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Abstract
This paper introduces a new parameterization
of deep neural networks (both fully-connected
and convolutional) with guaranteed ℓ2 Lipschitz
bounds, i.e. limited sensitivity to input perturba-
tions. The Lipschitz guarantees are equivalent to
the tightest-known bounds based on certification
via a semidefinite program (SDP). We provide a
“direct” parameterization, i.e., a smooth mapping
from RN onto the set of weights satisfying the
SDP-based bound. Moreover, our parameteriza-
tion is complete, i.e. a neural network satisfies
the SDP bound if and only if it can be represented
via our parameterization. This enables training
using standard gradient methods, without any in-
ner approximation or computationally intensive
tasks (e.g. projections or barrier terms) for the
SDP constraint. The new parameterization can
equivalently be thought of as either a new layer
type (the sandwich layer), or a novel parameter-
ization of standard feedforward networks with
parameter sharing between neighbouring layers.
A comprehensive set of experiments on image
classification shows that sandwich layers outper-
form previous approaches on both empirical and
certified robust accuracy. Code is available at
https://github.com/acfr/LBDN.

1. Introduction
Neural networks have enjoyed wide application due to their
many favourable properties, including highly accurate fits to
training data, surprising generalisation performance within
a distribution, as well as scalability to very large models and
data sets. Nevertheless, it has also been observed that they
can be highly sensitive to small input perturbations (Szegedy
et al., 2014). This is a critical limitation in applications in
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which certifiable robustness is required, or the smoothness
of a learned function is important.

A standard way to quantify sensitivity of models is via a
Lipschitz bound, which generalises the notion of a slope-
restricted scalar function. A function x 7→ f(x) between
normed spaces satisfies a Lipschitz bound γ if

∥f(x1)− f(x2)∥ ≤ γ∥x1 − x2∥ (1)

for all x1, x2 in its domain. The (true) Lipschitz constant
of a function, denoted by Lip(f), is the smallest such γ.
Moreover, we call f a γ-Lipschitz function if Lip(f) ≤ γ.

A natural application of Lipschitz-bounds is to control a
model’s sensitivity to adversarial (worst-case) inputs, e.g.
(Madry et al., 2018; Tsuzuku et al., 2018), but they can
also be effective for regularisation (Gouk et al., 2021) and
Lipschitz constants often appear in theoretical generaliza-
tion bounds (Bartlett et al., 2017; Bubeck & Sellke, 2023).
Lipschitz-bounded networks have found many applications,
including: stabilising the learning of generative adversar-
ial networks (Arjovsky et al., 2017; Gulrajani et al., 2017);
implicit geometry mechanisms for computer graphics (Liu
et al., 2022); in reinforcement learning to controlling sen-
sitivity to measurement noise (e.g. (Russo & Proutiere,
2021)) and to ensure robust stability of feedback loops dur-
ing learning (Wang & Manchester, 2022); and the training of
differentially-private neural networks (Bethune et al., 2023).
In robotics applications, several learning-based planning
and control algorithms require known Lipschitz bounds in
learned stability certificates, see e.g. the recent surveys
(Brunke et al., 2022; Dawson et al., 2023).

Unfortunately, even for two-layer perceptrons with ReLU
activations, exact calculation of the true Lipschitz constant
for ℓ2 (Euclidean) norms is NP-hard (Virmaux & Scaman,
2018), so attention has focused on approximations that bal-
ance accuracy with computational tractability. Crude ℓ2-
bounds can be found via the product of spectral norms of
layer weights (Szegedy et al., 2014), however to date the
most accurate polynomial-time computable bounds require
solution of a semidefinite program (SDP) (Fazlyab et al.,
2019), which is computationally tractable only for relatively
small fully-connected networks.

While certification of a Lipschitz bound of a network is
a (convex) SDP with this method, the set of weights sat-
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isfying a prescribed Lipschitz bound is non-convex, com-
plicating training. Both (Rosca et al., 2020) and (Dawson
et al., 2023) highlight the computationally-intensive nature
of SDP-based bounds as limitations for applications.

Contribution. In this paper we introduce a new param-
eterization of standard feedforward neural networks, both
fully-connected multi-layer perceptron (MLP) and deep con-
volutional neural networks (CNN).

• The proposed parameterization has built-in guarantees
on the network’s Lipschitz bound, equivalent to the
best-known bounds provided by the SDP method (Fa-
zlyab et al., 2019).

• Our parameterization is a smooth surjective map-
ping from an unconstrained parameter space RN onto
the (non-convex) set of network weights satisfying
these SDP-based bounds. This enables learning of
lipschitz-bounded networks via standard gradient meth-
ods, avoiding the complex projection steps or barrier
function computations that have previously been re-
quired and limited scalability.

• The new parameterization can equivalently be treated
as either a composition of new 1-Lipschitz layers called
Sandwich layer, or a parameterization of standard feed-
forward networks with coupling parameters between
neighbouring layers.

Notation. Let R be the set of real numbers. A ⪰ 0 means
that a square matrix A is a positive semi-definite. We denote
by Dn

++ for the set of n× n positive diagonal matrices. For
a vector x ∈ Rn, its 2-norm is denoted by ∥x∥. Given a
matrix A ∈ Rm×n, ∥A∥ is defined as its the largest singular
value and A+ denotes its Moore–Penrose pseudoinverse.

2. Problem Setup and Preliminaries
Consider an L-layer feedforward neural network y = f(x)
described by the following recursive equations:

z0 = x,

zk+1 = σ(Wkzk + bk), k = 0, . . . , L− 1

y = WLzL + bL,

(2)

where x ∈ Rn0 , zk ∈ Rnk , y ∈ RnL+1 are the network
input, hidden unit of the kth layer and network output, re-
spectively. Here Wk ∈ Rnk+1×nk and bk ∈ Rnk+1 are the
weight matrix and bias vector for the kth layer, and σ is a
scalar activation function applied element-wise. We make
the following assumption, which holds for most commonly-
used activation functions (possibly after rescaling) (Good-
fellow et al., 2016).

Assumption 2.1. The nonlinear activation σ : R → R is
piecewise differentiable and slope-restricted in [0, 1].

If different channels have different activation functions, then
we simply require that they all satisfy the above assumption.

The main goal of this work is to learn feedforward networks
(2) with certified Lipschitz bound of γ, i.e.,

min
ϕ
L(fϕ) s.t. Lip(fϕ) ≤ γ (3)

where L(·) is a loss function and ϕ := {(Wk, bk)}0≤k≤L

is the learnable parameter. Since it is NP-hard to compute
Lip(fϕ), we seek an accurate Lipschitz bound estimation
so that the constraint in (3) does not lead to a significant
restriction on the model expressivity.

In (Fazlyab et al., 2019), integral quadratic constraint (IQC)
methods were applied to capture both monotonicity and
1-Lipschitzness properties of σ, leading to state-of-the-art
Lipschitz bound estimation based on the following linear
matrix inequality (LMI), see details in Appendix A:

H :=

 γI −U⊤Λ 0
−ΛU 2Λ− ΛW −W⊤Λ −Y ⊤

0 −Y γI

 ⪰ 0 (4)

where Λ ∈ Dn
++ with n =

∑L
k=1 nk, and

W =


0

W1
. . .

...
. . . 0

0 · · · WL−1 0

 , U =


W0

0
...
0

 ,

Y =
[
0 · · · 0 WL

]
.

Remark 2.2. The published paper (Fazlyab et al., 2019)
claimed that even tighter Lipschitz bounds could be achieved
with a less restrictive class of multipliers Λ than diagonal.
However, this is false: a counterexample was presented in
(Pauli et al., 2021), and the error in the proof was explained
in (Revay et al., 2020b), see also Remark A.2 in the appendix
of this paper.

In this paper we approach problem (3) via model parameter-
izations guaranteeing a given Lipschitz bound.

Definition 2.3. A parameterization of the network (2) is a
differentiable mapping ϕ =M(θ) where θ ∈ Θ ⊆ RN . It
is called a convex parameterization if Θ is convex, and a
direct parameterization if Θ = RN .

Given a network with fixed W,U, Y , Condition (4) is convex
with respect to the Lipschitz bound γ and multiplier Λ.
When training a network with specified bound γ, we can
convert (4) into a convex parameterization by introducing
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Figure 1. Illustration of the sparsity pattern in H that must be
preserved by the factorization H = PP⊤.

new decision variables Ũ = ΛU, W̃ = ΛW , (4) becomes

H =


γI −Ŵ⊤

0

−Ŵ0 2Λ0 −Ŵ⊤
1

. . . . . . . . .
−ŴL−1 2ΛL−1 −Ŵ⊤

L

−ŴL γI

 ⪰ 0

(5)
where Ŵk = ΛkWk for 0 ≤ k < L and ŴL = WL. In
(Pauli et al., 2021; Revay et al., 2020a), constrained op-
timization methods such as convex projection and barrier
functions are applied for training. However, even for rel-
atively small-scale networks (e.g. ∼ 1000 neurons), the
associated barrier terms or projections become a major com-
putational bottleneck.

3. Direct Parameterization
In this section we will present our main contribution – a di-
rect parameterization ϕ =M(θ) such that ϕ automatically
satisfies (4) and hence (1) for any θ ∈ RN . Then, the learn-
ing problem (3) can be transformed into an unconstrained
optimization problem

min
θ∈RN

L(fM(θ)).

First, it is clear that (5) is satisfied if we parameterize H
as H = PP⊤. The main challenge then is to parameterize
P such that the particular sparsity pattern of H is recov-
ered: a block-tridiagonal structure where the main diagonal
blocks must be positive diagonal matrices, see Equation (5)
and Figure 1. First, the block-tridiagonal structure can be
achieved by taking

P =


D−1

−V0 D0

. . . . . .
−VL DL

 ,

i.e., block Cholesky factorization of H . The next step is to
construct Vk and Dk such that the diagonal blocks Hkk =

σ Ψ
−1

k

Wk+1

σ

Wk

Ψk−12BkA
!
k−1Ψk2Bk+1A

!
kΨ

−1
k+1 ···

xf(x)

RN ! θ := {(Xk, Yk, bk, dk)}0≤k≤L

M
−→ φ := {(Wk, bk)}0≤k≤L

σ

dk ∈ Rk+1

e
dk e

−dk

[

Xk

Yk

]

∈ R(nk+1+nk)×nk+1

Cayley(·)

···

Figure 2. Direct parameterization for Lipschitz-bounded deep net-
works, i.e. Lip(fϕ) ≤ γ with ϕ = M(θ) for all θ ∈ RN . Note
that free parameters are shared across neighbouring layers.

VkV
⊤
k + DkD

⊤
k are diagonal matrices. We do so by the

Cayley transform for orthogonal matrix parameterization
(Trockman & Kolter, 2021), i.e., for any X ∈ Rm×m, Y ∈
Rn×m we have Q⊤Q = I if

Q = Cayley

([
X
Y

])
:=

[
(I + Z)−1(I − Z)
−2Y (I + Z)−1

]
(6)

with Z = X −X⊤ + Y ⊤Y . To be more specific, we take
Dk = ΨkAk and Vk = ΨkBk where

Ψk = diag
(
edk

)
,

[
A⊤

k

B⊤
k

]
= Cayley

([
Xk

Yk

])
(7)

for some free vector dk and matrices Xk, Yk with proper
dimension. Now we can verify that H = PP⊤ has the
same structure as (5), i.e.,

Hkk = Ψk(AkA
⊤
k +BkB

⊤
k )Ψk = Ψ2

k,

Hk−1,k = −ΨkBkA
⊤
k−1Ψk−1.

Moreover, we can construct the multiplier Λk = 1
2Ψ

2
k and

the weight matrix

Wk = −Λ−1
k Hk−1,k = 2Ψ−1

k BkA
⊤
k−1Ψk−1 (8)

with k = 0, . . . , L, where A−1 = I,Ψ−1 =
√
γ/2I and

ΨL =
√
2/γI with γ as the prescribed Lipschitz bound.

We summarize our model parameterization as follows. The
free parameter θ consists of bias terms bk ∈ Rnk+1 and

dj ∈ Rnj , Xk ∈ Rnk+1×nk+1 , Yk ∈ Rnk×nk+1

with 0 ≤ j < L and 0 ≤ k ≤ L. The weight Wk is
constructed via (7) and (8). Notice that Wk depends on
parameters of index k and k−1, i.e. there is an “interlacing”
coupling between parameters and weights, see Figure 2.
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3.1. Theoretical results

The main theoretical results is that our parameterization
is complete (necessary and sufficient) for the set of DNNs
satisfying the LMI constraint (5) of (Fazlyab et al., 2019).

Theorem 3.1. The feedforward network (2) satisfies the
LMI condition (5) if and only if its weight matrices Wk can
be parameterized via (8).

The proof to this and all other theorems can be found in
Appendix D.

1-Lipschitz sandwich layer. Here we show that the new
parameterization can also be interpreted as a new layer type.
We first introduce new hidden units hk =

√
2A⊤

k Ψkzk for
k = 0, . . . L and then rewrite the proposed LBDN model as

h0 =
√
γx

hk+1 =
√
2A⊤

k Ψkσ(
√
2Ψ−1

k Bkhk + bk)

y =
√
γBLhL + bL.

(9)

The core component of the above model is a sandwich-
structured layer of the form:

hout =
√
2A⊤Ψσ

(√
2Ψ−1Bhin + b

)
(10)

where hin ∈ Rp, hout ∈ Rq are the layer input and output,
respectively. Unlike the parameterization in (8), consecutive
layers in (9) do not have coupled free parameters, which
allows for modular implementation. Another advantage
is that such representation can reveal some fundamental
insights on the roles of Ψ, A and B.

Theorem 3.2. The layer (10) with Ψ, A,B constructed by
(7) is 1-Lipschitz.

To understand the role of Ψ, we look at a new activation
layer which is obtained by placing Ψ−1 ∈ Dq

++ and Ψ be-
fore and after σ, i.e., u = Ψσ(Ψ−1v + b). Here Ψ can
change the shape and shift the position of individual ac-
tivation channels while keeping their slopes within [0, 1],
allowing the optimizer to search over a rich set of activa-
tions.

For the roles of A and B, we need to look at another special
case of (10) where σ is the identity operator. Then, (10)
becomes a linear layer

hout = 2A⊤Bhin + b̂. (11)

As a direct corollary of Theorem 3.2, the above linear layer
is 1-Lipschitz, i.e., ∥2A⊤B∥ ≤ 1. We show that such a
parameterization is complete for 1-Lipschitz linear layers.

Proposition 3.3. A linear layer is 1-Lipschitz if and only if
its weight W satisfies W = 2A⊤B with A,B given by (7).

Algorithm 1 1-Lipschitz convolutional layer

Require: hin ∈ Rp×s×s, P ∈ R(p+q)×q×s×s, d ∈ Rq

1: h̃in ← FFT(hin)

2: Ψ← diag(ed),
[
Ã B̃

]∗ ← Cayley(FFT(P ))

3: h̃[:, i, j]←
√
2Ψ−1B̃[:, :, i, j]h̃in[:, i, j]

4: h̃← FFT
(
σ(FFT−1(h̃) + b)

)
5: h̃out[:, i, j]←

√
2A[:, :, i, j]∗Ψh̃[:, i, j]

6: hout ← FFT−1(h̃out)

Convolution layer. Our proposed 1-Lipschitz layer can
also incorporate more structured linear operators such as
circular convolution. Thanks to the doubly-circular struc-
ture, we can perform efficient model parameterization in the
Fourier domain. Roughly speaking, transposing or inverting
a convolution is equivalent to apply the complex version of
the same operation to its Fourier domain representation – a
batch of small complex matrices (Trockman & Kolter, 2021).
Algorithm 1 shows the forward computation of 1-Lipschitz
convolutional layers, see Appendix B for more detailed ex-
planations. In line 1 and 6, we use the (inverse) FFT on
the input/output tensor. In line 2, we perform the Cayley
transformation of convolutions in the Fourier domain, which
involves s × (⌊s/2⌋ + 1) parallel complex matrix inverse
of size q × q where q, s are the number of hidden channels
and input image size, respectively. In line 3-5, all operations
related to the (i, j)th term can be done in parallel.

4. Comparisons to Related Prior Work
In this section we give an overview of related prior work
and provide some theoretical comparison to the proposed
approach.

4.1. SDP-based Lipschitz training

Since the SDP-based bounds of (Fazlyab et al., 2019) ap-
peared, several papers have proposed methods to allow train-
ing of Lipschitz models. In (Pauli et al., 2021; Revay et al.,
2020a), training was done by constrained optimization tech-
niques (projections and barrier function, respectively). How-
ever, those approaches have the computational bottleneck
for relatively-small (∼1000 neurons) networks. (Xue et al.,
2022) decomposed the large SDP for Lipschitz bound esti-
mation into many small SDPs via chordal decomposition.

Direct parameterization of the SDP-based Lipschitz condi-
tion was introduced in (Revay et al., 2020b) for equilibrium
networks – a more general architecture than the feedforward
networks. The basic idea was related to the method of (Bu-
rer & Monteiro, 2003) for semi-definite programming, in
which a positive semi-definite matrix is parameterized by
square-root factors. In (Revay et al., 2023), it was further ex-
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tended to recurrent (dynamic) equilibrium networks. (Pauli
et al., 2022; 2023) applied this method to Lipschitz-bound
1D convolutional networks. However, those approaches
do not scale to large DNNs. In this work, we explore the
sparse structure of SDP condition for DNNs, leading to a
scalable direct parameterization. A recent work (Araujo
et al., 2023) also developed a scalable parameterization for
training residual networks. But its Lipschitz condition only
considers individual layer, which is often a relatively small
SDP with dense structure.

4.2. 1-Lipschitz neural networks

Many existing works have focused on the construction of
provable 1-Lipschitz neural networks. Most are bottom-up
approaches, i.e., devise 1-Lipschitz layers first and then
connect them in a feedforward way. One approach is to
build 1-Lipschitz linear layer z = Wx with ∥W∥ ≤ 1 since
most existing activation layers are 1-Lipschitz (possibly
after rescaling). The Lipschitz bound is quite loose due to
the decoupling between linear layer and nonlinear activation.
Another direction is to construct 1-Lipschitz layer which
directly involves activation function.

1-Lipschitz linear layers. Early works (Miyato et al.,
2018; Farnia et al., 2019) involve layer normalization via
spectral norm:

W = V/∥V ∥
with V as free parameter. Some recent works construct
gradient preserved linear layer by constraining W to be or-
thogonal during training, e.g., block convolution orthogonal
parameterization (Li et al., 2019), orthogonal matrix param-
eterization via Cayley transformation (Trockman & Kolter,
2021; Yu et al., 2022), matrix exponential (Singla & Feizi,
2021)

W = exp(V − V ⊤)

and inverse square root (Xu et al., 2022)

W = (V V ⊤)−1V.

Almost Orthgonal Layer (AOL) (Prach & Lampert, 2022)
can reduce the computational cost by using the inverse of a
diagonal matrix, i.e.,

W = V diag
(∑

j
|V ⊤V |ij

)−1/2
.

Empirical study reveals that W is almost orthogonal after
training. For these approaches, the overall network Lips-
chitz bound is then obtained via a spectral norm bound:

∥Lip(f)∥ ≤
L∏

k=0

∥Wk∥ ≤ 1.

Compared to 1-Lipschitz linear layers, our approach has two
advantages. First, a special case of our sandwich layer (11)

contains all 1-Lipschitz linear layers (see Proposition 3.3).
Second, our model parameterization allows for the spectral
norm bounds of individual layers to be greater than one, and
their product to also be greater than one, while the network
still satisfies a Lipschitz bound of 1, see the example in
Figure 4 as well as the explanation in Appendix C.

1-Lipschitz nonlinear layers. Since spectral-norm
bounds can be quite loose, a number of recent papers
have constructed Lipschitz-bounded nonlinear layers. In
(Meunier et al., 2022), a new 1-Lipschitz residual-type layer
z = x+ F(x) with F(x) = −2/∥W∥2Wσ(W⊤x+ b), is
derived from dynamical systems called convex potential
flows. Recently, (Araujo et al., 2023) considered a more
general layer:

hs(x) = Hx+Gσ(W⊤x+ b), (12)

and provides an extension to the SDP condition in (Fazlyab
et al., 2019) as follows[

γI −H⊤H −H⊤G−WΛ
−G⊤H − ΛW⊤ 2Λ− 1

γG
⊤G

]
⪰ 0. (13)

For the special case with γ = 1 and H = I , a direct pa-
rameterization of (13) is G = −2WT−1, where W is a free
variable and T ∈ D++ satisfies T ⪰ W⊤W . The corre-
sponding hs(x) is called SDP-based Lipschitz Layer (SLL).
Similar to the SLL approach, our proposed sandwich layer
(10) can also be understood as an analytical solution to (13)
but with a different case with H = 0 and arbitrary γ.

Moreover, Theorem 3.1 shows that by composing many 1-
Lipschitz sandwich layers and then adding a scaling factor√
γ into the first and last layers, we can construct all the

DNNs satisfying the (structured, network-scale) SDP in
(Fazlyab et al., 2019) for any Lipschitz bound γ. When an
SLL layer with γ > 1 is desired, similarly one can compose
an 1-Lipschitz SLL layer with γ, i.e.

h(x) = γphs(γ
qx) (14)

with p+ q = 1 and p, q ≥ 0. However, such a parameteri-
zation is incomplete as the example below gives a residual
layer which satisfies (13), but cannot be constructed via
(14).
Example 4.1. Consider the following following residual
layer, which has a Lipschitz bound of 1.001:

h(x) = x+

[
1 0
0 0.001

]
σ

([
0 0
0 1

]
x+ b

)
.

It can be verified that (13) is satisfied with γ = 1.001 and
Λ = diag(λ1, λ2) chosen such that λ1 > (γ−1/2)/(γ2−γ)
and λ2 = γ2 − γ. However, it cannot be written as (14)
because there does not exist a positive diagonal matrix T
such that G = −2WT−1, since the upper-left element is
zero in W and one in G.

5
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Table 1. The table presents the tightness of Lipschitz bound of
several concurrent parameterization and our approach on a toy
example. The bound tightness is measured by γ/γ (%), where γ
and γ are the empirical lower bound and certified upper bound.

MODELS
LIP. TIGHTNESS (γ)

1 5 10

AOL 77.2 45.2 47.9
ORTHOGONAL 74.1 72.8 64.5
SLL 99.9 90.5 67.9
SANDWICH 99.9 99.3 94.0

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

0.5

1

x

f
(x
)

true

AOL: slope 4.8

Orthogon: slope = 6.5

SLL: slope = 6.8

Ours: slope = 9.4

Best possible: slope = 10

Figure 3. Fitting a square wave using models with Lipschitz bound
of 10. Compared to AOL, orthogonal and SLL layers, our model
is the closest to the best possible solution – a piecewise linear
function with slope of 10 at x = 0.

5. Experiments
Our experiments have two goals: First, to illustrate that
our model parameterization can provide a tight Lipschitz
bounds via a simple curve-fitting tasks. Second, to examine
the performance and scalability of the proposed method on
robust image classification tasks. Model architectures and
training details can be found in Appendix E. Pytorch code is
available at https://github.com/acfr/LBDN, and
a partial implementation of the method is included in the Ju-
lia toolbox RobustNeuralNetworks.jl, https://
acfr.github.io/RobustNeuralNetworks.jl

5.1. Toy example

We illustrate the quality of Lipschitz bounds of by fitting
the following square wave:

f(x) =

{
0, x ∈ [−1, 0) ∪ [1, 2],

1, x ∈ [−2,−1) ∪ [0, 1).

Note that the true function has no global Lipschitz bound
due to the points of discontinuity. Thus a function approxi-

mator will naturally try to find models with large local Lips-
chitz constant near the discontinuity. If a Lipschitz bound
is imposed this is a useful test of its accuracy, which wee
evaluate using γ/γ where γ is an empirical lower Lipschitz
bound and γ is the imposed upper bound, being 1, 5, and 10
in the cases we tested. In Table 1 we see that our approach
achieves a much tighter Lipschitz bounds than AOL and or-
thogonal layers. The SLL model has similar tightness when
γ = 1 but its bound becomes more loose as γ increases
compared to our model, e.g. 67.9% v.s. 94.0% for γ = 10.
We also plot the fitting results for γ = 10 in Figure 3. Our
model is close to the best possible solution: a piecewise
linear function with slope 10 at the discontinuities.

In Figure 4 we break down the Lipschitz bounds and spec-
tral norms over layers. Note that the SLL model is not
included here as its Lipschitz bound is not related to the
spectral norms. It can be seen that all individual layers have
quite tight Lipschitz bounds on a per-layer basis of around
99%. However, for the complete network the sandwich
layer achieves a much tighter bound of 99.9% vs 74.1% (or-
thogonal) and 77.2% (AOL). This illustrates the benefits of
taking into account coupling between neighborhood layers,
thus allowing individual layers to have spectral norm greater
than 1. We note that, for the sandwich model, the layer-wise
product of spectral norms reaches 65.9, illustrating how
poor this commonly-used bound is compared to our bound.

75 80 90 100
Input layer

Hidden layer 1
Hidden layer 2
Hidden layer 3
Hidden layer 4
Hidden layer 5
Hidden layer 6
Hidden layer 7
Hidden layer 8

Output layer
Full network

γ/γ (%)

Sandwich

Orthogonal

AOL

1 2 2.5

∥W∥

Figure 4. Left: empirical Lipschitz bound for curve fitting of a
square wave. The lower bound γ is obtained using PGD-like
method. We observed tight layer Lipschitz bound for AOL, or-
thogonal and sandwich layers (≥ 99.1%). However, the propose
sandwich layer has a much tighter Lipschitz bound for the entire
network. Right: the spectral norm of weight matrices. Our ap-
proach admits weight matrices with spectral norm larger than 1.
The layerwise product

∏L
k=0 ∥Wk∥ is about 65.9, which is much

larger than that of AOL and orthogonal layers.

5.2. Robust Image classification

We conducted a set of empirical robustness experiments
on CIFAR-10/100 and Tiny-Imagenet datasets, comparing
our Sandwich layer to the previous parameterizations AOL,
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Figure 5. Robust test accuracy under different ℓ2-adversarial attack sizes versus empirical Lipschitz bound on CIFAR-10. Colours: blue
(γ = 1), teal (γ = 10), magenta (γ = 100), red (vanilla CNN). Vertical lines are the certified Lipschitz bounds. The empirical robustness
is measured with AutoAttack (Croce & Hein, 2020). For CIFAR-10, the SLL layer slightly outperforms the proposed sandwich layer but
its model is much larger (41M versus 3M). But CIFAR-100, our model has about 4% improvement dispite its relatively small model size
compared to the SLL model (i.e. 48M versus 118M).

orthogonal and SLL layers. We use the same architecture
in (Trockman & Kolter, 2021) for AOL, orthogonal and
sandwich models with small, medium and large sizes. Since
SLL is a residual layer, we use the architectures proposed
by (Araujo et al., 2023), with model sizes much larger than
those of the non-residual networks. Input data is normalized
before feeding into Lipschitz bounded model. The Lipschitz
bound for the composited model is fixed during the training.
We use AutoAttack (Croce & Hein, 2020) to measure the
empirical robustness.

We also compare the certified robustness results of the pro-
posed parameterization with the recently proposed SLL
model (Araujo et al., 2023). We removed the data nor-
malization layer and add a Last Layer Normalization (LLN),
proposed by (Singla et al., 2022). While the Lipschitz con-
stant of the composite model may exceed the bound, it has
been observed in (Singla et al., 2022; Araujo et al., 2023)
that LLN can improved the certified accuracy when the
number of classes becomes large.

Effect of Lipschitz bounds. We trained Lipschitz-
bounded models on CIFAR-10/100 datasets with three dif-
ferent certified bounds (γ = 1, 10, 100 for CIFAR-10 and

γ = 1, 2, 4 for CIFAR-100). We also trained a vanilla CNN
model without any Lipschitz regularization as a baseline. In
Figure 5 we plot both the clean accuracy (ϵ = 0) and ro-
bust test accuracy under different ℓ2-adversarial attack sizes
(ϵ = 36/255, 72/255, 108/255). The sandwich layer had
higher test accuracy than the AOL and orthogonal layer in
all cases, illustrating the improved flexibility. On CIFAR-10
our model is slightly outperformed by the the SLL model,
although the model size of the latter is much larger (3M vs
41M parameters). On CIFAR-100, our model outperforms
SLL by about 4% despite a much smaller model size (48M
vs 118M).

It can be seen that with an appropriate Lipschitz bound, all
models except AOL had improved nominal test accuracy
(i.e. ϵ = 0) compared to a vanilla CNN. This performance
deteriorates if the Lipschitz bound is chosen to be too small.
On the other hand, when the perturbation size is large (e.g.
ϵ = 72/255 or 108/255), the smallest Lipschitz bounds
yielded the best performance (except for the AOL). Fur-
thermore, with these larger attack sizes, the performance
improvement compared to vanilla CNN is very significant,
e.g. close to 60% on CIFAR10 with ϵ = 72/255.

7
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Table 2. This table presents the clean, empirical robust accuracy as well as the number of parameters and training time of several concurrent
work and our sandwich model on CIFAR-100 and Tiny-ImageNet datasets. Input data is normalized and no last layer normalization is
implemented. The Lipschitz bounds for CIFAR-100 and Tiny-ImageNet are 2 and 1, respectively. The empirical robustness is measured
with AutoAttack (Croce & Hein, 2020). All results are averaged of 3 experiments.

DATASETS MODELS
CLEAN
ACC.

AUTOATTACK (ε) NUMBER OF
PARAMETERS

TIME BY
EPOCH36

255
72
255

108
255

CIFAR100

AOL SMALL 30.4 25.1 21.1 17.6 3M 18S
AOL MEDIUM 31.1 25.9 21.7 18.2 12M 21S
AOL LARGE 31.6 26.5 22.2 18.7 48M 73S
ORTHOGONAL SMALL 48.7 38.6 30.6 24.0 3M 20S
ORTHOGONAL MEDIUM 51.1 41.4 33.0 26.4 12M 22S
ORTHOGONAL LARGE 52.2 42.5 34.3 27.4 48M 55S
SLL SMALL 52.9 41.9 32.9 25.5 41M 29S
SLL MEDIUM 53.8 43.1 33.9 26.6 78M 52S
SLL LARGE 54.8 44.0 34.9 27.6 118M 121S

SANDWICH SMALL 54.2 44.3 35.5 28.4 3M 19S
SANDWICH MEDIUM 56.5 47.1 38.6 31.5 12M 23S
SANDWICH LARGE 57.5 48.5 40.2 32.9 48M 78S

TINYIMAGENET

AOL SMALL 17.4 15.1 13.1 11.3 11M 62S
AOL MEDIUM 16.8 14.6 12.7 11.0 43M 270S
ORTHOGONAL SMALL 29.7 24.4 20.1 16.4 11M 57S
ORTHOGONAL MEDIUM 30.9 26.0 21.5 17.7 43M 89S
SLL SMALL 29.3 23.5 18.6 14.7 165M 203S
SLL MEDIUM 30.3 24.6 19.8 15.7 314M 363S

SANDWICH SMALL 34.7 29.3 24.6 20.5 10M 60S
SANDWICH MEDIUM 35.0 29.9 25.3 21.4 37M 139S

In Figure 6 we plot the training curves (test-error vs epoch)
for the Lipschitz-bounded and vanilla CNN models. We
observe that the sandwich model surpasses the final error
of CNN in less than half as many epochs. An interesting
observation from Figure 6 is that the CNN model seems to
exhibit the epoch-wide double descent phenomenon (see,
e.g., (Nakkiran et al., 2021a)), whereas none of the Lips-
chitz bounded models do, they simply improve test error
monotonically with epochs. Weight regularization has been
suggested as a mitigating factor for other forms of double
descent (Nakkiran et al., 2021b), however we are not aware
of this specific phenomenon having been observed before.

Empirical robustness on CIFAR-100 and Tiny-Imagenet.
We ran empirical robustness tests on larger datasets (CIFAR-
100 and Tiny-Imagenet). We trained models with Lipschitz
bounds of {0.5, 1, . . . , 16} and presented the one with best
robust accuracy for ϵ = 36/255. The results along with
total number of parameters (NP) and training time per epoch
(TpE) are collected in Table 2. We also plot the test accuracy
versus model size in Figure 7.

We observe that our proposed Sandwich layer achieves uni-
formly the best results (around 5% improvement) on both
CIFAR-100 and Tiny-Imagenet for all model sizes, in terms
of both clean accuracy and robust accuracy with all pertur-
bation sizes. Furthermore, our Sandwich model can achieve

superior results with much smaller models and faster train-
ing than SLL. On CIFAR-100, comparing our Sandwich-
medium vs SLL-large we see that ours gives superior clean
and robust accuracy despite having only 12M parameters vs
118M, and taking only 23s vs 121s TpE. Similarly on Tiny-
Imagenet: comparing our Sandwich-small vs SLL-medium,
ours has much better clean and robust accuracy, despite
having 10M parameters vs 314M, and taking 60s vs 363s
TpE.

Certified robustness on CIFAR-100 and Tiny-Imagenet.
We also compare the certified robustness to the SLL ap-
proach which outperforms most existing 1-Lipschitz net-
works (Araujo et al., 2023). From Table 3 we can see that
on CIFAR-100, our Sandwich model performs similarly to
somewhat larger SLL models (41M parameters vs 26M, i.e.
60% larger). However it is outperformed by much larger
SLL models (236M parameters, 9 times larger than ours).

On Tiny-Imagenet, however, we see that our model uni-
formly outperforms SLL models, even the extra large SLL
model with 1.1B parameters (28 times larger than ours). Fur-
thermore, our advantage over the four-times larger “Small”
SLL model is substantial, e.g. 24.7% vs 19.5% certified
accuracy for ϵ = 36/255.

8
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Table 3. Certified robustness of SLL and sandwich model on CIFAR-100 and Tiny-ImageNet datasets. Different from the previous
experiment setup on empirical robustness, here we remove the input data normalization and add the last layer normalization. Results of
the SLL models are from (Araujo et al., 2023). Results of the sandwich model are averaged of 3 experiments.

DATASETS MODELS
CLEAN
ACC.

CERTIFIED ACC. (ε) NUMBER OF
PARAMETERS36

255
72
255

108
255

CIFAR100
SLL SMALL 44.9 34.7 26.8 20.9 41M
SLL XLARGE 46.5 36.5 28.4 22.7 236M
SANDWICH 46.3 35.3 26.3 20.3 26M

TINYIMAGENET

SLL SMALL 26.6 19.5 12.2 10.4 167M
SLL X-LARGE 32.1 23.0 16.9 12.3 1.1B
SANDWICH 33.4 24.7 18.1 13.4 39M
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Figure 6. Learning curves (obtained from 5 experiments). We use
γ = 100 and 10 for CIFAR-10/100, respectively. The “double-
descent” phenomenon is avoided with the γ-Lipschitz models.

6. Conclusions
In this paper we have introduced a direct parameteriza-
tion of neural networks that automatically satisfy the SDP-
based Lipschitz bounds of (Fazlyab et al., 2019). It is a
complete parameterization, i.e. it can represent all such
neural networks. Direct parameterization enables learning
of Lipschitz-bounded networks with standard first-order
gradient methods, avoiding the need for complex projec-
tions or barrier evaluations. The new parameterization
can also be interpreted as a new layer type, the sandwich
layer. Experiments in robust image classification with both
fully-connected and convolutional networks showed that
our method outperforms existing models in terms of both
empirical and certified accuracy.
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Figure 7. Test accuracy versus model size on CIFAR-100 and Tiny-
Imagenet. Colours: blue (small), teal (medium), magenta (large).
For CIFAR-100, our small sandwich model (3M) has the similar
performance as the large SLL model (118M). For Tiny-Imagenet,
our small sandwich model (10M) has about 4.5% improvement in
test accuracy compared to the medium SLL model (314M).
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Lipschitz-bounded 1d convolutional neural networks us-
ing the cayley transform and the controllability gramian.
arXiv preprint arXiv:2303.11835, 2023.

Prach, B. and Lampert, C. H. Almost-orthogonal layers for
efficient general-purpose lipschitz networks. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XXI, pp.
350–365. Springer, 2022.

Revay, M., Wang, R., and Manchester, I. R. A convex pa-
rameterization of robust recurrent neural networks. IEEE
Control Systems Letters, 5(4):1363–1368, 2020a.

Revay, M., Wang, R., and Manchester, I. R. Lips-
chitz bounded equilibrium networks. arXiv:2010.01732,
2020b.

Revay, M., Wang, R., and Manchester, I. R. Recurrent equi-
librium networks: Flexible dynamic models with guaran-
teed stability and robustness. IEEE Transactions on Au-
tomatic Control (accepted). preprint: arXiv:2104.05942,
2023.

Rosca, M., Weber, T., Gretton, A., and Mohamed, S. A
case for new neural network smoothness constraints. In
NeurIPS Workshops on ”I Can’t Believe It’s Not Better!”,
pp. 21–32. PMLR, 2020.

Russo, A. and Proutiere, A. Towards optimal attacks on re-
inforcement learning policies. In 2021 American Control
Conference (ACC), pp. 4561–4567. IEEE, 2021.

Singla, S. and Feizi, S. Skew orthogonal convolutions. In
International Conference on Machine Learning, pp. 9756–
9766. PMLR, 2021.

Singla, S., Singla, S., and Feizi, S. Improved deterministic
l2 robustness on cifar-10 and cifar-100. In International
Conference on Learning Representations, 2022.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing proper-
ties of neural networks. In International Conference on
Learning Representations, 2014.

Trockman, A. and Kolter, J. Z. Orthogonalizing convolu-
tional layers with the cayley transform. In International
Conference on Learning Representations, 2021.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin
training: Scalable certification of perturbation invariance
for deep neural networks. In Advances in neural informa-
tion processing systems, pp. 6541–6550, 2018.

Virmaux, A. and Scaman, K. Lipschitz regularity of deep
neural networks: analysis and efficient estimation. Ad-
vances in Neural Information Processing Systems, 31,
2018.

Wang, R. and Manchester, I. R. Youla-ren: Learning non-
linear feedback policies with robust stability guarantees.
In 2022 American Control Conference (ACC), pp. 2116–
2123, 2022.

Winston, E. and Kolter, J. Z. Monotone operator equilibrium
networks. Advances in neural information processing
systems, 33:10718–10728, 2020.

Xu, X., Li, L., and Li, B. Lot: Layer-wise orthogonal
training on improving l2 certified robustness. In Advances
in Neural Information Processing Systems, 2022.

Xue, A., Lindemann, L., Robey, A., Hassani, H., Pappas,
G. J., and Alur, R. Chordal sparsity for lipschitz constant
estimation of deep neural networks. In 2022 IEEE 61st
Conference on Decision and Control (CDC), pp. 3389–
3396. IEEE, 2022.

Yu, T., Li, J., Cai, Y., and Li, P. Constructing orthogo-
nal convolutions in an explicit manner. In International
Conference on Learning Representations, 2022.

Zheng, Y., Fantuzzi, G., and Papachristodoulou, A. Chordal
and factor-width decompositions for scalable semidefinite
and polynomial optimization. Annual Reviews in Control,
52:243–279, 2021.

11



Lipschitz-Bounded Deep Networks 12

A. Preliminaries on SDP-based Lipschitz bound
We review the theoretical work of SDP-based Lipschitz bound estimation for neural networks from (Fazlyab et al., 2019;
Revay et al., 2020b). Consider an L-layer feed-forward network y = f(x) described by the following recursive equation:

z0 = x,

zk+1 = σ(Wkzk + bk), k = 0, . . . , L− 1,

y = WLzL + bL,

(15)

where x ∈ Rn0 , zk ∈ Rnk , y ∈ RnL+1 are the network input, hidden unit of the kth layer and network output, respectively.
We stack all hidden unit z1, . . . , zL together and obtain a compact form of (15) as follows:

z︷ ︸︸ ︷
z1
z2
...
zL

 = σ



W︷ ︸︸ ︷
0

W1
. . .

...
. . . 0

0 · · · WL−1 0



z1
z2
...
zL

+

U︷ ︸︸ ︷
W0

0
...
0

x+

bz︷ ︸︸ ︷
b0
b1
...

bL−1




,

y =

Y︷ ︸︸ ︷[
0 · · · 0 WL

]

z1
z2
...
zL

+

by︷︸︸︷
bL .

(16)

By letting z := col(z1, . . . , zL) and v := Wz + Ux+ bz , we can rewrite the above equation by

v = Wz + Ux+ bz, z = σ(v), y = Y z + by. (17)

Now we introduce the incremental quadratic constraint (iQC) (Megretski & Rantzer, 1997) for analyzing the activation layer.

Lemma A.1. If Assumption 2.1 holds, then for any Λ ∈ Dn
++ the following iQC holds for any pair of (va, za) and (vb, zb)

satisfying z = σ(v): [
∆v⊤

∆z⊤

]⊤ [
0 Λ
Λ −2Λ

] [
∆v
∆z

]
≥ 0 (18)

where ∆v = vb − va and ∆z = zb − za.

Remark A.2. Assumption 2.1 implies that each channel satisfies 2∆zi(∆vi − ∆zi) ≥ 0, which can be leads to (18)
by a linear conic combination of each channel with multiplier Λ ∈ Dn

++. In (Fazlyab et al., 2019) it was claimed that
iQC (18) holds with a richer (more powerful) class of multipliers (i.e. Λ is a symmetric matrix), which were previously
introduced for robust stability analysis of systems with repeated nonlinearities (Chu & Glover, 1999; D’Amato et al., 2001;
Kulkarni & Safonov, 2002). However this is not true: a counterexample was given in (Pauli et al., 2021). Here we give
a brief explanation: even if the nonlinearities σ(vi) are repeated when considered as functions of vi, their increments
∆zi = σ(vai +∆vi)− σ(vai ) are not repeated when considered as functions of ∆vi, since δzi depend on the particular vai
which generally differs between units.

Theorem A.3. The feed-forward neural network (15) is γ-Lipschitz if Assumption 2.1 holds, and there exist an Λ ∈ Dn
++

satisfying the following LMI:

H :=

 γI −U⊤Λ 0
−ΛU 2Λ− ΛW −W⊤Λ −Y ⊤

0 −Y γI

 ⪰ 0. (19)

Remark A.4. In (Revay et al., 2020b), the above LMI condition also applies to more general network structures with full
weight matrix W . An equivalent form of (19) was applied in (Fazlyab et al., 2019) for a tight Lipschitz bound estimation:

min
γ,Λ

γ s.t. (19) (20)

which can be solved by convex programming for moderate models, e.g., n < 10K in (Fazlyab et al., 2019).
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B. 1-Lipschitz convolutional layer
Our proposed layer parameterization can also incorporate more structured linear operators such as convolution. Let
hin ∈ Rp×s×s be a p-channel image tensor with s× s spatial domain and hout ∈ Rq×s×s be q-channel output tensor. We
also let A ∈ Rq×q×s×s denote a multi-channel convolution operator and similarly for B ∈ Rq×p×s×s. For the sake of
simplicity, we assume that the convolutional operators A,B are circular and unstrided. Such assumption can be easily
related to plain and/or 2-strided convolutions, see (Trockman & Kolter, 2021). Similar to (10), the proposed convolutional
layer can be rewritten as

Vec(hout) =
√
2C⊤AΨsσ

(√
2Ψ−1

s CB Vec(hin) + b
)

(21)

where CA ∈ Rqs2×qs2 , CB ∈ Rqs2×ps2 are the doubly-circular matrix representations of A and B, respectively. For instance,
Vec(B ∗ hin) = CB Vec(hin) where ∗ is the convolution operator. We choose Ψs = Ψ ⊗ Is with Ψ = diag(ed) so that
individual channel has a constant scaling factor. To ensure that (21) is 1-Lipschitz, we need to construct CA, CB using the
Cayley transformation (6), which involves inverting a highly-structured large matrix I + CZ ∈ Rqs2×qs2 .

Thanks to the doubly-circular structure, we can perform efficient computation on the Fourier domain. Taking a 2D case
for example, circular convolution of two matrices is simply the elementwise product of their representations in the Fourier
domain (Jain, 1989). In (Trockman & Kolter, 2021), the 2D convolution theorem was extended to multi-channel circular
convolutions of tensors, which are reduced to a batch of complex matrix-vector products in the Fourier domain rather than
elementwise products. For example, the Fourier-domain output related to the (i, j)th pixel is a matrix-vector product:

FFT(B ∗ hin)[:, i, j] = B̃[:, :, i, j]h̃in[:, i, j].

where B̃[:, :, i, j] ∈ Cq×p and h̃in[:, i, j] ∈ Cp. Here C denotes the set of complex numbers and x̃ = FFT(x) is the fast
Fourier transformation (FFT) of a multi-channel tensor x ∈ Rc1×···×cr×s×s:

FFT(x)[i1, . . . , ir, :, :] = Fsx[i1, . . . , ir, :, :]F∗
s

where Fs[i, j] =
1
se

−2π(i−1)(j−1)ι/s with ι =
√
−1. Moreover, transposing or inverting a convolution is equivalent to

applying the complex version of the same operation to its Fourier domain representation – a batch of small complex matrices:

FFT(A⊤)[:, :, i, j] = Ã[:, :, i, j]∗, FFT((I + Z)−1)[:, :, i, j] = (I + Z̃[:, :, i, j])−1.

Since the FFT of a real tensor is Hermitian-symmetric, the batch size can be reduced to s× (⌊s/2⌋+ 1).

C. Weighted Spectral Norm Bounds
The generalized Clake Jacobian operator of feedforward network fϕ in (2) has the following form

Jcfϕ = WL

L∏
k=1

JL−kWL−k ∈ RnL+1×n0

where Jk = Jcσ(Wkzk + bk) ∈ Jnk+1

+ with Jnk+1

+ defined as follows

Jn+ := {diagonal J ∈ Rn×n | Jii ∈ [0, 1], ∀1 ≤ i ≤ n}. (22)

To learn an 1-Lipschitz DNN, one can impose the constraints ∥Wk∥ ≤ 1 for k = 0, . . . , L, i.e., fϕ satisfies the following
spectral norm bound

∥Jcfϕ∥ ≤
L∏

k=0

∥Wk∥ ≤ 1. (23)

However, such bound is often quite loose, see an example in Figure 4.

For our proposed model parameterization, we can also estimate the Lipschitz bound via the production of layerwise Lipschitz
bounds, i.e.,

∥Jcfϕ∥ ≤
√
γ ×

L−1∏
k=0

∥Jcs(hk)∥ ×
√
γ∥BL∥ ≤ γ (24)

where s is the 1-Lipschitz sandwich layer function defined in (10) and ∥BL∥ ≤ 1 by construction. In the following
proposition, we show that the layerwise bound in (24) is equivalent to weight spectral norm bounds on the weights Wk.

13
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Proposition C.1. The feedforward network (2) with weights (8) satisfies the weighted spectral norm bounds as follows:
∥∥∥ 1√

2
B+

0 Ψ0W0

∥∥∥ ≤ √γ,∥∥∥ 1
2B

⊤
k ΨkWkΨ

−1
k−1

(
A⊤

k−1

)+∥∥∥ ≤ 1, 1 ≤ k < L,∥∥∥ 1√
2
WLΨ

−1
L−1

(
A⊤

L−1

)+∥∥∥ ≤ √γ, (25)

Moreover, the network is γ-Lipschitz since

∥Jcfϕ∥ ≤
∥∥∥∥ 1√

2
B+

0 Ψ0W0

∥∥∥∥× L∏
k=1

∥∥∥∥12B⊤
k ΨkWkΨ

−1
k−1

(
A⊤

k−1

)+∥∥∥∥× ∥∥∥∥ 1√
2
WLΨ

−1
L−1

(
A⊤

L−1

)+∥∥∥∥ ≤ γ. (26)

Remark C.2. For 1-Lipschitz DNNs, our model parameterization allows for the spectral norm bounds of both individual
layer and the whole network to be larger than 1, while the network Lipschitz constant is still bounded by a weighted
layerwise spectral bound of 1, see the example in Figure 4.

D. Proofs
D.1. Proof of Lemma A.1

Given any pair of (va, za) and (vb, zb) satisfying z = σ(v), we have ∆z = σ(vb)− σ(va) := Jab∆v with ∆z = zb − za

and ∆v = vb − va, where Jab ∈ Jq+ with Jq+ defined in (22). Therefore, we can have[
∆v⊤

∆z⊤

]⊤ [
0 Λ
Λ −2Λ

] [
∆v
∆z

]
= 2∆z⊤Λ(∆v −∆z) = 2∆v⊤JabΛ(I − Jab)∆v ≥ 0.

D.2. Proof of Theorem A.3

We first apply Schur complement to (19), which yields[
γI −U⊤Λ
−ΛU 2Λ− ΛW −W⊤Λ− 1

γY
⊤Y

]
≻ 0.

Then, by left-multiplying the above equation by
[
∆x⊤ ∆z⊤

]
and right-multiplying

[
∆x⊤ ∆z⊤

]⊤
we can obtain

γ∥∆x∥2 − 1

γ
∥∆y∥2 − 2∆z⊤Λ∆z − 2∆z⊤Λ(W∆z + U∆x) = γ∥∆x∥2 − 1

γ
∥∆y∥2 − 2∆z⊤Λ(∆z −∆v) ≥ 0, (27)

which further implies that (15) is γ-Lipschitz since

γ∥∆x∥2 − 1

γ
∥∆y∥2 ≥ 2∆z⊤Λ(∆v −∆z) ≥ 0

where the last inequality follows by Lemma A.1.

D.3. Proof of Theorem 3.1

Sufficient. We show that (19) holds with Λ = diag(Λ0, . . . ,ΛL−1) where Λk = Ψ2
k. Since the block structure of H is a

chordal graph, H ⪰ 0 is equivalent to the existence of a chordal decomposition (Zheng et al., 2021):

H =

L∑
k=0

EkHkE
⊤
k (28)

where 0 ⪯ Hk ∈ R(nk+nk+1)×(nk+nk+1) and Ek =
[
0a,k Ib,k 0c,k

]
with Ib,k being the identity matrix the same size as

Hk, and 0a,k,0c,k being zero matrices of appropriate dimension. We then construct Hk as follows.

14
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For k = 0, we take

H0 =

[
γI −

√
2γB⊤

0 Ψ0

−
√
2γΨ0B0 2Ψ0(I −A0A

⊤
0 )Ψ0

]
. (29)

Note that H0 ⪰ 0 since [H0]11 = γI ≻ 0, and the Schur complement to [H0]11 yields

2Ψ0(I −A0A
⊤
0 )Ψ0 −

√
2γΨ0B0

1

γ
I
√
2γB⊤

0 Ψ0 = 2Ψ0(I −A0A
⊤
0 −B0B

⊤
0 )Ψ0 = 0.

For k = 1, . . . , L− 1 we take

Hk =

[
2Ψk−1Ak−1A

⊤
k−1Ψk−1 −2Ψk−1Ak−1B

⊤
k Ψk

−2ΨkBkA
⊤
k−1Ψk−1 2Ψk(I −AkA

⊤
k )Ψk

]
. (30)

If Ak−1 is zero, then it is trival to have Hk ⪰ 0. For nonzero Ak−1, we can verify that Hk ⪰ 0 since the Schur complement
to [Hk]11 shows

2Ψk(I −AkA
⊤
k )Ψk − 2ΨkBkA

⊤
k−1Ψk−1

(
2Ψk−1Ak−1A

⊤
k−1Ψk−1

)+
2Ψk−1Ak−1B

⊤
k Ψk

=2Ψk(I −AkA
⊤
k −BkB

⊤
k )Ψk + 2ΨkBk(I −A+

k−1Ak−1)B
⊤
k Ψk

=2ΨkBk(I −A+
k−1Ak−1)B

⊤
k Ψk ⪰ 0

where X+ denotes the Moore–Penrose inverse of the matrix X , and it satisfies I −X+X ⪰ 0.

For k = L we take

HL =

[
2ΨL−1AL−1A

⊤
L−1ΨL−1 −

√
2γAL−1B

⊤
LΨL−1

−
√
2γΨL−1BLA

⊤
L−1 γI

]
. (31)

Similarly, we can conclude HL ⪰ 0 using Schur complement

γI−
√
2γΨL−1BLA

⊤
L−1

(
2ΨL−1AL−1A

⊤
L−1ΨL−1

)+ √
2γAL−1B

⊤
LΨL−1 = γΨL−1BL(I−A+

L−1AL−1)B
⊤
LΨL−1 ⪰ 0.

We now show that Hk with k = 0, . . . L satisfy the chordal decomposition (28) holds since

[Hk]21 = −2ΨkBkA
⊤
k−1Ψk−1 = −Ψ2

k(2Ψ
−1
k BkA

⊤
k−1Ψk−1) = −ΛkWk,

[Hk]22 + [Hk+1]11 = 2Ψk(I −AkA
⊤
k )Ψk + 2ΨkAkA

⊤
k Ψk = 2Ψ2

k = 2Λk.

Finally, we conclude that H ⪰ 0 from (Zheng et al., 2021)[Theorem 2.1].

Necessary. For any Wk and Λk satisfying (19), we will find set of free variables dk, Xk, Yk such that (8) holds. We take
Ψk = Λ

1
2 which further leads to dk = diag(logΨk). By letting A−1 = I,Ψ−1 =

√
γ/2I and ΨL =

√
2/γI we then

construct Ak, Bk recursively via

Bk =
1

2
ΨkWkΨ

−1
k−1A

−⊤
k−1, Ak = chol(I −BkB

⊤
k )Qk (32)

where chol(·) denotes the Cholesky factorization, Qk is an arbitrary orthogonal matrix such that Ak does not have eigenvalue
of −1. If Ak−1 is non-invertible but non-zero, we replace A−⊤

k−1 with
(
A+

k−1

)⊤
. If Ak−1 = 0 (i.e. Wk = 0), we simply

reset Ak−1 = I . It is easy to verify that Ψk, Ak and Bk satisfy the model parameterization (8). Finally, we can construct
Xk, Yk using (37), which is well-defined as Ak does not have eigenvalue of −1.

D.4. Proof of Theorem 3.2

The proposed layer (10) can be rewritten as a compact network (17) with W = 0, Y =
√
2A⊤Ψ and U =

√
2Ψ−1B, i.e.,

v = Uhin + b, z = σ(v), hout = Y z.

From the model parameterization (6) we have AA⊤ +BB⊤ = I , which further implies

2Ψ2 − Y ⊤Y −Ψ2UU⊤Ψ2 = 2Ψ2 − 2ΨAA⊤Ψ− 2ΨBB⊤Ψ = 2Ψ(I −AA⊤ −BB⊤)Ψ = 0

15
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By applying Schur complement twice to the above equation we have I −U⊤Ψ2 0
−Ψ2U 2Ψ2 −Y ⊤

0 −Y I

 ⪰ 0.

Then, the 1-Lipschitzness of (10) is obtained by Theorem A.3.

D.5. Proof of Proposition 3.3

Sufficient. It is a direct corollary of Theorem 3.2 by taking the identity operator as the nonlinear activation.

Necessary. Here we give a constructive proof. That is, given a weight matrix W with ∥W∥ ≤ 1, we will find a (generally
non-unique) pair of (X,Y ) such that 2A⊤B = W with A,B given by (6).

We first construct A,B from W . Since it is obvious for W = 0, we consider the case with nonzero W . First, we take
a singular value decomposition (SVD) of W , i.e. W = UwΣwV

⊤
w where Uw is a q × q orthogonal matrix, Σw is an

q × p rectangular diagonal matrix with Σw,ii ≥ 0 non-increasing, Vw is a p× p orthogonal matrix. Then, we consider the
candidates for A and B as follows:

A = UΣaU
⊤
w , B = UΣbV

⊤
w (33)

where Σa is a diagonal matrix, Σb a rectangular diagonal matrix U ∈ Rq×q an orthogonal matrix. By substituting (33) into
the equalities AA⊤ +BB⊤ = Iq and W = 2A⊤B we have

Σ2
a +Σ2

b′ = Iq, 2ΣaΣb′ = Σw′ (34)

where Σb′ ,Σw′ ∈ Rq×q are obtained by either removing the extra columns of zeros on the right or adding extra rows of
zeros at the bottom to Σb and Σw, respectively. The solution to (34) is

Σa,ii =
1

2

(√
1 + Σw′,ii +

√
1− Σw′,ii

)
, Σb′,ii =

1

2

(√
1 + Σw′,ii −

√
1− Σw′,ii

)
(35)

where are well-defined as ∥W∥ ≤ 1. Now we can obtain Σb from Σb′ by removing extra rows of zeros at the bottom or
adding extra columns of zeros on the right. At last, we pick up any orthogonal matrix U such that A = UΣaU

⊤
w does not

have eigenvalue of −1.

The next step is to find a pair of (X,Y ) such that

A⊤ = (I + Z)−1(I − Z), B⊤ = −2Y (I + Z)−1, Z = X −X⊤ + Y ⊤Y. (36)

One solution to the above equation is

Z = (I −A⊤)(I +A⊤)−1, Y = −1

2
B⊤(I + Z), X =

1

2
tril(Z − Z⊤) (37)

where tril(W ) denotes the strictly lower triangle part of W . Note that the above solution is well-defined since A does not
has eigenvalue of −1.

D.6. Proof of Proposition C.1

From (29) we have

H0 =

[
γI −W⊤

0 Ψ2
0

−Ψ2
0W0 2Ψ0B0B

⊤
0 Ψ0

]
⪰ 0.
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Table 4. Model architectures for MNIST.

MLP Orthogonal Sandwich

Fc(784,256) OgFc(784,256) SwFc(784,190)
Fc(256,256) OgFc(256,256) SwFc(190,190)
Fc(256,128) OgFc(256,128) SwFc(190,128)
Lin(128,10) OgLin(128,10) SwLin(128,10)

Applying the Schur complement yields γI − 1/2W⊤
0 Ψ0(B0B

⊤
0 )+Ψ0W0 ⪰ 0, which implies ∥B+

0 Ψ0W0∥ ≤
√
2γ. From

(30) we obtain

Hk =

[
2Ψk−1Ak−1A

⊤
k−1Ψk−1 −W⊤

k Ψ2
k

−Ψ2
kWk 2ΨkBkB

⊤
k Ψk

]
⪰ 0

⇒Ψk−1Ak−1A
⊤
k−1Ψk−1 −

1

4
W⊤

k Ψk(BkB
⊤
k )+ΨkWk ⪰ 0

⇒I − 1

4
A+

k−1Ψ
−⊤
k−1W

⊤
k Ψk(BkB

⊤
k )+ΨkWkΨ

−1
k−1

(
A⊤

k−1

)+ ⪰ 0

⇒
∥∥∥∥12B+

k ΨkWkΨ
−1
k−1

(
A⊤

k−1

)+∥∥∥∥ ≤ 1.

Similarly, from (31) we have

HL =

[
2ΨL−1AL−1A

⊤
L−1ΨL−1 −W⊤

L

−WL γI

]
⪰ 0⇒

∥∥∥WLΨ
−1
L−1

(
A⊤

L−1

)+∥∥∥ ≤√
2γ.

The bound of Jacobian operator Jcf is then obtained by

∥Jcf∥ = ∥WLJL−1WL−1 · · · J0W0∥

=

∥∥∥∥∥12WLΨ
−1
L−1

(
A⊤

L−1

)+
(2A⊤

L−1JL−1BL−1)

1∏
k=L−1

(
1

2
B+

k ΨkWkΨ
−1
k−1

(
A⊤

k−1

)+)
(2A⊤

k−1Jk−1Bk−1)(B
+
0 Ψ0W0)

∥∥∥∥∥
≤
∥∥∥∥ 1√

2
B+

0 Ψ0W0

∥∥∥∥× L∏
k=1

∥∥∥∥12B⊤
k ΨkWkΨ

−1
k−1

(
A⊤

k−1

)+∥∥∥∥× ∥∥∥∥ 1√
2
WLΨ

−1
L−1

(
A⊤

L−1

)+∥∥∥∥ ≤ γ

where the first inequality follows as 2A⊤
k JkBk is the Clake Jacobian of a 1-Lipschitz layer (10), i.e. ∥2A⊤

k JkBk∥ ≤ 1.

E. Training details
For all experiments, we used a piecewise triangular learning rate (Coleman et al., 2017) with maximum rate of 0.01. We
use Adam (Kingma & Ba, 2014) and ReLU as our default optimizaer and activation, respectively. Because the Cayley
transform in (6) involves both linear and quadratic terms, we implemented the weight normalization method from (Winston
& Kolter, 2020). That is, we reparameterize X,Y in Z = X −X⊤ + Y ⊤Y by g X

∥X∥F
and h Y

∥Y ∥F
with learable scalars

g, h. We search for the empirical lower Lipschitz bound γ of a network fθ by a PGD-like method, i.e., updating the input
x and its deviation δx based on the gradient of ∥fθ(x + ∆x) − fθ(x)∥/∥∆x∥. As we are interested in the global lower
Lipschitz bound, we do not project x and x+∆x into any compact region. For image classification tasks, we applied data
augmentation used by (Araujo et al., 2023). All experiments were performed on an Nvidia A5000.

Toy example. For the curve fitting experiment, we take 300 and 200 samples (xi, yi) with xi ∼ U([−2, 2]) for training
and testing, respectively. We use batch size of 50 and Lipschitz bounds of 1, 5 and 10. All models for the toy example have
8 hidden layers. We choose width of 128, 128, 128 and 86 for AOL, orthogonal, SLL and sandwich layers, respectively, so
that each model size is about 130K. We use MSE loss and train models for 200 epochs.

Image classification. We trained small fully-connected model on MNIST and the KWLarge network from (Li et al., 2019)
on CIFAR-10. To make the different models have similar number of parameters in the same experiment, we slightly reduce
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Table 5. Model architectures for CIFAR-10/100 and Tiny-ImageNet. We use w = 1, 2, 4 to denote the small, medium and large models.
The default kernel size for all convolution is 3. For orthogonal and sandwich convolution, we use the emulated 2-stride from (Trockman &
Kolter, 2021) when s=2 is indicated. For CNN, s=2 refers to the standard 2-stride operation. Since the AOL layer does not support stride
operation, we add average pooling at the end to convolution layers. Here ncls denotes the number of classes in the dataset, e.g. 100 for
CIFAR-100 and 200 for Tiny-ImageNet.

CNN AOL Orthogonal Sandwich

Conv(3,32*w) AolConv(3,32*w) OgConv(3,32*w) SwConv(3,32*w)
Conv(32*w,32*w,s=2) AolConv(32*w,32*w) OgConv(32*w,32*w,s=2) SwConv(32*w,32*w,s=2)
Conv(32*w,64*w) AolConv(32*w,64*w) OgConv(32*w,64*w) SwConv(32*w,64*w)
Conv(64*w,64*w,s=2) AolConv(64*w,64*w) OgConv(64*w,64*w,s=2) SwConv(64*w,64*w,s=2)
Flatten AvgPool(4),Flatten Flatten Flatten
Fc(4096*w,640*w AolFc(4096*w,640*w) OgFc(4096*w,640*w) SwFc(4096*w,512*w)
Fc(640*w,512*w) AolFc(640*w,512*w) OgFc(640*w,512*w) SwFc(512*w,512*w)
Lin(512*w,ncls) AolLin(512*w,ncls) OgLin(512*w,ncls) SwLin(512*w,ncls)

Table 6. Sandwich models in the experiment of certified robustness. Here LLN stands for the Last Layer Normalization (Singla et al.,
2022) which can improve the certified robustness when the number of classes become large.

CIFAR-100 TinyImageNet

SwConv(3,64) SwConv(3,64)
SwConv(64,64,s=2) SwConv(64,64,s=2)
SwConv(64,128) SwConv(64,128)
SwConv(128,128,s=2) SwConv(128,128,s=2)
SwConv(128,256) SwConv(128,256)
SwConv(256,256,s=2) SwConv(256,256,s=2)
- SwConv(256,512)
- SwConv(512,512,s=2)
SwFc(1024,2048) SwFc(2048,2048)
SwFc(2048,2048) SwFc(2048,2048)
SwFc(2048,1024) SwFc(2048,1024)
LLN(1024,100) LLN(1024,200)

the hidden layer width of sandwich model in the MNIST experiment and increases width of the first fully-connected layer
of CNN and orthogonal models. The model architectures are reported in Table 4 - 5. We used the same loss function as
(Trockman & Kolter, 2021) for MNIST and CIFAR-10 datasets. The Lipschitz bounds γ are chosen to be 0.1, 0.5, 1.0
for MNIST and 1,10,100 for CIFAR-10. All models are trained with normalized input data for 100 epochs. The data
normalization layer increases the Lipschitz bound of the network to ≈ 4.1γ.

For the experiment of empirical robustness, model architectures with different sizes are reported in Table 5. The SLL model
with small, medium and large size can be found in (Araujo et al., 2023). We train models with different Lipschitz bounds of
{0.5, 1, 2, . . . , 16}. We found that γ = 2 for CIFAR-100 and γ = 1 for Tiny-ImageNet achieve the best robust accuracy for
the perturbation size of ϵ = 36/255. All models are trained with normalized input data for 100 epochs.

We also compare the certified robustness to the SLL model. Slightly different from the experimental setup for empirical
robustness comparison, we remove the data normalization and use the Last Layer Normalization (LLN) proposed by (Singla
et al., 2022) which can improve the certified accuracy when the number of classes becomes large. We set the Lipschitz
bound of sandwich and SLL models to 1. But the Lipschitz constant of the composited model could be larger than 1 due
to LLN Due to LLN. The certified accuracy is then normalized by the last layer (Singla et al., 2022). Also, we remove
the data normalization for better certified robustness. For all experiments on CIFAR-100 and Tiny-ImageNet, we use the
CrossEntropy loss as in (Prach & Lampert, 2022) with temperature of 0.25 and an offset value 3

√
2/2 .
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