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Abstract

Additive models have been burgeoning in data
analysis due to their flexible representation and
desirable interpretability. However, most existing
approaches are constructed under empirical risk
minimization (ERM), and thus perform poorly
in situations where average performance is not
a suitable criterion for the problems of interest,
e.g., data with complex non-Gaussian noise, im-
balanced labels or both of them. In this paper, a
novel class of sparse additive models is proposed
under tilted empirical risk minimization (TERM),
which addresses the deficiencies in ERM by im-
posing tilted impact on individual losses, and is
flexibly capable of achieving a variety of learn-
ing objectives, e.g., variable selection, robust
estimation, imbalanced classification and multi-
objective learning. On the theoretical side, a learn-
ing theory analysis which is centered around the
generalization bound and function approximation
error bound (under some specific data distribu-
tions) is conducted rigorously. On the practical
side, an accelerated optimization algorithm is de-
signed by integrating Prox-SVRG and random
Fourier acceleration technique. The empirical as-
sessments verify the competitive performance of
our approach on both synthetic and real data.
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1. Introduction
Additive models (Hastie & Tibshirani, 1990; Stone, 1985),
as natural extensions of linear models, have drawn much
attention in high-dimensional data analysis due to their flex-
ible representation and desirable interpretability. Let X be
the explanatory variable that takes values in a p-dimensional
metric space X and let Y be the corresponding real-valued
response in an output set Y . The most typical additive mod-
els were formulated by dividing the input space into p parts
directly, i.e., X = (X1, ...,Xp),Xj ∈ R, j ∈ {1, ..., p}. In
this setting, the hypothesis space can be stated as

H =
{
f : f(X) =

p∑
j=1

fj(Xj), fj ∈ Hj

}
,

where X = (X1, ..., Xp)
T ∈ Rp, Xj ∈ Xj and Hj is

the component function space on Xj . Usually, the com-
ponent hypothesis spaces Hj , j = 1, ..., p, can be repro-
ducing kernel Hilbert space (RKHS) (Chen et al., 2017;
Kandasamy & Yu, 2016; Raskutti et al., 2012; Christmann
& Zhou, 2016), the space spanned by the orthogonal ba-
sis (Ravikumar et al., 2009; Meier et al., 2009; Huang
et al., 2010; Yin et al., 2012), and the space formed by
neural networks (Agarwal et al., 2020; Yang et al., 2020).
Over the past decades, many studies concerning the theo-
retical as well as practical investigations of additive models
have been conducted under the empirical risk minimiza-
tion (ERM) minf∈H

∑n
i=1 ℓ(f(xi), yi) (Hastie & Tibshi-

rani, 1990; Stone, 1985; Ravikumar et al., 2009; Kandasamy
& Yu, 2016; Raskutti et al., 2012), where ℓ(·, ·) : R×R → R
is the loss function. The additive models are versatile by
assigning different loss functions, where the several usual
ones include the squared loss ℓ(f(x), y) = (f(x) − y)2

for regression (Ravikumar et al., 2009; Meier et al., 2009;
Huang et al., 2010; Raskutti et al., 2012; Yin et al., 2012;
Tan & Zhang, 2019), and the logistic loss (or hinge loss) for
classification (Ravikumar et al., 2009; Chen et al., 2017).

However, most existing approaches are constructed under
empirical risk minimization (ERM), and perform poorly
in situations where average performance is not a suitable
criterion for the problems of interest, e.g., data with complex
non-Gaussian noise, imbalanced labels or both of them.
Although several works in relation to additive models have
been proposed to address the these problems by introducing
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some robust metrics, e.g., quantile loss (Lv et al., 2018),
modal risk (Chen et al., 2020) and huber loss (Wang et al.,
2022), these methods are specially designed and can only
solve one of the above problems independently.

Recently, (Li et al., 2021a) introduced a unified learning
framework called tilted empirical risk minimization (TERM)
as a flexible alternative to ERM, which have the ability to
handle various known issues occurred in ERM, such as
robustness to noise in regression/classification and class
imbalance. In fact, the flexibly of TERM comes from the
fact that we can tune the impact of individual losses us-
ing a scale parameter called the tilt, and thus increase or
decrease the influence of outliers (or minor class), respec-
tively. For instance, negative scale parameter is used for
robust estimation/classification and positive scale parame-
ter is used for imbalanced classification. However, in the
face of some common data distributions (e.g., Gaussian dis-
tribution, skewed distribution or heavy-tailed distribution),
the theoretical explorations on the approximation ability of
TERM-based estimator with proper scale parameter selec-
tion strategies to the ground truth function are still insuffi-
cient.

In this paper, we try to pave a way for sparse additive models
under TERM with computational feasibility and theoreti-
cal guarantees. To the best of our knowledge, this is the
first work that investigates the sparse additive models under
TERM. The main contributions made in this study can be
summarized as follows:

• Algorithm design: Following the principle of TERM
(Li et al., 2021a), we propose a class of new tilted
sparse additive models (T-SpAM) based on Tikhonv
regularization scheme with the data dependent hypoth-
esis space and the sparsity-induced ℓ2,1-norm regular-
izer. The proposed method can address the deficien-
cies in additive models under ERM by imposing tilted
impact on individual losses, and is capable of achiev-
ing a variety of learning tasks, e.g., variable selection,
robust estimation, imbalanced classification or multi-
objective learning (e.g., achieving robust estimation
and imbalanced classification simultaneously).

• Theoretical guarantees. Theoretical foundations are
established for T-SpAM from three aspects: 1) Gener-
alization consistency verifies the T-SpAM can gener-
alize well to unseen out-of-sample under some weak
conditions; 2) Function approximation analysis demon-
strates the estimator of T-SpAM can approach f∗ with
proper hyper-parameter settings under three specific
data distributions (e.g., student’s t distribution, skewed
normal distribution and normal distribution); 3) Vari-
able selection analysis supports that T-SpAM can iden-
tify truly informative variables under proper parametric
conditions.

• Computing Feasibility. The proposed T-SpAM can be
computationally effective by employing Prox-SVRG
(Reddi et al., 2016) for non-convex objective and utiliz-
ing random Fourier features technique for speeding up
the matrix calculation (Rahimi & Recht, 2007). More-
over, empirical evaluations on both synthetic and real-
world data verify the effectiveness of our T-SpAM.

Related works: The principle of TERM was originally
introduced in (Howard & Matheson, 1972) and revisited
in reinforcement learning (Borkar, 2002; Osogami, 2012).
Recently, in (Li et al., 2021a; Lee et al., 2020), TERM has
shown its appealing robustness and scalability to a variety
of learning tasks. Although rich empirical evaluations are
stated respectively in (Li et al., 2021a), there is no enough
attention on the statistical learning theory of TERM. This
paper tries to establish the learning theory foundations of T-
SpAM on generalization bound, function approximation and
variable selection consistency. To better highlight the nov-
elty of T-SpAM, its algorithmic properties are summarized
in Table 1, where the competitors include SpAM (Sparse ad-
ditive models (Ravikumar et al., 2009)), SAQR (Sparse Ad-
ditive Quantile Models (Lv et al., 2018)), SpMAM (Sparse
Modal Additive Models (Chen et al., 2020)) and TERM
(Ravikumar et al., 2009).

2. Tilted Sparse Additive Models
This paper chooses a RKHS to form the additive hypothesis
space. Let Kj : Xj ×Xj → R be a symmetric and positive
definite kernel on Xj ×Xj , and HKj be the corresponding
RKHS on Xj with norm ∥ · ∥Kj , j ∈ {1, ..., p}. The RKHS
with additive structure is given by

HK = {
p∑
j=1

fj : fj ∈ HKj , j = 1, ..., p}

with

∥f∥2K = inf{
p∑
j=1

∥fj∥2Kj
: f =

p∑
j=1

fj}.

To formulate T-SpAM, we introduce the TERM scheme (Li
et al., 2021a; Lee et al., 2020).
Definition 2.1. Given z := {(xi, yi)}ni=1 drawn indepen-
dently from an intrinsic distribution ρ, the TERM is defined
as

Rz(t, f) :=
1

t
log(

1

n

n∑
i=1

etℓ(f(xi),yi)), (1)

and its population version is

R(t, f) :=
1

t
log

∫
Z
etℓ(f(x),y)dρ(x, y),

where t ∈ (−∞, 0) ∪ (0,+∞) is the scale parameter.
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Table 1. Algorithmic properties (✓-has the given information, ×-hasn’t the given information)
SpAM SAQR SpMAM TERM T-SpAM (ours)

Variable Selection ✓ ✓ ✓ × ✓
Robust Estimation × ✓ ✓ ✓ ✓

Imbalanced Classification × × × ✓ ✓
Multi-objective Learning × × × ✓ ✓
Generalization Analysis ✓ ✓ × × ✓

Variable Selection Analysis ✓ × ✓ × ✓
Function Approximation Analysis × ✓ ✓ × ✓

Optimization Acceleration × × × × ✓

It has been verified that TERM can be tuned to magnify (by
taking t ∈ (0,+∞)) or suppress (by taking t ∈ (−∞, 0))
the influence of outliers (Li et al., 2021a). Then, the TERM-
based regularized additive models can be formulated as

fη,t = argmin
fj∈HKj

f=
∑p

j=1
fj

{Rz(t, f) + η

p∑
j=1

τj∥fj∥2Kj
}, (2)

where η > 0 is a regularization parameter and {τj}pj=1

are positive weights. The properties of RKHS assure the
minimizer of (2) can be represented as

fη,t =

p∑
j=1

n∑
i=1

αηjiKj(xij , ·), αηji ∈ R.

In view of the above representation, we consider sparse
learning in the data dependent hypothesis space

Hz = {
p∑
j=1

n∑
i=1

αjiKj(xij , ·) : αji ∈ R}

with a coefficient-induced penalty

Ωz(f) = inf{
p∑
j=1

τj∥αj∥2 : f =

p∑
j=1

n∑
i=1

αjiKj(xij , ·)},

where α = (αT1 , ...,α
T
p )
T ∈ Rnp and αj =

(αj1, ..., αjn)
T ∈ Rn. The T-SpAM can be formulated

as
fz,t = arg min

f∈Hz

{Rz(t, f) + λΩz(f)}.

Denote Kji = (Kj(xij , x1j), ...,Kj(xij , xnj))
T ∈ Rn

and Ki = (KT
1i, ...,K

T
pi)

T ∈ Rnp. The estimator of T-
SpAM can be rewritten as

fz,t =

p∑
j=1

fz,t,j =

p∑
j=1

n∑
i=1

αz,t
ji Kj(xij , ·) (3)

with

αz,t = arg min
α∈Rnp

{1
t
log(

1

n

n∑
i=1

etℓ(K
T
i α,yi))

+ λ

p∑
j=1

τj∥αj∥2}.(4)

Remark 2.2. To circumvent the large-scale kernel matrix
calculation in (4), we introduce the random Fourier features
technique (Rahimi & Recht, 2007). Denote ψj : R → Rd
as a random Fourier feature map associated with Kj . We
know that, for any j = 1, ..., p,

Kj(xij , xtj) ≈ ψj(xij)
Tψj(xtj),∀xij , xtj ∈ Xj .

Then, (3) can be approximated by

fz,ψ(xt) =

p∑
j=1

ŵTj ψj(xtj) (5)

with

{ŵj}pj=1 = argmin
wj∈Rd,j=1,...,p

{1
t
log(

1

n

n∑
i=1

etℓ(
∑p

j=1 w
T
j ψj(xij),yi))

+ λ

p∑
j=1

τj∥wj∥2}.

(6)

Lemmas 3-4 in (Li et al., 2021a) show that the objective
(13) is non-convex as t ∈ (−∞, 0) and smooth when t ∈
(−∞, 0)∪(0,+∞). As a result, we employ the prox-SVRG
(Reddi et al., 2016) to compute (13) and provide the detailed
steps in Appendix F.

3. Theoretical Analysis
This section provides some necessary assumptions firstly,
and then gives the main theoretical results. All proofs are
provided in Appendixes B-E.

3.1. Generalization Bound of T-SpAM

To conduct the theoretical analysis, we firstly introduce a
projection operator.

Definition 3.1. The projection operator is de-
fined by a hard threshold function P(f)(x) :=
max{−M,min{f(x),M}}, ∀f ∈ HK for regres-
sion estimation, and by the sigmoid function for binary
classification task, i.e., P(f)(x) := 1

1+e−f(x) , ∀f ∈ HK .
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The projection operator can ensure better generalization,
which has been used extensively in learning theory litera-
tures, e.g., (Steinwart et al., 2009; Wu et al., 2007; Liu et al.,
2020).

Assumption 3.2. The output Y is bounded by the interval
[−M,M ] with a positive constant M < +∞. The kernel is
bounded, i.e., κ̃ = supj,u∈X

√
Kj(u, u) <∞.

The above assumptions have been used for theoretical anal-
ysis of additive models (Lv et al., 2018; Chen et al., 2020).

The generalization error bound measures the difference be-
tween R(t,P(fz,t)) and Rz(t,P(fz,t)), which assesses the
out-of-sample prediction ability of the estimator P(fz,t).

Theorem 3.3. Let Assumption 3.2 be true and Kj ∈
Cν for any j = 1, ..., p. For any loss function
with ∥ℓ(Pf(X), Y )∥∞ ≤ +∞ and its derivative
∥ℓ′(Pf(X), Y )∥∞ ≤ +∞. By taking λ = n−ζ , for any
fixed t ∈ (−∞, 0) ∪ (0,+∞) and 0 < δ < 1, there holds

R(t,P(fz,t))−Rz(t,P(fz,t)) ≲ nΦ(s,ζ) log(1/δ)

with confidence at least 1 − δ, where Φ(s, ζ) =
max{ s−2+2sζ

4 ,− 1
2} and

s =


2

1+2ν , ν ∈ (0, 1];
2

1+ν , ν ∈ (1, 3/2];
1
ν , ν ∈ (3/2,∞).

(7)

Remark 3.4. Figure 1 summaries the convergence rates
of generalization error bound deduced in Theorem 3.3 by
taking different s and ζ . Note that the generalization error of
T-SpAM will not converge when ζ and v are both located in
the white area. Moreover, the larger the value of v, the larger
the selection range of regularization parameter λ results in
faster convergence rate. For any t ∈ (−∞, 0) ∪ (0,+∞),
R(t,P(fz,t))−Rz(t,P(fz,t)) → 0 when ζ ∈ (−∞, 2−s2s )
and n→ +∞. By taking ζ ≤ − 1

2 , we can get the learning
rate with polynomial decay O(n−

1
2 ).

3.2. Function Approximation Bounds under Specific
Data Distribution Assumptions

The definition of fz,t in (3) indicates that the approximation
ability of estimator P(fz,t) is closely related to the scale
parameter t. Thus, in the presence of different data distri-
butions, it is important to explore how to select t to achieve
good approximation performance. In this section, we pur-
sue the L2

ρX -distance between P(fz,t) and f∗ under three
specific types of noise distributions ((Noise assumptions
A-C)), where ρX is the marginal distribution of ρ on X and
L2
ρX is the square-integrable function space.

This section considers a common data-generating model as
Y = f∗(X)+ϵ, where (X,Y ) ∈ X×Y , ϵ is a random noise
and f∗ is an unknown ground truth function. Moreover, the
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Figure 1. The convergence rates of generalization error by taking
different ζ and v.

loss function is selected as the squared loss ℓ(f(x), y) =
(f(x)− y)2. Here, we consider an commonly used case in
learning theory (Guo & Zhou, 2013; Zou et al., 2009; Shi
et al., 2011), where f∗ is bounded and belongs to the RKHS,
i.e., f∗ =

∑p
j=1 f

∗
j , ∥f∗∥∞ < +∞ and f∗j ∈ HKj

,∀j ∈
{1, ..., p}.

Assumption 3.5. (Noise assumption A) The noise variable
satisfies E(ϵ|X = x) = 0,∀x ∈ X .
Theorem 3.6. Let Assumptions 3.2, 3.5 be true and fη,t in
(2) be bounded. By taking λ = n−ζ with ζ ∈ (− 1

2 ,
2−s
2s )

and η = n−
1+2ζ

4 , for any 0 < δ < 1, there holds

∥P(fz,t)− f∗∥2L2
ρX

≲
[
|t|−1nmax{ s−2+2sζ

4
,−1

2
} + n

−1−2ζ
4 + |t|

]
log(1/δ)

with confidence at least 1− δ.

Corollary 3.7. Let the conditions of Theorem 3.6 be true. By
taking t = ±n−β with β ∈ (0,min{ 1

2 ,
2−s−2sζ

4 }), the esti-
mator P(fz,t) can approach f∗ with an sample-dependent
error of less than

O(nmax{ 4β+s−2+2sζ
4 , 2β−1

2 ,−1−2ζ
4 ,−β}).

Assumption 3.5 admits a class of zero-mean noise distribu-
tion, e.g., student’s t distribution, skewed Gaussian distribu-
tion and Gaussian distribution. Theorem 3.6 and Corollary
3.7 indicate that a proper t value ensures that our estimator
approximate f∗, which verify the robustness of our T-SpAM.
It should be noticed that the previous theoretical studies of
additive models are usually limited to ERM (or SRM) under
Gaussian noise, see e.g., (Huang et al., 2010; Meier et al.,
2009; Ravikumar et al., 2009; Yuan & Zhou, 2016).
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We turn now to analyze the approximation performance on
a class of symmetric zero-mean noise distribution.

Assumption 3.8. (Noise assumption B) The noise ϵ satis-
fies E(ϵ|X = x) = 0, pϵ|X(m|X = x) = pϵ|X(−m|X =
x), ∀m ∈ R,∀x ∈ X and ∥pϵ|X∥∞ < +∞, where pϵ|X
denotes the conditional density of noise ϵ.

Theorem 3.9. Let Assumptions 3.2, 3.8 be true and fη,t
be bounded. For fixed t ∈ (− 1

2(M+∥f∗∥∞)2 , 0) and any
0 < δ < 1, with confidence at least 1− δ, there holds

∥P(fz,t)− f∗∥2L2
ρX

≲ nmax{ 2sζ+s−2
4 ,− 1

2 ,
−1−2ζ

4 } log(1/δ).

Corollary 3.10. Let the conditions of Theorem 3.9 be true
and Kj ∈ C∞ for any j = 1, ..., p. Setting ζ > 1

2 , we get

∥P(fz,t)− f∗∥2L2
ρX

= O(n−
1
2 ).

To introduce the third type of noise assumption, we first
define strongly m-concave function (Doss & Wellner, 2013;
Feng et al., 2020).

Definition 3.11. A function g is strongly m-concave if it
exhibits one of the following forms:

(i) g = max{ϕ 1
m , 0} for some strongly concave function ϕ

if m > 0;

(ii) g = exp(ϕ) for some strongly concave function ϕ if
m = 0;

(iii) g = max{ϕ 1
m , 0} for some strongly convex function

ϕ if m < 0.

Assumption 3.12. (Noise assumption C) The conditional
density pϵ|X satisfies following conditions:

(i) For any x ∈ X , the conditional density pϵ|X satisfies
the conditions

(i-a) supt∈R pϵ|X(t|X = x) < +∞;

(i-b) inft∈(−∞,+∞) pϵ|X(t|X = x) > 0;

(i-c) pϵ|X(t|X = x) ≤ pϵ|X(0|X = x),∀t ∈ R.

(ii) supx∈X p
′′
ϵ|X(·|X = x) < +∞;

(iii) The conditional density pϵ|X=x,∀x ∈ X satisfies
strongly m-concave condition.

Assumption 3.12 is widely used in modal regression (Feng
et al., 2020; Wang et al., 2017; Chen et al., 2020). Condition
(i) holds for common continuous densities with a unique
global mode. Condition (ii) is key for subsequent theoret-
ical analysis. Condition (iii) is typical from a statistical
viewpoint (Doss & Wellner, 2013; Feng et al., 2020) as it
holds for common symmetric and skewed noise distribu-
tions, e.g., chi-square distribution, student’s t distribution,
skewed normal distribution and normal distribution.

Theorem 3.13. Let Assumptions 3.2, 3.12 be true and fη,t
be bounded. For any t ∈ (−∞, 0) ∪ (0,+∞), we take t =
− log n−β , β ∈ (0,min{ 1

8M2 ,
2−s−2sζ
16M2 }), λ = n−ζ , ζ ∈

( 12 ,
2−s
2s ) and η = n−

1+2ζ
4 . For any 0 < δ < 1, with

confidence at least 1− δ, there holds

∥P(fz,t)− f∗∥2L2
ρX

≲ log−1 n log(1/δ).

Corollary 3.14. Under the zero-mode noise assumption,
the ground truth function f∗ is a conditional mode function
(Sager & Thisted, 1982; Yao & Li, 2013; Chen et al., 2016;
Feng et al., 2020), i.e., f∗(x) = argmaxt pY |X(t|X = x),
where pY |X is the conditional density of output Y . Theorem
3.13 shows the estimator P(fz,t) can approach f∗ with
an sample-dependent error of less than O(log−1 n), which
verifies the robustness of our T-SpAM to the outliers in
that T-SpAM would focus on the high conditional density
region. Recall the approximation rate O(n−1/2) derived in
Corollary 3.10, the slower approximation rate O(log−1 n)
we obtained in Theorem 3.13 indicates the sacrifice for
dealing with more complex zero-mode noise distributions,
e.g., heavy-tailed noise and skewed noise.

With proper parameter selection strategies, Theorems 3.6-
3.13 together ensure the approximation performance of T-
SpAM under three specific different noise assumptions. (Li
et al., 2021a) stated that TERM become robust when taking
t < 0. Indeed, we here strengthen the theoretical guar-
antees of TERM from the perspective of learning theory,
in the sense that giving more specific parameter selection
suggestions in the face of specific data analysis.

In addition, we also investigate the variable selection con-
sistency of our method in Theorem E.2 (provided in Ap-
pendix E). Theorem E.2 illustrates that T-SpAM can iden-
tify the desired variables by taking properly λ and weight
τj , j = 1, ..., p. Indeed, the current analysis extends The-
orem 4 in (Wang et al., 2017) from a linear regularized
modal regression to the nonlinear T-SpAM. Moreover, it is
interesting to further explore variable selection analysis by
replacing the parameter conditions here with the incoher-
ence assumptions (e.g. Assumption 4 in (Lv et al., 2018)).

4. Extensions of T-SpAM: Classification and
Multi-objective Learning

Inspired by the idea in (Ravikumar et al., 2009), the T-
SpAM can be extended to tilted additive logistic regression
for classification problem. Assume that input X ∈ X and
output Y ∈ {0, 1}. Given observations z = {(xi, yi)}ni=1,
the T-SpAM induced by logistic loss can be formulated as

P (Y = 1|X = x) =
exp(

∑p
j=1

∑n
i=1 α

z,t
ji Kj(xij , x))

1 + exp(
∑p
j=1

∑n
i=1 α

z,t
ji Kj(xij , x))

5
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where

αz,t = arg min
α∈Rnp

{1
t
log(

1

n

n∑
i=1

et(yiK
T
i α−log(1+eK

T
i α)))

+ λ

p∑
j=1

τj∥αj∥2}. (8)

Remark 4.1. In view of Lemma 1 in (Li et al., 2021a), the
tilted additive logistic regression can be tuned to achieve ro-
bust classification (by taking t ∈ (−∞, 0)) and imbalanced
classification (by taking t ∈ (0,+∞)).

In real-world application, a multi-objective extension of
T-SpAM can be formulated to tackle complicated learning
problems, e.g., mitigating label noise and addressing imbal-
ance data simultaneously. By classifying the samples into
different groups g ∈ [G] (e.g., the groups can be associ-
ated with the classes in classification task), a multi-objective
TERM can be formulated as

Jz(t, γ, f) :=
1

t
log(

1

|G|
∑
g∈G

etRz,g(γ,f))

where

Rz,g(γ, f) =
1

γ
log(

1

|g|
∑
zi∈g

eγℓ(f(xi),yi)).

Then, the T-SpAM for two-objective learning problem can
be represented as

fz,t,γ =

p∑
j=1

fz,t,γ,j =

p∑
j=1

n∑
i=1

Kji(xi, ·)αz,t,γ
ji

with

αz,t,γ

= arg min
α∈Rnp

{1
t
log(

1

|G|
∑
g∈G

e
t
γ log( 1

|g|
∑

zi∈g e
γℓ(KT

i α,yi)))

+ λ

p∑
j=1

τj∥αj∥2}.

Here, we can select ℓ(f(x), y) as the squared loss for re-
gression and as the logistic loss for classification.
Remark 4.2. Lemma 7 in (Li et al., 2021a) demonstrates
that the multi-objective T-SpAM is equivalent to T-SpAM
when γ = t. Indeed, the scale parameter t controls the tiled
level between groups g ∈ [G], and the weight τ impacts
the tilted level between samples in group g ∈ [G]. Detailed
optimization procedures of T-SpAM with logistic loss and
multi-objective loss are provided in Appendix F.

5. Experiments
This section conducts the empirical evaluations on synthetic
data and real-world data to verify the effectiveness of our
T-SpAM in terms of robust regression prediction, robust
classification, accurate imbalanced classification and the
ability to handle multi-objective learning problem.

In all synthetic experiments, we independently
generate training dataset, validation dataset and
test dataset, where the hyper-parameters t and
λ are tuned in grids {±0.1,±0.5,±1,±2} and
{10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1} on validation
dataset. For regression task, we use the average squared er-
ror (ASE) to describe the divergence between the f∗(x) and
the prediction f̂(x), i.e., ASE = 1

n

∑n
i=1(f̂(x)− f∗(x))2.

For simplicity, T-SpAM(K) and T-SpAM(F) refer to the
T-SpAM by kernel matrix calculation (see (4)) and by
random Fourier feature acceleration (see (13)), respectively.
Inspired by (Feng et al., 2016), variable selection results
are measured in terms of the average selection percentage
(ASP), which refers to the average probability of variables
selected correctly.

5.1. Synthetic data experiments

For regression task, the datasets are generated by the data
generating model Y = f∗(X) + ϵ. Following the ex-
perimental design in (Chen et al., 2020), we consider
f (X) =

∑8
j=1 fj(Xj) with

f1(u) = −2 sin(2u), f2(u) = 8u2, f3(u) =
7 sinu

2− sinu
,

f4(u) = 6e−u, f5(u) = u3 +
3

2
(u− 1)2, f6(u) = 5u,

f7(u) = 10 sin(e−u/2), f8(u) = −10ϕ̃(u,
1

2
,
4

5

2

),

where ϕ̃ is the normal cumulative distribution with mean
1
2 and standard deviation 4

5 . Let the sample size n = 200
and dimension p = 100 (including 92 irrelevant variables).
Each input Xj , j = 1, ..., 100, is generated from U(−1, 1).
For training data and validation data, three types of noises
are considered here and named ϵA, ϵB and ϵC , respectively.
Here, the ϵA is drawn from a skewed zero-mean distributions
{0.8N (−2, 1) + 0.2N (8, 1)}, the ϵB follows the skewed
zero-mode distribution {0.8N (0, 1)+0.2N (20, 1)} and the
ϵC is generated from heavy-tailed Student’s t distribution.
To obtain ASE, the test data are generated by Y = f∗(X).

We compare our proposed approch (T-SpAM(F) and T-
SpAM(K)) with several related methods, e.g., Lasso (Tib-
shirani, 1994), SpAM (Ravikumar et al., 2009) and RMR
(Wang et al., 2017). We repeat each experiment for 50 times
and report the average results under three types of noise dis-
tributions. Table 2 shows that, with a small |t|, T-SpAM(F),
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(a) The ASE under noise ϵA (b) The ASE under noise ϵB (c) The ASE under noise ϵC

Figure 2. The ASE of T-SpAM(F) under different t and sample size n

Table 2. The averaged performance on synthetic data under noises ϵA (Top), ϵB (Middle) and ϵC (Bottom).

Method ASP ASE Method ASP ASE

t = −0.1
T-SpAM (F) 0.923 0.173± 0.042

t = 0.1
T-SpAM (F) 0.919 0.173± 0.037

T-SpAM (K) 0.925 0.184± 0.048 T-SpAM (K) 0.918 0.237± 0.050

t = −0.5
T-SpAM (F) 0.908 0.171± 0.041

t = 0.5
T-SpAM (F) 0.906 0.222± 0.056

T-SpAM (K) 0.875 0.244± 0.055 T-SpAM (K) 0.905 0.268± 0.056

t = −1.0
T-SpAM (F) 0.925 0.157 ± 0.046

t = 1.0
T-SpAM (F) 0.913 0.265± 0.626

T-SpAM (K) 0.865 0.289± 0.065 T-SpAM (K) 0.905 0.269± 0.055

t = −2.0
T-SpAM (F) 0.810 0.278± 0.097

t = 2.0
T-SpAM (F) 0.881 0.296± 0.068

T-SpAM (K) 0.700 0.416± 0.087 T-SpAM (K) 0.905 0.277± 0.054

− Lasso 0.830 1.037± 0.119 − SpAM 0.918 0.204± 0.049RMR 0.380 0.597± 0.141

Method ASP ASE Method ASP ASE

t = −0.1
T-SpAM (F) 0.505 0.418± 0.077

t = −0.5
T-SpAM (F) 0.573 0.358± 0.099

T-SpAM (K) 0.675 0.272± 0.067 T-SpAM (K) 0.715 0.196± 0.043

t = −1.0
T-SpAM (F) 0.938 0.068± 0.077

t = −2.0
T-SpAM (F) 1.000 0.019 ± 0.005

T-SpAM (K) 0.878 0.144± 0.042 T-SpAM (K) 0.955 0.110± 0.025

− Lasso 0.655 0.713± 0.057 − SpAM 0.588 0.350± 0.078RMR 0.610 0.425± 0.112

Method ASP ASE Method ASP ASE

t = −0.1
T-SpAM (F) 1.000 0.041± 0.013

t = −0.5
T-SpAM (F) 1.000 0.037 ± 0.012

T-SpAM (K) 0.993 0.152± 0.041 T-SpAM (K) 0.993 0.158± 0.042

t = −1.0
T-SpAM (F) 1.000 0.042± 0.013

t = −2.0
T-SpAM (F) 1.000 0.084± 0.037

T-SpAM (K) 0.990 0.193± 0.054 T-SpAM (K) 0.885 0.316± 0.093

− Lasso 0.865 1.546± 0.269 − SpAM 0.988 0.094 ± 0.060RMR 0.843 0.247± 0.062

T-SpAM(K) and SpAM have a satisfactory performance
under zero-mean noise ϵA, while Lasso and RMR produce a
large ASE value as they can only fit functions linearly. More-
over, when t tends to be small, T-SpAM(F) and T-SpAM(K)
outperforms other competitors under zero-mode noise ϵB

in the sense that it can select all variables correctly and
obtain the smallest ASE. This result implies the robustness
of T-SpAM(F) to skewed zero-mode noise and supports the
findings in Theorem 3.13. Furthermore, we investigate the
impact of t and n on the performance of T-SpAM(F) in
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(b) Executive time under noise ϵB

Figure 3. The executive time for T-SpAM(K) and T-SpAM(F) when taking t = −0.5.

Table 3. The accuracy on contaminated data (left) and imbalanced data (right) respectively.

Robust Classification Imbalanced Classification

Method ASP Accuracy Method ASP Accuracy

r1 = 0.1

T-SpAM(F) 1.000 0.887 ± 0.028

r2 = 0.05

T-SpAM(F) 1.000 0.832 ± 0.042
ℓ1-SVM 0.430 0.583± 0.043 ℓ1-SVM 1.000 0.500± 0.000

SAM 0.980 0.761± 0.048 SAM 1.000 0.800± 0.046
SpAM 0.940 0.791± 0.058 SpAM 1.000 0.715± 0.096

r1 = 0.3

T-SpAM(F) 0.530 0.702 ± 0.066

r2 = 0.10

T-SpAM(F) 1.000 0.880 ± 0.031
ℓ1-SVM 0.530 0.572± 0.054 ℓ1-SVM 1.000 0.500± 0.000

SAM 0.380 0.598± 0.042 SAM 1.000 0.860± 0.037
SpAM 0.410 0.632± 0.047 SpAM 1.000 0.819± 0.058

r1 = 0.5

T-SpAM(F) 0.270 0.554 ± 0.066

r2 = 0.15

T-SpAM(F) 1.000 0.910 ± 0.025
ℓ1-SVM 0.230 0.534± 0.067 ℓ1-SVM 1.000 0.500± 0.000

SAM 0.030 0.496± 0.042 SAM 1.000 0.885± 0.032
SpAM 0.010 0.499± 0.054 SpAM 1.000 0.863± 0.052

Table 4. The accuracy on contaminated and imbalanced classification data.

Method r1 = 0.3, r2 = 0.1 r1 = 0.3, r2 = 0.5 r1 = 0.1, r2 = 0.1 r1 = 0.1, r2 = 0.15

T-SpAM(F) 0.655 ± 0.078 0.681 ± 0.071 0.782 ± 0.042 0.828 ± 0.037
SpAM 0.616± 0.106 0.680± 0.089 0.705± 0.080 0.791± 0.064
SAM 0.603± 0.074 0.639± 0.053 0.760± 0.074 0.800± 0.048
ℓ1-SVM 0.500± 0.007 0.501± 0.015 0.500± 0.002 0.500± 0.002

Figure 2. Clearly, with sample size n increasing, the ASE
has a downward trend for all t, which verifies the findings
in Theorems 3.3, 3.6 and 3.13. Besides, we can see that
the ASE becomes smaller as |t| tends to 0 for noise ϵA,
which is consistent with the result in Theorem 3.6. More-
over, the decreasing of ASE as t decreases verifies Theorem
3.13. Figure 3 reports the executive times of T-SpAM(F)

and T-SpAM(K) under noises ϵA and ϵB . Together with the
results from Table 2, we can see that T-SpAM(F) performs
as well as T-SpAM(K) but runs faster than T-SpAM(K),
which verifies the effectiveness of random Fourier features
technique.

Robust classification: For classification, we consider the
discriminant function used in (Zhao & Liu, 2012). The
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Figure 4. AMSE and the weights of variables.

discriminant function is additive and formulated as follows

f∗(xi) = (xi1 − 0.5)2 + (xi2 − 0.5)2 − 0.08, (9)

where xij = (Wij + Ui)/2 and Wij , Ui are independently
from U(0, 1) for i = 1, . . . , 200, j = 1, . . . , 100. The label
yi is 0 when f(xi) ≤ 0 and 1 otherwise. We add the noise
into data by randomly flipping the label with some certain
ratios r1 (see Table 3). Here, the competitors include SpAM
(induced by logistic loss) (Ravikumar et al., 2009), SAM
(Zhao & Liu, 2012) and linear ℓ1-SVM (Zhu et al., 2003).
The variable selection results and classification accuracy
on test set are presented in Table 3, which entails the T-
SpAM(F) behaves better in robust classification.

Imbalanced classification: Now we check the property
of T-SpAM to handle imbalanced classification issue. The
synthetic data are constructed from (9) with N = 200, p =
10. We compare our method with SpAM(induced by logistic
loss)(Ravikumar et al., 2009), SAM(Zhao & Liu, 2012),
and ℓ1-SVM(Zhu et al., 2003) under some extreme ratios
r2 of negative class in the population. Table 3 empirically
verifies that the T-SpAM(F) has an advantage in dealing
with imbalanced data.

Multi-objective learning: The effectiveness of multi-
objective T-SpAM is checked under imbalanced and robust
classification setting. For simplicity, we only consider the
combinations of r1 ∈ {0.1, 0.3} and r2 ∈ {0.10, 0.15}.
Based on (9), the synthetic data are generated with n =
200, p = 10. Table 4 implies the T-SpAM(F) is slightly
superior to the other methods.

5.2. Real-world data experiment

In this section, we evaluate the performance of T-SpAM
on Coronal Mass Ejections (CME) data. The CME data
(https://cdaw.gsfc.nasa.gov/CME list/) consists of a output
variable (arrival time of coronal mass ejections) and 20
input variables, including center projection angle (CPA), an-
gle width (AW), linear speed (LS), SND speed final (SSF),
SND speed 20RS (SSRS), MASS, kinetic energy (KE), mea-

surement position angle (MPA), field magnitude average
(FMA), BX, BY, BZ, Speed (S), VX, VY, VZ, proten den-
sity (PD), Temperature (T), flow pressure (FP), plasma beta
(PB). We randomly split the CME data into three parts: 86
observations for training, 22 observations for validation,
and 27 observations for test. To evaluate model perfor-
mance, the average mean squared error (AMSE) is obtained
by repeating the experiment 50 times. To the end, our T-
SpAM(F) enjoys the smallest AMSE (0.615 ± 0.165 by
taking t = −0.1) compared with SpAM (1.037 ± 0.258),
RMR (0.973±0.795) and Lasso (1.868±0.909). Moreover,
Figure 4 shows that LS, SSF, FMA and BZ are significant
in arrival time prediction, which has been verified in (Liu
et al., 2018).

6. Conclusion
In this paper, we propose a novel tilted sparse additive mod-
els (T-SpAM) that can be capable of a variety of learning
tasks, e.g., robust estimation, robust classification, imbal-
anced classification, and multi-objective learning. Under
some common skewed or symmetric noise assumptions,
theoretical guarantees on generalization bound, function
approximation, and variable selection consistency are es-
tablished for T-SpAM. In practice, empirical evaluations
support the advanced performance of our approach.
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Appendix to “Tilted Sparse Additive Models”

A. Notations
Some used notations are summarized in Table 5.

Table 5. Notations
Notations Descriptions
X ,Y the input space and the output space, respectively
X,Y random variables taking values in X and Y , respectively
x, y realizations of X and Y , respectively
ϵ the noise variable specified by the residual Y − f∗(X)
p the dimension of input variable X
n the sample size
z a set of n-size realizations of X,Y , i.e., z = {(xi, yi)}ni=1

ρ the joint probability distribution of X × Y
ρX the marginal distribution of X
pY |X the conditional density of Y conditioned on X
pϵ|X the conditional density of ϵ conditioned on X
L2
ρ2X

the function space of square-integrable functions with respect to ρX
HK the data independent reproducing kernel Hilbert space
Hz the data dependent hypothesis space
f∗ the unknown ground truth function
R(t, f) the population version of tilted empirical risk minimization framework
Rz(t, f) the tilted empirical risk minimization framework
G(t, f) the population version of stepping-stone objective function
Gz(t, f) the empirical version of stepping-stone objective function
Eρ(f) the objective function for conditional mean function
EM (f) the objective function for conditional mode function

B. Proof of Theorem 1
Proof sketch: Usually, the generalization analysis of traditional ERM-based algorithm can be conducted by considering
the expected risk and empirical risk as the expectation of random error variable and the average of random independent
error observations (Cucker & Zhou, 2007; Steinwart & Christmann, 2008). However, R(t,P(fz,t)) and Rz(t,P(fz,t))
associated with TERM do not enjoy this property due to the additional logarithmic function. Hence, the concentration
inequalities (e.g., used in (Wu et al., 2007; Steinwart & Christmann, 2008)) can not be used to bound the generalization of
T-SpAM directly. In this part, we overcome this difficulty by introducing the stepping-stone objectives

G(t, f) := 1

t

∫
Z
et(f(x)−y)

2

dρ(x, y)

and

Gz(t, f) :=
1

nt

n∑
i=1

et(f(xi)−yi)2 .

To the end, the main building blocks in generalization consistency analysis are presented in Figure 5.

We assume ℓ(Pf(X), Y ) ≤Mℓ and ℓ′(Pf(X), Y ) ≤Mℓ′ for any f(X) and Y . To bound G(t,P(fz,t))−Gz,t(t,P(fz,t)),
we first give the upper bound of ∥fz,t∥K .

Lemma B.1. Under Assumption 1, there hold

∥fz,t∥K ≤M2
ℓ κ̃n

1
2λ−1τ̃−1, ∀t ∈ (−∞, 0) ∪ (0,+∞)

where τ̃ = minj=1,...,p τj is a positive constant.
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Theorem 1
Generalization error bound

ℛ(𝑡, 𝒫(𝑓𝐳,#)) − ℛ𝐳(𝑡, 𝒫(𝑓𝐳,#))

Lemma 1

Bounding
𝒢(𝑡, 𝒫(𝑓𝐳,#)) − 𝒢𝐳(𝑡, 𝒫(𝑓𝐳,#))

Lemma 2 Lemma 3

Figure 5. An illustration of the main building blocks in generalization consistency analysis. We first establish the upper bound of
G(t,P(fz,t))− Gz(t,P(fz,t)) with the help of Lemmas B.1-B.3. Lemma B.4 investigates the relation between R(t, fz,t)−Rz(t, fz,t)
and G(t, fz,t) − Gz(t, fz,t). Finally, Theorem 1 can be obtained by combining Lemma B.4 and the bound of the generalization error
G(t,P(fz,t))− Gz(t,P(fz,t)).

Proof. From the definition of fz,t, we have

Rz(t, fz,t) + λΩz(fz,t) ≤ Rz(t, 0) + λΩz(0).

Under Assumption 1, we come to the following two conclusions, i.e.,

λΩ(fz,t) = λ

p∑
j=1

τj∥αz,t
j ∥2 ≤ Rz(t, 0)−Rz(t, fz,t) ≤

1

t
log(

∑n
i=1 e

tℓ(0,yi)∑n
i=1 e

tℓ(fz,t(xi),yi)
)

Then, if t ∈ (−∞, 0), we have

1

t
log(

∑n
i=1 e

tℓ(0,yi)∑n
i=1 e

tℓ(fz,t(xi),yi)
) ≤ − 1

|t|
log e−|t|M2

ℓ =M2
ℓ .

Also, if t ∈ (0,+∞), the similar result can be obtained, i.e.,

1

t
log(

∑n
i=1 e

tℓ(0,yi)∑n
i=1 e

tℓ(fz,t(xi),yi)
) ≤ 1

t
log etM

2
ℓ =M2

ℓ .

Consequently, we see that

p∑
j=1

∥αz,t
j ∥2 ≤ M2

ℓ

λminj=1,...,p τj
, ∀z = (x, y) ∈ Z, t ∈ (∞, 0) ∪ (0,+∞)

In connection with

∥fz,t∥K ≤ κ̃

p∑
j=1

n∑
i=1

|αz,t
ji | ≤ κ̃n

1
2

p∑
j=1

∥αz,t
j ∥2,

we get the desired result of Lemma B.1.

Lemma B.1 illustrates a ball
Br = {f ∈ HK : ∥f∥K ≤ r}

that covers the estimator fz,t, where

r = κ̃n
1
2M2

ℓ λ
−1τ̃−1. (10)

Next, we use the ℓ2-empirical covering number (e.g, used in (Zhou, 2002; Anthony & Bartlett, 1999; Chen et al., 2020;
Feng et al., 2020)) to measure the capacity of Br.

13
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Definition B.2. Let F be a set of measurable functions on X . Given input samples x = {xi}ni=1, we define the ℓ2-empirical
metric as

d2,x(f1, f2) = (
1

n

n∑
i=1

(f1(xi)− f2(xi))
2)

1
2 .

Then the ℓ2-empirical covering number of function space F is defined as

N2(F , ϵ) = sup
n

sup
x

inf
m
{m ∈ N : ∃{fj}mj=1 ⊂ F , s.t.,F ⊂ ∪mj=1{f ∈ F : d2,x(f, fj) < ϵ}},∀ϵ > 0.

Indeed, the empirical covering number of Br has been investigated extensively in learning theory literatures (Steinwart &
Christmann, 2008). There are some detailed examples, e.g., Examples 1-2 in (Guo & Zhou, 2013), Theorem 2 in (Shi et al.,
2011) and Lemma 3 in (Shi, 2013).

The following uniform concentration inequality established in (Wu et al., 2007; Steinwart & Christmann, 2008) is used for
bounding G(t,P(fz,t))− Gz,t(t,P(fz,t)).
Lemma B.3. Let T be a measurable function set on Z . Suppose that there are some constants B, c and ϑ ∈ [0, 1] such that
∥h∥∞ ≤ B, Eh2 ≤ c(Eh)ϑ for each h ∈ T . If for 0 < s < 2, logN2(T , ϵ) ≤ aϵ−s,∀ϵ > 0, a > 0, then for any δ ∈ (0, 1)
and given sample set z = {zi}ni=1 = {(xi, yi)}ni=1 ∈ Zn, there holds

Eh−
n∑
i=1

h(zi) ≤
ω1−ϑ(Eh)ϑ

2
+ csω + 2(

c log 1
δ

n
)

1
2−ϑ +

18B log 1
δ

n

with confidence at least 1− δ, where

ω = max{c
2−s

4−2ϑ+sϑ (
a

n
)

2
4−2ϑ+sϑ , B

2−s
2+s (

a

n
)

2
2+s }

and cs is a constant depending on s.

We then present the concentration estimation for G(t,P(fz,t))− Gz(t,P(fz,t)). For this purpose, we first define a function-
based random variable set as

V = {h(z) := hf (z) =
1

t
etℓ(P(f)(x),y) : f ∈ Br, z ∈ Z}, t ∈ (−∞, 0) ∪ (0,+∞),

where r is defined in (10).

Under Assumption 1, for any f1, f2 ∈ Br, there holds

|hf1(z)− hf2(z)| = |1
t
etℓ(P(f1)(x),y) − 1

t
etℓ(P(f2)(x),y)| ≤ M̃ |f1(x)− f2(x)|, (11)

where M̃ =Mℓ′e
4tM2

ℓ ,∀t ∈ (0,+∞) and M̃ =Mℓ′ ,∀t ∈ (−∞, 0).

Then, we get
logN2(V, ϵ) ≤ logN2(Br, ϵM̃−1) ≤ logN2(B1, ϵM̃

−1r−1) ≤ csM̃
srsp1+sϵ−s,

where the s value is given in Theorem 1 and this inequality comes from the covering number bounds for HKj with Kj ∈ Cν

(see Theorem 2 in (Shi et al., 2011) and Lemma 3 in (Shi, 2013) for more details). It is trivial to verify that

∥h∥∞ ≤ 1

t
etM

2
ℓ 1{0<t<+∞} +

1

|t|
1{−∞<t<0} := Ṽ , (12)

and

Eh2 ≤ E∥h∥2∞ = Ṽ 2(Eh)0.

Now applying Lemma B.3 to the function-based random variable set V with B = Ṽ , a = M̃srsp1+s, ϑ = 0 and c = Ṽ 2,
we have, for any f ∈ Br and 0 < δ < 1,

G(t,P(f))− Gz(t,P(f))

≤ (
1

2
+ cs)max{Ṽ

2−s
2 (

M̃srsp1+s

n
)

1
2 , Ṽ

2−s
2+s (

M̃srsp1+s

n
)

2
2+s }+ 2(

Ṽ 2 log 1
δ

n
)

1
2 +

18Ṽ log 1
δ

n

14
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with confidence at least 1− δ.

For any t ∈ (−∞, 0), we get Ṽ = |t|−1, r = M2
ℓ κ̃τ̃

−1n
1
2λ−1 and M̃ = Mℓ′ . For any t ∈ (0,+∞), we have

r =M2
ℓ κ̃τ̃

−1n
1
2λ−1, Ṽ = 1

t e
4tM2

ℓ and M̃ =Mℓ′e
tM2

ℓ .

By taking λ = n−ζ , Lemma B.3 gives that

G(t,P(fz,t))− Gz(t,P(fz,t)) ≲


|t|

s−2
2+s nmax{− 1

2 ,
s−2+2sζ

4 }p
2(1+s)
2+s log(1/δ), t ∈ (−∞,−1]

|t|−1nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (−1, 0)

|t|−1etM
2
ℓ nmax{− 1

2 ,
s−2+2sζ

4 }p
2(1+s)
2+s log(1/δ), t ∈ (0, 1)

|t|
s−2
2+s etM

2
ℓ nmax{− 1

2 ,
s−2+2sζ

4 }p
2(1+s)
2+s log(1/δ), t ∈ [1,+∞)

with confidence at least 1− δ, where a ≲ b means there exists a positive constant c such that a ≤ cb,∀a, b ∈ R.

To the end, we get back to the concerned point through following lemma.

Lemma B.4. Let Assumption 1 be true. There holds

R(t,P(fz,t))−Rz(t,P(fz,t)) ≤ eM
2
ℓ |t||G(t,P(fz,t))− Gz(t,P(fz,t))|, ∀t ∈ (−∞, 0),

and

R(t,P(fz,t))−Rz(t,P(fz,t)) ≤ |G(t,P(fz,t))− Gz(t,P(fz,t))|, ∀t ∈ (0,+∞).

Proof. From the mean value theorem, we have

R(t,P(fz,t))−Rz(t,P(fz,t)) =
1

t
log

∫
Z
etℓ(P(fz,t)(x),y) − 1

t
log

1

n

n∑
i=1

etℓ(P(fz,t)(xi),yi)

=
1

ξ
(
1

t

∫
Z
etℓ(P(fz,t)(x),y) − 1

nt

n∑
i=1

etℓ(P(fz,t)(xi),yi))

=
1

ξ

(
G(t,P(fz,t))− Gz(t,P(fz,t))

)
,

where ξ is between
∫
Z e

tℓ(P(fz,t)(xi),yi) and 1
n

∑n
i=1 e

tℓ(P(fz,t)(xi),yi). It is trivial to see that

1

ξ

(
G(t,P(fz,t))− Gz(t,P(fz,t))

)
≤ e4|t|M

2
ℓ |G(t,P(fz,t))− Gz(t,P(fz,t))|,∀t ∈ (−∞, 0),

and
1

ξ

(
G(t,P(fz,t))− Gz(t,P(fz,t))

)
≤ |G(t,P(fz,t))− Gz(t,P(fz,t))|,∀t ∈ (0,+∞).

We complete the proof of lemma B.4.

In connection with Lemmas B.1-B.3, for any 0 < δ < 1 and any fixed t ∈ (−∞, 0) ∪ (0,+∞), there holds

R(t,P(fz,t))−Rz(t,P(fz,t)) ≲ nmax{ s−2+2sζ
4 ,− 1

2} log(1/δ).

with confidence at least 1− δ. This completes the proof of Theorem 1.

C. Proof of Theorem 2
Proof sketch: In what follows, we shall make efforts to conduct the function approximation analysis. Clearly, the data-
generating model Y = f∗(X) + ϵ and Assumption 3 together ensure that the ground truth function f∗ is a conditional mean
function (Wu et al., 2006; Caponnetto & Vito, 2007; Wang & Zhou, 2011; Feng et al., 2015), i.e.,

f∗(x) =

∫
Y
ydρ(y|x),

15



Tilted Sparse Additive Models

Theorem 2
Function Approximation Error 

∥ 𝒫(𝑓𝐳,#) − 𝑓∗ ∥ℒ!𝒳#
&

Lemma 1

Lemma 2

(Proposition 2)
Sample Error

(Proposition 1)
Error Decomposition

Lemma 4

(Proposition 3)
Hypothesis Error

Lemma 5

Figure 6. An illustration of the main building blocks in function approximation analysis. The error decomposition in Proposition C.2
supports Propositions C.4 and C.6. The strategy for bounding the sample error (Proposition C.4) is similar to that for generalization error
analysis (Section B). The upper bound of ∥αηj ∥2, j = 1, .., p in Lemma 5 is key to bound the hypothesis error in Proposition C.6. Finally,
Theorem 2 is obtained by combining the results in Propositions C.2-C.6.

where
f∗ = arg min

f∈HK

Eρ(f) and Eρ(f) :=
∫
Z
(f(x)− y)2dρ(x, y).

In view of the above discussions, Figure 6 presents the main building blocks in function approximation analysis.

Firstly, we measure the deviations between the excess risk terms Eρ(P(fz,t))− Eρ(f∗) and R(t,P(fz,t))−R(t, f∗).

Lemma C.1. Let Assumptions 1-3 be true. There holds

Eρ(P(fz,t))− Eρ(f∗) ≤ R(t,P(fz,t))−R(t, f∗) +Mt,f∗ ,

where Mt,f∗ = 16M4|t|e|t|(M+∥f∗∥∞)2 for any t ∈ (−∞, 0) and |t|(M + ∥f∗∥∞)4 for any t ∈ (0,+∞).

Proof. From the definitions of Eρ(f) and R(t, f), we have

Eρ(P(fz,t))− Eρ(f∗)− (R(t,P(fz,t))−R(t, f∗))

=

∫
Z
[y − P(fz,t)(x)]

2 − (y − f∗(x))2dρ(x, y)− 1

t

[
log

∫
Z
et[y−P(fz,t)(x)]

2

− log

∫
Z
et(y−f

∗(x))2dρ(x, y)
]

=

∫
Z
[y − P(fz,t)(x)]

2 − (y − f∗(x))2dρ(x, y)− 1

t
log

[
1 +

∫
Z e

t[y−P(fz,t)(x)]
2

dρ(x, y)∫
Z e

t(y−f∗(x))2dρ(x, y)
− 1

]
.

Taking t ∈ (−∞, 0) gives

Eρ(P(fz,t))− Eρ(f∗)− (R(t,P(fz,t))−R(t, f∗))

≤
∫
Z
[y − P(fz,t)(x)]

2 − (y − f∗(x))2dρ(x, y)

+
1

|t|
∫
Z e

−|t|(y−f∗(x))2dρ(x, y)

[ ∫
Z
e−|t|[y−P(fz,t)(x)]

2

dρ(x, y)−
∫
Z
e−|t|(y−f∗(x))2dρ(x, y)

]
≤ e|t|(M+∥f∗∥∞)2

[ ∫
Z
[y − P(fz,t)(x)]

2 − (y − f∗(x))2dρ(x, y)

+
1

|t|

(∫
Z
e−|t|[y−P(fz,t)(x)]

2

dρ(x, y)−
∫
Z
e−|t|(y−f∗(x))2dρ(x, y)

)]
.
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By applying Taylor’s Theorem to both G(t,P(fz,t)) and G(t, f∗), we get

Eρ(P(fz,t))− Eρ(f∗)− (R(t,P(fz,t))−R(t, f∗))

≤ |t|e|t|(M+∥f∗∥∞)2
[ ∫

Z
[y − P(fz,t)(x)]

4eξ1 − (y − f∗(x))4eξ2dρ(x, y)
]
,

≤ 16M4|t|e|t|(M+∥f∗∥∞)2 ,

where ξ1 is between 0 and t[y − P(fz,t)(x)]
2, and ξ2 is between 0 and t(y − f∗(x))2.

Moreover, if t ∈ (0,+∞), we can deduce

Eρ(P(fz,t))− Eρ(f∗)− (R(t,P(fz,t))−R(t, f∗))

≤
∫
Z
[y − P(fz,t)(x)]

2 − (y − f∗(x))2dρ(x, y)

+
1

t
∫
Z e

t(y−f∗(x))2dρ(x, y)

[ ∫
Z
et(y−f

∗(x))2dρ(x, y)−
∫
Z
et[y−P(fz,t)(x)]

2

dρ(x, y)
]

≤
[ ∫

Z
[y − P(fz,t)(x)]

2 − (y − f∗(x))2dρ(x, y)

+
1

|t|

(∫
Z
et(y−f

∗(x))2dρ(x, y)−
∫
Z
et[y−P(fz,t)(x)]

2

dρ(x, y))
]

≤ |t|(M + ∥f∗∥∞)4.

This completes the proof.

In the following, we make a direct error decomposition.

Proposition C.2. (Error Decomposition) Under Assumptions 1-3, there holds

∥P(fz,t)− f∗∥2L
ρ2X

≤ E1 + E2 + η∥f∗∥2K +Mt,f∗ ,

where
E1 = R(t,P(fz,t))−Rz(t,P(fz,t)) +Rz(t, f

∗)−R(t, f∗)

and
E2 = Rz(t, fz,t) + Ωz(fz,t)−Rz(t, fη,t)− η∥fη,t∥2K .

Proof. The definition of fη,t implies that

Rz(t, fη,t) + η∥fη,t∥2K − η∥f∗∥2K ≤ Rz(t, f
∗).

Based on Lemma C.1, we can deduce that

∥P(fz,t)− f∗∥2L
ρ2X

≤ Eρ(P(fz,t))− Eρ(f∗)

≤ R(t,P(fz,t))−R(t, f∗) +Mt,f∗

≤ R(t,P(fz,t))−Rz(t,P(fz,t)) +Rz(t,P(fz,t))−Rz(t, f
∗) +Rz(t, f

∗)−R(t, f∗) +Mt,f∗

≤ E1 +Rz(t, fz,t) + λΩz(fz,t)−Rz(t, f
∗) +Mt,f∗

≤ E1 +Rz(t, fz,t) + λΩz(fz,t)− (Rz(t, fη,t) + η∥fη,t∥2K − η∥f∗∥2K) +Mt,f∗

≤ E1 + E2 + η∥f∗∥2K +Mt,f∗ .

In learning theory literatures, we call E1 , E2 as the sample error and the hypothesis error, respectively. The sample error E1

describes the divergence between the generalization error terms Rz(t,P(fz,t))−R(t,P(fz,t)) and Rz(t, f
∗)−R(t, f∗).

The hypothesis error E2 characterizes the difference between the regularized empirical formulations in HK and Hz.
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Lemma C.3. Let ξ be a random variable on a probability space Z with variance σ satisfying |ξ − Eξ| ≤Mξ almost surely
for some constant Mξ and for all z ∈ Z . Then for any 0 < δ < 1, with confidence 1− δ, we have

1

n

n∑
i=1

ξ(zi)− Eξ ≤ 2Mξ log(1/δ)

3n
+

√
2σ2 log(1/δ)

n
.

Proposition C.4. (Bounding sample error E1) Let Assumption 1 be true and each Kj ∈ Cv, j = 1, ..., p. For any δ ∈ (0, 1)
and f ∈ HK , there holds

E1 ≲


|t|

s−2
2+s e4|t|M

2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (−∞,−1]

|t|−1e4|t|M
2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (−1, 0)

|t|−1e8tM
2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (0, 1)

|t|
s−2
2+s e8tM

2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ [1,+∞)

with confidence at least 1− δ, where r, M̃ , Ṽ are defined in (10), (11) and (12), respectively.

Proof. The proof proceeds similarly to the generalization consistency analysis in Section B. After defining a function-based
variable set as

T = {hf (z) =
1

t
et[P(f)(x)−y]2 − 1

t
et[f

∗(x)−y]2 : f ∈ Br, g ∈ HK},

Lemma B.3 holds for the function set T with B = Ṽ , a = M̃srsp1+s, ϑ = 0 and c = Ṽ 2, where M̃ and Ṽ are defined in
(11) and (12), respectively. Then we have

G(t,P(fz,t))− Gz(t,P(fz,t))− (G(t, f∗)− Gz(t, f
∗)) ≲

|t|
s−2
2+s nmax{− 1

2 ,
s−2+2sζ

4 }p
2(1+s)
2+s log(1/δ), t ∈ (−∞,−1]

|t|−1nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (−1, 0)

|t|−1e4tM
2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (0, 1)

|t|
s−2
2+s e4tM

2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ [1,+∞)

According to Lemma B.4, for any f ∈ HK , we have

R(t, f)−Rz(t, f) =
1

ξ
(G(t, f)− Gz(t, f)),

where ξ is between
∫
Z e

t(f(x)−y)2dρ and 1
n

∑n
i=1 e

t(f(xi)−yi)2 . Then we have(
R(t,P(fz,t))−Rz(t,P(fz,t))

)
−

(
R(t, f∗)−Rz(t, f

∗)
)

−
{
G(t,P(fz,t))− Gz(t,P(fz,t))− (G(t, f∗)− Gz(t, f

∗))
}

= (
1

ξ1
− 1)

(
G(t,P(fz,t))− Gz(t,P(fz,t))

)
+ (1− 1

ξ2
)
(
G(t, f∗)− Gz(t, f

∗)
)

where ξ1 is between
∫
Z e

t(P(fz,t)(x)−y)2dρ and 1
n

∑n
i=1 e

t(P(fz,t)(xi)−yi)2 and ξ2 is between
∫
Z e

t(f∗(x)−y)2dρ and
1
n

∑n
i=1 e

t(f∗(xi)−yi)2 . If t ∈ (−∞, 0), we further have(
R(t,P(fz,t))−Rz(t,P(fz,t))

)
−

(
R(t, f∗)−Rz(t, f

∗)
)

−
{
G(t,P(fz,t))− Gz(t,P(fz,t))− (G(t, f∗)− Gz(t, f

∗))
}

= e4|t|M
2
{(

G(t,P(fz,t))− Gz(t,P(fz,t))
)
+
(
Gz(t, f

∗)− G(t, f∗)
)}
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According to Lemma B.3, we have

G(t,P(fz,t))− Gz(t,P(fz,t)) ≲

{
|t|

s−2
2+s nmax{− 1

2 ,
s−2+2sζ

4 }p
2(1+s)
2+s log(1/δ), t ∈ (−∞,−1]

|t|−1nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (−1, 0)

We define the following function set

T̃ = {hf (z) =
1

t
et[f(x)−y]

2

: f ∈ HK}.

For any hf ∈ T̃ , we have |hf −Ehf | ≤ 2∥hf∥∞ ≤ Ṽ and σ2 = Eh2f − (Ehf )2 ≤ ∥hf∥2∞ ≤ Ṽ 2. Then, from Lemma C.3,
we have

Gz(t, f
∗)− G(t, f∗) ≤ 4 log(1/δ)

3|t|n
+

√
2 log(1/δ)

t2n
≲ |t|−1n−

1
2

√
log(1/δ)

Moreover, for t ∈ (0,+∞), we have(
R(t,P(fz,t))−Rz(t,P(fz,t))

)
−

(
R(t, f∗)−Rz(t, f

∗)
)

−
{
G(t,P(fz,t))− Gz(t,P(fz,t))− (G(t, f∗)− Gz(t, f

∗))
}

= (1− 1

ξ1
)
(
Gz(t,P(fz,t))− G(t,P(fz,t))

)
+ (1− 1

ξ2
)
(
G(t, f∗)− Gz(t, f

∗)
)

We also have

Gz(t,P(fz,t))− G(t,P(fz,t)) ≤
4e4tM

2

log(1/δ)

3nt
+

√
2e4tM2 log(1/δ)

t2n
≲ t−1e4tM

2

n−
1
2

√
log(1/δ).

and

G(t, f∗)− Gz(t, f
∗) ≲

{
t−1e4tM

2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ (0, 1)

t
s−2
2+s e4tM

2

nmax{− 1
2 ,

s−2+2sζ
4 }p

2(1+s)
2+s log(1/δ), t ∈ [1,+∞).

We get the desired result by combining the above inequalities.

To bound the hypothesis error E2, we first illustrate a key property for the coefficient of fη,t.

Lemma C.5. Under Assumption 2, we have

τj∥αηj ∥2 ≤Mt,n,η,∀j = 1, ..., p,

where Mt,n,η =
2(M+∥fη,t∥∞)et(M+∥fη,t∥∞)

n
1
2 η

for any t ∈ (−∞, 0) ∪ (0,+∞).

Proof. From the definition of fη,t, we can deduce that

∇Rz(t, fη,t) + η

p∑
j=1

τj∇∥fη,t,j∥2K = 0.

Based on fη,t(xi) = KT
i α

η , simple computations show that∑n
i=1 2e

t(fη,t(xi)−yi)2(fη,t(xi)− yi)Kji∑n
i=1 e

t(fη,t(xi)−yi)2
+ ητj(α

η
j )
T K̃j = 0,∀j = 1, ..., p,

where K̃j = (Kj(xij , xsj))
n
i,s=1 ∈ Rn×n, j = 1, ..., p. Consequently, for any j = 1, ..., p,, we have the following

equivalent form(2et(fη,t(x1)−y1)2(fη,t(x1)− y1)∑n
i=1 e

t(fη,t(xi)−yi)2
, ...,

2et(fη,t(xn)−yn)2(fη,t(xn)− yn)∑n
i=1 e

t(fη,t(xi)−yi)2

)
K̃j = −ητj(αηj )

T K̃j ,
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Since K̃j , j = 1, ..., p is positive-definite, we further get

(2et(fη,t(x1)−y1)2(fη,t(x1)− y1)∑n
i=1 e

t(fη,t(xi)−yi)2
, ...,

2et(fη,t(xn)−yn)2(fη,t(xn)− yn)∑n
i=1 e

t(fη,t(xi)−yi)2

)T
= −ητjαηj ,∀j = 1, ..., p.

For any j = 1, ..., p, it follows that

τj∥αηj ∥2 =
1

η

√∑n
i=1[2e

t(fη,t(xi)−yi)2(fη,t(xi)− yi)]2

(
∑n
i=1 e

t(fη,t(xi)−yi)2)2
≤ 2∥e|t|(fη,t(x)−y)2(fη,t(x)− y)∥∞

n
1
2 η

≤ Mt,n,η,

where Mt,n,η =
2(M+∥fη,t∥∞)e|t|(M+∥fη,t∥∞)2

n
1
2 η

,∀t ∈ (−∞, 0) ∪ (0,+∞). This completes the proof.

Proposition C.6. (Bounding hypothesis error E2) Under Assumption 2, the hypothesis error E2 satisfies

E2 ≤ λ

p∑
j=1

τj∥αηj ∥2 ≤ 2λpMt,n,η.

Proof. From the definition of fz,t, we know that

Rz(t, fz,t) + λΩz(fz,t) ≤ Rz(t, fη,t) + λΩz(fη,t).

Then,

E2 = Rz(t, fz,t) + λΩz(fz,t)− (Rz(fη,t) + λΩz(fη,t)) + λΩz(fη,t)− η∥fη,t∥2K
≤ λΩz(fη,t)− η∥fη,t∥2K ≤ λΩz(fη,t)

The desired result follows by combining the above inequality with Lemma C.5

Set η = n−
1
4λ

1
2 , λ = n−ζ , and t = ±n−β . Combining Propositions C.2-C.6, we have

∥P(fz,t)− f∗∥2L2
ρX

≲ nmax{ 4β+s−2+2sζ
4 , 2β−1

2 ,−1−2ζ
4 ,−β} log(1/δ)

with confidence at least 1− δ. This completes the proof of Theorem 2.

D. Proof of Theorem 3
Proof sketch: The strategy for Theorem 3 is similar to that for Theorem 2 except that we need to reestablish the relation
between Eρ(P(fz,t))− Eρ(f∗) and G(t,P(fz,t))− G(t, f∗).
Lemma D.1. Let Assumptions 1-2 and 4 be true. When t value is fixed and t ∈ (− 1

2(2Mf+M0)2
, 0), there holds

∥P(fz,t)− f∗∥2L2
ρX

= Eρ(P(fz,t))− Eρ(f∗) ≲ G(t,P(fz,t))− G(t, f∗).

Proof. For any f ∈ HK , we can see that

R(t, f) =
1

t
log

∫
Z
et(f(x)−y)

2

dρ(x, y) =
1

t
log

∫
X

∫
R
et(f(x)−u−f

∗(x))2pϵ|X(u)dudρX (x)

=
1

t
log

∫
X
E(f(x)− f∗(x))dρX (x),

where E(m) =
∫
R e

t(u−m)2pϵ|X(u)du.
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By computing the derivative of E(f(x)− f∗(x)) w.r.t f(x)− f∗(x), we get

R′(t, f) =

∫
X E

′(f(x)− f∗(x))dρX (x)

t
∫
X E(f(x)− f∗(x))dρX (x)

=
−2

∫
X
∫
R e

t[u−(f(x)−f∗(x))]2 [u− (f(x)− f∗(x))]pϵ|X=x(u)dudρX (x)∫
X E(f(x)− f∗(x))dρX (x)

=
−2

∫
X
∫
Rme

tm2

pϵ|X=x(f(x)− f∗(x) +m)dmdρX (x)∫
X E(f(x)− f∗(x))dρX (x)

,

where m = u − (f(x) − f∗(x)). Under noise Assumption 3, there holds
∫
Rme

−|t|m2

pϵ|X(m)dm = 0. Thus, we can
deduce that R′(t, f) = 0 holds only when f(x) = f∗(x) for any x ∈ X . Furthermore,

R′′(t, f) =

∫
X E

′′(f(x)− f∗(x))dρX (x)

t
∫
X E(f(x)− f∗(x))dρX (x)

=

∫
X
∫
R e

−|t|m2

(2− 4|t|(u−m)2)pϵ|X(m+ f(x)− f∗(x))dmdρX (x)∫
X E(f(x)− f∗(x))dρX (x)

,

where m = u− (f(x)− f∗(x)). Then, when 2− 4|t|(u−m)2 > 0, i.e., t ∈ (− 1
2(M+∥f∗∥∞)2 , 0)∪ (0, 1

2(M+∥f∗∥∞)2 ), we
have R′′(t, f) > 0. The above-discussed results show that f = f∗ is the unique minimizer of R(t, f). Then we can deduce
that

R(t,P(fz,t))−R(t, f∗)

=
1

|t|

[
log

∫
X
E(0)dρX (x)− log

∫
X
E(P(fz,t)(x)− f∗(x))dρX (x)

]
=

1

|t|ξ1

∫
X
E(0)− E(P(fz,t)(x)− f∗(x))dρX (x)

=
1

|t|ξ1

∫
X
[−E′(0)(P(fz,t)(x)− f∗(x))− E′′(ξ)

2
(P(fz,t)(x)− f∗(x))2]dρX (x)

=
1

|t|ξ1

∫
X

−E′′(ξ2)

2
(P(fz,t)(x)− f∗(x))2dρX (x),

where ξ1 is between
∫
X E(P(fz,t)(x)− f∗(x))dρX (x) and

∫
X E(0)dρX (x), and ξ2 is between 0 and P(fz,t)(x)− f∗(x).

Under the condition t ∈ (− 1
2(M+∥f∗∥∞)2 , 0), the inequality m2 ≤ (M + ∥f∗∥∞ + ∥pϵ|X∥∞)2 yields

G(t,P(fz,t))− G(t, f∗) = 1

t

∫
X

E′′(ξ)

2
(P(fz,t)(x)− f∗(x))2dρX (x) ≥ C̃[Eρ(P(fz,t))− Eρ(f∗)],

where
C̃ = [1− 2|t|(M + ∥f∗∥∞)2]e−|t|(M+∥pϵ|X∥∞+∥f∗∥∞)2

∫
R
pϵ|X(u)du

is a positive constant. This completes the proof.

Lemma D.1 in connection with the idea of error decomposition in Proposition C.2 yield that

∥P(fz,t)− f∗∥2L2
ρX

≤ E(P(fz,t))− E(f∗) ≤ C̃−1(G(t,P(fz,t))− G(t, f∗))

≤ C̃−1(E1 + E2 + η∥f∗∥2K) ≲ E1 + E2 + η∥f∗∥2K .

Let t be fixed and satisfy t ∈ (− 1
2(M+∥f∗∥∞+∥pϵ|X∥∞)2 , 0). Combining the above decomposition with Propositions C.4-C.6,

we have

∥P(fz,t)− f∗∥2L2
ρX

≲ (n
s−2
4 λ−

s
2 + n−

1
2 + n−

1
2 η−1λ+ η) log(1/δ)

with confidence at least 1− δ. Moreover, the desired result in Theorem 3 follows by setting n−
1
2 η−1λ = η and λ = n−ζ .
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E. Proof of Theorem 4
The data-generating model Y = f∗(X)+ϵ and Assumption 5 together ensure that the ground truth function f∗ is conditional
mode function (Sager & Thisted, 1982; Yao & Li, 2013; Feng et al., 2020; Wang et al., 2017), i.e.,

f∗ = argmax
t
pY |X(t|X = x),

with
f∗ = arg min

f∈HK

EM (f), where EM (f) := −
∫
Z
pY |X(f(x)|X = x)dρX (x).

The data-generating model Y = f∗(X) + ϵ and Assumption 5 ensure that f∗ = f∗M is true. The proof of Theorem
4 proceeds similarly to Theorem 2 except that we need to consider the difference between the two excess risk terms
EM (P(fz,t))− EM (f∗) and R(t,P(fz,t))−R(t, f∗) under Assumption 5.
Lemma D.2. Under Assumptions 5, we can deduce that

EM (P(fz,t))− EM (f∗) ≤ π− 1
2 |t|3/2[R(t,P(fz,t))−R(t, f∗)] + |t|−1Mπ,ϵ,∀t ∈ (−∞, 0),

and

EM (P(fz,t))− EM (f∗) ≤ π− 1
2 t3/2[R(t,P(fz,t))−R(t, f∗)] + 2(∥pϵ|X∥∞ +

√
te4tM

2

√
π

),∀t ∈ (0,+∞),

where Mπ,ϵ = π− 1
2 ∥p′′ϵ|X(·|X = x)∥∞

∫
R u

2e−u
2

du is a positive constant.

Proof. From the model assumption ϵ = Y − f∗(X), we have∫
Z
−pY |X(f(x)|X = x)dρX (x) =

∫
Z
−pϵ|X(f(x)− f∗(x)|X = x)dρX (x).

For any f ∈ HK , direct computations show

EM (f)− |t|3/2√
π

R(t, f)

=

∫
Z
−pY |X(f(x)|X = x)dρX (x)− |t|3/2√

πt
log

∫
Z
et(f(x)−y)

2

=

∫
Z
−pϵ|X(f(x)− f∗(x)|X = x)dρX (x)− |t|3/2√

πt
log

∫
X

∫
R
et(v−f(x)+f

∗(x))2pϵ|X(v|X = x)dvρX (x)

=

∫
Z
−pϵ|X(f(x)− f∗(x)|X = x)dρX (x)− |t|3/2√

πt
log

∫
X

∫
R
etu

2

pϵ|X(u+ f(x)− f∗(x)|X = x)duρX (x).

By applying Taylor’s Theorem to density function pϵ|X(·), for any t ∈ (−∞, 0), we get

−|t|3/2

t
√
π

log

∫
X

∫
R
etu

2

pϵ|X(u+ f(x)− f∗(x)|X = x)duρX (x)

≤ |t|1/2√
π

∫
X

∫
R
e−|t|u2

pϵ|X(u+ f(x)− f∗(x)|X = x)duρX (x)

=
|t|1/2√
π

∫
X

∫
R
e−|t|u2

[pϵ|X(f(x)− f∗(x)|X = x) + up′ϵ|X(f(x)− f∗(x)|X = x)

+
u2

2
p′′ϵ|X(ξ|X = x)]duρX (x),

where ξ is between f(x) − f∗(x) and f(x) − f∗(x) + u. We then have
∫
R ue

−|t|u2

du = 0 and
∫
R e

−|t|u2

du =
√
π√
|t|

for

any t ∈ (−∞, 0). Therefore,

|EM (f)− |t|3/2√
π

R(t, f)| =
∫
X
−pY |X(f(x)|X = x)dρX (x)− |t|1/2√

π

∫
Z
e−|t|(f(x)−y)2

=
1

2
√
π|t|

∫
X

∫
R
eu

2

u2p′′ϵ|X(ξ|X = x)dudρX (x) ≤
∥p′′ϵ|X(·|X = x)∥∞

2
√
π|t|

∫
R
u2e−u

2

du.
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For any t ∈ (0,+∞), there holds

EM (f)− t3/2√
π
R(t, f) = −[

∫
X
pY |X(f(x)|X = x)dρX (x) +

√
t√
π
log

∫
Z
et(f(x)−y)

2

]

≥ −(∥pϵ|X∥∞ +
4t3/2M2

√
π

).

For any t ∈ (−∞, 0), we get

|EM (P(fz,t))− EM (f∗)− |t|3/2√
π

[R(t,P(fz,t))−R(t, f∗)]| ≤
∥p′′ϵ|X(·|X = x)∥∞

√
π|t|

∫
R
u2e−u

2

du.

We complete the proof by denoting Mπ,ϵ =
∥p′′ϵ|X(·|X=x)∥∞√

π

∫
R u

2e−u
2

du.

From Lemma D.2, the difference between EM (f) and t3/2√
π
R(t, f) always exists for any t ∈ (0,+∞). Therefore, we only

focus on the function approximation performance when t ∈ (−∞, 0).
Lemma D.3. For any t ∈ (−∞, 0), there holds

∥P(fz,t)− f∗∥2L2
ρX

≤ |t|3/2√
π

[E1 + E2 + η∥f∗∥2K ] +Mπ,ϵ|t|−1,

where E1 and E2 are bounded respectively in Propositions C.4-C.6.

Proof. Similar with the error decomposition in Proposition C.2 and D.2, we get

EM (P(fz,t))− EM (f∗) ≤ |t|3/2√
π

(R(t,P(fz,t))−R(t, f∗M )) +Mπ,ϵ|t|−1

≤ |t|3/2√
π

[E1 + E2 + η∥f∗∥2K ] +Mπ,ϵ|t|−1.

Following the Theorem 19 in (Feng et al., 2020), under Assumption 5, one can conclude that

∥P(fz,t)− f∗∥2L2
ρX

≤ EM (P(fz,t))− EM (f∗).

This completes the proof.

For any t ∈ (−∞, 0), we get Ṽ = |t|−1, r = κ̃τ̃−1n
1
2 |t|−1λ−1 and M̃ = 4M . Setting |t| 32n− 1

2 η−1λ = |t| 32 η, λ = n−ζ

and t = log n−β , based on Propositions C.4-C.6 and Lemma D.3, we get

∥P(fz,t)− f∗∥2L2
ρX

≲ [Õ(nmax{ 16βM2+s−2+2sζ
4 , 8βM2−1

2 , 1−2ζ
4 ,β}) +O(log−1 n)] log(1/δ).

When 0 < β ≤ min{ 1
8M2 ,

2−s−2sζ
16M2 } and 2−s

2s > ζ ≥ 1
2 , we have

∥P(fz,t)− f∗∥2L2
ρX

≲ log−1 n log(1/δ).

This completes the proof of Theorem 4.

E. Variable Selection Consistency
In this section, we aim to investigate the variable selection consistency of T-SpAM.

Denote S∗ = {1, ..., p∗} with p∗ ≤ p as the set of truly informative variables. Theoretically, we expect the ℓ2-norm
∥αz

j∥2 = 0 for any j ∈ {p∗ + 1, ..., p}. In practice, we screen out the informative variables through Sz = {j : ∥αz
j∥2 ≥

v, j = 1, ..., p} with a positive threshold value v. It is meaningful to investigate the relation between Sz and S∗.

Similar with the assumptions in (Yang et al., 2016; Wang et al., 2017; Chen et al., 2020), we require some parametric
conditions for our analysis.
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Assumption E.1. There is a positive constant cτ such that maxj∈S∗ τj ≤ cτ ≤ minl/∈S∗ τl.

Theorem E.2. Under Assumptions 3.2-3.5, we have Sz ⊂ S∗ by taking 2c−
1
2

τ κ̃
1
2M

1
2C

1
2
n,t+2

√
2κ̃−

3
2 |t| 12MCn,t ≤ λ ≤ Cn,t,

where Cn,t = κ̃2n
1
2 |t|−1τ̃−1M−1e|t|M

2

and τ̃ = minj=1,...,p τj .

Theorem E.2 illustrates that T-SpAM can identify the truly informative variables by taking properly λ and weight τj , j =
1, ..., p. Indeed, the current analysis extends Theorem 4 in (Wang et al., 2017) from a linear regularized modal regression to
the nonlinear T-SpAM. Moreover, it is interesting to further explore variable selection analysis by replacing the parameter
conditions here with the incoherence assumptions (e.g. Assumption 4 in (Lv et al., 2018)).

Proof. From the definition of αz,t, we can deduce that

∂ 1
t log(

1
n

∑n
i=1 e

t(fz,t(xi)−yi)2)

∂αj
+ λτj

αj
∥αj∥2

= 0

for any αz,t
j , j ∈ {1, ..., p} satisfying ∥αz,t

j ∥2 ̸= 0.

Direct computation shows that

2

n∑
i=1

et((fz,t(xi)−yi)2−Rz(t,fz,t))(fz,t(xi)− yi)Kji = λτj
αz,t
j

∥αz,t
j ∥2

.

Taking ℓ2-norm on the both sides, we derive that

2∥
n∑
i=1

et((fz,t(xi)−yi)2−Rz(t,fz,t))(fz,t(xi)− yi)Kji∥2 = λτj .

Suppose that ∥αz,t
j ∥2 ̸= 0 for j-th informative variable. Under Assumption 1, we get

2∥
n∑
i=1

et((fz,t(xi)−yi)2−Rz(t,fz,t))(fz,t(xi)− yi)Kji∥2

≤ 2
√
nκ̃

n∑
i=1

|et((fz,t(xi)−yi)2−Rz(t,fz,t))(fz,t(xi)− yi)|

The reproducing property assures that ∥fz,t∥∞ ≤ κ̃∥fz,t∥K . Moreover, Lemma B.1 shows that

∥fz,t∥K ≤ κ̃n
1
2 |t|−1λ−1τ̃−1e|t|M

2

, ∀t ∈ (−∞, 0) ∪ (0,+∞),

where τ̃ = minj=1,...,p τj is positive constant. Under Assumption 1, we can further deduce that

2
√
nκ̃

n∑
i=1

|et((fz,t(xi)−yi)2−Rz(t,fz,t))(fz,t(xi)− yi)|

≤ 2
√
nκ̃

n∑
i=1

e|t|((∥fz,t∥∞+M)2+∥Rz(t,fz,t)∥∞)(∥fz,t∥∞ +M)

≤ 2κ̃e2|t|(∥fz,t∥∞+M)2(∥fz,t∥∞ +M)n
3
2

By setting λ ≤M−1κ̃2n
1
2 |t|−1τ̃−1e|t|M

2

, we have

2κ̃e2|t|(∥fz,t∥∞+M)2(∥fz,t∥∞ +M)n
3
2 ≤ 4κ̃3n2|t|−1τ̃−1λ−1e8κ̃

4n|t|−1τ̃−2λ−2

.

Then
λ2 ≤ 4κ̃3n2|t|−1τ̃−1τ−1

j e|t|M
2

e8κ̃
4n|t|−1τ̃−2λ−2e2|t|M

2

.
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By taking logarithmic function on both side, we get

λ2 log
λ2

C
≤ 8κ̃4n|t|−1τ̃−2e2|t|M

2

,

where C = 4κ̃3n2|t|−1τ̃−1τ−1
j e|t|M

2

. By setting λ ≥ 2κ̃3/2n|t|− 1
2 τ̃−

1
2 τ

− 1
2

j e
|t|M2

2 , we derive

λ ≤ e
2
√

2κ2n
1
2 |t|−

1
2 τ̃−1e|t|M

2

2 + 2κ̃3/2n|t|− 1
2 τ̃−

1
2 τ

− 1
2

j e
|t|M2

2 .

Under Assumption 5, for any j /∈ S∗, the above inequality guarantees that

λ ≤ e
2
√

2κ2n
1
2 |t|−

1
2 τ̃−1e|t|M

2

2 + 2κ̃3/2n|t|− 1
2 τ̃−

1
2 c

− 1
2

τ e
|t|M2

2 .

This inequality contradicts with the parameter condition in Theorem 5. Therefore we have ∥αz
j∥2 = 0 for any j /∈ S∗.

F. Optimization
In spite of the rich representation power of kernel-based algorithm, it suffers from the high computational cost with
large-scale data. Random Fourier features have shown potential for accelerating the training associated with kernel methods
and may achieve even better results (Rahimi & Recht, 2007; Li et al., 2021b). The main idea of random Fourier acceleration
is to approximate kernel evaluation Kj(·, ·), j = 1, ..., p by

Kj(xij , xtj) ≈ ψj(xij)
Tψ(xtj), ∀i, t ∈ {1, ..., n},

where ψj : R → Rd is a random Fourier feature map constructed by the Algorithm 1 in (Rahimi & Recht, 2007).

Denote ψ(xi) = (ψ1(xi1)
T , ψ2(xi2)

T , . . . , ψp(xip)
T )T ∈ Rpd. Recalling the optimization objectives in (6) and (8)

Ŵ = argmin
W=(wT

1 ,w
T
2 ,...,w

T
p )T

{Rz,ψ(t,W ) + λΩz(W )} , (13)

where

Rz,ψ(t,W ) :=
1

t
log(

1

n

n∑
i=1

etℓ(W
Tψ(xi),yi)) and Ωz(W ) =

p∑
j=1

τj∥wj∥2.

The loss function ℓ(·, ·) can be selected as least squared loss for regression task and logistic loss for classification task.
Simple computation shows that

∇WRz,ψ(t,W ) =
1

n

n∑
i=1

etℓ(W
Tψ(xi),yi)∑n

j=1 e
tℓ(WTψ(xj),yj)

∇W ℓ(W
Tψ(xi), yi),

where ∇W ℓ(W
Tψ(xi), yi) = (WTψ(xi) − yi)ψ(xi) for least squared loss and ∇W ℓ(W

Tψ(xi), yi) =
eW

Tψ(xi)

1+eW
Tψ(xi)

ψ(xi)− yiψ(xi) for logistic loss.

Let M be the number of inner loop, S be the number of outer loop, and η0 be the step size. We suppose that Ik with
|Ik| = b is a set randomly picked from {1, . . . , n}. Denote ∇RIk

z,ψ as the gradient related to Ik samples. To overcome the
non-smoothness property of the regularizer Ωz, we introduce the following the proximal operator as (Kowalski, 2009; Boyd
& Vandenberghe, 2004)

proxη0,λΩz (W ) := (Sλη0(w1)
T , Sλη0(w2)

T , . . . , Sλη0(wp)
T )T ,

where

Sλη0 (wj) =

{
0, if ∥wj∥2 ≤ λη0
∥wj∥2−λη0

∥wj∥2
wj , otherwise. for j = 1, . . . , p.

Following the non-convex optimization algorithm ProxSVRG in(J. Reddi et al., 2016), the detailed steps for solving (13) are
summarized in Algorithm 1.
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Algorithm 1 ProxSVRG for (13)

Input: Observations z = {(xi, yi)}ni=1, W̃ 0 =W 0
M =W 0 ∈ Rpd, t ∈ (−∞, 0) ∪ (0,+∞)

for s = 0; s < S; s = s+ 1 do
W s+1

0 =W s
M

gs+1 = ∇WRz,ψ(t, W̃ s)
for k = 0; k < M ; k = k + 1 do

Uniformly randomly pick Ik ⊂ {1, . . . , n} such that |Ik| = b

vs+1
k = ∇WRIk

z,ψ(t,W
s+1
k )−∇WRIk

z,ψ(W̃
s) + gs+1

W s+1
k+1 = proxη0,λΩz

(W s+1
k − η0v

s+1
k )

end
W̃ s+1 =W s+1

M

end
Output: Ŵ =WS

M

Moreover, the optimization for multi-objective learning can also be achieved through replacing the gradient ∇WRz,ψ(t,W )
in Algorithm 1 with

∇WRz,ψ(t, γ,W ) =
∑
g∈G

∑
x∈g

1

|g|

(
1
|g|

∑
z∈g e

γℓ(WTψ(x),y)
)(

t
γ
−1

)

∑
g′∈G

(
1

|g′|
∑
z∈g′ e

γℓ(WTψ(x),y)
) t

γ

eγℓ(W
Tψ(x),y)∇W ℓ(WTψ(x), y).
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