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Abstract
Slot attention has shown remarkable object-
centric representation learning performance in
computer vision tasks without requiring any super-
vision. Despite its object-centric binding ability
brought by compositional modelling, as a deter-
ministic module, slot attention lacks the ability
to generate novel scenes. In this paper, we pro-
pose the Slot-VAE, a generative model that in-
tegrates slot attention with the hierarchical VAE
framework for object-centric structured scene gen-
eration. For each image, the model simultane-
ously infers a global scene representation to cap-
ture high-level scene structure and object-centric
slot representations to embed individual object
components. During generation, slot represen-
tations are generated from the global scene rep-
resentation to ensure coherent scene structures.
Our extensive evaluation of the scene generation
ability indicates that Slot-VAE outperforms slot
representation-based generative baselines in terms
of sample quality and scene structure accuracy.

1. Introduction
Human intelligence is capable of visually segmenting ob-
jects out of natural scenes, implicitly learning abstract object
concepts, and creatively imagining novel scenes (Yuille &
Kersten, 2006) (Frankland & Greene, 2020). Equipping
machines with such capabilities in an unsupervised way has
been a desideratum for a long time (Johnson-Laird, 1983)
(Ha & Schmidhuber, 2018) (Wu et al., 2021) (Schölkopf
et al., 2021), since this can facilitate intelligent agents under-
standing scenes, reasoning about object relationships, and
performing tasks efficiently (Battaglia et al., 2013) (Lake
et al., 2017) (Geiger et al., 2012) (Cordts et al., 2016) (San-
toro et al., 2017) (Devin et al., 2018) (Greff et al., 2020)
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(Mambelli et al., 2022). To that end, most of the recent
models resort to the variational autoencoder (VAE) frame-
work (Kingma & Welling, 2013) (Rezende et al., 2014) for
the purpose of joint object-centric representation inference
and image generation. Depending on how to model the
compositionality of images, existing works can be roughly
categorized as spatial attention-based generative models and
scene-mixture-based generative models.

Spatial attention-based generative models infer object-
centric representations by extracting a bounding box for
each individual object (Eslami et al., 2016) (Crawford &
Pineau, 2019) (Lin et al., 2020) (Jiang et al., 2019) (Jiang
& Ahn, 2020). Such bounding boxes explicitly represent
the position and size of object components enabling inter-
pretable object manipulation. However, this type of model
was pointed out to struggle to segment objects with exten-
sively varied scales because the size of objects is, to some
extent, presumed (Engelcke et al., 2021) (Emami et al.,
2022). Moreover, rectangular bounding boxes are also not
flexible enough to model image components of complex
morphology (Lin et al., 2020). In contrast, scene-mixture
generative models decompose a visual scene into image-
sized components (also known as slots), and infer slot rep-
resentations corresponding to individual objects (Burgess
et al., 2019) (Greff et al., 2019) (Engelcke et al., 2019) (En-
gelcke et al., 2021). Such models segment objects with
masks and are flexible enough to capture complex object
components. Recent advances in scene-mixture models
have shown remarkable object segmentation performance
(Engelcke et al., 2019) (Engelcke et al., 2021). However,
although the design of such models advocates autoregres-
sive priors for the purpose of generating coherent scenes,
they are still unable to model object relationships in highly
structured images and the generated samples are very blurry.

In this paper, we propose an object-centric generative model
termed Slot-VAE that integrates slot attention with the hi-
erarchical VAE framework for joint slot representation in-
ference and structured image generation. In the proposed
model, object-centric representation inference is achieved
with the slot attention module (Locatello et al., 2020). Al-
though slot attention has shown very impressive unsuper-
vised segmentation performance, it is a deterministic module
without the ability to generate novel scenes. If we naı̈vely
combine slot attention with vanilla VAE for multi-object
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image generation, the generated images would be unrea-
sonable because slots are completely independent and the
scene structure (e.g., object relationships) is ignored. To
overcome this issue, we adopt a two-layer hierarchical VAE
model, which provides both global scene representations
that capture the scene structure and object-centric slot rep-
resentations that characterize individual objects. Slot rep-
resentations are generated from global scene representa-
tions during the generation stage to ensure coherent scene
structure. During training, besides learning from global
scene representations, slot representations are also regular-
ized by an independent prior to encourage object-centric
disentanglement. Furthermore, the variational framework
and independent prior also bring slot attention the attribute-
level disentanglement. Evaluating on several multi-object
datasets, we show that Slot-VAE outperforms baselines in
terms of sample quality and scene structure learning.

The contributions of the paper are as follows. First, we intro-
duce a generative model that embeds slot attention into the
principled latent variable modelling framework for novel
scene generation. Second, we incorporate a hierarchical
latent variable model to learn both scene-level and object-
centric representations. Third, we empower the slot atten-
tion baseline with object attribute-level disentanglement
ability. Lastly, extensive experimental results suggest our
proposed method outperforms the state-of-the-art methods
in terms of sample quality and scene structure accuracy.

2. Related Works
Object-Centric Generative Modelling. Compositional im-
age modelling approaches (Greff et al., 2017) (Greff et al.,
2017) (Kosiorek et al., 2018) (Crawford & Pineau, 2019)
(Burgess et al., 2019) (Greff et al., 2019)(Lin et al., 2020)
(Locatello et al., 2020) (Emami et al., 2021) (Singh et al.,
2021) (Kipf et al., 2021) (Seitzer et al., 2022) (Singh et al.,
2022) (Elsayed et al., 2022) typically incorporate object
locality as inductive bias or exploit simple decoder net-
works as reconstruction bottlenecks (Engelcke et al., 2020)
to achieve object-centric disentanglement. However, these
approaches, unlike ours, cannot generate coherent novel
scenes. GENESIS and GENESIS-V2 (Engelcke et al., 2019)
(Engelcke et al., 2021) adopt autoregressive prior for coher-
ent scene generation, but unlike ours, they lack the scene-
level representation learning ability and generate blurry sam-
ples. GNM (Jiang & Ahn, 2020) and similarly GSGN (Deng
et al., 2021) resort to a hierarchical VAE model for both
distributed and symbolic representations learning, but the
bounding box representations therein prevent them from
modelling complex objects or backgrounds, unlike ours
where more flexible slot representations are used. SRI
(Emami et al., 2022) learns slot representations and scene-
level representations, but it has to sequentially infer object

representations due to the assumed autoregressive posterior.
In contrast, our approach poses an independent prior on slot
representations allowing parallel inference. Besides, our
approach trains the model without the need to learn a fixed
object order, but SRI requires specialized auxiliary loss for
object order learning so as to train the model.

GANs for Compositional Generation: GANs-based meth-
ods (Van Steenkiste et al., 2020) (Nguyen-Phuoc et al., 2020)
(Liao et al., 2020) (Niemeyer & Geiger, 2021) (Ehrhardt
et al., 2020) are able to map independent random noise vec-
tors to individual object components on images allowing
object-level controllability, but these models lack an infer-
ence process and thus cannot edit a given image unlike ours.
Meanwhile, these GANs models share common unstable
training issues.

3. The Proposed Model: Slot-VAE
The overview of Slot-VAE is illustrated in Fig. 1.

3.1. Generation

For an image x ∈ [0, 1]H×W×C with height H , width W
and C channels, we postulate a two-layer hierarchical latent
model for the potential image generation process. Specif-
ically, the first-layer latent vector zg ∈ RL×1 captures the
global structure in the image, for the purpose of modelling
relationships among objects. Generated from zg , the second-
layer latent vectors {zsk ∈ RD×1}Kk=1 represent each indi-
vidual object in the image, with the goal of incorporating
object-centric slot representations. These slot representa-
tions zs1:K are assumed to be conditionally independent
given zg. Finally, with zs1:K , an image x can be rendered
with a decoder. Mathematically, the complete generative
model can be written as:

pθ(x) =

∫∫
pθ(x | zs1:K)pθ(z

s
1:K | zg)pθ(zg)dzs1:Kdzg.

(1)

The global latent vector zg serves as an information bottle-
neck to extract high-level information (e.g., object appear-
ance, positions and relations) for whole image reconstruc-
tion. zg is similar to the latent vector in VAE but not exactly
the same. The difference is that in VAE the latent vector is
directly decoded to an image, while in Slot-VAE zg is used
to generate slot representations zs1:K . For the prior of zg,
we can choose a powerful StructDRAW prior (Jiang & Ahn,
2020) or a simple Normal distribution depending on image
complexity.

Slot representations zs1:K , in contrast to zg , ideally embeds
information of individual object components and totally
ignores object relationships. Such object-centric representa-
tions explicitly model the compositional structure of images,
enable compositional generation and make the generation
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Figure 1. Slot-VAE overview. The image x is passed through a CNN module. The obtained image features go through two paths in
parallel. On the first path, the obtained image features are input into a slot attention module to learn slot representations {s′k}Kk=1. From
slots {s′k}Kk=1, latent vectors {zs

′
k }Kk=1 are inferred. Then, a shared decoder decodes the individual object latent vector {zs

′
k }Kk=1 into

object masks π1:K and object components x1:K . By combining x1:K with π1:K , the input x is reconstructed. On the second path, the
obtained image features is encoded into a global latent vector zg . From zg , a feature map is built and fed into a slot attention module to
generate slot representations {sk}Kk=1. From {sk}Kk=1, latent vectors {zsk}Kk=1 are inferred. The two paths use the same slot attention
module and share weights and initialization values, and it requires {zs

′
k }Kk=1 and {zsk}Kk=1 to be as close as possible during training

measured with KL divergence.

process interpretable. To generate zs1:K from zg, we first
construct a feature map f ∈ RH×W×D from zg and then
feed f to a slot attention module (Locatello et al., 2020) to
obtain slot representations {sk ∈ RD×1}Kk=1. Since slot
attention is a deterministic module, an additional MLP is
needed to map deterministic s1:K to probabilistic latent vec-
tors zs1:K . Assuming zs1:K are Gaussian and conditionally
independent given zg , we have:

pθ(z
s
1:K | zg) =

K∏
k=1

pθ(z
s
k | zg). (2)

The use of the slot attention module for object-centric latent
vector generation sets the proposed Slot-VAE apart from
GNM (Jiang & Ahn, 2020) where bounding box extrac-
tion is adopted. Such a difference brings the following key
benefits. First, slot-based models have been shown to be
more flexible in modelling objects with complex morphol-
ogy compared with the spatial attention module (Lin et al.,
2020). Second, the dimension of the feature map f in GNM
fundamentally limits the maximum number of components
in an image to be H ×W . Once a GNM model is trained, it
at most can infer H ×W objects. In contrast, the slot atten-
tion module can successfully generalize to infer more object
components even though it only saw K object components
during training. Comes with these benefits a key challenge
to Slot-VAE: there is no fixed order for the slot attention
outputs. Since slot attention maps an input into a set (of
slots), for the same input image, multiple runs may give the

same set of slot representations but with different orders.
This is because slot attention employs random initialization
for slots to achieve slot permutation symmetry. However,
such randomness makes the learning of a hierarchical la-
tent variable model extremely challenging, which we will
explain in detail in Section 3.3 and contribute to solving it.

With zs1:K , rendering an image x is as follows. First,
from zs1:K (or zs

′

1:K in Fig. 1), K sub-images {xk ∈
[0, 1]H×W×C}Kk=1 are rendered, each of which has the
same dimension as x and ideally contains only one ob-
ject. Meanwhile, this process also produces K object masks
π1:K ∈ [0, 1]H×W corresponding to each xk. Then the
image x is obtained by combining x1:K with masks π1:K .
Pixel-wisely, the likelihood can be written as

pθ(xi,j | zs1:K) = N
(( K∑

k=1

πi,j,k(z
s
1:K)µi,j,k(z

s
k)
)
, σ2

x

)
,

(3)
where (i, j) is the pixel coordinate, σx is the standard de-
viation with a fixed value, and πi,j,k(·) and µi,j,k(·) are
nonlinear functions mapping from latent vectors to masks
πk and mean values of xk at pixel (i, j). These nonlin-
ear functions are parameterized by neural networks with
learnable parameters θ, and implementation details are pro-
vided in the appendix. In equation 3, πi,j,k serves as mixing
probability, so it is constrained by

∑K
k=1 πi,j,k = 1,∀(i, j).

In summary, to generate a novel scene, we first draw a
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random sample from the prior distribution of the global
latent vector zg, from which a feature map f is built. Then,
object-centric latent vectors zs1:K are generated by using
the slot attention module with the feature map f as input.
Finally, object components x1:K and corresponding masks
π1:K are generated from zs1:K with parallel decoders, and a
novel scene is rendered by combining x1:K with π1:K .

3.2. Inference

Considering that the true posterior is intractable, we approx-
imate the posterior with:

pθ(z
g, zs1:K | x) ≈ qϕ(z

g | x)qϕ(zs1:K | x), (4)

wherein the global latent posterior qϕ(zg | x) is modelled by
an autoregressive model or Gaussian distribution depending
on StructDRAW prior or Gaussian prior is used (Jiang &
Ahn, 2020).

We further assume the factorization qϕ(z
s
1:K | x) =∏K

k=1 qϕ(z
s
k | x). Such conditional independence assump-

tion on the posterior distribution of slot representations en-
ables the inference of individual zsk to be performed in par-
allel, which avoids sequential inference like in GENESIS.
We adopt slot attention (Locatello et al., 2020) followed by
an MLP to infer zs1:K , which is detailed as follows.

CNN for feature extraction. Instead of directly working
in the pixel domain, the slot representation inference starts
from passing the input image x through a CNN backbone to
extract a feature map fx = fenc(x) ∈ RH×W×D, where the
CNN backbone is augmented with positional embeddings.

Slot attention for component discovery. To discover ob-
ject components, the feature map fx is first flattened into
vectors finput ∈ R(H×W )×D. Then, finput is mapped to K
object slots s1:K with a slot attention module.

MLP for latent vector inference. From slots s1:K , we
would like to infer the latent variables zs1:K . We assume the
approximate posterior distribution of each individual slot
qϕ(z

s
k | x) to be Gaussian. Hence, inferring zsk is equivalent

to infer Gaussian parameters {(µs
k, σs

k)}Kk=1. To that end,
we use an MLP shared across objects mapping from slots to
Gaussian means and variances: (µs

k, σ
s
k) := MLP(sk).

3.3. Training

Given the above generative and inference model, the ELBO
can be derived as follows:

L(x; θ, ϕ) = Eqϕ(zs
1:K |x)

[
logpθ(x | zs1:K)

]
−DKL

[
qϕ(z

s
1:K | x) || pθ(zs1:K | zg)

]
−DKL

[
qϕ(z

g | x) || pθ(zg)
] (5)

where DKL(q||p) is Kullback-Leibler Divergence.

Slot Order Matching in KL. Observing the second term
on the RHS of equation 5, we can identify a key challenge
for the calculation of this KL divergence: since the slots
given by slot attention come with no fixed order, how can
we determine the correspondence between zs1:K inferred
from input x (which is denoted zs1:K

′ in Fig. 1) and zs1:K
generated from zg? This challenge does not appear in GNM
because the spatial attention module therein provides fixed
order for each object component, which makes the calcula-
tion of KL divergence in GNM possible. To address such a
challenge in Slot-VAE, we propose to implement qϕ(zsk | x)
and pθ(z

s
k | zg) with a shared slot attention module. That

is to say, as shown in Fig. 1, the two slot attention modules
share parameters. Meanwhile, slots s

′

k and sk in Fig. 1
share initialization values. Intuitively, such an architecture
design encourages the feature map f generated from zg to
be consistent with the feature map fx encoded from input
x. With similar inputs and the same random initialization
values, we can expect the output of the two slot attention
modules could keep close to each other. As a result, the
order of sk (or zsk) can have a good chance to align well
with that of s

′

k (or zsk
′) in Fig. 1, enabling the calculation of

DKL
[
qϕ(z

s
1:K | x) || pθ(zs1:K | zg)

]
. We will empirically

demonstrate the efficacy of such an architectural inductive
bias for slot order matching in Section 4.

Furthermore, since pθ(zs1:K | zg) in the second term of equa-
tion 5 is learned from the posterior distribution pθ(zg | x), it
provides no explicit prior information to guide the learning
of the posterior distribution qϕ(z

s
1:K | x) during training. To

explicitly provide guidance to the learning of qϕ(zs1:K | x),
the following auxiliary loss could be incorporated:

Laux = −DKL
[
qϕ(z

s
1:K | x) ||

K∏
k=1

N (0,1)
]
, (6)

where independent normal prior constrains zs1:K to be in-
dependent on each other. As a result, such independence
encourages each slot representation to capture only a single
object leading to object-centric disentanglement. Mean-
while, attribute-level disentanglement within an object can
also be achieved due to diagonal variance of the normal
prior, which we will show in experiments.

Combining the derived ELBO in equation 5 and the intro-
duced auxiliary loss in equation 6, the overall objective
function is:

L̃ = L+ Laux, (7)

which is minimized to train Slot-VAE. For effective training,
we also introduce hyperparameters to balance the recon-
struction loss and KL terms (Rezende & Viola, 2018) (Fu
et al., 2019), which will be detailed in the Appendix.
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4. Experiments
The experiments are to evaluate: i) image decomposition
performance, ii) sample quality and structure accuracy of
generated samples, iii) and disentanglement performance.

Dataset. The experiments involve three datasets including
ObjectRoom (Kabra et al., 2019), ShapeStacks (Groth et al.,
2018) and Arrow Room(Jiang & Ahn, 2020). The datasets
ObjectRoom and ShapeStacks are commonly used by pre-
vious works to test object-centric inference and generation,
while Arrow Room is less considered because this dataset
is highly structured and its probabilistic density is hard to
model. In Arrow Room, there is always an arrow shape
object in the front of the scene and three objects in the back.
Two of the three objects in the back have the same shape,
while a third one has a unique shape. The arrow in the front
always points to the object with a unique shape in the back.

Baselines. We compare Slot-VAE against state-of-the-
art object-centric generative models including GENESIS,
GENESIS-V2, SRI and GNM. In these baselines, GNM
is based on the spatial attention model (i.e., bounding box
representations) with hierarchical generation process, while
GENESIS, GENESIS-V2 and SRI are scene-mixture mod-
els (i.e., slot representations) that assume an autoregres-
sive prior. Some of the baseline models already released
their trained models for ObjectRoom, ShapeStacks or Ar-
row Room. We do not retrain them and directly use their
weights for comparison. For these of baseline models with-
out trained models on some datasets, we train them with the
official code.

4.1. Qualitative Comparison of Image Decomposition,
Image Reconstruction and Sample Generation

Decomposition and Reconstruction Performance. We
illustrate the input, reconstruction and decomposed object
components of Slot-VAE and baselines in Fig. 2 - 4. Note
that GNM infers bounding box representations instead of
slot representations. So in the figures, GNM has only two
components, one for the foreground with bounding boxes
and another for the background.

As shown in Fig. 2, for the ObjectRoom dataset that comes
with simple object shapes and complex background com-
ponents, scene mixture models GENESIS, GENESIS-V2,
SRI and Slot-VAE achieve comparable decomposition and
reconstruction performance. The only difference is that
some of them capture the background with one slot while
others use multiple slots. In contrast, GNM fails to seg-
ment objects correctly. It segments the scene into stripes
containing parts of objects and parts of the background,
and a single object is segmented into multiple bounding
boxes. As a result, the reconstructed images of GNM show
rectangular artifacts and objects are blurred. This is not sur-

prising because with the use of grid sampling and bounding
box representations, spatial-attention generative models like
GNM struggle with modelling objects that have complex
morphology. In Fig. 3, we observe similar results for the
ShapeStacks dataset, where GENESIS, GENESIS-V2, SRI
and Slot-VAE decompose and reconstruct the image rea-
sonably well while GNM again tries to model one single
object with multiple bounding boxes. Failing to learn cor-
rect obeject-centric representations, GNM will also suffer
during the generation stage as will be presented below. For
the Arrow Room dataset that has simple object shapes but
complex scene structures in Fig. 4, we can see all models
successfully segment objects out of the scene and recon-
struct the input image. However, GENESIS-V2 and SRI
learn object representations that severely involve part of the
background. Such representations will make the generated
image samples very blurry, as will be shown below. We con-
jecture this is because the Arrow Room dataset has too strong
object position relationships, and GENESIS-V2 and SRI
(based on GENESIS-V2) do not have enough capacity and
have to choose simple ways to segment images. In summary,
Slot-VAE achieves either better or comparable segmentation
and reconstruction performance in comparison to baselines.
Additional decomposition results of Slot-VAE can be found
in the Appendix.

Generation Performance. We show random samples gen-
erated by Slot-VAE and baseline models in Fig. 5. It can be
seen Slot-VAE generates the sharpest samples that highly
resemble all the datasets. For ObjectRoom, samples gen-
erated by GNM show stripe artifacts due to its inaccurate
object-centric representations captured by bounding boxes
as discussed above. The sample quality of SRI is better than
that of GENESIS and GENESIS-V2, but not as good as
the proposed Slot-VAE. This can be reflected by the sharp-
ness of object edges in the images. One can more easily
identify object shapes (e.g., balls and triangles) with Slot-
VAE compared to baselines. For ShapeStacks, GNM again
shows its limitation where it generates one individual object
component with several parts. For example, a cube is repre-
sented by two small parts with completely different colors.
Only SRI and Slot-VAE generate reasonable samples re-
flecting the scene structure of the ShapeStacks dataset (i.e.,
one object is stacked on another), while the sample quality
of Slot-VAE is better in terms of sharp object edges. For
Arrow Room, the most structured dataset, we find samples
generated by GENESIS, GENESIS-V2 and SRI are very
blurry and seldom show the underlying true scene structure
(i.e., the arrow in the front always points to the object with
a unique shape in the back). Both arrow directions or ob-
ject shapes are not properly learned. This indicates that the
autoregressive prior adopted in GENESIS, GENESIS-V2
and SRI is not strong enough to capture the complex scene
structure in Arrow Room. In contrast, GNM and Slot-VAE,
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Figure 2. Image decompostion and reconstruction performance on the ObjectsRoom dataset.

Figure 3. Image decompostion and reconstruction performance on the ShapeStacks dataset.

both exploiting hierarchical model to capture scene struc-
ture, generate very coherent and high-quality samples on the
Arrow Room dataset. The reason why GNM works better on
Arrow Room in comparison to ObjectRoom and ShapeStacks
is that object shapes are simple in Arrow Room. In summary,
Slot-VAE outperforms baselines in terms of sample quality
and scene structure learning. Additional random generation
results of Slot-VAE can be found in the Appendix.

Scene Manipulation. We elaborate on controllable scene
generation to highlight the disentanglement performance
of Slot-VAE. In Fig. 6, in each row we vary a certain di-
mension of the object-centric latent vector corresponding to
the ball object while keeping other object-centric latent vec-
tors unchanged. As is shown, only attributes of the ball are
changed in each row, and all other objects remain unaffected.
Such object-level disentanglement is very useful for image

Table 1. ARI-FG (↑) for Slot-VAE and Baselines on ObjectsRoom
and ShapeStacks. Mean and standard deviation of ARI with three
runs are presented. Scores labelled with ∗ are from original works
(Engelcke et al., 2020) and (Emami et al., 2022).

MODEL OBJECTSROOM SHAPESTACKS

GNM 0.63∗± 0.00 0.37∗± 0.07
GENESIS 0.63∗± 0.03 0.70∗± 0.05
GENESIS-V2 0.84∗± 0.01 0.81∗± 0.00
SRI 0.83∗± 0.02 0.78∗± 0.02
SLOT-VAE (OURS) 0.79 ± 0.01 0.80 ± 0.01

editing and compositional generation. Besides object-level
disentanglement, attributes-level disentanglement also natu-
rally appears in Slot-VAE due to the adopted probabilistic
framework. As shown in Fig. 6, when we vary dimension 1,
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Figure 4. Image decompostion and reconstruction performance on the Arrow Room dataset.

Table 2. Fréchet Inception Distances (FID ↓) and Structure Accuracy (S-Acc ↑) for Slot-VAE and Baselines. Mean and standard deviation
of FID with three runs are presented. Scores labelled with ∗ are from original works (Engelcke et al., 2020) and (Emami et al., 2022).

OBJECTSROOM SHAPESTACKS ARROW ROOM

MODEL FID FID FID S-ACC

GNM 51.6∗±5 49.3∗±2 11.2±2 0.97

GENESIS 62.8∗±3 186.8∗±18 173.8±13 0.11
GENESIS-V2 52.6∗±3 112.7∗±3 111.8±5 0.20
SRI 48.4∗±4 70.4∗±3 123.3±2 0.18
SLOT-VAE (OURS) 34.9±1 50.0 ± 1 60.3±1 0.94

the texture of the ball changes; when we vary dimension 2,
the color of the ball changes; when we vary dimension 3, the
size of the ball changes. Although some dimensions (e.g.,
dim 4) entangle color and position a little, this can be fur-
ther improved with existing attribute-level disentanglement
techniques like β-VAE (Higgins et al., 2017) or β-TCVAE
(Chen et al., 2018), which is out of the scope of this paper.
In the proposed Slot-VAE, attribute-level disentanglement
is a by-product brought by the VAE framework. By contrast,
the original deterministic slot attention module comes with
no obvious attribute-level disentanglement as analyzed in
(Singh et al., 2022).

4.2. Quantitative Comparison

We report the Adjusted Rand Index (ARI) (Hubert & Arabie,
1985) score, Frechet Inception Distance (FID) (Heusel et al.,
2017) score and scene structure accuracy (S-Acc) (Jiang
& Ahn, 2020) score to quantitatively evaluate the decom-
position performance, sample quality, and scene structure
accuracy. Since the Arrow Room dataset comes with no
ground truth masks, the ARI score on this dataset is not

calculated. As shown in Table 1, slot-VAE achieves com-
parable ARI scores to baselines. For the FID score, the
calculation involves 10000 real and generated samples. Ta-
ble 2 reflects non-trivial FID score improvement by Slot-
VAE against slot-representation baselines, highlighting the
sample quality of Slot-VAE. Although the FID score of
GNM on ObjetsRoom and ShapeStacks seems quite good,
it should be emphasized that the generated images are un-
realistic (i.e., generated objects are composed of multiple
rectangular parts) due to inaccurate object representation
learning as analyzed in the qualitative comparison results.
For the S-Acc score, we manually classified 100 generated
images per model, and calculated the ratio of successful
images that correctly reflect scene structure. The datasets
ObjetsRoom and ShapeStacks have relatively less clearly
defined structures, which may result in difficulty in deciding
if generated images truly reflect scene structures. To reduce
subjective decisions, we mainly evaluate S-Acc of Slot-VAE
and baseline models on the Arrow Room dataset because
this dataset has a clearly defined structure: the arrow object
should always point to the object with a unique shape in the
back. Slot-VAE achieves the best S-Acc score among all the
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Figure 5. Datasets and generation examples of Slot-VAE and baselines.

Table 3. FID (↓) score and S-Acc (↑) score of Slot-VAE and vari-
ants on the Arrow Room dataset.

MODEL FID S-ACC

SLOT-VAE 60.3±1 0.94
SLOT-VAE-MLP 289±9 0.00
SLOT-VAE-TRANSFORMER 182.1±3 0.03
SLOT-VAE-W/O-WS 215.5±2 0.00
SLOT-VAE-W/O-IVS 142.1±3 0.05

slot representation-based models (GENESIS, GENESIS-V2
and SRI), as is shown in Table 2.

4.3. Ablation Study

We further conduct experiments to demonstrate the efficacy
of the proposed architectural design in Fig. 1. Specifically,
we aim to answer the following questions: (1) whether slot
attention is necessary for generating slot representations
from the global representation and (2) whether slot attention
weight sharing and initialization value sharing are necessary
for slot order matching. To that end, we evaluated the FID
score and S-Acc score of several Slot-VAE variants.

To answer question (1), we investigate two approaches that
could be used as alternatives to slot attention to generat-
ing slot representations {sk}Kk=1 from the global represen-

tation zg. The first approach (termed as Slot-VAE-MLP)
is by using an MLP to directly map the zg to {sk}Kk=1.
Although this approach is straightforward, it cannot work
well intuitively. Specifically, an MLP learns a determinis-
tic mapping that always outputs slots {sk}Kk=1 with a fixed
order for a given global latent vector, whereas the slots
{s′k}Kk=1 that are directly inferred from the input image
with slot attention come with a random order. As a re-
sult, the order of {zsk}Kk=1 and that of {zs′k }Kk=1 can rarely
match each other, leading to fluctuating KL divergence
DKL

[
qϕ(z

s
1:K | x) || pθ(zs1:K | zg)

]
between slot prior

and slot posterior and hence diverged training. This can
be reflected by the very high FID score and low S-Acc
score in Table 3. The second approach (termed as Slot-
VAE-Transformer) is by using a transformer to map the
global vector zg and random initialization values of slots
{sk}Kk=1 shared with {s′k}Kk=1 to slot representations. In
this approach, slots generated by the transformer is permuta-
tion invariant due to random initialization, which addresses
the fixed slot order issue in Slot-VAE-MLP. Intuitively, with
shared initialized values, slots {sk}Kk=1 generated from zg
and slots {s′k}Kk=1 inferred from the input image could have
a good chance to match each other. Indeed, with this ap-
proach, our model matches the orders of the slots well.
However, the generated slots turn out not so good in the
sense that their corresponding decoded object components
are very blurry. As a result, Slot-VAE-Transformer also
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Figure 6. Slot-VAE latent traversal on Arrow Room. Each row only varies a certain dimension of zs corresponding to the ball object.

has a very high FID score and a low S-Acc score. In con-
trast, Slot-VAE outperforms Slot-VAE-MLP and Slot-VAE-
Transformer significantly, which demonstrates the effective-
ness of slot attention for generating slot representations from
the global representation.

To answer question (2), we trained a variant of Slot-VAE
(termed as Slot-VAE-W/O-WS) without the weight sharing
strategy in Fig. 1. In this case, the two slot attention modules
update their weights respectively with no common initializa-
tion values. Without weight sharing, we anticipate that the
KL divergence DKL

[
qϕ(z

s
1:K | x) || pθ(zs1:K | zg)

]
could

be large because the learned slot representations of the two
attention modules can be quite different, which may result
in unrealistic generation samples. This is demonstrated by
the experimental results in Table 3. We also trained another
variant of Slot-VAE (termed as Slot-VAE-W/O-IVS) with
weight sharing between the two slot attention modules but
without initialization value sharing. Without initialization
value sharing, the order of slots {sk}Kk=1 generated from
zg and the order of slots {s′k}Kk=1 inferred from the input
image cannot match each other very well. As a result, the
KL divergence DKL

[
qϕ(z

s
1:K | x) || pθ(zs1:K | zg)

]
can not

be properly calculated, and generated samples cannot reflect
the dataset structure as quantitatively shown in Table 3.

In summary, we empirically find that the slot attention mod-
ule for generating slot representations from the global rep-
resentation, weight sharing and initialization value sharing
between the two attention modules improve the generation
performance significantly.

5. Conclusion
We propose an object-centric generative model, Slot-VAE,
that integrates the slot attention module with a hierarchical
VAE model for joint object-centric representation inference
and scene structure modelling. The proposed model can dis-
cover object components in an unsupervised way and gener-
ate novel scenes controllable at both the object and attribute
level. Experiment results show that Slot-VAE achieves bet-
ter sampling quality and scene structure accuracy compared
to slot representation-based generative baselines.

One limitation of Slot-VAE is that the adopted slot attention
module requires simple decoders like SBD (Watters et al.,
2019) to serve as a reconstruction bottleneck to decompose
objects, which, however, may not scale to complex real-
world scenes. This can be improved by using a transformer
decoder (Singh et al., 2021) or diffusion model-based de-
coder (Jiang et al., 2023), which we leave for future work.

Social Impact
The proposed Slot-VAE model shows no negative social
impacts in its current form since the evaluation is carried
out on synthetic datasets at this stage. However, with im-
proved slot representation learning modules available in the
future, our model has the potential to be applied to generate
more sophisticated and realistic scenes. In that case, misuse
should be avoided for malicious purposes. Proper use of the
proposed model can actually benefit practical applications
like artwork generation, scene understanding, and dataset
augmentation, to name just a few.
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A. Additional Results of Slot-VAE.
We show additional scene decomposition and novel scene generation examples of Slot-VAE on ObjectsRoom ShapeStacks
and Arrow Room in Fig.7 - Fig. 12

Figure 7. Additional decomposition resulst of Slot-VAE (ObjectsRoom dataset).

Figure 8. Additional decomposition resulst of Slot-VAE (ShapeStacks dataset).
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Figure 9. Additional decomposition resulst of Slot-VAE (ShapeStacks dataset).

Figure 10. Additional generation resulst of Slot-VAE (Arrow Room dataset).

B. Implementation Details of Slot-VAE.
In this section, we introduce the implementation details of Slot-VAE. As shown in Fig. 1, Slot-VAE has two parallel paths to
train a two-layer hierarchical VAE model, which mainly includes the following four modules.

CNN backbone. Before inferring the global latent representation and slot representations, the input image is first fed into a
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Figure 11. Additional generation resulst of Slot-VAE (ShapeStacks dataset).

Figure 12. Additional generation resulst of Slot-VAE (Arrow Room dataset).

convolutional neural network to extract relatively high-level features. This convolutional neural network has 4 layers, each
layer is with kernel size 5 and stride 1 and the final layer has 64 channels. The obtained feature map fx still has image-sized
dimensions and each feature (channel) has a dimension of 64, i.e., the dimension is H ×W × 64. Soft position embedding
are then added to the feature map to provide position information for the following modules.

Slot Attention Module. On the first path, we adopt the slot attention module (Locatello et al., 2020) for object-centric
representation learning. We include the details for self-containing purpuse. To prepare for slot learning, the feature map fx
is first flattened into vectors finput with dimension (H ×W )× 64. To cluster the feature vectors into object components,
the clustering center, i.e., slots, should be initialized first. The initialization values for object slots are from Gaussian
distribution respectively, i.e., s1:K ∼ N (µ, diag(σ)) ∈ RK×64, where µ and σ are learnable parameters. These slots are then
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updated iteratively to compete for explaining feature vectors finput. The slot competition is achieved via a softmax-based
attention mechanism :attni,j :=

exp(Mi,j)∑
l exp(Mi,l)

, where M := 1√
D
k(finput) · q(s1:K)T ∈ R(H×W )×K , and k and q are

learnable linear mappings RD→D as commonly used in the attention mechanism, and
√
D is a fixed value for softmax

temperature. With the calculated attention scores attni,j , image feature vectors finput are aggregated via weighted mean:
updates := WT ·v(finput) ∈ RK×D, where Wi,j := attni,j/(

∑N
l=1 attnl,j), and v is also learnable linear mappings similar

to k and q. The update of slots in each iteration is completed via a learnable mapping parameterized by a Gated Recurrent
Unit (GRU): s1:K ← GRU(s1:K , updates). The attention computation and updating are repeated 3 iterations to output final
object-centric representations s1:K . Finally we obtain K vectors sk each of dimension 64. To infer probabilistic random
variables from sk, a MLP is used to map sk to zsk. This MLP is implemented with two layers with the first layer followed by
a RELU layer. To be emphasized, the MLP is shared across sk, to encourage common formats of objet representations. The
obtained object-centric latent vector zsk is still with a dimension of 64.

Global Auto-Encoding Module. To learn a global latent vector, the CNN backbone outputs fx needs to be encoded by an
encoder. Depending on the chosen prior distribution of the global latent vector, the encoder could have different structures.
In the case that the global prior is Normal distribution, the encoder can be common ones used in vanilla VAE. Specifically,
the (H ×W )× 64 feature map is further flattened into one dimension, i.e., (H ×W × 64)× 1. Then a three-layer MLP,
severing as an information bottleneck, reduces the dimension of obtained feature map to zg of dimension 32 × 1. The
obtained zg can be decoded with deconvolutional neural nets back to the dimension of (H ×W )× 64, trying to reconstruct
the feature map. However, since the decoded feature map f is not used to recover image, rather generated object-centric
latent vectors zsk, there is no guarantee that f will be the same as fx. But with proper training, they should be close to each
other. In summary, the auto-encoding structure is the same as commonly used VAE architecture. Another case for this global
auto-encoding module is that a more powerful Strucdraw prior is used for the global latent vector learning. In that case, zg

is inferred autoregressively, the detail of such an encoder architecture could be found in (Jiang & Ahn, 2020). Along the
path of global auto-encoding, the obtained zg of dimension 32 is then fed into a slot attention module. This slot attention
module has exactly the same architecture as the one on the first path. The two slot attention modules share parameters.

Object Component Decoder. We choose the SBD decoder (Watters et al., 2019) as part of the object component decoder
in our model. Different from (Locatello et al., 2020) and (Engelcke et al., 2019) where a pure SBD is used, we combine
SBD decoder with deconvolutional neural networks to balance the capacity of the decoder. Specifically, each object-centric
latent vectors zsk of dimension 64 is first broadcast to a feature with shape 8× 8× 64. Then this feature is decoded with
deconvolutional neural nets with each layer having stride 2 and kernel size 5, to reconstruct an image-sized tensor with an
additional channel as the mixing masks. The final output of the decoder has the shape H ×W × 4. This decoder is shared
across object-centric latent vectors zsk.

Hyperparameter for the KL term DKL
[
qϕ(z

g | x) || pθ(zg)
]
. During training, we empirically find that multiplying

DKL
[
qϕ(z

g | x) || pθ(zg)
]

with a small hyperparameter β helps zg to encode meaningful scene representations. When β is
too large, zg tends to totally collapse to pθ(z

g), i.e., normal distribution. In the experiments, for ObjectRoom, β is 0.01; for
ShapeStacks, β is 0.1; and for Arrow Room, β is 0.1.

Training Details. Learning rate warm-up is important for object-centric representation learning as acknowledged by prior
works. In the experiments, 10000 warm-up steps are used. For ObjectRoom, the batch size is 64, and the learning rate is
0.0004; for ShapeStacks, the batch size is 32, and the learning rate is 0.0001; and for Arrow Room, the batch size is 32, and
the learning rate is 0.0001 in the early training steps and is decreased to 0.00005 after object-centric representations show up
for stable training purpose.
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