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Abstract

It has been recognized that the data generated
by the denoising diffusion probabilistic model
(DDPM) improves adversarial training. After
two years of rapid development in diffusion mod-
els, a question naturally arises: can better dif-
fusion models further improve adversarial train-
ing? This paper gives an affirmative answer
by employing the most recent diffusion model
(Karras et al., 2022) which has higher efficiency
(∼ 20 sampling steps) and image quality (lower
FID score) compared with DDPM. Our adver-
sarially trained models achieve state-of-the-art
performance on RobustBench using only gener-
ated data (no external datasets). Under the ℓ∞-
norm threat model with ϵ = 8/255, our mod-
els achieve 70.69% and 42.67% robust accuracy
on CIFAR-10 and CIFAR-100, respectively, i.e.
improving upon previous state-of-the-art models
by +4.58% and +8.03%. Under the ℓ2-norm
threat model with ϵ = 128/255, our models
achieve 84.86% on CIFAR-10 (+4.44%). These
results also beat previous works that use external
data. We also provide compelling results on the
SVHN and TinyImageNet datasets. Our code is at
https://github.com/wzekai99/DM-Improves-AT.

1. Introduction
Adversarial training (AT) was first developed by Goodfellow
et al. (2015), which has proven to be one of the most effec-
tive defenses against adversarial attacks (Madry et al., 2018;
Zhang et al., 2019b; Rice et al., 2020) and dominated the
winner solutions in adversarial competitions (Kurakin et al.,
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Table 1. A brief summary comparison of test accuracy (%) between
our models and existing Rank #1 models, with (✓) and without
(✗) external datasets, as listed in RobustBench (Croce et al., 2021).
All of these models use the WRN-70-16 architecture.

Dataset Method External Clean AA

CIFAR-10
(ℓ∞, ϵ = 8/255)

Rank #1
✗ 88.74 66.11
✓ 92.23 66.58

Ours ✗ 93.25 70.69

CIFAR-10
(ℓ2, ϵ = 128/255)

Rank #1
✗ 92.41 80.42
✓ 95.74 82.32

Ours ✗ 95.54 84.86

CIFAR-100
(ℓ∞, ϵ = 8/255)

Rank #1
✗ 63.56 34.64
✓ 69.15 36.88

Ours ✗ 75.22 42.67

2018; Brendel et al., 2020). It is acknowledged that the
availability of more data is critical to the performance of ad-
versarially trained models (Schmidt et al., 2018; Stutz et al.,
2019). Thus, several pioneer efforts are made to incorporate
external datasets into AT (Hendrycks et al., 2019; Carmon
et al., 2019; Alayrac et al., 2019; Najafi et al., 2019; Zhai
et al., 2019; Wang et al., 2020), either in a fully-supervised
or semi-supervised learning paradigm.

However, external datasets, even if unlabeled, are not always
available. According to recent research, data generated by
the denoising diffusion probabilistic model (DDPM) (Ho
et al., 2020) can also significantly enhance both clean and ro-
bust accuracy of adversarially trained models, which is con-
sidered as a type of learning-based data augmentation (Re-
buffi et al., 2021; Gowal et al., 2021; Rade & Moosavi-
Dezfooli, 2021; Sehwag et al., 2022; Pang et al., 2022).
Because of its effectiveness, on CIFAR-10 and CIFAR-
100 (Krizhevsky & Hinton, 2009), the data generated by
DDPM is used by all existing top-rank models (without ex-
ternal datasets) listed in RobustBench (Croce et al., 2021).1

After two years of rapid development in diffusion mod-
els, many improvements in sampling quality and efficiency

1https://robustbench.github.io
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Figure 1. Robust accuracy (against AutoAttack) and clean accuracy of top-rank models (no external datasets) in the leaderboard of
RobustBench. The publication year of top-rank models is indicated by different colors. Our models use the WRN-28-10 and WRN-70-16
architectures in each setting, and detailed accuracy values are provided in Table 2 and Table 3.

have been made beyond the initial work of DDPM (Song
et al., 2021b). In particular, the elucidating diffusion model
(EDM) (Karras et al., 2022) yields a new state-of-the-art
(SOTA) FID score (Heusel et al., 2017) of 1.97 in an uncon-
ditional setting, compared to DDPM’s FID score of 3.17.
While the images produced by DDPM and EDM are visually
indistinguishable, we are curious whether better diffusion
models (e.g., with lower FID scores) can benefit downstream
applications even more (e.g., the task of AT).

It turns out that the reward for our curiosity is surpris-
ingly good. We just replace the data generated by DDPM
with the data generated by EDM and use almost the same
training pipeline as described in Rebuffi et al. (2021). As
summarized in Table 1, without the need for external
datasets or additional training time per epoch, our adver-
sarially trained WRN-70-16 models (Zagoruyko & Ko-
modakis, 2016) achieve new SOTA robust accuracy on
CIFAR-10/CIFAR-100 under AutoAttack (AA) (Croce &
Hein, 2020), associated with a large improvement in clean
accuracy. Our models even surpass previous Rank #1 mod-
els that rely on external data. The enhancements are sig-
nificant enough—even our smaller model of WRN-28-10
architecture outperforms previous baselines, as shown in
Figure 1. Our method can also substantially improve model
performance on the SVHN and TinyImageNet datasets.

Moreover, we conduct extensive ablation studies to better
reveal the mechanism by which diffusion models promote
the AT process. Following the similar guidelines in Gowal
et al. (2020) and Pang et al. (2021), we examine the effects
of, e.g., quantity and quality of generated data, early stop-
ping, and data augmentation. The results demonstrate that
the data generated by EDM eliminates robust overfitting and
reduces the generalization gap between clean and robust
accuracy. During AT, we also conduct sensitivity analyses
on a number of significant parameters. Our findings expand
on the potential of learning-based data augmentation (i.e.,
using the data generated by diffusion models) and provide
solid foundations for future research on promoting AT.

2. Related Work
Diffusion models. In recent years, denoising diffusion prob-
abilistic modeling (Sohl-Dickstein et al., 2015; Ho et al.,
2020) and score-based Langevin dynamics (Song & Ermon,
2019; 2020) have shown promising results in image gen-
eration. Song et al. (2021b) unify these two generative
learning mechanisms using stochastic differential equations
(SDE), and this unified model family is referred to as dif-
fusion models. Later, there are emerging research routines
that, to name a few, accelerate sampling inference (Song
et al., 2021a; Lu et al., 2022), optimize model parametriza-
tion and sampling schedule (Kingma et al., 2021; Karras
et al., 2022), and adopt diffusion models in text-to-image
generation (Ramesh et al., 2022; Rombach et al., 2022).

Adversarial training. In addition to leveraging external
datasets or generated data, several enhancements for AT
have been made employing strategies inspired by other ar-
eas, including metric learning (Mao et al., 2019; Pang et al.,
2020a;b), self-supervised learning (Chen et al., 2020a;b;
Naseer et al., 2020; Wang & Liu, 2022), ensemble learn-
ing (Tramèr et al., 2018; Pang et al., 2019), fairness (Ma
et al., 2022; Li & Liu, 2023), and generative modeling (Jiang
et al., 2018; Wang & Yu, 2019; Deng et al., 2020). Xu & Liu
(2022); Li et al. (2022); Zou & Liu (2023) study adversarial
robust learning from the theoretical perspective. Moreover,
because of high computational cost of AT, various attempts
have been made to accelerate the training phase by reusing
calculation (Shafahi et al., 2019; Zhang et al., 2019a) or one-
step training (Wong et al., 2020; Liu et al., 2020; Vivek B &
Venkatesh Babu, 2020). Some following studies address the
side effects (e.g., catastrophic overfitting) induced by these
fast AT approaches (Andriushchenko & Flammarion, 2020;
Li et al., 2020).

Adversarial purification. Generative models have been
used to purify adversarial examples (Song et al., 2018) or
strengthen certified defenses (Carlini et al., 2022). Diffusion
models have recently gained popularity in adversarial purifi-
cation (Yoon et al., 2021; Nie et al., 2022; Wang et al., 2022;

2



Better Diffusion Models Further Improve Adversarial Training

Xiao et al., 2022), demonstrating promising robust accuracy
against AutoAttack. The effectiveness of diffusion-based
purification, on the other hand, is dependent on the random-
ness of the SDE solvers (Ho et al., 2020; Bao et al., 2022),
which causes at least tens of times inference computation
and is unfriendly to downstream deployment. Furthermore,
it has been demonstrated that stochastic pre-processing or
test-time defenses have common limitations (Gao et al.,
2022; Croce et al., 2022), which may be vulnerable to, e.g.,
transfer-based attacks (Kang et al., 2021) or intermediate-
state attacks (Yang et al., 2022).

Adversarial benchmarks. Because of the large number
of proposed defenses, it is critical to develop a compre-
hensive and up-to-date adversarial benchmark for ranking
existing methods. Dong et al. (2020) perform large-scale
experiments to generate robustness curves for evaluating
typical defenses; Tang et al. (2021) provide comprehensive
studies on how architecture design and training techniques
affect robustness. Other benchmarks are available for spe-
cific scenarios, including adversarial patches (Hingun et al.,
2022; Lian et al., 2022; Pintor et al., 2023), language-related
tasks (Wang et al., 2021; Li et al., 2021), autonomous ve-
hicles (Xu et al., 2022), multiple threat models (Hsiung
et al., 2022), and common corruptions (Mu & Gilmer, 2019;
Hendrycks & Dietterich, 2019; Sun et al., 2021). In this
paper, we use RobustBench (Croce et al., 2021), which is a
widely used benchmark in the community. RobustBench is
built on AutoAttack, which has been proven to be reliable in
evaluating deterministic defenses like adversarial training.

3. Experiment Setup
We follow the basic setup and use the PyTorch implementa-
tion of Rebuffi et al. (2021).2 More information about the
experimental settings can be found in Appendix A.

Model architectures. As our backbone networks, we adopt
WideResNet (WRN) (Zagoruyko & Komodakis, 2016) with
the Swish/SiLU activation function (Hendrycks & Gimpel,
2016). We use WRN-28-10 and WRN-70-16, the two most
common architectures on RobustBench (Croce et al., 2021).

Generated data. To generate new images, we use the
elucidating diffusion model (EDM) (Karras et al., 2022)
that achieves SOTA FID scores. We employ the class-
conditional EDM, whose training does not rely on external
datasets (except for TinyImageNet, as specified in Section 4).
We follow the guidelines in Carmon et al. (2019) to gener-
ate 1M CIFAR-10/CIFAR-100 images, which are selected
from 5M generated images, with each image scored by a
standardly pretrained WRN-28-10 model. We select the
top 20% scoring images for each class. When the amount
of generated data exceeds 1M, or when generating data

2https://github.com/imrahulr/adversarial robustness pytorch

for SVHN/TinyImageNet, we adopt all generated images
without selection. Note that unlike Rebuffi et al. (2021)
and Gowal et al. (2021) that use unconditional DDPM, the
pseudo-labels of the generated images are directly deter-
mined by the class conditioning in our implementation.

Training settings. We use TRADES (Zhang et al., 2019b)
as the framework of adversarial training (AT), with β = 5
for CIFAR-10/CIFAR-100, β = 6 for SVHN, and β = 8
for TinyImageNet. We adopt weight averaging with de-
cay rate τ = 0.995 (Izmailov et al., 2018). We use the
SGD optimizer with Nesterov momentum (Nesterov, 1983),
where the momentum factor and weight decay are set to
0.9 and 5× 10−4, respectively. We use the cyclic learning
rate schedule with cosine annealing (Smith & Topin, 2019),
where the initial learning rate is set to 0.2.

Training time. Regardless of the amount of generated data
used (e.g., 1M, 20M, or 50M), the number of iterations per
training epoch is controlled to be

⌈
amount of original data

batch size

⌉
for all

of our experiments utilizing generated data. This ensures
a fair comparison with the w/o-generated-data baselines
(e.g., those marked with ✗ in Table 2), as the training time
remains constant when the number of training epochs and
batch size are fixed. In particular, we sample images from
the original and generated data in every training batch with
a fixed ‘original-to-generated ratio’. Using CIFAR-10 (50K
training images) and an original-to-generated ratio of 0.3,
for example, each epoch involves training the model on
50K images: 15K from the original data and 35K from the
generated data. For CIFAR-10/CIFAR-100 experiments, the
original-to-generated ratio is 0.3 for 1M generated data and
0.2 when the required generated data exceeds 1M. Table 4
contains the original-to-generated ratios applied to SVHN
and TinyImageNet, while Appendix B.1 contains additional
ablation studies regarding the effects of different ratios.

Evaluation metrics. We evaluate model robustness against
AutoAttack (Croce & Hein, 2020). Due to the high computa-
tion cost of AT, we cannot afford to report standard deviation
for each experiment. For clarification, we train a WRN-28-
10 model on CIFAR-10 with 1M generated data five times,
using the batch size of 512 and running for 400 epochs. The
clean accuracy is 91.12± 0.15%, and the robust accuracy
under the (ℓ∞, ϵ = 8/255) threat model is 63.35± 0.12%,
indicating that our results have low variances.

4. Comparison with State-of-the-Art
We compare our adversarially trained models with top-rank
models in RobustBench that do not use external datasets.
Table 2 shows the results under the (ℓ∞, ϵ = 8/255) and
(ℓ2, ϵ = 128/255) threat models on CIFAR-10; Tables 3
and 4 presents the results under the (ℓ∞, ϵ = 8/255) threat
model on CIFAR-100, SVHN, and TinyImageNet. In sum-
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Table 2. Test accuracy (%) of clean images and under AutoAttack (AA) on CIFAR-10. We highlight our results in bold whenever the
value represents an improvement relative to the strongest baseline using the same architecture, and we underline them whenever the value
achieves new SOTA result under the threat model. We did not apply CutMix following Pang et al. (2022). †With the same batch size, the
training time per epoch of our method is equivalent to the w/o-generated-data baseline (see ‘training time’ paragraph in Section 3).

Dataset Architecture Method Generated Batch Epoch† Clean AA

CIFAR-10
(ℓ∞, ϵ = 8/255)

WRN-34-20 Rice et al. (2020) ✗ 128 200 85.34 53.42
WRN-34-10 Zhang et al. (2020) ✗ 128 120 84.52 53.51
WRN-34-20 Pang et al. (2021) ✗ 128 110 86.43 54.39
WRN-34-10 Wu et al. (2020) ✗ 128 200 85.36 56.17
WRN-70-16 Gowal et al. (2020) ✗ 512 200 85.29 57.14
WRN-34-10 Sehwag et al. (2022) 10M 128 200 87.00 60.60

WRN-28-10

Rebuffi et al. (2021) 1M 1024 800 87.33 60.73
Pang et al. (2022) 1M 512 400 88.10 61.51
Gowal et al. (2021) 100M 1024 2000 87.50 63.38

Ours

1M 512 400 91.12 63.35
1M 1024 800 91.43 63.96
50M 2048 1600 92.27 67.17
20M 2048 2400 92.44 67.31

WRN-70-16

Pang et al. (2022) 1M 512 400 88.57 63.74
Rebuffi et al. (2021) 1M 1024 800 88.54 64.20
Gowal et al. (2021) 100M 1024 2000 88.74 66.11

Ours
1M 512 400 91.98 65.54
5M 512 800 92.58 67.92
50M 1024 2000 93.25 70.69

CIFAR-10
(ℓ2, ϵ = 128/255)

WRN-34-10 Wu et al. (2020) ✗ 128 200 88.51 73.66
WRN-70-16 Gowal et al. (2020) ✗ 512 200 90.9 74.50
WRN-34-10 Sehwag et al. (2022) 10M 128 200 90.80 77.80

WRN-28-10

Pang et al. (2022) 1M 512 400 90.83 78.10
Rebuffi et al. (2021) 1M 1024 800 91.79 78.69

Ours 1M 512 400 93.76 79.98
50M 2048 1600 95.16 83.63

WRN-70-16
Rebuffi et al. (2021) 1M 1024 800 92.41 80.42

Ours 1M 512 400 94.47 81.16
50M 1024 2000 95.54 84.86

mary, previous top-rank models use images generated by
DDPM, whereas our models use EDM and significantly im-
proves both clean and robust accuracy. Our best models beat
all RobustBench entries (including those that use external
datasets) under these threat models.

Remark for Table 2. Under the (ℓ∞, ϵ = 8/255) threat
model on CIFAR-10, even when using 1M generated images,
small batch size of 512 and short training of 400 epochs,
our WRN-28-10 model achieves the robust accuracy com-
parable with Gowal et al. (2021) that use 100M generated
images, while our clean accuracy improves significantly
(+3.62%). After applying a larger batch size of 2048 and
longer training of 2400 epochs, our WRN-28-10 model
surpasses the previous best result obtained by 100M gen-
erated data with a large margin (clean accuracy +4.94%,
robust accuracy +3.93%), and even beats previous SOTA

of WRN-70-16 model. When using 50M generated images
and training for 2000 epochs on WRN-70-16, our model
reaches 93.25% clean accuracy and 70.69% robust accu-
racy, obtaining improvements of +4.51% and +4.58% over
the SOTA result, respectively. This is the first adversari-
ally trained model to achieve clean accuracy over 90% and
robust accuracy over 70% without external datasets. Un-
der the (ℓ2, ϵ = 128/255) threat model on CIFAR-10, our
best WRN-28-10 model achieves 95.16% (+3.37%) clean
accuracy and 83.63% (+4.94%) robust accuracy; our best
WRN-70-16 model achieves 95.54% (+3.13%) clean accu-
racy and 84.86% (+4.44%) robust accuracy, which improve
noticeably upon previous SOTA models.

Remark for Table 3. Using the images generated by EDM
under the (ℓ∞, ϵ = 8/255) threat model on CIFAR-100
results in surprisingly good performance. Specifically, our
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Table 3. Test accuracy (%) of clean images and under AutoAttack (AA) on CIFAR-100. We highlight our results in bold whenever the
value represents an improvement relative to the strongest baseline using the same architecture, and we underline them whenever the value
achieves new SOTA result under the threat model. We did not apply CutMix following Pang et al. (2022). †With the same batch size, the
training time per epoch of our method is equivalent to the w/o-generated-data baseline (see ‘training time’ paragraph in Section 3).

Dataset Architecture Method Generated Batch Epoch† Clean AA

CIFAR-100
(ℓ∞, ϵ = 8/255)

WRN-34-10 Wu et al. (2020) ✗ 128 200 60.38 28.86
WRN-70-16 Gowal et al. (2020) ✗ 512 200 60.86 30.03
WRN-34-10 Sehwag et al. (2022) 1M 128 200 65.90 31.20

WRN-28-10

Pang et al. (2022) 1M 512 400 62.08 31.40
Rebuffi et al. (2021) 1M 1024 800 62.41 32.06

Ours 1M 512 400 68.06 35.65
50M 2048 1600 72.58 38.83

WRN-70-16

Pang et al. (2022) 1M 512 400 63.99 33.65
Rebuffi et al. (2021) 1M 1024 800 63.56 34.64

Ours 1M 512 400 70.21 38.69
50M 1024 2000 75.22 42.67

Table 4. Test accuracy (%) of clean images and under AutoAttack (AA) on SVHN and TinyImageNet. We highlight the results following
the notations in Table 3. Here ‘Ratio’ indicates the original-to-generated ratio. All the results adopt the WRN-28-10 model architecture.
We did not apply CutMix following Pang et al. (2022). †Note that Gowal et al. (2021) utilize the class-conditional DDPM model on
ImageNet (Dhariwal & Nichol, 2021) and directly generate images using the labels of TinyImageNet as the class condition.

Dataset Method Generated Ratio Batch Epoch Clean AA

SVHN
(ℓ∞, ϵ = 8/255)

Gowal et al. (2021) ✗ ✗ 512 400 92.87 56.83
Gowal et al. (2021) 1M 0.4 1024 800 94.15 60.90
Rebuffi et al. (2021) 1M 0.4 1024 800 94.39 61.09

Ours 1M 0.2 1024 800 95.19 61.85
50M 0.2 2048 1600 95.56 64.01

TinyImageNet
(ℓ∞, ϵ = 8/255)

Gowal et al. (2021) ✗ ✗ 512 400 51.56 21.56
Ours 1M 0.4 512 400 53.62 23.40

Gowal et al. (2021)† 1M 0.3 1024 800 60.95 26.66
Ours (ImageNet EDM) 1M 0.2 512 400 65.19 31.30

best WRN-28-10 model achieves 72.58% (+10.17%) clean
accuracy and 38.83% (+6.77%) robust accuracy; our best
WRN-70-16 model achieves 75.22% (+11.66%) clean ac-
curacy and 42.67% (+8.03%) robust accuracy.

Remark for Table 4. We evaluate performance under the
(ℓ∞, ϵ = 8/255) threat model on SVHN and TinyImageNet
datasets. As seen, our approach significantly outperforms
the baselines. Our best model achieves 64.01% (+2.92%)
robust accuracy on SVHN using 50M generated data.

We train the EDM model exclusively on TinyImageNet’s
training set to produce 1M data. Our WRN-28-10 model
obtains improvements of +2.06% and +1.84% over clean
and robust accuracy, respectively. Notably, Gowal et al.
(2021) utilize the class-conditional DDPM pre-trained on
ImageNet (Dhariwal & Nichol, 2021) for data generation
on TinyImagenet, since TinyImagenet dataset is a subset
of ImageNet. To ensure a fair comparison, we use the
checkpoint pre-trained on ImageNet provided by EDM,

and class-conditional generate the images with the specific
classes of TinyImageNet. The improvements are remark-
able: our model achieves 65.19% (+4.24%) clean accuracy
and 31.30% (+4.64%) robust accuracy with a smaller batch
size and epoch than Gowal et al. (2021). These results
demonstrate the effectiveness of generated data in enhanc-
ing model robustness across multiple datasets.

5. How Generated Data Influence Robustness
Rice et al. (2020) first observe the phenomenon of robust
overfitting in AT: the test robust loss turns into increas-
ing after a specific training epoch, e.g., shortly after the
learning rate decay. The cause of robust overfitting is still
debated (Pang et al., 2022), but one widely held belief is
that the dataset is not large enough to achieve robust gen-
eralization (Schmidt et al., 2018). When the training set
is dramatically expanded, using a large amount of external
data (Carmon et al., 2019; Alayrac et al., 2019) or synthetic
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Table 5. Test accuracy (%) when training for different number of epochs, under the (ℓ∞, ϵ = 8/255) threat model on CIFAR-10.
WRN-28-10 models are trained with the batch size of 2048 and original-to-generated ratio 0.2. The model achieves the highest PGD-40
accuracy on the validation set at the ‘Best epoch’. ‘Early’ and ‘Last’ mean the test performance at the best and last epoch, respectively.
‘Diff’ denotes the accuracy gap between the ‘Early’ and ‘Last’.

Generated Epoch Best epoch Clean PGD-40 AA

Early Last Diff Early Last Diff Early Last Diff

✗
400 86 84.41 82.18 −2.23 55.23 46.21 −9.02 54.57 44.89 −9.68
800 88 83.60 82.15 −1.45 53.86 45.75 −8.11 53.13 44.58 −8.55

20M

400 370 91.27 91.45 +0.18 64.65 64.80 +0.15 63.69 63.84 +0.15
800 755 92.08 92.14 +0.06 66.61 66.72 +0.11 65.66 65.63 +0.03
1200 1154 92.43 92.32 −0.11 67.45 67.64 +0.19 66.31 66.60 +0.29
1600 1593 92.51 92.61 +0.10 68.05 67.98 −0.07 67.14 67.10 −0.04
2000 1978 92.41 92.55 +0.14 68.32 68.30 −0.02 67.22 67.17 −0.05
2400 2358 92.58 92.54 −0.04 68.43 68.39 −0.04 67.31 67.30 −0.01

data (Gowal et al., 2021), significant improvements in both
clean and robust accuracy are observed. In this section, we
comprehensively study how the training details affect robust
overfitting and model performance when generated images
are applied to AT. Unless otherwise specified, the experi-
ments are carried out on CIFAR-10 dataset and WRN-28-10
models that have been trained for 400 epochs, with a batch
size of 512 and an original-to-generated ratio of 0.3.

5.1. Early Stopping and Number of Epochs

In the standard setting, a line of research (Zhang et al., 2017;
Belkin et al., 2019) has found that the deep learning model
does not exhibit overfitting in practice, i.e., the testing loss
decreases alongside the training loss and it is a common
practice to train for as long as possible. For AT, however,
Rice et al. (2020) reveal the phenomenon of robust overfit-
ting: robust accuracy degrades rapidly on the test set while
it continues to increase on the training set. A larger train-
ing epoch does not guarantee improved performance in the
absence of generated data. Thus, early stopping becomes
a default option in the AT process, which tracks the ro-
bust accuracy on a hold-out validation set and selects the
checkpoint with the best validation robustness.

We conduct experiments on CIFAR-10 with 20M images
generated by EDM to investigate how the training epoch and
early stopping affect robust performance when sufficient im-
ages are used. The results are displayed in Table 5. We also
provide results with no generated data for better comparison,
and we can conclude that:

• Early stopping is effective when no generated data
is used, as previously observed (Rice et al., 2020).
Early stopping is triggered during the training process’s
initial phase (86-th epoch/400 epochs; 88-th epoch/400
epochs). On the test set, both clean and robust accuracy
degrade, and longer training leads to poor performance.

• Early stopping is less important when using generated
data. The best-performing model appears at the end
of the training, implying that stopping early will not
result in a significant improvement. ‘Diff’ becomes
minor, indicating that adequate training data effectively
mitigates robust overfitting.

• The model performs better with a longer training pro-
cess when 20M generated images are used. Surpris-
ingly, a short training epoch results in robust underfit-
ting (‘Diff’ is positive). When the model is trained on
enough data, the results suggest that training as long
as possible benefits the robust performance.

We regard early stopping as a default trick consistent with
previous works (Pang et al., 2021) because of its effective-
ness on the original dataset and comparable performance on
big data. Refer to Appendix A for implementation details.

5.2. Amount of Generated Data

We can sample many more images with the generated model
than we could with the original training set. According to
Gowal et al. (2021), more DDPM generated images result
in a smaller robust generalization gap. Rebuffi et al. (2021)
successfully prevent robust overfitting using DDPM to gen-
erate data of fixed size (1M), achieving stable performance
after a drop in the learning rate. Here we look at how the
size of the generated data affects robust overfitting. The
results are displayed in Figure 2 and Table 6.

Figure 2 (a,b,c) depicts the clean and robust accuracy on
the training and test sets in relation to different amounts of
EDM generated data. More results with varying data sizes
are shown in Appendix B.5. The findings indicate that:

• We can see a severe robust overfitting phenomenon
when no generated data is used (Figure 2 (a), ‘✗’ in
Table 6). After a certain epoch, the test clean accuracy
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Table 6. Test accuracy (%) when trained with different amounts of generated data, under the (ℓ∞, ϵ = 8/255) threat model on CIFAR-10.
The model achieves the highest PGD-40 accuracy on the validation set at the ‘Best epoch’. ‘Best’ is the highest accuracy ever achieved
during training; ‘Last’ is the test performance at the last epoch. ‘Diff’ denotes the gap between ‘Best’ and ‘Last’. Since running AA is
time-consuming, we regard AA accuracy at ‘Best epoch’ as the ‘Best’.

Generated Best epoch Clean PGD-40 AA

Best Last Diff Best Last Diff Best Last Diff

✗ 91 84.55 82.59 −1.96 55.66 46.47 −9.19 54.37 45.29 −9.08
50K 171 86.15 85.47 −0.68 56.96 50.02 −6.94 55.71 48.85 −6.86

100K 274 88.20 87.47 −0.73 59.85 54.95 −4.90 58.85 53.42 −5.43
200K 365 89.71 89.48 −0.23 61.69 60.32 −1.37 59.91 59.11 −0.80
500K 395 90.76 90.58 −0.18 63.85 63.69 −0.16 62.76 62.77 +0.01
1M 394 91.13 90.89 −0.24 64.67 64.50 −0.17 63.35 63.50 +0.15
5M 395 91.15 90.93 −0.22 64.88 64.88 0 64.05 64.05 0

10M 396 91.25 91.18 −0.07 65.03 64.96 −0.07 64.19 64.28 +0.09
20M 399 91.17 91.07 −0.10 65.21 65.13 −0.08 64.27 64.16 −0.11
50M 395 91.24 91.15 −0.09 65.35 65.23 −0.12 64.53 64.51 −0.02
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Figure 2. Clean and PGD robust accuracy of AT using (a) no generated data; (b) 100K generated data; (c) 1M generated data. (d) plots the
PGD test robust accuracy of AT using different amounts of generated data.

degrades slightly, whereas the ‘Diff’ of robust accu-
racy is large. At the last epoch, the generalization gap
between train and test robust accuracy is nearly 60%.

• Generated data can help to close the generalization
gap for both clean and robust accuracy. In the final
few epochs, without generated data, the training loss
approaches zero. Train accuracy decreases as the size
of the generated data increases, while test accuracy
improves. The results show that the images generated
by EDM contain those that are difficult to classify
robustly, which benefits the robustness of model.

• The robust overfitting is alleviated with the increasing
size of generated data, as shown in Figure 2 (d). After
500K generated images, the added generated images
provide no significant improvement. In Table 6, ‘Diff’
after 500K generated images become minor and ‘Best
epoch’ appears in the last few epochs. This is to be
expected because the model’s capacity is insufficient
to utilize all of the generated data. As a result, we
provide SOTA results using a large model (WRN-70-
16). A longer training epoch can also aid the model’s
convergence on sufficient data, as seen in Table 5.

5.3. Data Augmentation

Data augmentation has been shown to improve standard
training generalization by increasing the quantity and diver-
sity of training data. It is somewhat surprising that almost
all previous attempts to prevent robust overfitting solely
through data augmentation have failed (Rice et al., 2020;
Wu et al., 2020; Tack et al., 2022). Rebuffi et al. (2021)
observe that combining data augmentation with weight av-
eraging can promote robust accuracy, but it is less effective
when using external data (e.g., 80M Tiny Images dataset).
While Gowal et al. (2021) report that CutMix is compatible
with using generated data, preliminary experiments in Pang
et al. (2022) suggest that the effectiveness of CutMix may
be dependent on the specific implementation.

To this end, we consider a variety of data augmentations and
check their efficacy for AT with generated data. Common
augmentation (He et al., 2016) is used in image classifi-
cation tasks, including padding the image at each edge,
cropping back to the original size, and horizontal flipping.
Cutout (Devries & Taylor, 2017) randomly drops a region
of the input image. CutMix (Yun et al., 2019) randomly
replaces parts of an image with another. AutoAugment
(Cubuk et al., 2019) and RandAugment (Cubuk et al., 2020)
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Table 7. Test accuracy (%) with different augmentation methods
under the (ℓ∞, ϵ = 8/255) threat model on CIFAR-10, using
WRN-28-10 and 1M EDM generated data.

Methed Clean PGD-40 AA

Common 91.12 64.61 63.35
Cutout 91.25 64.54 63.30
CutMix 91.08 64.34 62.81
AutoAugment 91.23 64.07 62.86
RandAugment 91.14 64.39 63.12
IDBH 91.08 64.41 63.24

employ a combination of multiple image transformations
such as Color, Rotation and Cutout to find the optimal com-
position. IDBH (Li & Spratling, 2023), the most recent
augmentation scheme designed specifically for AT, achieves
the best robust performance in the setting without additional
data when compared to the augmentations mentioned above.

We consider common augmentation to be the baseline be-
cause it is the AT studies’ default setting. Using 1M EDM
generated data, Table 7 demonstrates the performance of
various data augmentations. No augmentation outperforms
common augmentation in terms of robust accuracy (PGD-40
and AutoAttack). Cutout and IDBH outperform the other
methods by a small margin. It should be noted that IDBH is
intended for AT but also fails in the setting with generated
data. In terms of clean accuracy, Cutout and AutoAugment
slightly outperform common augmentation.

To summarize, rule-based (Cutout and CutMix) and policy-
based (AutoAugment, RandAugment and IDBH) data aug-
mentations appear to be less effective in improving robust-
ness, particularly when using generated data. Our empirical
findings contradict previous research, indicating that the
efficacy of data augmentation for AT may be dependent on
implementation. Thus, we use common augmentation as
the default setting following Pang et al. (2022).

5.4. Quality of Generated Data

The number of sampling steps is a critical hyperparameter in
diffusion models that controls generation quality and speed.
Thus, we generate data with varying sampling steps in or-
der to investigate how the quality of generated data affects
model performance. We assess the quality by calculating
the FID scores (Heusel et al., 2017) computed between 50K
generated images and the original training images. In Ap-
pendix B.3, we investigate the effects of various samplers
and EDM formulations on model robustness.

In supervised learning, there are unconditional and class-
conditional paradigms for generative modeling. Extensive
empirical evidence (Brock et al., 2019; Dhariwal & Nichol,
2021) demonstrates that class-conditional generative mod-
els are easier to train and have a lower FID than uncon-

Table 8. Test accuracy (%) and FID with different sampling steps
of diffusion model, under the (ℓ∞, ϵ = 8/255) threat model on
CIFAR-10, using WRN-28-10 and 1M EDM generated data. Here
↓ means ‘the lower the better’.

Step FID ↓ Clean PGD-40 AA

Class-cond.

5 35.54 88.92 57.33 57.78
10 2.477 90.96 66.21 62.81
15 1.848 91.05 64.56 63.24
20 1.824 91.12 64.61 63.35
25 1.843 91.07 64.59 63.31
30 1.861 91.10 64.51 63.25
35 1.874 91.01 64.55 63.13
40 1.883 91.03 64.44 63.03

Uncond.

5 37.78 88.00 56.92 57.19
10 2.637 89.40 62.88 61.92
15 1.998 89.36 63.47 62.31
20 1.963 89.76 63.66 62.45
25 1.977 89.61 63.63 62.40
30 1.992 89.52 63.51 62.33
35 2.003 89.39 63.56 62.37
40 2.011 89.44 63.30 62.24

ditional ones by leveraging data labels. We generate data
in both class-conditional and unconditional settings, but
give pseudo-labels in slightly different ways, to investigate
the effect of class-conditioning on AT. For more informa-
tion, please see Appendix A. We use EDM to generate 1M
images, and the results are summarized in Table 8.

We find that low FID of generated data leads to high clean
and robust accuracy. The results in Appendix B.3 come to
the same conclusion. FID is a popular metric for comparing
the distribution of generated images to the true distribution
of data. Low FID indicates a small difference between
the generated and true data distributions. The results show
that we could increase the model’s robustness by bringing
generated data closer to the true data.

Class-conditional generation consistently outperforms
unconditional generation, with lower FID and better
robust performance. With 20 sampling steps, both settings
achieve the lowest FID and best performance. Thus, for
the experiments on CIFAR-10, we use class-conditional
generation with 20 sampling steps and the checkpoint
provided by EDM.3 The additional data for baselines
in Section 4 is generated by DDPM, which has FID of
3.28. On CIFAR-100/SVHN datasets, we train our own
model and select the model with the best FID after 25
sampling steps (2.09 for CIFAR-100, 1.39 for SVHN, see
Appendix B.2). In contrast, DDPM has FID of 5.58 and
4.89 on CIFAR-100 and SVHN, respectively (Gowal et al.,
2021). The large promotion on FID provides a significant
performance boost over the baselines in Section 4.

3https://github.com/NVlabs/edm
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Table 9. Test accuracy (%) with different values of batch size (left), label smoothing (LS) (middle), and β in TRADES (right), under the
(ℓ∞, ϵ = 8/255) threat model on CIFAR-10.

Batch
Clean PGD-40 AA

Size

128 91.12 64.77 63.90
256 91.15 65.76 64.72
512 91.81 66.15 65.21

1024 91.90 66.21 65.29
2048 91.98 66.54 65.50

LS Clean PGD-40 AA

0 90.40 64.32 62.83

0.1 91.12 64.61 63.35

0.2 91.23 64.38 63.27

0.3 91.06 64.35 63.12

0.4 90.82 64.15 62.87

β Clean PGD-40 AA

2 92.46 63.66 62.32
3 91.83 64.18 63.03
4 91.30 64.27 63.11
5 91.12 64.61 63.35
6 90.77 64.42 63.23
7 90.39 64.51 63.29
8 90.25 64.34 63.19

6. Sensitivity Analysis
In this section, we test the sensitivity of basic training hyper-
parameters on CIFAR-10. WRN-28-10 models are trained
for 400 epochs using 1M data generated by EDM. 512 is
the default batch size unless otherwise specified.

Batch size. In the standard setting, batch size is a crucial
parameter that affects the performance of the model on
large-scale datasets (Goyal et al., 2017). In the adversarial
setting without external or generated data, the batch size is
typically set to 128 or 256. Pang et al. (2021) investigate
a wide range of batch sizes, from 64 to 512, and find that
128 is optimal for CIFAR-10. To evaluate the effect of
batch size on sufficient data, we train the model with 5M
generated images and compare its performance across five
different batch sizes in Table 9 (left). As observed, the
largest batch size of 2048 yields the best results. It implies
that robust performance is enhanced by a large batch size
when sufficient training data and a fixed initial learning rate
are utilized. The optimal batch size may exist when the
linear scaling rule is applied (Pang et al., 2021). A larger
batch size requires additional GPU memory, but traverses
the dataset more quickly. To achieve the best results in
Section 4, we increase the batch size based on the model
size and the number of GPUs in use. We choose 2048 batch
size for WRN-28-10 on 4× A100 GPUs, and 1024 batch
size for WRN-70-16 on 8× A100 GPUs.

Label smoothing. For standard training, label smoothing
(LS) (Szegedy et al., 2016) improves standard generaliza-
tion and alleviates the overconfidence problem (Hein et al.,
2019), but it cannot prevent adaptive attacks from evading
the model (Tramèr et al., 2020). In the adversarial setting,
LS is used to prevent robust overfitting without external or
generated data (Stutz et al., 2020; Chen et al., 2021). With
1M generated data, we evaluate the effect of LS on AT fur-
ther. According to the results shown in Table 9 (middle),
LS of 0.1 improves both clean and robust accuracy (Clean
+0.72%, AA +0.52%). LS of 0.2 can further improve the
clean accuracy by a small margin, but at the expense of
robustness. Consistent with the findings of previous re-

search (Jiang et al., 2020; Pang et al., 2021), excessive LS
(0.3 and 0.4) degrades the performance of the model. This
is also the result of over-smoothing labels, which results in
the loss of information in the output logits (Müller et al.,
2019). We set LS = 0.1 throughout the experiments for the
best robust performance.

Effect of β. In the framework of TRADES (Zhang et al.,
2019b), β is an important hyperparameter that control the
trade-off between robustness and accuracy (as in Eq. (2) of
Appendix A). As the regularization parameter β increases,
the clean accuracy decreases while the robust accuracy in-
creases, as observed by Zhang et al. (2019b). In contrast,
when using 1M EDM generated data, the robustness of the
model degrades with a large value of β. The best robustness
is achieved with β = 5 and smaller values of β still con-
tribute to improved clean accuracy. To provide the highest
robust accuracy, β = 5 is used on CIFAR-10/CIFAR-100. β
is set to 6 and 8 for SVHN and TinyImageNet, respectively.

7. Discussion
Diffusion models have proved their effectiveness in both
adversarial training and adversarial purification; however,
it is crucial to investigate how to more efficiently exploit
diffusion models in the adversarial literature. For the time
being, adversarial training requires millions of generated
data even on small datasets such as CIFAR-10, which is
inefficient in the training phase; adversarial purification
requires tens of times forward processes through diffusion
models, which is inefficient in the inference phase. Our work
pushes the limits on the best performance of adversarially
trained models, but there is still much to explore about the
learning efficiency in the future research.
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Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., and Mc-
Daniel, P. Ensemble adversarial training: Attacks and
defenses. In International Conference on Learning Rep-
resentations (ICLR), 2018.
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A. Technical Details
Adversarial training. Let ∥ · ∥p denote ℓp norm, e.g., ∥ · ∥2 and ∥ · ∥∞ denote the Euclidean norm ℓ2 and infinity norm
ℓ∞, respectively. Bp(x, ϵ) := {x′ | ∥x′ − x∥p ≤ ϵ} denotes that the input x′ is constrained into the ℓp ball, where ϵ is the
maximum perturbation constrain. Madry et al. (2018) formulate AT as a min-max optimization problem:

argmin
θ

E
(x,y)∼D

[
max

x′∈Bp(x,ϵ)
L(fθ(x′), y)

]
, (1)

where D is a data distribution over pairs of example x and corresponding label y, fθ(·) is a neural network classifier with
weights θ, and L is the loss function. The inner optimization finds adversarial example x′ that maximize the loss, while the
outer optimization minimizes the loss on adversarial examples to update the network parameters θ.

A typical variant of standard AT is TRADES (Zhang et al., 2019b), which is applied as our AT framework. The authors
show that there exists a trade-off between clean and robust accuracy and decompose Eq. (1) into clean and robust objectives.
TRADES combines these two objectives with a balancing hyperparameter to control such a trade-off:

argmin
θ

E
(x,y)∼D

[
CE(fθ(x), y) + β · max

x′∈Bp(x,ϵ)
KL(fθ(x)∥fθ(x′))

]
, (2)

where CE denotes the standard cross-entropy loss, KL(·∥·) denotes the Kullback–Leibler divergence, and β is the hyperpa-
rameter to control the trade-off. In Section 6, we investigate the sensitivity of β when generated data is used.

PGD attack. Projected gradient descent (PGD) (Madry et al., 2018) is a commonly used technique to solve the inner
maximization problem in Eq. (1) and (2). Let sign(a) denote the sign of a. x0 is a randomly perturbed sample in the
neighborhood Bp(x, ϵ) of the clean input x, then PGD iteratively crafts the adversarial example for multiple gradient ascent
steps K, formalized as:

xk = clipx,ϵ(xk−1 + α · sign(∇xk−1
L(xk−1, y))), (3)

where xk denotes the adversarial example at step k, clipx,ϵ(x
′) is the clipping function to project x′ back into Bp(x, ϵ), and

α is the step size. We will refer to this inner optimization procedure with K steps as PGD-K.

For adversary during AT, we apply PGD-10 attack with the following hyperparameters: for ℓ∞ treat model, perturbation
size ϵ = 8/255, step size α = 2/255 for CIFAR-10/CIFAR-100/TinyImageNet, and α = 1.25/255 for SVHN; for ℓ2 treat
model, perturbation size ϵ = 128/255, step size α = 32/255 for CIFAR-10.

Generated data. Here we show more details about 1M images generation on CIFAR-10/CIFAR-100. For the unconditional
generation, we use a pre-trained WRN-28-10 to give pseudo-labels, following Carmon et al. (2019); Rebuffi et al. (2021).
The model is standardly trained on CIFAR-10 training set and achieves 96.15% test clean accuracy. For CIFAR-100,
WRN-28-10 model achieves 80.47% test clean accuracy. Then we sample 5M images from unconditional EDM and score
each image using the highest confidence provided by the pre-trained WRN-28-10 model. We regard the class which has the
highest confidence as the pseudo-label. For each class, we select the top 100K scoring images for CIFAR-10 experiments
(top 10K for CIFAR-100).

Slightly different from unconditional generating, class-conditional EDM can generate 1M samples belonging to a class
directly; thus the pseudo-labels are directly determined by the class conditioning. For each class, we generate 500K and 50K
images for CIFAR-10 and CIFAR-100 experiments, respectively. Similarly, we use the pre-trained WRN-28-10 model to
score each image, and select the top 20% scoring images for each class.

When generating data for the SVHN and TinyImageNet datasets, or when the amount of generated data for CIFAR-
10/CIFAR-100 exceeds 1M, we directly provide pseudo-labels using class-conditional generalization. Each class has an
equal number of images to maintain data balance. The number of sampling steps is set to 20 for CIFAR-10 (Section 5.4), 25
for CIFAR-100/SVHN (Appendix B.2), and 40 for TinyImageNet (following Karras et al. (2022)).

Datasets. CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009) consist of 50K training images and 10K test images with
10 and 100 classes, respectively. All CIFAR images are 32×32×3 resolution (width, height, RGB channel). SVHN (Netzer
et al., 2011) contains 73,257 training and 26,032 test images (0 ∼ 9 small cropped digits, 10 classes). TinyImageNet4

contains 100K images for training, and 10K images for testing. The images are 64×64×3 resolution with 200 classes.

4http://cs231n.stanford.edu/tiny-imagenet-200.zip
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More about setup. We utilize WideResNet (WRN) (Zagoruyko & Komodakis, 2016) following prior works (Madry et al.,
2018; Rice et al., 2020; Rebuffi et al., 2021) which use variants of WRN family. Most experiments are conducted on
WRN-28-10 (depth of 28, multiplier of 10) with 36M parameters. The experiments on WRN-28-10 are parallelly processed
with four NVIDIA A100 SXM4 40GB GPUs. To evaluate how the abundant generated data affects large networks, we
further use WRN-70-16 in Section 4, which contains 267M parameters. We use eight A100 GPUs to train WRN-70-16.

Following Rice et al. (2020) and discussion in Section 5, we perform early stopping as a defult trick. We separate first 1024
images of training set as a fixed validation set. During every epoch of AT, we pick the best checkpoint by evaluating robust
accuracy under PGD-40 attack on the validation set.

B. Additional Experiments
B.1. Original-to-Generated Ratio

Original-to-generated ratio is the mixing ratio between original and generated images in the training batch, e.g., a ratio
of 0.3 indicates that for every 3 original images, we include 7 generated images. We investigate how the ratio affects the
performance using 1M EDM generated data. We summarize the results in Figure 3. Both clean and robust accuracy achieve
the best result with the ratio of 0.3. When the generated data is greater than 1M, we pick the ratio of 0.2 to achieve better
performance (Table 10). We also observe that the performance of using 1M EDM generated data is better than using 50k
original CIFAR-10 training set, consistent with Rebuffi et al. (2021). The results show that generated images improve the
robustness as long as the generated model can produce high-quality data.

91.12%

64.61%

63.35%

Figure 3. Clean accuracy and robust accuracy against PGD-40
and AA with respect to original-to-generated ratios (0 means
generated images only, 1 means CIFAR-10 training set only). We
train WRN-28-10 models against (ℓ∞, ϵ = 8/255) on CIFAR-10
using 1M generated data.

Table 10. Test accuracy (%) against (ℓ∞, ϵ = 8/255) on CIFAR-
10 with different original-to-generated ratio. WRN-28-10 mod-
els are trained on 5M EDM generated data. The results of 0.2 are
better than that of 0.3 consistently.

Batch Epoch Ratio Clean PGD-40 AA

512 400
0.2 91.15 64.97 64.25
0.3 91.07 64.88 64.05

1024 800
0.2 91.87 66.43 65.53
0.3 91.72 66.43 65.40

2048 1600
0.2 92.16 67.47 66.34
0.3 91.88 67.19 66.29

B.2. FID for CIFAR-100 and SVHN datasets

We train our own EDM models to generate images for CIFAR-100 and SVHN experiments. The models are trained solely
on CIFAR-100/SVHN training set. Table 11 shows the FID scores between generated data and CIFAR-100/SVHN training
set with different sampling steps. The sampling step of 25 achieves the best FID.

Table 11. Fréchet inception distance (FID) between 50K EDM generated data and CIFAR-100/SVHN training set with different sampling
steps of diffusion model.

Step 5 10 15 20 25 30 35 40

CIFAR-100 24.540 3.054 2.191 2.103 2.090 2.092 2.095 2.097
SVHN 125.765 5.458 1.661 1.405 1.393 1.410 1.428 1.445
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B.3. Ablation Studies on the Specifics of Diffusion Model Implementation

We provide results on CIFAR-10 using various ODE samplers for diffusion models. We use the checkpoint for the
unconditional diffusion model provided by Song et al. (2021b) and conduct ablation studies following Karras et al. (2022).
Song et al. (2021b) employs Euler’s method on ODE sampler (i.e., DDIM solver, Line 1 in Table 12 (left)), whereas Karras
et al. (2022) discovered that Heun’s second-order method (i.e., EDM solver, Lines 2 and 3) yields superior results.

For the sake of a fair comparison, we employ double sampling steps for DDIM solver because it requires only half the time
of EDM solver. Table 12 (left) details the time required to generate 5M images, and 1M images are selected for training.
Table 12 (left) demonstrates that EDM solver improves FID significantly with the same generation time as DDIM solver;
additionally, EDM solver promotes both clean and robust accuracy for adversarial training. The improved selection of EDM
hyperparameters can further improve the robust performance of models.

We also provide results using variance preserving (VP) and variance exploding (VE) diffusion models, originally inspired
by DDPM (Ho et al., 2020) and SMLD (Song & Ermon, 2019). In the implementation of EDM, the VP and VE models
differ in their architecture, with DDPM++ and NCSN++ being utilized, respectively. We use VP formulation throughout the
experiments in the main paper. Table 12 (right) demonstrates that VE achieves a comparable FID to VP, consistent with
previous findings (Karras et al., 2022). Both formulations result in similarly robust model performance.

Table 12. Test accuracy (%) with different samplers (left) and EDM formulations (right), under the (ℓ∞, ϵ = 8/255) threat model on
CIFAR-10. The sampling step is set to 20 in Table (right).

Sampler Step Time (h) FID Clean PGD-40 AA

Song et al. (2021b) 40 3.75 10.06 86.97 61.49 60.53

+Heun & EDM ti 20 3.62 4.03 87.82 62.17 61.29

+EDM σ(t) & s(t) 20 3.62 2.98 88.09 62.36 61.46

Model FID Clean PGD-40 AA

VP 1.824 91.12 64.61 63.35

VE 1.832 91.11 64.53 63.29

B.4. Computational Time

We provide the runtime for class-conditional and unconditional EDM generating 5M images with different sampling
steps. The generation is processed with four A100 GPUs. As shown in Table 13, unconditional generation is faster than
class-conditional one with a small margin, while resulting in lower robust performance (Table 8).

For adversarial training, WRN-28-10 and WRN-70-16 are parallelly processed with four and eight A100 GPUs, respectively.
It takes 3.45 min on average to train one epoch on WRN-28-10 model with 2048 batch size. Training one epoch for
WRN-70-16 model with 1024 batch size takes 9.93 min on average.

Table 13. Time (h) for class-conditional and unconditional EDM generating 5M data.

Step 5 10 15 20 25 30 35 40

Class-conditional 2.59 5.37 8.13 10.92 13.72 16.47 19.26 22.03
Unconditional 2.52 5.30 8.05 10.81 13.57 16.40 19.18 21.95

17



Better Diffusion Models Further Improve Adversarial Training

B.5. Amount of Generated Data

Figure 4 shows clean and PGD robust accuracy using different amounts of generated data. The robust overfitting is alleviated
significantly as the size of generated data increases. After 500K generated images, the added generated images can not
further close the generalization gap for both clean and robust accuracy. This is expected as the model capacity is too low to
take advantage of all this generated data.
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Figure 4. Clean and PGD robust accuracy of adversarial training using different amounts of generated data.
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