)/α2).

• The client runs in time O(d log(1/η)/α2).

Proof. The Laplacian kernel is LSHable, hence by Propo-
sition 3.5, it is 2α-approximate (⌈1/α⌉, 1, 1)-LSQable. By
Lemmas 2.2 and 2.5, this implies an ϵ-DP mechanism with
(α, η)-approximation for Laplacian KDE. Furthermore, the
Laplacian kernel LSH families from (Rahimi & Recht, 2007;
Andoni & Indyk, 2009; Backurs et al., 2019) have O(d) eval-
uation time, hashing time and description size. Viewed as
LSQ families, they satisfy TQ, Tf , Tg, LQ = O(d) in the
notation of Lemma 2.3, which yields the theorem.

The Laplacian kernel DP-KDE bounds in Theorem 3.6 are
the same those of the Gaussian kernel in Theorem 1.1. We
also remark that the Laplacian kernel admits an efficient
RFF distribution, different than its LSH families. Thus, we
can also instantiate the LSQ-RFF mechanism for it. This
would lead to an alternative proof of Theorem 3.6, yield-
ing the same asymptotic bounds via a different DP-KDE
mechanism; see Appendix D.1.

See Appendix C.4 for an overview of other LSHable kernels.

4. Experiments
We evaluate our mechanisms on public benchmark datasets
in both the high- and low-dimensional regimes. For compat-
ibility, we select datasets often used in prior work on density
estimation and clustering:

• Covertype: forest cover types (n = 581,012, d = 55)
(Blackard & Dean, 1999)

• GloVe: word embeddings (n = 1,000,000, d = 100)
(Pennington et al., 2014)

• Diabetes: age and days in hospital (n = 101,766, d = 2)
(Strack et al., 2014)

• NYC Taxi: longitude and latitude (n = 100,000, d = 2)
(Chavez et al., 2018)
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Figure 1. Error vs. computational budget

Query points are chosen at random from each dataset and
are held out from it. The reported experimental results are
averaged over 100 queries and 10 trials with independent
random seeds. Our code is available online.2 Appendix E
includes additional details on the implementation of our
mechanisms, additional experiments, and more details on
our experimental framework and bandwidth selections.

4.1. Parameter Selection

In the first experiment, we measure the KDE approximation
error of our mechanisms as we increase the parameter that
governs their computational budget—the number of Fourier
features in RFF, and ρ in FGT. Figure 1 displays the results
for several values of ϵ, as well as for a non-private variant
of each mechanism, that elides the Laplace noise addition
step in Algorithm 1 (i.e., it sets F̃i = Fi).

The results highlight a key difference between the DP and
non-DP variants: while the error of the non-DP variants
converges to zero as we increase their computational budget,
the error of the DP mechanisms begins to diverge at a certain
point, which corresponds to a smaller parameter setting for

2https://github.com/talwagner/lsq

smaller ϵ.3 This behavior stems from the interplay between
non-private approximation and privacy-preserving noise: as
we increase the computational budget, the non-private ap-
proximation component of the mechanism becomes more
accurate, thus disclosing more information about the dataset,
that needs to be offset with a larger magnitude of privacy-
preserving noise. The optimal parameter setting corresponds
to the point of balance between the non-private approxima-
tion error and the privacy noise error.

For LSQ-RFF, as we increase the number of Fourier features
m, the error of approximating the Gaussian kernel with (non-
private) RFF decays like 1/

√
m by Hoeffding’s inequality,

while the Laplace noise magnitude grows like
√
m/(ϵn).

Hence, the optimal number of Fourier features is m =
Θ(ϵn). Using more features would increase the overall
error while having higher computational cost.

For LSQ-FGT, as we increase ρ, the non-private truncation
error of the Hermite expansion decays like exp(−ρ), while
the Laplace noise magnitude grows like ρO(d)/(ϵn), hence
the optimal setting is ρ = Θ(log(ϵn))−O(d log log(ϵn)).

3Convergence to zero error is impossible for DP mechanisms
due to the sample complexity limitation: for a given dataset size n
and ϵ > 0, the error α must be large enough to render n ≥ sc(M).
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Figure 2. Error vs. privacy

The upshot is that the parameters should be chosen not only
by the available computational budget, but also the desired
privacy ϵ and available dataset size n.4

4.2. Performance

Error vs. privacy. We measure the privacy to error trade-
off, with each algorithm evaluated at its optimal setting
of parameters for the given value of ϵ. We compare our
mechanisms to the following baselines:

• NoisySample: A vanilla mechanism that samples 100
points from the dataset, computes the average of their
true KDEs plus a sample from Laplace(1/(ϵ|X|)), and
returns this value as the estimate for any query KDE.
The mechanism is ϵ-DP w.r.t. the non-sampled points. It
helps verify that the KDE function is not degenerate and
essentially constant (and thus trivial to approximate).

4Note that setting the parameters of the mechanism according
to the dataset size n—e.g., choosing m ∼ ϵn or ρ ∼ log(ϵn)—
leaks information about n and could affect privacy. This can be
easily avoided, for example by using ñ = n + Laplace(1/ϵ)
instead of n. It can be easily checked that ñ is ϵ-DP and that using
it instead of n would only change m or ρ by an additive constant.

• The Bernstein mechanism (Alda & Rubinstein, 2017),
prior state of the art for Gaussian DP-KDE (with pure DP).
It has the same error divergence behavior discussed in
Section 4.1, and we evaluate it too at its optimal parameter
setting (see Appendix E.2 for details on Bernstein).

The results are in Figure 2. LSQ-FGT and Bernstein are
evaluated only on the on the low-dimensional datasets, as
they are infeasible for the high-dimensional datasets.

The results show that our LSQ-based mechanisms outper-
form the baselines by large margins, and procude accu-
rate KDE estimates in desirable privacy regimes. On the
low-dimensional datasets, the results corroborate the pri-
vacy/error trade-offs predicted by the sample complexity of
the mechanisms, as listed in Table 1. Note that LSQ-FGT is
expected to outperform LSQ-RFF in this regime, due to the
near-linear dependence of its sample complexity on α−1,
compared to the quadratic dependence of LSQ-RFF. On the
high-dimensional datasets, only LSQ-RFF is feasible.

The performance of Bernstein depends on the smoothness of
the KDE function, which is determined by the bandwidth σ
under scaling the data into a unit hypercube (cf. Section 1.4).
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Figure 3. Error vs. curator running times with ϵ = 0.05

In particular, its sample complexity depends on d/σ2. For
NYC Taxi, this quantity is much larger than for Diabetes
(cf. Appendix E), accounting for the degraded performance
of Bernstein on NYC Taxi compared to Diabetes.

Running times. We plot the error attained by the mecha-
nisms versus their curator running time. Figure 3 reports
the results with ϵ = 0.05, and Figure 5 (in the appendix)
repeats the experiment with ϵ = 0.02. Here too, in the high-
dimensional regime LSQ-RFF is the only feasible mecha-
nism, while in the low-dimensional regime LSQ-FGT has
the best performance.
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A. Analysis of the LSQ Mechanism
Proof of Lemma 2.2. The (Q,R, S)-LSQ property is easily seen to imply that the sensitivity of each Fi in Algorithm 1 is
SR/|X|, and we have I of them, thus the lemma follows from the classical Laplace DP mechanism.

We expand on the details for completeness. To this end we recall some DP fundamentals. Let F be a function that maps
a dataset to Rm. The ℓ1-sensitivity of F is defined as ∆F = maxX,X′∥F (X)− F (X ′)∥1, where the maximum is taken
over all pairs of neighboring datasets X,X ′ (the definition of neigboring datasets is given in Section 1.3). Given a function
F , a dataset X , and ϵ > 0, the Laplace mechanism (Dwork et al., 2006) releases F (X) +N , where N ∈ Rm has entries
sampled i.i.d. from Laplace(∆F/ϵ). This mechanism is ϵ-DP (Dwork et al., 2006).

In Algorithm 1 we have Fi =
1

|X|
∑

x∈X fi(x), where fi is sampled from a (Q,R, S)-LSQ family, and thus every fi(x)

has at most S non-zero entries, each of contained in [−R,R]. Therefore, Fi has ℓ1-sensitivity RS/|X|, and the sequence
(F1, . . . , FI) has ℓ1-sensitivity IRS/|X|. The curator in Algorithm 1 releases (F̃1, . . . , F̃I), which we observe is but the
output of the Laplace mechanism on this function, and is thus ϵ-DP. The curator also releases (fi, gi)Ii=1, which are sampled
obliviously to the dataset and have no effect on differential privacy.

Proof of Lemma 2.3. The lemma follows by tracking the steps of the curator and client algorithms.

Curator running time: In each of i = 1, . . . , I iterations, it samples (fi, gi) ∼ Q in time TQ, evaluates fi on every x ∈ X in
total time |X|Tf , and adds Laplace noise to each of Q coordinates in total time O(Q).

Curator output size: For every i = 1, . . . , I , it outputs the pair (fi, gi) which is described using LQ machine words, and the
Q-dimensional vector F̃i which occupies Q machine words.

Client running time: For every i = 1, . . . , I , it evaluates gi(y) in time Tg , and computes the inner product F̃T
i gi(y), which

can be done in time O(S) since gi(y) has at most S non-zero entries. This takes total time O(I(Tg + S)). It then returns
the median of J values, each one of whom is the mean of I ′ values, which takes additional time O(I ′J) = O(I).

Proof of Lemma 2.4. Let j ∈ [J ]. By plugging I ′ = 1 (since in this lemma we have I = J) and (fi, gi) = (f, g) (since
we have a single pair (f, g)) into the definition of mj in the client algorithm, we have

mj = F̃T
j g(y) =

1

|X|
∑
x∈X

f(x)T g(y) +NT
j g(y), (1)

where Nj = (N
(1)
j , . . . , N

(Q)
j ) is a random vector whose entries are drawn i.i.d. from Laplace(IRS/(ϵ|X|)). By properties

of the Laplace distribution, each entry N
(q)
j has variance Var(N

(q)
j ) = 2(IRS/(ϵ|X|))2. Since Var(NT

j gj(y)) =∑Q
q=1 gj(y)

2Var(N
(q)
j ), and gj(y) has at most S non-zero entries contained in [−R,R], we have Var(NT

j gj(y)) ≤
SR2 · 2(IRS/(ϵ|X|))2. Thus by Chebyshev’s inequality (recalling that I = Θ(log(1/η))),

Pr

[∣∣NT
j gj(y)

∣∣ > O(1) · S1.5R2 log(1/η)

ϵ|X|

]
<

1

6
.

Now by the Chernoff inequality, the median of J = Θ(log(1/η)) independent copies NT
1 g(y), . . . , NT

J g(y) satisfies

Pr

[∣∣median(NT
1 g(y), . . . , NT

J g(y))
∣∣ ≥ O(1) · S1.5R2 log(1/η)

ϵ|X|

]
< η. (2)

The client output in Algorithm 1 equals ê(y) = median(m1, . . . ,mJ). By noting in Equation (1) that the term
1

|X|
∑

x∈X f(x)T g(y) does not depend on j, we have

ê(y) = median(m1, . . . ,mJ) =
1

|X|
∑
x∈X

f(x)T g(y) + median(NT
1 g(y), . . . , NT

J g(y)).

The α-approximate LSQ property, in the case of Q supported on a single pair, guarantees that |k(x, y)− f(x)T g(y)| ≤ α.
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Thus,

|ê(y)−KDEX(y)| =

∣∣∣∣∣ 1

|X|
∑
x∈X

f(x)T g(y) + median(NT
1 g(y), . . . , NT

J g(y))−KDEX(y)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

|X|
∑
x∈X

f(x)T g(y)−KDEX(y)

∣∣∣∣∣+ |median(NT
1 g(y), . . . , NT

J g(y))|

≤ 1

|X|
∑
x∈X

∣∣f(x)T g(y)− k(x, y)
∣∣+ |median(NT

1 g(y), . . . , NT
J g(y))|

≤ α+ |median(NT
1 g(y), . . . , NT

J g(y))|

≤ α+
O(1) · S1.5R2 log(1/η)

ϵ|X|
,

where the final inequality holds with probability 1− η by Equation (2), as was to be shown.

Proof of Lemma 2.5. For every i = 1, . . . , I we have

F̃T
i gi(y) = FT

i gi(y) +NT
i gi(y),

where Ni is a random vector whose entries are drawn i.i.d. from Laplace(IRS/(ϵ|X|)). Therefore, for every j = 1, . . . , J ,

mj =
1

I ′

I′j∑
i=I′(j−1)+1

F̃T
i gi(y) =

1

I ′

I′j∑
i=I′(j−1)+1

Fi(x)
T gi(y) +

1

I ′

I′j∑
i=I′(j−1)+1

NT
i gi(y), (3)

where we recall that I ′ = ⌊I/J⌋ = Θ(1/α2). We handle the two sums in turn.

For the first sum, consider a random choice of (fi, gi) ∼ Q, and recall that Fi(x) =
1

|X|
∑

x∈X fi(x). By the (Q,R, S)-
LSQ property of Q, for every x, y it holds that both fi(x) and gi(y) have at most S non-zero entries of magnitude at most
R, hence |fi(x)T gj(y)| ≤ SR2. Therefore,∣∣Fi(x)

T gi(y)
∣∣ ≤ 1

|X|
∑
x∈X

∣∣fi(x)T gi(y)∣∣ ≤ SR2.

This holds for every supported pair (fi, gi). Consequently, Hoeffding’s concentration inequality ensures that averaging
I ′ = Θ(1/α2) independent copies of Fi(x)

T gi(y) yields

Pr

∣∣∣∣∣∣ 1I ′
I′j∑

i=I′(j−1)+1

Fi(x)
T gi(y)− E

[
Fi(x)

T gi(y)
]∣∣∣∣∣∣ > O(1) · αSR2

 <
1

6
.

Moreover, the expectation E
[
Fi(x)

T gi(y)
]

satisfies

∣∣E [Fi(x)
T gi(y)

]
−KDEX(y)

∣∣ = ∣∣∣∣∣E
[

1

|X|
∑
x∈X

fi(x)
T gi(y)

]
− 1

|X|
∑
x∈X

k(x, y)

∣∣∣∣∣
≤ 1

|X|
∑
x∈X

∣∣E [fi(x)T gi(y)]− k(x, y)
∣∣

≤ α,

where the final inequality is an application of the α-approximate LSQ property of Q, i.e.,
∣∣E [fi(x)T gi(y)]− k(x, y)

∣∣ ≤ α.
Combining these, we get

Pr

∣∣∣∣∣∣ 1I ′
I′j∑

i=I′(j−1)+1

Fi(x)
T gi(y)−KDEX(y)

∣∣∣∣∣∣ > α+O(1) · αSR2

 <
1

6
. (4)
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For the second sum in Equation (3), recall that in the above proof of Lemma 2.4 it was shown that Var(NT
i gi(y)) ≤

SR2 · 2(IRS/(ϵ|X|))2 for every i. Averaging over I ′ = Θ(1/α2) independent copies scales the variance down by 1/|I ′|,
ensuring it is at most O(1) · α2SR2 · (IRS/(ϵ|X|))2. Plugging I = Θ(log(1/η)/α2), we have by Chebyshev’s inequality,

Pr

∣∣∣∣∣∣ 1I ′
I′j∑

i=I′(j−1)+1

NT
i gi(y)

∣∣∣∣∣∣ > O(1) · S1.5R2 log(1/η)

αϵ|X|

 <
1

6
. (5)

Taking a union bound over Equations (4) and (5) and plugging both into Equation (3), we get

Pr

[
|mj −KDEX(y)| > α+O(1) ·

(
αSR2 +

S1.5R2 log(1/η)

αϵ|X|

)]
<

1

3
.

The client output is ê(y) = median(m1, . . . ,mJ). Since J = Θ(log(1/η)), we get by Chernoff’s inequality,

Pr

[
|ê(y)−KDEX(y)| < α+O(1) ·

(
αSR2 +

S1.5R2 log(1/η)

αϵ|X|

)]
≥ 1− η,

as desired.

B. Additional Omitted Analysis
B.1. Fast Gauss Transform (Section 3.2)

For context, we start by deriving the Hermite expansion of the Gaussian kernel. Let x, y, z ∈ Rd. We may write,

e−∥y−x∥2
2 =

d∏
j=1

e−(yj−xj)
2

=

d∏
j=1

ξ(yj − xj)

=

d∏
j=1

 ∞∑
rj=1

(zj − xj)
rj

rj !
· ξ(rj)(yj − zj)


=

d∏
j=1

 ∞∑
rj=1

(xj − zj)
rj

rj !
· hrj (yj − zj)


=

∞∑
r1=1

. . .

∞∑
rd=1

d∏
j=1

(xj − zj)
rj

rj !
· hrj (yj − zj),

where we recall from Section 3.2 that ξ denotes the univariate function ξ(γ) = e−γ2

, that ξ(r) denotes its rth derivative, and
that hr denotes the Hermite function of order r. With this notation, the third equality above is by replacing each ξ(yj − xj)
with its Taylor expansion about yj − zj . The fourth equality is by recalling that hr = (−1)rξ(r). The fifth equality is by
rewriting the product of sums as the sum of products.

(Greengard & Strain, 1991) show that truncating each of the d sums after ρ = O(log(1/α)) terms leads to an additive error
of at most α. Thus,

∀z ∈ Rd,

∣∣∣∣∣∣e− 1
2∥x−y∥2

2 −
ρ∑

r1=1

. . .

ρ∑
rd=1

d∏
j=1

(xj − zj)
rj · 1

rj !
· hrj (yj − zj)

∣∣∣∣∣∣ ≤ α. (6)

We now prove Proposition 3.2 with the pair of functions f, g as defined in Section 3.2.
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Proof of Proposition 3.2. The LSQ family is supported on the single pair of functions (f, g). Note that by the premise
d = O(log(1/α)), we may choose ρ that satisfies ρ ≥ d.

We start by showing the α-approximate LSQ property, which here means that |f(x)T g(y) − e−∥x−y∥2
2 | ≤ α for every

x, y ∈ Rd. Let x, y ∈ Rd. Let Hx be the grid cell that contains x. Recall that zHx ∈ Rd denotes its center point. Note that
f(x) is non-zero only in those entries fH,r(x) for which H = Hx. We consider two cases:

• If ∥y − zHx∥2 ≤
√
ρ, then by the definition of f and g we have

f(x)T g(y) =

ρ∑
r1=1

. . .

ρ∑
rd=1

d∏
j=1

(xj − zHx
j )rj · 1

rj !
· hrj (yj − zHx

j ),

hence by Equation (6), |f(x)T g(y)− e−∥x−y∥2
2 | ≤ α.

• If ∥y − zHx∥2 >
√
ρ, then f(x)T g(y) = 0, since there are no entries where both f(x) and g(y) are non-zero. Thus, in

this case it suffices to show that e−∥x−y∥2
2 ≤ α. Recall that Hx is a hypercube with side-length 1 centered at zHx and

contains x, hence ∥x− zHx∥ ≤ 1
2

√
d ≤ 1

2

√
ρ. Therefore, by the triangle inequality,

∥x− y∥22 ≥ (∥y − zHx∥2 − ∥x− zHx∥2)2 ≥ (
√
ρ− 1

2

√
ρ)2 = 1

4ρ,

and thus e−∥x−y∥2
2 ≤ e−ρ/4 ≤ α, which holds provided we choose ρ = O(log(1/α)) with an appropriate hidden

constant.

In both cases we have |f(x)T g(y)− e−∥x−y∥2
2 | ≤ α, so α-approximate LSQability holds.

Next, we bound the parameters (Q,R, S) of this LSQ pair.

• Quantization Q: Each coordinate is indexed by a pair H ∈ GΦ and r ∈ {0, . . . , ρ}d. We recall that GΦ is the set of grid
cells with side-length 1 that intersect a ball of radius Φ, hence |GΦ| = O(1 + Φ√

d
)d by a standard volume argument.

The number of choices for r is (ρ+ 1)d, thus Q = O((1 + Φ√
d
) · ρ)d.

• Range R: Observe that f(x) is zero in all coordinates (H, r1, . . . , rd) except those where H is the (unique) grid cell
Hx that contains x. Since Hx has side-length 1 and its center point is zHx , we have ∀j |xj − zHx

j | ≤ 0.5, and therefore

the magnitude of f(x) at each non-zero coordinate can be bounded as
∣∣∣∏d

j=1

(
xj − zHx

j

)rj ∣∣∣ ≤ 1.

For g(y), we use the following bound from (Greengard & Strain, 1991), which is a consequence of Cramer’s inequality
for Hermite functions: for every r1, . . . , rd and y ∈ Rd,∣∣∣∣∣∣

d∏
j=1

1

rj !
· hrj (yj)

∣∣∣∣∣∣ ≤ e−∥y∥2
2

d∏
j=1

1.09 · (
√
2)rj√

rj !
.

It is not hard to verify that the term 1.09 · (
√
2)r/
√
r! is maximized over non-negative integers r at r = 1 and is

bounded by 1.09 ·
√
2 < 1.6, hence the right-hand size is upper bounded by 1.6d.

• Sparsity S: Again, f(x) is non-zero only at coordinates fH,r(x) such that H = Hx, of which there are only (ρ+ 1)d

(the number of choices for r ∈ {0, . . . , ρ}d).

As for g(y), it is non-zero only in coordinates gH,r(x) where H is one of the grid cells of G that satisfies ∥y − zH∥2 ≤√
ρ. Since the grid has side-length 1, the number of cells at distance at most

√
ρ from any given point y is at most

O(1 +
√

ρ/d)d, again by a standard volume argument. Accounting also for the (ρ+ 1)d possible choices for r, the
number of non-zero coordinates gH,r(x) is at most O(1 +

√
ρ/d)d · (ρ+ 1)d ≤ ρO(d).

Finally, we bound the evaluation times Tf and Tg of f and g respectively.
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• Tf : Every non-zero entry of f(x) is the product of d terms, which takes O(d) time to compute. As shown above, f(x)
has (ρ+ 1)d non-zero entries, thus its total evaluation time of is thus O(d) · (ρ+ 1)d.

• Tg: Let i ≥ 0 be an integer. The hermite function hi(γ) is equal to e−γ2

Pi(γ) for every γ ∈ R, where Pi is the
(“physicist’s”) Hermite polynomial of degree i. Fix a grid cell H ∈ GΦ. Since Pi(γ) and thus hi(γ) can be evaluated
in time O(i) for every i and γ, all values {hi(yj − zHj ) : i = 0, . . . , ρ} can be computed in time O(ρ2). With these at
hand, for every r ∈ {0, . . . , ρ}d and our fixed H we can compute gH,r(y) in time O(d), by multiplying the appropriate
pre-computed values. The total evaluation time for a fixed H is thus O(ρ2 + d). As shown above, the number of
cells H whose corresponding entries in g(y) are non-zero is O(1 +

√
ρ/d)d, leading to a total computation time of

O(1 +
√
ρ/d)d · (ρ2 + d) ≤ ρO(d).

Recalling that d ≤ ρ = O(log(1/α)), the proof is complete.

Refined LSQ for sharper implementation. In Section 2.1, for the purpose of asymptotic analysis, we defined LSQ with
a uniform bound R on the range of all coordinates in f and g. Nonetheless, the coordinates can have different ranges,
as the above proof shows for FGT. While it does not change the asymptotic bounds, it can have practical importance in
implementation.

Concretely, let f, g : Rd → RQ. Suppose we have S,Rg, Rf
1 , . . . , R

f
Q ≥ 0 such that for every x, y ∈ Rd:

• g(y) has at most S non-zero coordinates;

• Each coordinate of g(y) is in [−Rg, Rg];

• For i = 1, . . . , Q, coordinate i of f(x) is in [−Rf
i , R

f
i ].

The LSQ mechanism in Algorithm 1 adds a sample from Laplace((ϵ|X|)−1IRS) to each coordinate, to ensure ϵ-DP via the
Laplace mechanism. In the refined form of LSQ stated above, since f has sensitivity

∑Q
i=1 R

f
i , it suffices to add a sample

from Laplace((ϵ|X|)−1I
∑Q

i=1 R
f
i ) to each coordinate to ensure ϵ-DP.

In the case of FGT, the above proof of Proposition 3.2 shows that if a coordinate of fH,r is indexed by a pair H ∈ GΦ and
r ∈ {0, . . . , ρ}d, then fH,r(x) = 0 if x /∈ H , and otherwise,

|fH,r(x)| ≤

∣∣∣∣∣∣
d∏

j=1

(xj − zHj )rj

∣∣∣∣∣∣ ≤
d∏

j=1

1

2rj
=

1

2
∑d

j=1 rj
.

Therefore,
Q∑
i=1

Rf
i =

ρ∑
r1=0

. . .

ρ∑
rd=0

1

2
∑d

j=1 rj
=

(
ρ∑

r=0

1

2r

)d

=
(
2
(
1− 2−(ρ−1)

))d
.

Asymptotically, this makes no difference to the analysis: by retracing the proof of Lemma 2.4 with this refined LSQ, we get
that the error term O((ϵ|X|)−1 log(1/η) · S1.5R2) from Lemma 2.4 becomes O((ϵ|X|)−1 log(1/η) ·

√
S ·Rg ·

∑Q
i=1 R

f
i ).

Since Rg = 1.6d and S = ρO(d) in Proposition 3.2, the resulting error is the same in both cases up to hidden constants.
However, in practice, adding noise of magnitude only

(
2
(
1− 2−(ρ−1)

))d
instead of ρO(d) to each coordinate noticeably

improves the empirical performance of FGT, while retaining its theoretical guarantees.

B.2. Locality Sensitive Hashing (Section 3.3)

Proof of Proposition 3.5. The proof is by composing a usual pairwise independent hash function over the LSH function.
Let U be a universal family of hash functions from {1, . . . , B} to {1, . . . , B′}, where B is the number of buckets in the
range of H, and B′ > 0 is an integer of our choice. We recall that, as per the definition of universal hashing, U satisfies
Pru∼U [u(b) = u(b′)] ≤ 1/B′ for every b, b′.

We define an LSQ family Q as follows: to sample from it, we draw h ∼ H and u ∼ U , and for every x ∈ Rd we let
fh,u(x) ∈ {0, 1}B

′
be the indicator vector for u(h(x)). We return (fh,u, fh,u) as the sampled pair from Q.
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A union bound over the collision probabilities of h and u yields that for all x, y ∈ Rd,

Pr
u,h

[u(h(x)) = u(h(y))] ≤ Pr
h
[h(x) = h(y)] + 1

B′ .

Consequently, ifH is an α-approximate LSH family for k, then Q is an (α+ 1
B′ )-approximate (B′, 1, 1)-LSQ family for k.

Proposition 3.5 follows by choosing B′ = ⌈1/α⌉.

C. Expanded Discussion on Related Work
C.1. Generic Linear Queries

For completeness of the discussion of prior work from Section 1.4, we expand on some aspects of SmallDB and PMW for
Gaussian DP-KDE in the function release model. These mechanisms are designed to answer generic linear queries. Let X
denote the universe in which the elements of the dataset X are contained. The goal of a DP linear query is to estimate the
quantity ϕ(X) := 1

|X|
∑

x∈X ϕ(x), where ϕ : X → [0, 1] is a query function chosen by the client. In the case of KDE, we
have X = Rd, and each query point y ∈ Rd corresponds to the query function ϕy(x) = k(x, y). Since SmallDB and PMW
require X to be finite, we next discuss discretization.

Discretization for Gaussian KDE. If all points are assumed to be contained in ball of radius Φ ≥ 1 in Rd, then for the
purpose of approximation of Gaussian KDE (Definition 1.3), one can round every point coordinate to its nearest integer
multiple of α/(4Φ

√
d). Thus, we can without loss of generality assume that X contains only those points in the ball that

have such coordinates, of which there are O(Φ2/α)d by a standard volume argument.

To see why this suffices for Gaussian KDE, let x, y ∈ Rd, and let x̄ be the result of rounding x. Then,

e−∥y−x̄∥2
2 = e−∥(y−x)−(x−x̄)∥2

2 = e−∥y−x∥2
2 · e−∥x−x̄∥2

2 · e2(y−x)T (x−x̄).

Since ∥x− x̄∥2 ≤ α/(4Φ),
1 ≥ e−∥x−x̄∥2

2 ≥ e−(α/(4Φ))2 ≥ e−α,

and, by Cauchy-Schwartz and the fact that ∥y − x∥2 ≤ 2Φ,

|2(y − x)T (x− x̄)| ≤ 2∥y − x∥2∥x− x̄∥2 ≤ 2 · 2Φ · α

4Φ
= α,

which implies
e−α ≤ e2(y−x)T (x−x̄) ≤ eα.

Noting that 1 ≤ eα ≤ 1 + 2α and 1− α ≤ e−α ≤ 1 for all α ∈ (0, 1), we plug these back above and get,

(1− α)2e−∥y−x∥2
2 ≤ e−∥y−x̄∥2

2 ≤ (1 + 2α)e−∥y−x∥2
2 ,

thus |e−∥y−x̄∥2
2 − e−∥y−x∥2

2 | ≤ 2α · e−∥y−x∥2
2 ≤ 2α. Therefore rounding up to this precision introduces an additive error

of only O(α) to every kernel evaluation and hence to every KDE evaluation, and we can scale α down by an appropriate
constant.

SmallDB. The mechanism works as follows: Let X be the curator dataset, and let Q be a set of client queries. Suppose
we know of s(α,Q) ≥ 0 such that there exists a dataset Z of size s(α,Q) that satisfies |ϕ(Z) − ϕ(X)| ≤ α for all
ϕ ∈ Q simultaneously. SmallDB selects a dataset Z̃ of size s(α,Q) using the DP exponential mechanism, and, in the
query release model, releases the answers {ϕ(Z̃) : ϕ ∈ Q} to the client queries Q. When the goal is to release ϵ-DP
accurate answers to all queries in Q simultaneously with constant probability (say 0.9), SmallDB has sample complexity
O(s(α,Q) · log(|X |)/(ϵα)).

(The exponential mechanism entails iterating over all possible datasets of size s(α,Q)—that is, all |X |s(α,Q) subsets of X
of that size—and computing their utility with respect to Q, which leads to the inefficient running time of SmallDB.)

By standard concentration (Hoeffding’s inequality), it is well-known that s(α,Q) = O(log(|Q|)/α2) for every Q and α,
yielding a sample complexity of O(log(|Q|) log(|X |))/(ϵα3)) for generic linear queries. In the transformation from query
release to function release for Gaussian DP-KDE, we set Q = X . By discretization we have |X | = O(Φ2/α)d, hence the
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above sample complexity becomes O(d2 log2(Φ/α)/(ϵα3)). However, it can be improved somewhat further, due to the
existence of coresets for Gaussian KDE. An α-coreset for X is a dataset Z such that |KDEX(y)−KDEZ(y)| ≤ α for all
y ∈ Rd simultaneously. It is known that every dataset has an α-coreset for Gaussian KDE of size

Cd,α = O(min{α−1
√

d log(1/α), α−2}),

see (Lopez-Paz et al., 2015; Lacoste-Julien et al., 2015; Phillips & Tai, 2020; Karnin & Liberty, 2019). Therefore, Cd,α is
an upper bound on s(α,Q) for every Q and α. This yields the SmallDB sample complexity bound listed in Table 1.

The curator running time, which as mentioned above depends on enumerating over all datasets of size s(α,Q), is similarly
improved. The curator output is the synthetic dataset Z̃ released by the exponential mechanism, and it contains Cd,α points
in Rd, hence its size is O(d · Cd,α) words. The client can estimate KDEX(y) on this output by computing KDEZ̃(y),
which takes time O(d · Cd,α).

PMW. The mechanism has sample complexity Õ(log(|Q|) log(|X |))/(ϵα3)) for generic linear queries. It is similar to that
of SmallDB up to log factors, but stems from a different analysis (that we do not revisit here) which is not immediately
improved by the existence of coresets. In the DP-KDE function release case we have, as above, |Q| = |X | = O(Φ2/α)d,
leading to the sample complexity listed in Table 1.

(We remark that PMW, unlike SmallDB, allows for adaptive queries in the query release model. Since we transform both
mechanisms to the function release model for DP-KDE, this distinction between them does not apply in our setting.)

Like SmallDB, the output of PMW (in the function release model) is a synthetic private dataset Z̃ on which the KDE of
every query point can be directly evaluated. Initially Z̃ can be as large as X , but it too can be replaced by a coreset of itself,
increasing the additive error of every query by at most α. The coresets bounds listed above are constructive (in particular, a
uniformly random sample of O(1/α2) from Z̃ yields an α-coreset for it with constant probability (Lopez-Paz et al., 2015)),
and since the released coreset would be computed from Z̃ which is already ϵ-DP, the coreset too would be ϵ-DP by immunity
of differential privacy to post-processing. Consequently, like SmallDB, the curator output size and client running time of
PMW are both O(d · Cd,α).

From query release to function release: uniform convergence and running time. As alluded to above, a naı̈ve way to
transform a query release mechanism into a function release mechanism is to invoke it with all possible queries, of which (by
the above discretization argument) we have O(Φ2/α)d. This was used above to determine the sample complexity bounds
for SmallDB and PMW. In fact, by uniform convergence results from learning theory, invoking these mechanisms with a
small random sample of queries (instead of all possible queries) suffices to turn them into function release mechanisms.
The reason is that the functions these mechanisms release admit a short description (a small synthetic dataset in the case of
SmallDB, or a short transcript that describes the synthetic dataset in the case of PMW), and therefore the released functions
can be “learned” on a small sample of queries and still generalize (in the learning theory sense) to all queries. We omit
further details. This argument does not change the sample complexity of these mechanisms, but it somewhat improves the
curator running time (albeit it remains at least exponential in d, as listed in Table 1).

C.2. Adaptive Queries

In Section 1.4 we mentioned that SmallDB and PMW, when used in the function release model, have the property that with
a fixed probability of say 0.9, they release a function5 which returns the correct answer up to an additive error of at most α
for all queries simultaneously (assuming all points are contained in a ball of radius Φ). This is a stronger guranatee than
(α, η)-approximation. In particular, it allows to use the released function for adaptive queries.

We can achieve the same stronger guarantee for our mechanisms (and similarly for the Bernstein mechanism), by setting
η sufficiently small so as to allow for a union bound over all queries (namely, by the above discretization bound, η =
Θ(α/Φ2)d). We get the following corollaries of Theorems 1.1 and 1.2 respectively.

Corollary C.1 (high dimensions). There is an ϵ-DP function release mechanism for Gaussian KDE on datasets in Rd of
size n ≥ O(d log(Φ/α)/(ϵα2)) and that are contained in a ball of radius Φ, such that with probability 0.9, the released
function has additive error at most α on every query simultaneously. Furthermore:

• The curator runs in time O(nd2 log(Φ/α)/α2).

5In the case of SmallDB and PMW, the released function in fact takes the form of a synthetic dataset.
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• The output size is O(d2 log(Φ/α)/α2).

• The client runs in time O(d2 log(Φ/α)/α2).

Corollary C.2 (low dimensions). There is an ϵ-DP function release mechanism for Gaussian KDE on datasets in Rd of
size n ≥ log(1/η) · (log(1/α))O(d)/(ϵα) and that are contained in a ball of radius Φ, such that with probability 0.9, the
released function has additive error at most α on every query simultaneously. Furthermore:

• The curator runs in time (nd+ ( Φ√
d
)d) ·O(log(1/α))O(d) · d log(Φ/α).

• The output size is O((1 + Φ√
d
)(log(1/α)))d · d log(Φ/α).

• The client runs in time (log(1/α))O(d) · d log(Φ/α).

Note that the dependence on Φ remains polylogarithmic, and for the first mechanism, the dependence on the dimension
remains polynomial.

C.3. (ϵ, δ)-DP and Query Release

When (ϵ, δ)-DP with δ > 0 (a.k.a. approximate DP) is allowed, the most notable prior result on Gaussian DP-KDE is due to
(Hall et al., 2013), which we call the HRW mechanism. Their mechanism is time-efficient in the query release model, albeit
not in the function release model. To describe it, we define the query release model as follows. First, the client sends the
curator q query points, y1, . . . , yq ∈ Rd. In response the curator, who holds a dataset X , releases a sequence of answers
A = (a1, . . . , aq). We require that (i) A is differentially private w.r.t. X , and (ii) with probability (say) 0.99, it holds that
maxi=1,...,q |ai −KDEX(yi)| ≤ α.6

Note that in the query release model, no “curse of dimensionality” immediately arises at all: the curator can simply compute
the true KDE values of all queries in time O(dnq), and release them after adding appropriate privacy-preserving noise.7

However, such naı̈ve mechanisms lead to an undesirably large sample complexity (or equivalently, undesirably large error
α), and improving the sample complexity while avoiding exponential dependence on d turns out to be challenging. This is
manifested in the following discussion, whose quantitative results are summarized in Table 2.

Query release with pure DP. For context, let us start with DP-KDE in the query release model under pure DP, that
is, where the released sequence of answers A must be ϵ-DP w.r.t. X . As alluded to above, the curator can invoke the
vanilla Laplace mechanism: compute the true KDE values of the q queries, and add noise sampled independently from
Laplace(q/(ϵn)) to each. It is not hard to verify that A has ℓ1-sensitivity q/n, hence the mechanism is ϵ-DP. The running
time is O(dnq). The resulting sample complexity is O(q log(q)/(ϵα)). While the dependence on d, α, ϵ is desirable, the
dependence on q in the sample complexity impedes the usability of this mechanism if the number of queries is large.

Instead of the Laplace mechanism, one could use SmallDB or PMW, whose sample complexity has better dependence
on q in some regimes, albeit their running time is (at least) exponential in d. LSQ-RFF achieves a sample complexity of
O(log(q)/(ϵα2)) and running time linear in d, subsuming SmallDB and PMW on both counts.8 Comparing its sample
complexity to the Laplace mechanism, the dependence on q is exponentially better, while the dependence on α is quadratically
worse. LSQ-FGT has sample complexity O(log(q) · (log(1/α))d/(ϵα)) and running time exponential in d, improving over
the above mentioned results only when d is small.

Query release with approximate DP: the HRW mechanism. Now suppose approximate DP is allowed—that is, the
curator is allowed to release an answer sequence A which is (ϵ, δ)-DP w.r.t. X. The natural analog of the vanilla Laplace
mechanism from the pure DP case is the vanilla Gaussian mechanism (see (Dwork et al., 2014)): the curator computes the
true KDE values of all queries, and adds independent Gaussian noise N(0, 2q log(1.25/δ)/(ϵn)2) to each. It is not hard to
verify that A has ℓ2-sensitivity

√
q/n, hence the mechanism is (ϵ, δ)-DP. The running time is O(dnq). The resulting sample

complexity is O(
√
q log(q) · log(1/δ)/(ϵα)). While the dependence on q is quadratically better than the pure-DP Laplace

6This is the batch query release model. In the online query release model, the client may send the curator additional queries after
seeing the answers to previous ones. The results we describe in this section extend to the online variant as well.

7Note that this would not have been possible in the function release model, where the curator has no access to the queries, and no party
has to access to both the dataset and the queries simultaneously, thus the true KDE values cannot be computed at all—unless the curator
enumerates over all possible queries in advance, before receiving any specific queries from the client.

8Of course, LSQ-RFF is specialized for KDE queries, while SmallDB and PMW apply to general linear queries.
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Table 2. ϵ-DP and (ϵ, δ)-DP KDE query release mechanisms for the Gaussian kernel, that receive q queries and approximate each KDE
up to additive error α. (*) SmallDB, PMW and LSQ-FGT assume that all points lie in a ball of radius Φ. (‡) Recall that O(Φ2/α)d

is an upper bound on the number of possible points (cf. discretization in Appendix C.1), hence on the number of queries q, hence the
d log(Φ/α) term in the sample complexity of SmallDB is at least Ω(log q).

MECHANISM PURE DP? SAMPLE COMPLEXITY RUNTIME DEPENDENCE ON d

Laplace Yes O( q log q
ϵ·α ) Linear

SmallDB Yes O

(
min{
√

d log(1/α),1/α}·d log(Φ/α)

ϵ·α2

)
Exponential (*), (‡)

PMW Yes Õ
(

log(q)·d log(Φ/α)
ϵ·α3

)
Exponential (*)

LSQ-RFF Yes O( log q
ϵ·α2 ) Linear

LSQ-FGT Yes log q
ϵ·α · (log(1/α))

O(d) Exponential (*)

Gaussian No O(

√
q log q log(1/δ)

ϵ·α ) Linear

PMW No Õ

(
log q
√

d log(Φ/α) log(1/δ)

ϵ·α2

)
Exponential (*)

HRW No O(

√
log q log(1/δ)

ϵ·α ) Linear

mechanism, it is still undesirably large. Again, one could use SmallDB or PMW, but they are subsumed by the pure-DP
LSQ-RFF mechanism, even when approximate DP is allowed.9

(Hall et al., 2013) presented the HRW mechanism, which is (ϵ, δ)-DP, runs in time O(dq(n + q)), and achieves sample
complexity O(

√
log(q) · log(1/δ)/(ϵα)). It operates similarly to the Gaussian mechanism, except that the noise samples

added to different answers are not independent, but correlated via an appropriate Gaussian process, allowing for much
less noise per query. Namely, the mechanism returns ai = KDEX(yi) + Zi, where Zi ∼ N(0, 2 log(2/δ)/(ϵn)2) and
Cov(Zi, Zj) = k(yi, yj) = e−∥yi−yj∥2

2 . They prove that the mechanism is (ϵ, δ)-DP for arbitrarily many queries, even
though the noise magnitude per query does not grow with q at all. (The extra

√
log q term in the sample complexity is

from a standard bound on the maximum of this finite Gaussian process, ensuring that all q queries are answered accurately
simultaneously.) The HRW sample complexity is better than all previously mentioned results if approximate DP with
sufficiently large δ (say a small constant δ = Ω(1)) is allowed.

Query release vs. function release. The HRW mechanism runs in time linear in d in the query release model, but in order
to use it for function release, the curator must release answers to all possible queries, which entails running time exponential
in d. Thus, in the function release model, to our knowledge, the LSQ-RFF mechanism, despite being pure-DP, is currently
the only DP-KDE mechanism for the Gaussian kernel that achieves (α, η)-approximation with running time linear in d,
even if approximate DP is allowed.

C.4. Overview of LSHable Kernels

As mentioned in the introduction, the Laplacian kernel k(x, y) = e−∥x−y∥1 is likely the most popular LSHable kernel over
Rd. For completeness, in this section we give an overview of other kernels known to be LSHable.

(Rahimi & Recht, 2007) introduced a family of LSHable kernels (although they did not use this terminology) in their Random
Binning Features construction. They start by showing that the hat kernel over x, y ∈ R, k̂σ(x, y) = max{0, 1− |x− y|/σ},
is LSHable. They then show this implies the LSHability of shift-invariant kernels over R that can be written as convex

9PMW has an (ϵ, δ)-DP variant with better bounds than its pure-DP variant. SmallDB has no (ϵ, δ)-DP variant. See Table 2.

20



Fast Private Kernel Density Estimation via Locality Sensitive Quantization

combinations of such hat kernels on a compact subsets of R × R (this includes the one-dimensional Laplacian kernel
k(x, y) = e−|x−y|), and of kernels over Rd that can be written as the product of one-dimensional LSHable kernels over the
coordinates (this includes the d-dimensional Laplacian kernel k(x, y) = e−∥x−y∥1 =

∏d
i=1 e

−|xi−yi|). They note that this
family does not include the Gaussian kernel.

(Andoni & Indyk, 2009) discussed additional LSHable kernels over Rd: the exponential kernel k(x, y) = e−∥x−y∥2 , whose
LSHability follows from that of the Laplacian kernel essentially by an (efficient and approximate) isometric embedding of
ℓ2 into ℓ1;10 the geodesic kernel over the unit sphere, k(x, y) = 1− π−1θ(x, y), where θ(x, y) denotes the angle between x

and y; and the Erfc kernel k(x, y) = erfc(∥x−y∥2)
2−erfc(∥x−y∥2)

, where erfc(z) = 2√
π

∫∞
z

e−t2dt is the complementary Gauss error
function. Regarding the lack of LSHability results for the Gaussian kernel, they suggest using the Erfc kernel as a proxy
(naming it a “near-Gaussian kernel”), showing it approximates the Gaussian kernel at every up point up to an additive error
of 0.16. Unfortunately, this error is far too large for most KDE applications. Furthermore, the LSH family associated with
the Erfc kernel has running time that depends exponentially on the additive error α (where α is the approximation error for
the Erfc kernel, leading to an error of 0.16 + α for the Gaussian kernel), making it infeasible when α is small.

The lack of available LSHability results for the Gaussian and Cauchy kernel is also discussed in (Backurs et al., 2018;
Siminelakis et al., 2019), who develop alternative methods for (non-private) approximation of these kernels where normally
LSHability would be used.

Finally, apart from Rd, some LSHability results are available for kernels that measure similarity over finite spaces. (Andoni
& Indyk, 2009) observe that the Jaccard kernel is LSHable, while (Chierichetti & Kumar, 2015) discuss transformations that
preserve the LSHability of such kernels.

D. Extensions to Other Kernels
In this section we discuss the applicability of our results beyond the Gaussian kernel. The key distinction to draw here
is between the sample complexity of the DP-KDE mechanism (i.e., the tradeoff between the privacy parameter ϵ and the
additive error parameters α, η), for which we can make general statements for some families of kernels, to the computational
efficiency of the mechanism (i.e. the running times of the curator and the client, and the curator output size), which would
generally depend on the specific properties of each kernel.

D.1. LSQ with RFF

(Rahimi & Recht, 2007) showed that every positive definite shift-invariant kernel (abbreviated henceforth as a PDSI kernel)
admits a family of random Fourier features. More precisely, for every such kernel k defined over Rd, there exists a
distribution DRFF

k over Rd such that

∀x, y ∈ Rd , k(x, y) = Eω∼DRFF
k ,β∼Uniform[0,2π)[

√
2 cos(ωTx+ β) ·

√
2 cos(ωT y + β)].

This implies that every PDSI kernel is (1,
√
2, 1)-LSQable. Therefore, from Lemmas 2.2 and 2.5 we get the following result.

Theorem D.1. For every PDSI kernel over Rd, there is an ϵ-DP function release mechanism for (α, η)-approximation of its
KDE, on datasets of size at least n ≥ O(log(1/η)/(ϵα2)).

These are the same privacy, utility and sample complexity guarantees as we get for the Gaussian kernel in Theorem 1.1.
However, the computational efficiency (and more specifically in the case, the curator running time) depends on the
computational properties of DRFF

k for each specific kernel k. Namely, it hinges on whether one can sample ω from DRFF
k

efficiently. Formally, by Lemma 2.3, we get:

Proposition D.2. Let k be a PDSI kernel. Let TRFF
k be the time complexity of drawing a sample ω from DRFF

k . Then, the
LSQ-RFF DP-KDE mechanism from Theorem D.1 satisfies the following:

• The curator runs in time O((nd+ TRFF
k ) log(1/η)/α2).

• The curator output size is O(d log(1/η)/α2).

10Note that the exponential kernel is different from the Laplacian kernel in that the norm in the exponent is ℓ2 and not ℓ1, and is
different from the Gaussian kernel in that the norm is not squared.
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• The client runs in time O(d log(1/η)/α2).

Proof. In the notation of Lemma 2.3, we have TQ = TRFF
k . Furthermore, LQ = d+ 1 since this is the number of machine

words needed to describe a pair ω, β (regardless of the time it took to sample ω), and Tf = Tg = O(d) since computing√
2 cos(ωTx+ β) given x, ω, β takes time O(d). We plug these into Lemma 2.3 together with I = O(log(1/η)/α2), the

setting of I used in Lemma 2.5 to obtain Theorem D.1, and the proposition follows.

Let us give some examples of DRFF
k and TRFF

k for specific kernels, and observe how they affect the efficiency of the
LSQ-RFF mechanism.

• Gaussian, Laplacian and Cauchy kernels: For these three kernels, mentioned in Section 1.2, (Rahimi & Recht, 2007)
derived the corresponding RFF distributions (we list them here with bandwidth σ = 1):

– For the Gaussian kernel k(x, y) = exp(−∥x − y∥22), DRFF
k is the d-dimensional Gaussian distribution

√
2 ·

N(0, Id).
– For the Laplacian kernel k(x, y) = exp(−∥x − y∥1), DRFF

k is the d-dimensional Cauchy distribution, whose
density at ω ∈ Rd is

∏d
j=1(π(1 + ω2

j ))
−1.

– For the Cauchy kernel k(x, y) =
∏d

j=1 2/(1 + (xj − yj)
2), DRFF

k is the d-dimensional Laplace distribution
Laplace(0, Id).

Each of these distributions is a d-dimensional product distribution where each coordinate can be sampled in time O(1),
hence TRFF

k = O(d). Therefore, for these kernels, we get the same DP-KDE results as stated for the Gaussian kernel
in Theorem 1.1.

• Exponential ℓpp kernels: Let p ∈ [1, 2]. Consider the kernel k(x, y) = exp(−∥x − y∥pp). This can be seen as a
generalization of the Gaussian and Laplacian kernels (which correspond to p = 2 and p = 1 respectively). For this
kernel, it can be checked that DRFF

k is the d-dimensional product distribution whose coordinates are i.i.d. samples
from the p-stable distribution, and furthermore, each coordinate can be sampled in time O(1). See (Indyk, 2006) for
the definition of the p-stable distribution and for how to efficiently sample from it. Therefore, for these kernels too we
have TRFF

k = O(d), and we get the same DP-KDE result as in Theorem 1.1.

• Exponential ℓp kernels: Again let p ∈ [1, 2], and consider the kernel k(x, y) = exp(−∥x− y∥p). Note that, in contrast
to the previous case, the ℓp-norm in the exponent is not raised to the power p. The p = 1 case again coincides with
the Laplacian kernel, while the p = 2 case coincides with the exponential kernel mentioned in Appendix C.4. These
kernels are PDSI, hence Theorem D.1 and Proposition D.4 hold for them. However, we do not immediately see how to
efficiently sample from their RFF distribution DRFF

k (even though it may be possible), and are therefore unable to
determine TRFF

k and bound the curator running time of their LSQ-RFF DP-KDE mechanism.

D.2. LSQ with FGT

The Fast Gauss Transform is rather specialized to the Gaussian kernel. Nonetheless, it can be extended to certain kernels
with sufficiently similar properties, like those discussed in (Alman et al., 2020), section 9.3. For those kernels, we get the
same DP-KDE results as we get for the Gaussian kernel in Theorem 1.2.

D.3. LSQ with LSH

With LSH, the situation is similar to LSQ-RFF: for every LSHable kernel we can get a DP-KDE mechanism with the same
privacy and utility guarantees as Theorem D.1, but the computational efficiency depends on the properties of the LSH family
associated with that specific kernel. More precisely, we have the following result, which we recall follows already from the
prior work of (Coleman & Shrivastava, 2021).

Theorem D.3. For every α-approximate LSHable kernel over Rd, there is an ϵ-DP function release mechanism for
(α, η)-approximation of its KDE, on datasets of size at least n ≥ O(log(1/η)/(ϵα2)).

Proof. By Proposition 3.5, k is 2α-approximate (⌈1/α⌉, 1, 1)-LSQable, hence the theorem follows from Lemmas 2.2
and 2.5.
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These are the same privacy, utility and sample complexity guarantees as we get for the Gaussian kernel in Theorem D.1
(however, note that PDSI kernels and LSHable kernels are distinct classes of kernels). The computational efficiency of the
LSH-based mechanism depends on the computational properties of the LSH family as follows.

Proposition D.4. Let k be an α-approximate LSHable kernel over Rd. LetH be the associated LSH family. Let B be range
size (i.e., number of hash buckets) of the hash functions in H. Let TH be the time to sample h ∼ H, let Th be the time
to evaluate h(x) given h ∈ H and x ∈ RD, and let LH be the description size of h ∈ H. Then, the LSQ-LSH DP-KDE
mechanism from Theorem D.3 satisfies the following:

• The curator runs in time O((nTh + TH) log(1/η)/α2).

• The curator output size is O((LH +min{B, logB + 1/α}) · log(1/η)/α2).

• The client runs in time O(Th log(1/η)/α
2).

Proof. Let I = O(log(1/η)/α2), noting this is the setting of I used in Lemma 2.5 to obtain Theorem D.3.

Recall that we have two options to transform the LSH family into an LSQ family: either by Proposition 3.4 or by
Proposition 3.5. We analyze both cases. If we use Proposition 3.4, then k is (B, 1, 1)-LSQable, and in the notation of
Lemma 2.3 we have TQ = TH, Tf = Tg = Th, and LQ = LH. Applying Lemma 2.3, the curator running time is
O(I(nTh + TH +B)), the curator output size is O(I(LH +B)), and the client running in time O(I · Th).

Alternatively, if we use Proposition 3.5, then k is (⌈1/α⌉, 1, 1)-LSQable. The proof of Proposition 3.5 (cf. Appendix B.2)
obtains the LSQ family by composing over H a universal hash family U that hashes a domain of size B into ⌈1/α⌉
hash buckets. There are well-known choices for U (e.g., (Carter & Wegman, 1977)) with sampling and evaluation times
O(1) and description size O(logB). Hence, for the composition of U over H, we have in the notation of Lemma 2.3
TQ = TH +O(1), Tf = Tg = Th +O(1), and LQ = LH +O(logB). Applying Lemma 2.3, the curator running time is
O(I(nTh + TH + 1/α)), the curator output size is O(I(LH + logB + 1/α)), and the client running in time O(I · Th).

Putting these together, the curator running time is O(I(nTh + TH +min{B, 1/α})), the curator output size is O(I(LH +
min{B, logB + 1/α})), and the client running in time O(I · Th). Note that the approximation guarantee in Theorem D.3
requires n ≥ O(log(1/η)/(ϵα2)), hence nTh ≥ n ≥ O(1/α), and hence the curator running time becomes O(I(nTh+TH)).
These are the bounds claimed in the proposition.

Here too, let us give some examples of how different LSH families affect the computational efficiency of the DP-KDE
mechanism.

• Laplacian, exponential and geodesic kernels: as already mentioned in Section 3.3, the Laplacian kernel admits an LSH
family that satisfies TQ, Tf , Tg, LQ = O(d) in the notation of Lemma 2.3. Therefore, we get an efficient DP-KDE
mechanism for it, as stated in Theorem 3.6. The exponential kernel and the geodesic kernel, mentioned as LSHable in
Appendix C.4, also have LSH families with similar (though perhaps slightly different) efficiency properties, given in
(Andoni & Indyk, 2009).

• Erfc kernel: In Appendix C.4 we defined the Erfc kernel, and mentioned that (Andoni & Indyk, 2009) showed it is
α-approximate LSHable, albeit with an LSH family that takes time exponential in α to sample from. Therefore, for this
kernel we get a DP-KDE mechanism with the privacy, utility and sample complexity stated in Theorem D.3, but with
running time exponential in α.

• Exponential ℓp kernels: Let us revisit the family of kernels k(x, y) = exp(−∥x− y∥p) with p ∈ [1, 2]. We discussed
these kernels in the context of LSQ-RFF, and showed that while we have DP-KDE mechanisms for them, we do not
know them to be computationally efficient. This result also follows by LSHability. The reason is that ℓp is known to
embed isometrically into ℓ1 (Johnson & Schechtman, 1982). This implies that the kernel k(x, y) = exp(−∥x− y∥p)
with any p ∈ [1, 2] is LSHable, by first applying an isometric embedding of the ℓp distances into ℓ1, and then using
the LSHability of the Laplacian kernel. However, except in the p = 2 case, it is not known how to compute an
(approximately) isometric embedding of ℓp into ℓ1 efficiently. Therefore, while for these kernels we can get DP-KDE
mechanisms from Theorem D.3, we are unable to bound their computational efficiency.
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E. Additional Experiments and Implementation Details
E.1. Mechanism Implementation

In this section we provide details on how we instantiate the LSQ mechanism from Algorithm 1 into the LSQ-RFF and
LSQ-FGT mechanisms included in our code and used in our experiments, and on how these mechanisms are parameterized.

The efficiency/utility trade-off of the LSQ mechanism in Algorithm 1 is governed by the input parameters I, J , which
are non-negative integers such that J is a divisor of I . (Observe that the computational efficiency bounds in Lemma 2.3
grow linearly with I .) Their role is simply to determine the number of repetitions in a standard median-of-means (MoM)
averaging scheme, to induce the desired probabilistic concentration. The mechanism performs a total of I independent
repetitions, and uses them to return the median of J terms, where each term is the average of I ′ = I/J repetitions. As usual
with MoM, I ′ governs the additive error α that we consider “successful”, while J governs the probability η of failing to
achieve that successful additive error.

From a typical theoretical perspective, one would like to select the desired utility parameters α and η, and ensure that the
mechanism rigorously satisfies (α, η)-approximation. To this end, Lemmas 2.4 and 2.5 specify the setting of I and J that
formally guarantees (α, η)-approximation and leads to our theoretical results, Theorems 1.1 and 1.2.

For our experiments, however, we would like to directly control the computational cost of our mechanisms, and measure
their empirical utility as we vary the computational cost. To this end, we parameterize each of our two implemented
mechanisms—LSQ-RFF and LSQ-FGT—by a single parameter that governs their computational efficiency, as follows. In
both mechanisms, for simplicity, we use J = 1, which means we do not perform a median operation at all. One can always
increase J and return the median over J independent repetitions in order to boost the success probability of each individual
query, at the expense of degrading ϵ (by a factor of J) for releasing more information in those additional repetitions.

In LSQ-RFF, we parameterize the mechanism by the number of random Fourier features the mechanism uses, which (under
the setting J = 1) coincides with the overall number of repetitions, I , in Algorithm 1.

In LSQ-FGT, there is the added complication that the LSQ family itself has variable computational cost. In order to define
the FGT, the user selects an integer parameter ρ ≥ 1, which determines the properties of the LSQ family as follows:

Proposition E.1. Let ρ ≥ 1 be an integer. The Gaussian kernel over points contained in a Euclidean ball of radius Φ in Rd

admits an e−O(ρ)-approximate ((1 + Φ√
d
) · ρ)d, O(1)d, ρO(d))-LSQ family, supported on a single pair of functions (f, g).

Furthermore, the evaluation times of f on x ∈ Rd and of g on y ∈ Rd are both (d · ρ)O(d).

This is just a restatement of Proposition 3.2, parameterized by ρ instead of α (and it follows from the same proof in
Appendix B.1). Note that as ρ increases, the parameters Q and S of the (Q,R, S)-LSQ family grow with it, which increases
the computational cost of the LSQ mechanism according to Lemma 2.3. The description of LSQ-FGT in Section 3.2 sets
ρ = O(log(1/α)) in order to prove Theorem 1.2, but in practice, when α is not chosen in advance but measured empirically,
the user needs to set ρ directly. In our implementation of LSQ-FGT, we set the number of repetitions to I = 1, and use ρ as
the parameter that governs the efficiency/utility trade-off.

E.2. Experimental Details

Preprocessing. All datasets are available online (download URLs are included in the bibliographic entries).

• Covertype (Blackard & Dean, 1999): No preprocessing.

• GloVe (Pennington et al., 2014): We use the 1M points, 100 dimensions version of the dataset. No preprocessing.

• Diabetes (Strack et al., 2014): we select the “age” and “time in hospital” columns. “time in hospital” is between 1 and
14 (days). “age” is given as a decade-long bracket (e.g., [40− 50)) and we replace it with its midpoint (e.g., 45), and
then divide it by 10 to equate the numerical range of both coordinates.11

• NYC Taxi (Chavez et al., 2018): We select the “pickup longitude” and “pickup latitude” columns. We filter out points

11This is equivalent to choosing the bandwidth as a non-scalar diagonal matrix, namely
(
1 0
0 0.1

)
. Recall that the bandwidth is, in

general, a d× d positive definite matrix Σ, with which the Gaussian kernel is defined as k(x, y) = e−(x−y)TΣ(x−y).
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with “pickup longitude” /∈ (−74.1,−73.15) or “pickup latitude” /∈ (40.5, 40.9) to eliminate corrupted records (these
coordinate ranges are the general geographical vicinity of NYC). We use 100, 000 of the unfiltered points.

Bandwidth selection. For each dataset we tune the bandwidth according to the guidelines in prior work (Jaakkola et al.,
1999; Backurs et al., 2019). The values are specified in Table 3. The bandwidth values are tuned are such that mean
KDE values are on the order of 10−2 and their standard deviation is also on the order of 10−2, yielding a meaningful and
non-generate KDE distribution with a range of target values. Note that the performance of the NoisySample baseline in
Section 4 (which returns the noisy mean of a sample of query points as the KDE estimate for any query point) corresponds
to the standard deviation of KDE values in Table 3.

Table 3. Bandwidth values used in experiments.

Dataset Bandwidth σ Est. mean query KDE Est. standard deviation of query KDE

Covertype 500 0.02 0.01
GloVe 3.33 0.01 0.01
Diabetes 1 0.06 0.03
NYC Taxi 0.01 0.08 0.03

Mechanism parameter selection. As discussed in Section 4.1, DP-KDE mechanisms have an optimal parameter setting
for a given combination of error α and privacy ϵ. In our experiments this applies to LSQ-RFF (the parameter is the number
of Fourier features), LSQ-FGT (the parameter is ρ, where ρd is the number of terms in truncated Hermite expansion) and
Bernstein (the parameter is denote by k in (Alda & Rubinstein, 2017), where (k + 1)d is the number of points in the lattice
used to construct the Bernstein polynomial approximator, see below). In the error vs. privacy experiments in Section 4.2, we
evaluate each mechanism at its optimal parameter for that specific value of ϵ. Due to the existence of the error divergence
point (cf. Section 4.1), the optimal parameter setting for each algorithm exists and can be found by a finite parameter search.

For completeness, let us describe the Bernstein mechanism is somewhat more detail. It is parameterized by an integer
k ≥ 1. The mechanism constructs a uniform lattice with (k + 1)d nodes over the unit hypercube [0, 1]d. It evaluates the
KDE function at each point on the lattice, adds privacy-preserving Laplace noise to these evaluations, and then uses them to
construct a Bernstein polynomial approximation of this discretized and privatized version of the true KDE function. As k
increases, the mechanism’s running time increases too, due to evaluating the KDE on each of the (k + 1)d lattice points.
Nonetheless, as shown for LSQ-RFF and LSQ-FGT in Section 4.1, increasing k does not necessarily lead to a smaller
error—rather, the error begins to diverge at a certain setting of k, which depends on the desried privacy parameter ϵ. This
happens for the same reason discussed in Section 4.1: as k increases, the non-private approximation error of the Bernstein
polynomial approximator decays (see Theorem 5 in (Alda & Rubinstein, 2017) for the decay rate, which depends on the
smoothness of the KDE function), while the magnitude of the Laplace noise increases like (k + 1)d/(ϵn). Therefore, to
achieve the optimal error for this mechanism, k needs to be chosen according to the available dataset size n and the desired
privacy level ϵ.

E.3. Additional Accuracy Results

A more visual way to study the privacy-error trade-off of the various DP-KDE mechanisms is by directly comparing the
ground-truth KDE values on a held-out test set to the KDE values estimated by the private mechanisms for different values
of ϵ. Figure 4 shows the performance of LSQ-RFF under varying privacy budgets for the high-dimensional Covertype
and GloVe datasets. Ideally, the estimated values would all lie close to the y = x line, but degradation is inevitable as ϵ
decreases. Additionally, Figure 4 compares the performance LSQ-RFF, LSQ-FGT, and the Bernstein mechanism on the
low-dimensional Taxi and Diabetes datasets under the same set of privacy budgets. In Section 4.2, we noted that the NYC
Taxi dataset poses a challenge for the Bernstein mechanism because of the dependence of sample complexity on α−Θ(d/σ2).
This difficulty manifests itself already in the non-private case, and (as expected) the mechanism output quality degrades
further once noise is introduced to preserve privacy.
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E.4. Additional Running Time Results

In Figure 3 in Section 4 we plotted the error vs. curator running time plots for all for our datasets, with ϵ = 0.05. Figure 5
below displays the same experiment with ϵ = 0.02.

E.5. Heatmaps

A common use for Kernel Density Estimation for two-dimensional datasets is in the generation of heatmaps showing where
the bulk of the samples reside. For both the NYC Taxi and the Diabetes dataset, we use LSQ-RFF and LSQ-FGT to generate
differentially private heatmaps for a number of different privacy budgets. The parameters of these algorithms (number of
features for RFF, ρ for FGT) are selected to match the optimal values found earlier in Section 4.1. Results are in Figure 6. In
all cases, while the heatmap gets increasingly distorted as the privacy budget shrinks, certain aggregate characteristics such
as the general shape of the data manifold and the approximate location of its mode remain largely preserved.
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Covertype and GloVe datasets

Diabetes dataset NYC Taxi dataset

Figure 4. Ground truth vs. private estimates
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Figure 5. Error vs. curator running times with ϵ = 0.02
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Diabetes dataset NYC Taxi dataset

Figure 6. Impact of privacy budget on the appearance of heatmap plots
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