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Abstract
In this work, we present a variety of novel
information-theoretic generalization bounds for
learning algorithms, from the supersample setting
of Steinke & Zakynthinou (2020)—the setting
of the “conditional mutual information” frame-
work. Our development exploits projecting the
loss pair (obtained from a training instance and
a testing instance) down to a single number
and correlating loss values with a Rademacher
sequence (and its shifted variants). The pre-
sented bounds include square-root bounds, fast-
rate bounds, including those based on variance
and sharpness, and bounds for interpolating algo-
rithms etc. We show theoretically or empirically
that these bounds are tighter than all information-
theoretic bounds known to date on the same su-
persample setting.

1. Introduction
Using information-theoretic bounds to analyze the gener-
alization properties of a learning algorithm has attracted
increasing attention since the seminal works of (Russo &
Zou, 2016; 2019; Xu & Raginsky, 2017). One major ad-
vantage of such bounds is that the information-theoretic
quantities, e.g., the mutual information (MI) between the
training sample and the trained parameter weights, are
both distribution-dependent and algorithm-dependent. This
makes them an ideal tool to characterize the generalization
properties of a learning algorithm, particularly when the tra-
ditional algorithm-independent learning-theoretic tools (e.g.,
VC-dimension (Vapnik, 1998) and Rademacher complexity
(Bartlett & Mendelson, 2002)) appear inadequate. For exam-
ple, Zhang et al. (2017; 2021) show that the high-capacity
deep neural networks can still generalize well, contradict-
ing the traditional wisdom in statistical learning theory that
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suggests complex models tend to overfit the training data
and perform poorly on unseen data (Vapnik, 1998). In con-
trast, the information-theoretic bounds have experimentally
demonstrated that they are capable of tracking the general-
ization behaviour of modern neural networks (Negrea et al.,
2019; Wang et al., 2021; Harutyunyan et al., 2021; Wang &
Mao, 2022a;b; Hellström & Durisi, 2022a).

The original information-theoretic bound of Xu & Ragin-
sky (2017) has been extended or improved in many dif-
ferent ways, such as the chaining method (Asadi et al.,
2018; Hafez-Kolahi et al., 2020; Zhou et al., 2022b; Clerico
et al., 2022), the random subset or individual technique (Ne-
grea et al., 2019; Bu et al., 2019; Haghifam et al., 2020;
Rodríguez-Gálvez et al., 2021; Zhou et al., 2022a) and so
on. Remarkably, Steinke & Zakynthinou (2020) has devel-
oped generalization bounds based on a conditional mutual
information (CMI) measure obtained for a “supersample”
setting. Specifically, the supersample is an n × 2 matrix
of data instances. In each row, one instance is selected at
random for training and the other is masked out for testing.
The authors then show that the CMI of the mask variables
and the learned weights conditioned on the supersample
can be used to upper-bound the generalization error. Al-
though better behaving than the unconditional weight-based
MI bounds (e.g., having boundedness guaranty), the CMI
bounds can be difficult to measure for high-dimensional
weights, which limits their application. To overcome such
difficulty, functional CMI (f -CMI) bounds are proposed
by Harutyunyan et al. (2021), where the weight variable in
CMI is replaced by the predictions for the supersample. In
this case, each prediction pair is a two-dimensional discrete
random variable, making the CMI easier to measure and
also a tighter bound. More recently, Hellström & Durisi
(2022a) uses loss pairs to replace the predictions in f -CMI
and obtain even tighter CMI bounds, known as evaluated
CMI (e-CMI) bounds. In fact, the earliest version of e-CMI
bound appeared in Steinke & Zakynthinou (2020). The
notion was also exploited in later works (Haghifam et al.,
2021; 2022; 2023). Note that e-CMI still measures the de-
pendence between an one-dimensional variable (mask) and a
two-dimensional variable (loss pair). In this work, we show
that it is possible to further tighten the CMI bounds, using
MI terms involving only two one-dimensional variables.

Our development is restricted to the supersample setting
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of Steinke & Zakynthinou (2020), on which we establish
novel CMI/MI bounds which are all easy to measure and
tighter than the existing bounds in the same setting. Specifi-
cally, 1) we first show that the loss pair used in e-CMI can
be replaced by the loss difference, giving rise to a disinte-
grated CMI bound (Theorem 3.1) and an unconditional MI
bound (Theorem 3.2). Both are tighter than the previous
square-root CMI bounds, all within the context of the same
supersample construction. In particular, the obtained uncon-
ditional MI term can be interpreted as the achievable rate
over a memoryless channel in communications. We then
show that in the interpolating regime (i.e., training error be-
ing zero) and under zero-one loss, the generalization error of
the learning algorithm can be precisely expressed by the av-
eraged communication rate (Theorem 3.3). In other words,
we obtain the “tightest bound” of generalization error in this
setting. We also establish a novel chained MI bound (The-
orem 3.4) that is particularly advantageous for continuous
and unbounded losses. 2) Following a symmetric argument
for Rademacher process, similar to Zhivotovskiy & Han-
neke (2018), we explicitly exploit the symmetric structure
of expected generalization error by correlating losses with a
Rademacher sequence and obtain a novel MI bound involv-
ing single losses (Theorem 4.1). Using the communication
perspective, we show that the MI quantities in the bound
are upper-bounded by the entropy function evaluated at
half of the testing error (Theorem 4.2). 3) By correlating
losses with a shifted Rademacher sequence, we give novel
fast-rate MI bounds of the weighted generalization error
(Theorem 4.3). 4) In order to enhance the fast-rate bound
in the non-zero training error regime, we extend our anal-
ysis by deriving two additional bounds: a variance-based
MI bound (Theorem 4.4) and a sharpness-based MI bound
(Theorem 4.5). These novel bounds also incorporate sym-
metric arguments, as shown in Lemma 4.4 and Lemma 4.6,
respectively. 5) Experimental results show that our bounds
nicely track the generalization dynamics of both linear mod-
els and non-linear neural networks, and our fast-rate bounds
are tighter than the binary KL bound proposed in Hellström
& Durisi (2022a), the tightest information-theoretic bound
known to date for small, non-zero training error. 6) As a
by-product, we also develop a novel Wasserstein distance
based bound (Theorem 3.5).

Proofs, additional analysis and experimental results are in-
cluded in Appendix.

2. Preliminaries
2.1. Probability and Information Theory Notation

Unless otherwise noted, a random variable will be denoted
by a capitalized letter, and its realization by the correspond-
ing lower-case letter. Let PX denote the distribution of a
random variable X and let PX|Y be the conditional distri-

bution of X conditioned on Y , which, upon conditioning
on a specific realization, is denoted by PX|Y=y or simply
PX|y . Similarly, EX is the expectation taken over X ∼ PX

and EX|Y=y (or EX|y)is the expectation taken over X ∼
PX|Y=y. Let H(·) be the entropy and let DKL(P ||Q) de-
note the KL divergence of P with respect to Q. Let I(X;Y )
be the mutual information (MI) between X and Y , and
I(X;Y |Z) the conditional mutual information between X
and Y conditioned on Z. Following (Negrea et al., 2019),
we refer to Iz(X;Y ) ≜ DKL(PX,Y |Z=z||PX|Z=zPY |Z=z)
as the disintegrated mutual information, and note that
I(X;Y |Z) = EZ

[
IZ(X;Y )

]
. Also, we use W(·, ·) to

denote the Wasserstein distance (formal definition is given
in Appendix). Throughout the paper, logarithm takes base
e, making the unit of mutual information nat.

2.2. Generalization Error

We consider the supervised learning setting. Let Z = X×Y
be the domain of the instances, where X and Y are input
and label spaces respectively. A model of interest prescribes
a family F of predictors, F ⊂ YX , where each f ∈ F is
parameterized by a vector w in some space W . We may
write f as fw as needed. Let µ be the distribution of the
instance and let S = {Zi}ni=1

i.i.d∼ µn be the training sample.
There is a learning algorithm A : Zn → W , which takes the
training sample S as the input and outputs a hypothesis W ∈
W , giving rise to a predictor fW ∈ F that predicts label Y
for input X . Note that the algorithm A is characterized by
a conditional distribution PW |S . Suppose that the quality
of the output hypothesis W is evaluated by a loss function
ℓ : W × Z → R+

0 . Then for a given w, we define the
population risk Lµ(w) ≜ EZ′ [ℓ(w,Z ′)], where Z ′ ∼ µ is
a testing instance. The quantity Lµ = EW [Lµ(W )] is then
the expected population risk. In practice, we cannot access
the data distribution µ, so we usually use the empirical
risk as a proxy of the population risk, which is defined
as LS(w) ≜ 1

n

∑n
i=1 ℓ(w,Zi) for a fixed w. Similarly,

Ln = EW,S [LS(W )] is the expected empirical risk, where
the expectation is taken over PW,S = µn ⊗ PW |S . Thus,
Err ≜ Lµ − Ln is the expected generalization error.

2.3. Supersample Setting

The CMI framework for bounding generalization errors
is first introduced in Steinke & Zakynthinou (2020). Let
Z̃ ∈ Zn×2 be an n × 2 matrix, serving as “supersam-
ple”, where every entry is drawn i.i.d. from µ. For no-
tational convenience, we assume that the columns of Z̃
are indexed by {0, 1} instead of by {1, 2}. We further
denote the ith row of Z̃ as Z̃i with entries (Z̃i,0, Z̃i,1).
Let U = (U1, U2, . . . , Un)

T ∼ Unif({0, 1}n), indepen-
dent of Z̃, be used to select a training set S from Z̃:
Ui = 0 dictates that Z̃i,0 in Z̃ be included in the train-
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ing set S, and Z̃i,1 be used for testing; Ui=1 dictates
the opposite. Then, the constructed training sample S is
equivalent to Z̃U = {Z̃i,Ui}ni=1. Let U i = 1 − Ui, then
the testing sample is Z̃U = {Z̃i,Ui

}ni=1. In addition, let

Li,0 ≜ EW,Z̃i,0

[
ℓ(A(Z̃U ), Z̃i,0)

]
and Li,1 defined simi-

larly. We use Li = (Li,0, Li,1) to denote the loss pair in the
ith row and ∆Li = Li,1 − Li,0 be the difference in the pair.
To avoid clutter, we might use the superscripts + and − to
respectively replace the subscripts 0 and 1 in our notations,
e.g., Z̃+

i = Z̃i,0, Z̃−
i = Z̃i,1, L+

i = Li,0 and L−
i = Li,1.

3. Generalization Bounds via Loss Difference
3.1. Loss-Difference CMI Bound

Using the loss difference, we first present the following
square-root CMI bound.

Theorem 3.1. Assume that the loss is bounded between
[0, 1], we have

|Err| ≤ 1

n

n∑
i=1

EZ̃

√
2IZ̃(∆Li;Ui) ≤

1

n

n∑
i=1

√
2I(∆Li;Ui|Z̃).

Noting the Markov chain U −W − fW (Z̃i) − Li −∆Li

(conditioned on Z̃) and due to the data-processing inequality
(DPI), this “loss-difference CMI” (or “ld-CMI”) bound in
Theorem 3.1 (the second bound) is tighter than the bound in
the previous works (Steinke & Zakynthinou, 2020; Haghi-
fam et al., 2020; Harutyunyan et al., 2021; Hellström &
Durisi, 2022a), namely, I(∆Li;Ui|Z̃)︸ ︷︷ ︸

ld−CMI

≤ I(Li;Ui|Z̃)︸ ︷︷ ︸
e−CMI

≤

I(fW (Z̃i);Ui|Z̃)︸ ︷︷ ︸
f−CMI

≤ I(W ;Ui|Z̃)︸ ︷︷ ︸
CMI

. It is remarkable that the

ld-CMI bound can be significantly tighter. To see this, we
re-express the loss function ℓ as a function on Y2 = Y × Y ,
where l(y, y′) is the loss value of the predicted label y
with respect to true label y′. We say that two elements
(y1, y

′
1) and (y2, y

′
2) in Y2 are loss-equivalent and write

(y1, y
′
1) ≡ℓ (y2, y

′
2) if ℓ(y1, y′1) = ℓ(y2, y

′
2). It is straight-

forward to verify that ≡ℓ is an equivalence relation on Y2.
Let L denote the image of Y2 under ℓ. The quotient space
Y2/ ≡ℓ, or the set of equivalence classes modulo ≡ℓ, has
a one-to-one correspondence with L, under which we may
identify Y2/ ≡ℓ with L. Furthermore, we say that two
loss pairs (ℓA, ℓ

′
A) and (ℓB , ℓ

′
B) in L2 = L × L are loss-

difference-equivalent and write (ℓA, ℓ
′
A) ≡∆ (ℓB , ℓ

′
B) if

ℓA−ℓ′A = ℓB−ℓ′B . Then ≡∆ is likewise an equivalence rela-
tion on L2, which induces the quotient space L2/ ≡∆. Note
that fW (Z̃i) is a random variable on Y4 = Y2×Y2 whereas
∆Li is a essentially a random variable on L2/ ≡∆, which
can be identified with

(
Y2/ ≡ℓ

)2
/ ≡∆ under the aforemen-

tioned one-to-one correspondence. There can be a signifi-

cant reduction of space size from Y4 to
(
Y2/ ≡ℓ

)2
/ ≡∆

when Y or L is large (assuming they are finite, to fix ideas).
Thus, ∆Li reveals much less information about Ui than
fw(Z̃i) does, making the term I(∆Li;Ui|Z̃) significantly
smaller than I(fW (Z̃i);Ui|Z̃) and suggesting that the ld-
CMI bound can be much tighter than the f -CMI bound. A
similar argument can be made comparing the ld-CMI and
the e-CMI bounds.

It is noteworthy that the loss-difference CMI bound is easier
to compute than the f -CMI and e-CMI bounds, since ∆Li

is a scalar. Interestingly, when regarding ∆Li as a (scaled)
one-dimensional projection of Li on a particular direction,
the term I(∆Li;Ui|Z̃) shares some similarity with the no-
tion of Sliced Mutual Information (SMI) recently proposed
in (Goldfeld & Greenewald, 2021; Goldfeld et al., 2022);
the difference is that SMI requires averaging over a random
direction of projection.

0

1

1
1 − αi − ϵi

ϵi
0

αi

αi −1
1 − αi − ϵi

ϵi

0

1

0
1 − pi

qi

1
1 − qi

pi

Figure 1. Left: channel from Ui to ∆Li. Right: channel from Ui

to L+
i . Zero-one loss assumed.

3.2. Loss-Difference MI Bound

Under the setting of supersample as above, we can also
obtain a generalization bound based on the loss-difference
MI without conditioning on the supersample.
Theorem 3.2. Assume that ℓ(·, ·) ∈ [0, 1], then

|Err| ≤ 1

n

n∑
i=1

√
2I(∆Li;Ui).

By the independence of Ui and Z̃, I(∆Li;Ui) ≤
I(∆Li;Ui) + I(Ui; Z̃|∆Li) = I(∆Li;Ui|Z̃). Then the
bound in Theorem 3.2 is tighter than ld-CMI bound in Theo-
rem 3.1, although not directly comparable to the first bound
in Theorem 3.1.

It is interesting to relate the MI I(∆Li;Ui) to a communica-
tion setting where P∆Li|Ui

specifies a memoryless channel
with input Ui and output ∆Li. Then I(∆Li;Ui) is the rate
of reliable communication over this channel achievable with
the input distribution PUi

(which is Bern( 12 ) by the con-
struction of U ) (Shannon, 1948). Consider the special case
where ℓ(·, ·) is the zero-one loss, i.e., ℓ(w, z) = 1fw(x) ̸=y.
In this case, ∆Li ∈ {−1, 0, 1}, and the channel is shown
in Figure 1 (left), in which ϵi and αi are transition prob-
abilities as shown on the respective transition edges. In
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particular, recalling ∆Li = L−
i − L+

i , we see that αi is
the probability that in Z̃i the instance selected from training
has the same loss value as that selected for testing, and that
ϵi is the probability that the training instance in Z̃i has a
higher loss value than the testing instance. It follows that
any interpolating algorithm, namely, one that achieves zero
training error must have ϵi = 0 for each i. The following
theorem can then be proved.
Theorem 3.3. Under zero-one loss and for any interpolat-
ing algorithm A, I(∆Li;Ui) = (1− αi) ln 2 nats for each
i, and |Err| = Lµ =

∑n
i=1

I(∆Li;Ui)
n ln 2 .

In this case, the generalization error is exactly determined
by the communication rate over the channel in Figure 1 (left)
averaged over all such channels, making Theorem 3.3 the
obviously the “tightest bound” of generalization error in the
“interpolating regime”. It is of course also tighter than the
interpolating bound in Hellström & Durisi (2022a), which
may be alternatively seen from I(∆Li;Ui) ≤ I(Li;Ui|Z̃).
Note that Haghifam et al. (2022) also gives a MI quantity
that can determine the generalization error in the interpo-
lating case, although their leave-one-out MI is between an
n+1-dimensional random variable and an one-dimensional
random variable, and its corresponding bound is established
without exploiting the communication perspective.

Furthermore, it is possible to establish further tightened
loss-difference MI bounds for more general loss functions
than those required in Theorem 3.2. Specifically, the loss
function can be unbounded and continuous, as presented in
next theorem, where we apply the chaining technique (Asadi
et al., 2018; Hafez-Kolahi et al., 2020; Zhou et al., 2022b;
Clerico et al., 2022) and the obtained bound consists of MI
terms between Ui and the successively quantized versions
of ∆Li. To that end, let Erri(∆ℓi) ≜ (−1)Ui∆ℓi and let
Γ ⊆ R be the range of ∆ℓ. Then {Erri(∆ℓi)}∆ℓi∈Γ is a
random process1, applying the stochastic chaining method
(Zhou et al., 2022b) gives the following chained MI bound.
Theorem 3.4. For each i ∈ [n], we assume {∆Li,k}∞k=k0

is a stochastic chain1 of ({Erri(∆ℓi)}∆ℓi∈Γ,∆Li), then

Err ≤ 1

n

n∑
i=1

∞∑
k=k0

√
2E [|∆Li,k −∆Li,k−1|2]I(∆Li,k;Ui),

where ∆Li,k is the kth level of quantization of ∆Li, the
RHS expectation is taken over (∆Li,k,∆Li,k−1).

Notice that the bound is expressed as MI terms each involv-
ing Ui and ∆Li,k, both being discrete random variables.
This has not arose in the previous chained weight-based
MI bounds where they either contain the continuous ran-
dom variable S (Asadi et al., 2018; Zhou et al., 2022b;

1Some prerequisite definitions of the chaining technique (such
as stochastic chain, separable process and sub-Gaussian process)
are give in the Appendix A.

Clerico et al., 2022) or are conditioned on the continuous
random variable Z̃ (Hafez-Kolahi et al., 2020). Addition-
ally, by the master definition of MI (Cover & Thomas, 2006,
Eq.(8.54)), we know that I(∆Li;Ui) = supk I(∆Li,k;Ui),
and I(∆Li,k;Ui) → I(∆Li;Ui) when k → ∞.

For bounded loss, the diameter diam(Γ) is finite, we can use
hierarchical partitions as in Asadi et al. (2018) to construct
a deterministic sequence of {∆Li,k}∞k=k0

. This is deferred
to Corollary B.1 in Appendix.

3.3. Loss-Difference Bound Beyond CMI and MI

It is possible to develop generalization bounds based on the
loss differences in the supersample using distances or diver-
gences beyond the information-theoretic measures. Here
we present such a bound based on Wasserstein distance. As
investigated in the previous literature (Rodríguez Gálvez
et al., 2021), Wasserstein distance usually gives a tighter
bounds than the mutual information.

Theorem 3.5. Assume that ℓ(·, ·) ∈ [0, 1], then

|Err| ≤ 1

n

n∑
i=1

EUi

[
W(P∆Li|Ui

, P∆Li)
]
.

Unlike the results in Rodríguez Gálvez et al. (2021), here
we do not require the loss to be Lipschitz continuous.

4. Generalization Bounds via Correlating with
Rademacher Sequence

We have so far obtained tighter square-root MI bounds based
on the information measures (and their variants) between
the loss difference ∆Li and the mask variable Ui. However,
the loss difference may not be used to obtain the fast-rate
generalization bound where the square root function is re-
moved (Grunwald et al., 2021; Hellström & Durisi, 2021;
2022a). This is because deriving the fast-rate bound usu-
ally relies on a weighted generalization error, for which one
loses the center-symmetric structure of the standard gener-
alization error. Specifically, knowing ∆Li and Ui is suffi-
cient to determine the generalization error at ith position by
(−1)Ui∆Li. However, for the weighted generalization error
at ith row defined by Ei

C1
= Li,Ui

− C1Li,Ui
(for some

constant C1 > 0), having Ui and a weighted loss difference
∆C1Li = L−

i − C1L
+
i , does not allow its recovering from

(−1)Ui∆C1
Li since L+

i −C1L
−
i ̸= C1L

+
i −L−

i in general.
Indeed, knowing both L−

i −C1L
+
i and L+

i −C1L
−
i requires

knowing Li. Then in order to obtain fast-rate bounds, we
need to give up the loss difference and return to the original
e-CMI as in Hellström & Durisi (2022a).

Therefore, if we still want to use a MI between two one-
dimensional random variables to bound the error, we need
to find another trick. This motivates us to use a Radamecher
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viewpoint to derive the CMI bounds. Before we handle the
fast-rate CMI bound for the weighted generalization error,
we again consider the standard generalization error.

4.1. Single-Loss MI Bounds

Although the CMI setting, particularly its construction of the
“ghost sample”, is conceptually related to the Rademacher
complexity (Bartlett & Mendelson, 2002), the information-
theoretic generalization bounds in previous literature do
not explicitly exploit this connection. Fortunately, both
information-theoretic bounds (Negrea et al., 2019; Hell-
ström & Durisi, 2020; 2021; 2022a) and the Rademacher
viewpoint (Kakade et al., 2008; Yang et al., 2019) are shown
connected to the PAC-Bayes bounds, we thus derive a vari-
ant of e-CMI bound by invoking a similar symmetric ar-
gument with (Zhivotovskiy & Hanneke, 2018; Yang et al.,
2019).

We first note the following lemma.

Lemma 4.1. The expected generalization error Err =
2
n

∑n
i=1 EL+

i ,εi

[
εiL

+
i

]
, where εi = (−1)Ui .

Note that ε1:n = {εi}ni=1 is a sequence of Rademacher
random variables, and the lemma suggests that
Err = 2EZ̃+

1:n
Eε1:nEL+

1:n|ε1:n,Z̃
+
1:n

[
1
n

∑n
i=1 εiL

+
i

]
,

where Z̃+
1:n = {Z̃+

i }ni=1 and L+
1:n = {L+

i }ni=1. Then,
recall that the Rademacher complexity is defined as
Rn(W) ≜ ESEε1:n

[
supw∈W

1
n

∑n
i=1 εiℓ(w,Zi)

]
(Bartlett & Mendelson, 2002). Notably, the expected
generalization error can be viewed, up to a scale factor 2, as
an “average” version of the Rademacher complexity. While
Err considers the average correlation between the loss
sequence and the Rademacher sequence, the Rademacher
complexity measures the worst such correlation. Thus,
Err ≤ 2Rn(W).

Based on Lemma 4.1, we have the following bound.

Theorem 4.1. Assume ℓ(·) ∈ [0, 1], we have

|Err| ≤ 2

n

n∑
i=1

√
2I(L+

i ;Ui) ≤
2

n

n∑
i=1

√
2I(fW (X+

i );Ui|Z̃).

The variable Ui in the above MI/CMI terms can obviously
be replaced by εi. Thus the theorem can be interpreted as
using a different notion of “average correlation”, namely
mutual information, between losses (or predictions) and
Rademacher noises to bound the original notion of average
correlation (as stated in Lemma 4.1 and discussed earlier).

This bound may not be directly comparable to others due
to the undesired constant of 2 outside of the square root
function in the bound. We will soon see that I(L+

i ;Ui)
based bound will be more useful when the square root is
removed.

For the zero-one loss, the dependence between Ui and L+
i

is characterized by the communication channel given in
Figure 1 (right). In this case, Ui = 0 indicates Z̃+

i is
selected for training, then pi is the error rate on this training
instance. Similarly, when Ui = 1, Z̃+

i is used for testing,
then 1 − qi is the error rate on this testing instance. In
practice, we usually have pi < 1 − pi since L+

i is more
likely to be zero when Z̃+

i is a training instance, and we
may also have pi < 1− qi since L+

i is more likely to be one
when Z̃+

i is a testing instance compared with the case when
Z̃+
i is used in training. When pi = 0, this channel reduces to

a Z-channel (Cover & Thomas, 2006). This corresponds to
an interpolating algorithm, for which we have the following
theorem.

Theorem 4.2. For zero-one loss and any interpolating al-
gorithm, we have 1

n

∑n
i=1 I(L

+
i ;Ui) ≤ H(

Lµ

2 ).

When the loss is not discrete, we can again obtain a chained
MI bound by quantizing the continuous random variable
L+
i , which is given in Theorem C.1 in Appendix C.4.

4.2. Fast-Rate MI Bound

We are now in a position to discuss the weighted general-
ization error, ErrC1

≜ Lµ − (1 + C1)Ln, where C1 is a
prescribed constant. This notion is important for obtaining
the fast-rate PAC-Bayes bounds (Catoni, 2007).

To bound this weighted generalization error, similar to
Lemma 4.1, we have the following symmetry argument.

Lemma 4.2. The weighted generalization error can be
rewritten as

ErrC1 =
2 + C1

n

n∑
i=1

EL+
i ,ε̃i

[
ε̃iL

+
i

]
,

where ε̃i = (−1)Ui − C1

C1+2 is a shifted Rademacher vari-
able with mean − C1

C1+2 .

The relationship between Err and Rademacher complex-
ity also likewise extends to that between ErrC1

and
“shifted Rademacher complexity" defined as R̃n(W) ≜
ESEε̃1:n

[
supw∈W

1
n

∑n
i=1 ε̃iℓ(w,Zi)

]
, namely ErrC1

≤
2R̃n(W).

Then, we are ready to present the following bounds.

Theorem 4.3. Let ℓ(·, ·) ∈ [0, 1]. There exist C1, C2 > 0
such that

Lµ ≤(1 + C1)Ln +

n∑
i=1

I(L+
i ;Ui)

C2n
, (1)

Lµ ≤Ln +

n∑
i=1

4I(L+
i ;Ui)

n
+ 4

√√√√ n∑
i=1

LnI(L
+
i ;Ui)

n
. (2)
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Furthermore, if A is an interpolating algorithm, we have

Lµ ≤
n∑

i=1

2I(L+
i ;Ui)

n ln 2
. (3)

Notice that Eq. (2) does not depend on C1, C2, as it is
obtained via minimizing the bound in Eq (1) over a region
of (C1, C2) in which Eq (1) hold.

Comparing Eq. (3) with the interpolating bound in Hellström
& Durisi (2022a, Eq. (12)), the main difference is that their
bounds2 are based on I(L+

i , L
−
i ;Ui), instead of 2I(L+

i ;Ui).
This difference could be characterized by the interac-
tion information (Yeung, 1991), namely I(L+

i ;Ui;L
−
i ) =

I(L+
i ;Ui) − I(L+

i ;Ui|L−
i ) = 2I(L+

i ;Ui) − I(Li;Ui)
(where the second equality is by the chain rule of MI),
and the value I(L+

i ;L
−
i ;Ui) could be positive, negative

and zero. Hence, the interpolating bound could be further
improved as below

Lµ ≤
n∑

i=1

min{2I(L+
i ;Ui), I(Li;Ui)}
n ln 2

. (4)

This bound is strictly non-vacuous since the RHS of Eq. (2)
is upper-bounded by

∑n
i=1 H(Ui)

n ln 2 = 1. Note that the “tight-
est bound” of the interpolating algorithm is already obtained
in Theorem 3.3.

Previous works (Steinke & Zakynthinou, 2020; Hellström
& Durisi, 2022a) suggest that the fast-rate bounds for the
weighted generalization error are typically useful when the
empirical risk is small or even zero, which may restrict their
applications. In the sequel, we introduce two new types of
MI bound that can further extend Eq. (1) in Theorem 4.3.

4.3. Variance Based MI Bound

Inspired by the above Rademacher perspective, we first
present a new bound that depends on the MI term and a
notion of loss variance, defined below.

Definition 4.1 (γ-Variance). For any γ ∈ (0, 1), γ-variance
for a learning algorithm is defined as

V (γ) ≜ EW,S

[
1

n

n∑
i=1

(ℓ(W,Zi)− (1 + γ)LS(W ))
2

]
.

By definition, γ-variance also depends on the data distribu-
tion. In the zero-one loss case, it can be characterized by
the following lemma.

Lemma 4.3. Under the zero-one loss assumption, we have
V (γ) = Ln − (1− γ2)EW,S

[
L2
S(W )

]
.

2Note that Hellström & Durisi (2022a) uses I(L+
i , L

−
i ;Ui|Z̃)

but this CMI term can be strengthened to the unconditional MI by
using the same development in this paper.

Loss variances, of any kind, have not appeared in the
information-theoretic bounds developed to date. Such a no-
tion however does arise in the PAC-Bayes literature, where
such an idea traces back to (Seldin et al., 2012; Tolstikhin &
Seldin, 2013). Different from these works, here we utilize
an expected empirical variance, and the distribution of W in
this case is generated by the learning algorithm rather than
the posterior distribution used for prediction in PAC-Bayes.

The gap between Err and V (γ) also has a “symmetry
lemma” (similar to Lemma 4.2) correlating to the shifted
Rademacher sequence.

Lemma 4.4. For any C1 > 0, we have

Err− C1V (γ) ≤ 2 + C1γ
2

n

n∑
i=1

EL+
i ,ε̃i

[
ε̃iL

+
i

]
,

where ε̃i = εi− C1γ
2

C1γ2+2 is the shifted Rademacher variable

with mean − C1γ
2

C1γ2+2 .

Theorem 4.4. Assume ℓ(·, ·) ∈ {0, 1}, γ ∈ (0, 1). Then,
there exist C1, C2 > 0 such that

Err ≤C1V (γ) +

n∑
i=1

I(L+
i ;Ui)

nC2
. (5)

Notably, the interpolating setting is a sufficient but not neces-
sary condition for the zero γ-variance, that is, Ln = 0 makes
V (γ) = 0, but V (γ) = 0 does not indicate that Ln = 0. In
addition, by Lemma 4.3, Eq. (5) can be rewritten as Lµ ≤
(1+C1)Ln−C1(1−γ2)EW,S

[
L2
S(W )

]
+
∑n

i=1
I(L+

i ;Ui)

C2n
so for the fixed C1 and C2, the bound of Eq. (5) is tighter
than the bound of Eq. (1) with the gap being at least
C1(1− γ2)EW,S

[
L2
S(W )

]
.

4.4. Sharpness Based MI Bound

The nice generalization property of deep neural networks is
often credited to the “flat minima” (Jastrzębski et al., 2017)
of loss landscapes. Recently, Neu et al. (2021) and Wang &
Mao (2022a) have proved that the generalization error can
be upper-bounded by a MI based term plus a sharpness (or
flatness) related term. Following the similar development in
the previous section, we are able to obtain a bound that also
depends on a MI term and a sharpness term, where we use a
completely different analysis with (Neu et al., 2021; Wang
& Mao, 2022a).

We first define a notion of sharpness.

Definition 4.2 (λ-Sharpness). For any λ ∈ (0, 1), the “λ-
sharpness” at position i of the training set is defined as

Fi(λ) ≜ EW,Zi

[
ℓ(W,Zi)− (1 + λ)EW |Zi

ℓ(W,Zi)
]2
.
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This λ-sharpness can be regarded as an expected version of
the “flatness” used in Yang et al. (2019) with W ∼ PW |Zi

instead of some posterior distribution of W .

Lemma 4.5. Assume ℓ(·) ∈ {0, 1}, we have Fi(λ) =

EW,Zi
[ℓ(W,Zi)]− (1− λ2)EZi

[
E2
W |Zi

ℓ(W,Zi)
]
.

Let F (λ) = 1
n

∑n
i=1 Fi(λ). Similar to Lemma 4.1,

Lemma 4.2 and Lemma 4.4, we have the following symmet-
ric argument.

Lemma 4.6. For any C1 > 0, we have

Err−C1F (λ) =

C1 + 2

n

n∑
i=1

EL+
i ,Ui

[
ε̃iL

+
i − C1(1− λ2)

C1 + 2
ε̂ih(Ui)

]
,

where ε̃i = εi − C1

C1+2 and ε̂i = εi − 1
are the shifted Rademacher variables, and h(Ui) =

EZ̃+
i |Ui

[
E2
L+

i |Z̃+
i ,Ui

L+
i

]
.

We are then ready to present the following bound.

Theorem 4.5. Assume ℓ(·, ·) ∈ {0, 1}, λ ∈ (0, 1). Then,
there exist C1, C2 > 0 such that

Err ≤C1F (λ) +

n∑
i=1

I(L+
i ;Ui)

C2n
. (6)

Similar to the variance based bound, zero λ-sharpness is a
weaker condition than the interpolating assumption. In par-
ticular, Eq. (6) could be tighter than Eq. (1) in Theorem 4.3
when the empirical risk is non-zero. Specifically, Eq. (6)
can be rewritten as Lµ ≤ (1 + C1)Ln − C1(1 − λ2)L2

n +∑n
i=1

I(L+
i ;Ui)

C2n
by Lemma 4.5 and Jensen’s inequality. If

C1, C2 are fixed, then the sharpness based bound is always
tighter than Eq. (1) and the gap is at least C1(1− λ2)L2

n.

To conclude this section, we give a bound that combines the
variance and the sharpness.

Corollary 4.1. Assume ℓ(·, ·) ∈ {0, 1} and γ, λ ∈ (0, 1),
then there exist C1, C2 > 0 such that

Err ≤ C1 min{V (γ), F (λ)}+
n∑

i=1

I(L+
i ;Ui)

nC2
.

We remark that if A satisfies any of the following: (i) Ln →
0; (ii)V (γ) → 0 for some γ ∈ (0, 1); (iii)F (λ) → 0 for

some λ ∈ (0, 1), we all have Err ≤
∑n

i=1
2I(L+

i ;Ui)

n ln 2 .

5. Numerical Results
In this section, we empirically compare some CMI and MI
bounds discussed in our paper. Our first experiment is based

on a synthetic Gaussian dataset, where a simple linear clas-
sifier (with a softmax output layer) will be trained. The
second experiment follows the same deep learning scenario
setting with (Harutyunyan et al., 2021; Hellström & Durisi,
2022a), where we will train a 4-layer CNN on MNIST (Le-
Cun et al., 2010) and fine-tune a ResNet-50 (He et al., 2016)
(pretrained on ImageNet (Deng et al., 2009)) on CIFAR10
(Krizhevsky, 2009). In all of these experiments, we let the
loss be the zero-one loss, namely ℓ(w, z) = 1fw(x) ̸=y, and
we apply the empirical risk minimization (ERM) to find
the hypothesis, namely w = argminw∈W LS(w). Since
such loss is not differentiable, to enable the gradient based
optimization methods such as SGD, we hereby use the cross-
entropy loss as a surrogate classification loss during training.
Notice that Err is still defined with respect to the zero-one
loss in our experiments.

Under these settings, we will mainly compare the disinte-
grated ld-CMI bound in the first inequality of Theorem 3.1
(Disint.), the unconditional MI bound in Theorem 3.2 (Un-
condi.), the weighted generalization error bound in Eq. (2)
of Theorem 4.3 (Weighted), the variance bound in Theo-
rem 4.4 (Variance) and the sharpness bound in Theorem 4.5
(Sharpness). Besides, we will include the binary KL bound
in Hellström & Durisi (2022a) as a baseline, which is, to
the best of our knowledge, the tightest fast-rate CMI bound
in the literature when Ln is close (but not equal) to zero.
In addition, we note that the difference between the vari-
ance bound and the sharpness bound is negligible in the
current scale of the figures, so for each figure we only re-
port one of them. The comparison between the variance
bound and the sharpness bound, and more comparison of
other bounds mentioned in this paper (such as interpolating
bounds and single-loss based square-root bounds) are given
in Appendix E.

5.1. Linear Classifier

We will first use a simple linear classifier to carry out the
Gaussian data classification task (see Appendix E.1 for more
details of data generation and training). There are at least
two major benefits of using such a synthetic dataset. On
the one hand, the ground-truth distribution µ is known so
we can draw unlimited supersamples, allowing repeatition
of experiments so as to obtain an accurate estimate of the
desired quantity (e.g., for each n, we repeat the experiment
5000 times, each with a random (Z̃, U) and report the aver-
age). On the other hand, the separability of different classes
is adjustable, allowing for a control of the task difficulty.
Specifically, we will consider both the zero training loss
case (i.e. a separable µ) and the high training loss case (i.e.
a non-separable µ).

In the binary classification tasks (i.e. |Y| = 2), the eval-
uations of Err and the bounds are given in Figure 2a and
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20 40 60 80
n

0.0

0.2

0.4

0.6

0.8

Er
ro

r

Err
Uncondi.
Disint.
Binary KL
Sharpness
Weighted

(c) |Y| = 10 (Realizable)
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Figure 2. Comparison of bounds on the synthetic dataset. (a) Binary classification with a separable µ (i.e. the interpolating setting). Notice
that the variance bound nearly coincides with Err. (b) Binary classification with a non-separable µ. (c) Ten-class classification with a
separable µ. (d) Ten-class classification with a non-separable µ. The binary KL bound is removed in (d) since it is always ≥ 1.
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Figure 3. Comparison of bounds on two real datasets, MNIST (“4 vs 9”) and CIFAR10.

Figure 2b. When µ is separable (Figure 2a), the algorithm
can always interpolate the training sample. In this case, the
fast-rate bounds are tighter than the square-root bounds, and
the variance bound (or the sharpness bound) is the tightest.
Moreover, notice that here the the disintegrated CMI bound
is tighter than the unconditional MI bound. For a more
challenging classification task (Figure 2b), Ln is no longer
zero, the square-root bounds become tighter than the bi-
nary KL bound. Indeed, Hellström & Durisi (2022a) shows
that when the empirical risk is large, the square-root bound
will be tighter than their fast-rate bounds. In contrast, our
variance bound is even slightly tighter than the square-root
bound of Theorem 3.2 in Figure 2b. Additionally, notice
that unlike the realizable case (the one with separable µ), the
unconditional MI bound is now tighter than the disintegrated
CMI bound.

We also conduct experiments in the ten-class classification
task (i.e. |Y| = 10), and the results are shown in Figure 2c
and Figure 2d. In the realizable case (Figure 2c), the results
are similar to binary classification except that the binary
KL bound is tighter than all the other bounds when n =
10, which is the only case we observe where the binary
KL bound outperforms Theorem 4.4 and Theorem 4.5. In
addition, it is worth mentioning that Eq. (2) decays much
faster than the square-root bounds in Figure 2c (and also in
Figure 2b). For the non-separable case in Figure 2d, only the
unconditional MI bound in Theorem 3.2 is non-vacuous for
all the values of n. While the binary KL bound is removed
in this case since it is always vacuous, our sharpness bound

is competitive to the square-root bound when n ≥ 50.

5.2. Neural Networks

To compare information-theoretic generalization bounds of
modern deep neural networks, we follow the same exper-
iment settings in (Harutyunyan et al., 2021; Hellström &
Durisi, 2022a). Specifically, we train a 4-layer CNN model
on a binary MNIST dataset (“4 vs 9”) and also fine-tune
a pretrained ResNet-50 on CIFAR10. Unlike the previous
synthetic dataset case, here we can only repeatedly run ex-
periments (with different Z̃ and U ) for limited times due to
the high computation complexity. Thus, we report the both
average numerical values and their standard deviations. No-
tice that our code is primarily the same as the code provided
by Hellström & Durisi (2022a), which is originally based
on the code in https://github.com/hrayrhar/f-CMI. More ex-
periment details can be found in Appendix E.1.

Observations in the binary MNIST experiment (Figure 3a)
are close to the realizable binary classification case in Fig-
ure 2a (both near the interpolating regime). For example,
the fast-rate bounds are tighter than the square-root bound.
Notably, our sharpness bound (or variance bound) signifi-
cantly improve the the binary KL bound in both the MNIST
experiment (Figure 3a) and the CIFAR10 experiment (Fig-
ure 3b), while Eq. (2) is slightly weaker than the binary KL
bound. Furthermore, we also compare the bounds when
the CNN model is trained by a SGLD algorithm (Raginsky
et al., 2017), a variant of SGD, on the binary MNIST dataset.
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In this case, we add the weight-based MI bound of SGLD in
Negrea et al. (2019, Eq. 6) as a baseline. Figure 3c suggests
that both of our sharpness bound and Eq. (2) improve the
binary KL bound. Notably, Harutyunyan et al. (2021) and
Hellström & Durisi (2022a) observe that f -CMI bound and
e-CMI bound are worse than the SGLD bound in Negrea
et al. (2019) at the beginning of training. As shown in Fig-
ure 3d, although our sharpness bound is still looser than the
SGLD bound in Negrea et al. (2019) before the fifth epoch,
our sharpness bound significantly shrinks the gap with the
SGLD bound during early training.

6. Limitations and Other Related Literature
Limitations More recently, the limitations of information-
theoretic bounds in explaining the generalization properties
of stochastic convex optimization (SCO) problems have
been investigated by Haghifam et al. (2023). In their study,
the authors demonstrate that almost all existing information-
theoretic bounds, except for the chained MI/CMI bounds,
fail to vanish in at least one of their counterexamples, de-
spite the true generalization error vanishing. Unfortunately,
neither our loss-difference MI/CMI bounds nor our single-
loss MI bounds are capable of overcoming such limitations
revealed in their constructed counterexample presented in
(Haghifam et al., 2023, Theorem 17). These limitations
shed light on certain inherent properties of mutual informa-
tion measures, which may not be easily overcome solely by
introducing new information measures.

In Hellström & Durisi (2022a), the authors provide an e-
CMI generalization bound for a generic convex function
of the training loss and test loss. Although our analysis,
using either loss-difference CMI/MI bounds or single-loss
MI bounds, may not be directly applicable to general convex
comparison functions between the training loss and testing
loss, one potential alternative is to consider the square of
the loss difference, for which similar techniques can be
employed to derive generalization bounds.

Furthermore, it is important to note that all our new
information-theoretic generalization bounds are derived
under the assumption of independent and identically dis-
tributed (i.i.d.) training instances. Exploring the possibility
of relaxing this assumption represents a promising avenue
for future research.

Other Related Work Information-theoretic generaliza-
tion bounds have been explored for some specific algorithms.
For example, the weight based information-theoretic bounds
have been successfully applied to characterize the general-
ization properties of SGLD (Pensia et al., 2018; Bu et al.,
2019; Negrea et al., 2019; Haghifam et al., 2020; Rodríguez-
Gálvez et al., 2021; Wang et al., 2021), and more recently,
these bounds are also used to analyze either the vanilla SGD

(Neu et al., 2021; Wang & Mao, 2022a) or the stochastic
differential equations (SDEs) approximation of SGD (Wang
& Mao, 2022b). To apply the weight based MI or CMI
bounds for SGD and its variants, unlike the bounds in our
paper and (Harutyunyan et al., 2021; Hellström & Durisi,
2022a) that treat the learning algorithm as a black-box, these
weight based bounds are usually further upper bounded by
some quantities along the trajectories of the algorithms (e.g.,
gradient incoherence (Negrea et al., 2019)). This then points
to a future direction: Can the losses-based or predictions-
based information-theoretic bounds be exploited the similar
trajectory information of the gradient based algorithms?

It is also noteworthy that recently Haghifam et al. (2022)
and Rammal et al. (2022) concurrently propose a variant of
the initial CMI framework (Steinke & Zakynthinou, 2020),
the “leave-one-out” (LOO) CMI setting, where their super-
sample is a n+ 1 vector instead of a n× 2 matrix. While
our development in this paper is restricted to the latter, it is
curious and tempting to compare—or connect—the two.

In addition to the supervised learning setting, information-
theoretic bounds have found applicability in various other
learning scenarios, showcasing their versatility. These sce-
narios include meta-learning (Hellström & Durisi, 2022b),
semi-supervised learning (He et al., 2022), transfer learning
(Wu et al., 2020), domain adaptation (Wang & Mao, 2023),
and so on. It is reasonable to expect that our findings can be
effectively utilized in these diverse learning settings as well.

7. Concluding Remarks
In this work, we obtain some novel and easy-to-measure
information-theoretic generalization bounds. These bounds
are demonstrated to be tighter than the previous results in
the same supersample setting of Steinke & Zakynthinou
(2020), either theoretically or empirically. In our develop-
ment, we also discuss some other viewpoints of general-
ization in the current supersample construction including
explaining generalization via the rate of reliable commu-
nication over the memoryless channel, and via correlating
with the Rademacher sequence. These new insights may
help to design new learning algorithms or discover novel
algorithm-dependent complexity measures.
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Appendices
A. Some Useful Definitions and Lemmas
Definition A.1 (Wasserstein Distance). Let d(·, ·) be a metric and let P and Q be probability measures on X . Denote Γ(P,Q)
as the set of all couplings of P and Q (i.e. the set of all joint distributions on X × X with two marginals being P and Q),
then the Wasserstein Distance of order one between P and Q is defined as W(P,Q) ≜ infγ∈Γ(P,Q)

∫
X×X d(x, x′)dγ(x, x′).

Definition A.2-A.5 are used in the context of chaining methode, e.g., Theorem 3.4, Corollary B.1 and Theorem C.1.

The following is a technique assumption.

Definition A.2 (Separable Process). The random process {Xt}t∈T is called separable if there is a countable set T0 ⊆ T s.t.
Xt ∈ lims→t,s∈T0

Xs for ∀t ∈ T a.s., where x ∈ lims→t,s∈T0
xs means that there is a sequence (sn) in T0 s.t. sn → t and

xsn → x.

Definition A.3 (Sub-Gaussian Process). The random process {Xt}t∈T on the metric space (T, d) is called subgaussian if
E [Xt] = 0 for all t ∈ T and E

[
eλ(Xt−Xs)

]
≤ e

1
2λ

2d2(t,s) for all t, s ∈ T , λ ≥ 0.

Definition A.4 (Stochastic Chain (Zhou et al., 2022b)). Let (XT , T ) be a random process and random variable pair, where
T is a random variable in the index set T . A sequence of random variables {Tk}∞k=k0

(with each distributed in T ) is called a
stochastic chain of the pair (XT , T ), if 1) limk→∞ E [XTk

] = E [XT ], 2) E
[
XTk0

]
= 0 and 3) {Xt}t∈T − T − Tk − Tk−1

is a Markov chain for every k > k0.

Definition A.5 (Increasing Sequence of ϵ-Partition). A partition P = {A1, A2, . . . , Am} of the set T is called an ϵ-partition
of the metric space (T, d) if for all i = 1, 2, . . . ,m, Ai can be contained within a ball of radius ϵ. A sequence of partitions
{Pk}∞k=m of a set T is called an increasing sequence if for any k ≥ m and each A ∈ Pk+1, there exists B ∈ Pk s.t. A ⊆ B.

The following lemmas are foundations of the most proofs in this paper.

Lemma A.1 (Donsker-Varadhan (DV) variational representation of KL divergence (Polyanskiy & Wu, 2019, Theorem 3.5)).
Let Q, P be probability measures on Θ, for any bounded measurable function f : Θ → R, we have

DKL(Q||P ) = sup
f

Eθ∼Q [f(θ)]− lnEθ∼P [exp f(θ)].

Lemma A.2 (Hoeffding’s Lemma (Hoeffding, 1963)). Let X ∈ [a, b] be a bounded random variable with mean µ. Then,

for all t ∈ R, we have E
[
etX

]
≤ etµ+

t2(b−a)2

8 .

Lemma A.3 (Kantorovich-Rubinstein (KR) duality of Wasserstein distance (Cédric, 2008)). For any two distributions P
and Q, we have

W(P,Q) = sup
f∈1−Lip(ρ)

∫
X
fdP −

∫
X
fdQ,

where the supremum is taken over all 1-Lipschitz functions in the metric d, i.e. |f(x)− f(x′)| ≤ d(x, x′) for any x, x′ ∈ X .

The following result is known in the previous work (Xu & Raginsky, 2017).

Lemma A.4 (Xu & Raginsky (2017, Lemma 1)). If g(X ′, Y ′) is σ-subgaussian3 under PX′,Y ′ = PXPY , then

|EX,Y [g(X,Y )]− EX′,Y ′ [g(X ′, Y ′)]| ≤
√
2σ2I(X;Y ).

B. Omitted Proofs and Additional Results in Section 3
B.1. Proof of Theorem 3.1

The following proof shows that the proof of e-CMI bound in Hellström & Durisi (2022a) can be adapted to the loss-difference
MI bound, where we just replace the distribution PL+

i ,L−
i

by P∆Li
.

3A random variable X is σ-subgaussian if for any t, lnE exp (t (X − EX)) ≤ t2σ2/2.
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Proof. Let U ′
i be the independent copy of Ui s.t. U ′

i ∼ Bern(1/2) and U ′ ⊥⊥ ∆Li|Z̃. Recall Lemma A.1,

I(∆Li;Ui|Z̃ = z̃) =DKL

(
P∆Li,Ui|Z̃=z̃||P∆Li|Z̃=z̃PU ′

i

)
≥ sup

t∈R
E∆Li,Ui|z̃ [tg(∆Li, Ui, z̃)]− lnE∆Li,U ′

i |z̃

[
etg(∆Li,U

′
i ,z̃)

]
.

Recall that w = A(z̃u), we now let g(∆li, ui, z̃) = (−1)ui∆li = (−1)ui
(
ℓ(A(z̃u), z̃

−
i )− ℓ(A(z̃u), z̃

+
i )

)
.

Then,

I(∆Li;Ui|Z̃ = z̃) ≥ sup
t

E∆Li,Ui|z̃
[
t(−1)Ui∆Li

]
− lnE∆Li,U ′

i |z̃

[
et(−1)U

′
i∆Li

]
=sup

t
E∆Li,Ui|z̃

[
t(−1)Ui∆Li

]
− lnE∆Li|z̃

[
EU ′

[
et(−1)U

′
i∆Li

∣∣∆Li = ∆li

]]
, (7)

where the last equality is by the conditional independence.

Since EU ′

[
t(−1)U

′
i∆li

]
= 0 and (−1)U

′
i is bounded between [−1, 1], by Lemma A.2, we have

EU ′
i

[
et(−1)U

′
i∆li

]
≤ e

t2∆l2i
2 ≤ e

t2

2 ,

where the second inequality is by the boundedness condition of the loss function, i.e. ∆li ∈ [−1, 1].

Plugging the inequality above into Eq. (7), we have

I(∆Li;Ui|Z̃ = z̃) ≥ sup
t

E∆Li,Ui|z̃
[
t(−1)Ui∆Li

]
− t2

2
.

Then consider the case of t > 0 and t < 0 (t = 0 is trivial), by AM–GM inequality (i.e. the arithmetic mean is greater than
or equal to the geometric mean), the following is straightforward,

∣∣E∆Li,Ui|z̃
[
(−1)Ui∆Li

]∣∣ ≤ √
2I(∆Li;Ui|Z̃ = z̃).

Notice that

|Err| = |ES,W [Lµ(W )− LS(W )]| =
∣∣∣EZ̃,U,W

[
LZ̃\Z̃U

(W )− LZ̃U
(W )

]∣∣∣ (8)

≤EZ̃

∣∣∣EU,W |Z̃

[
LZ̃U

(W )− LZ̃U
(W )

]∣∣∣ (9)

≤ 1

n

n∑
i=1

EZ̃

∣∣∣EUi,W |Z̃

[
(−1)Ui

(
ℓ(W, Z̃−

i )− ℓ(W, Z̃+
i )

)]∣∣∣
=
1

n

n∑
i=1

EZ̃

∣∣∣EUi,∆Li|Z̃
[
(−1)Ui∆Li

]∣∣∣ ,
wherein the two inequalities are by applying the Jensen’s inequality to the absolute function.

Hence, putting everything together we have

|Err| ≤ 1

n

n∑
i=1

EZ̃

√
2IZ̃(∆Li;Ui) ≤

1

n

n∑
i=1

√
2I(∆Li;Ui|Z̃),

where the second inequality is by applying the Jensen’s inequality to the square root function.

This completes the proof.
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B.2. Proof of Theorem 3.2

By revisiting the proof of Theorem 3.1, particularly Eq. (8-9), we notice that if we do not move the expectation over Z̃
outside of the absolute function, we will have a chance to get ride of the expectation over Z̃ if we take the expectation over
∆Li.

Proof. By the definition of the expected generalization error, we have

|Err| = |ES,W [Lµ(W )− LS(W )]| =
∣∣∣EZ̃,U,W

[
LZ̃\Z̃U

(W )− LZ̃U
(W )

]∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

EZ̃,Ui,W

[
(−1)Ui

(
ℓ(W, Z̃−

i )− ℓ(W, Z̃+
i )

)]∣∣∣∣∣ (10)

≤ 1

n

n∑
i=1

∣∣E∆Li,Ui

[
(−1)Ui∆Li

]∣∣ . (11)

We know that (−1)U
′
i∆Li is bounded between [−1, 1], so it is a 1-subgaussian random variable. Then, recall Lemma A.4

and let g(X,Y ) = (−1)Ui∆Li, we have∣∣∣E∆Li,Ui

[
(−1)Ui∆Li

]
− E∆Li,U ′

i

[
(−1)U

′
i∆Li

]∣∣∣ ≤ √
2I(∆Li;Ui).

Since E∆Li,U ′
i

[
(−1)U

′
i∆Li

]
= 0, plugging the inequality above into Eq. (11), we have

|Err| ≤ 1

n

n∑
i=1

∣∣E∆Li,Ui

[
(−1)Ui∆Li

]∣∣ ≤ 1

n

n∑
i=1

√
2I(∆Li;Ui).

This concludes the proof.

B.3. Proof of Theorem 3.5

Proof. Recall Eq. (11), we could also obtain

|Err| ≤ 1

n

n∑
i=1

∣∣E∆Li,Ui

[
(−1)Ui∆Li

]∣∣ = 1

n

n∑
i=1

∣∣E∆Li,Ui

[
(−1)Ui∆Li

]
− E∆L′

i,Ui

[
(−1)Ui∆L′

i

]∣∣ ,
where ∆L′

i is an independent copy of ∆Li (i.e. ∆L′
i ∼ P∆Li

and ∆L′
i ⊥⊥ Ui) and the second equality holds since

E∆L′
i,Ui

[
(−1)Ui∆L′

i

]
= 0.

Then, by Jensen’s inequality, we move the expectation over Ui and the average outside the absolute function,

|Err| ≤ 1

n

n∑
i=1

EUi

[∣∣E∆Li|Ui

[
(−1)Ui∆Li

]
− E∆L′

i

[
(−1)Ui∆L′

i

]∣∣ ∣∣∣Ui = ui

]
.

Notice that for any fixed ui, we have

E∆Li|Ui=ui
[(−1)ui∆Li] =

∫ 1

−1

(−1)ui∆ℓidP∆Li|Ui=ui
(∆ℓi),

E∆L′
i
[(−1)ui∆L′

i] =

∫ 1

−1

(−1)ui∆ℓ′idP∆Li(∆ℓ′i).

Also, noting that f(x) = x is a 1-Lipschitz function, i.e. |(−1)ui∆Li − (−1)ui∆L′
i| ≤ |∆Li −∆L′

i| holds trivially.

Recall the KR duality of Wasserstein distance (i.e. Lemma A.3), we have

|Err| ≤ 1

n

n∑
i=1

EUi

[∣∣E∆Li|Ui

[
(−1)Ui∆Li

]
− E∆L′

i

[
(−1)Ui∆L′

i

]∣∣ ∣∣∣Ui = ui

]
≤ 1

n

n∑
i=1

EUi

[
W(P∆Li|Ui

, P∆Li
)
]
.

This concludes the proof.
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B.4. Proof of Theorem 3.3

Proof. The channel capacity can be obtained from Lemma D.1 by letting ϵi = 0 and changing the unit of bit to the unit of
nat (i.e. replacing logarithm base of 2 to the base of e by lnx = ln 2 log2 x).

Furthermore, the value of 1 − αi reflects the chance that the interpolating learning algorithm A will make an error (i.e.
ℓ(W,Z ′

i) = 1) for a testing instance, or equivalently,

EW,Z′
i

[
1fW (X′

i )̸=Y ′
]
= EUi,Li

[
Li,Ui

]
=
EL−

i |Ui=0

[
L−
i

]
+ EL+

i |Ui=1

[
L+
i

]
2

=
P (∆Li = 1|Ui = 0) + P (∆Li = −1|Ui = 1)

2
= 1− αi.

Thus, combining the equality above with C = I(Ui; ∆Li) = (1− αi) · ln 2, we have

|Err| = EW [Lµ(W )] =
1

n

n∑
i=1

EW,Z′
i

[
1fW (X′

i )̸=Y ′
i

]
=

1

n

n∑
i=1

(1− αi) =
1

n ln 2

n∑
i=1

I(Ui; ∆Li).

This completes the proof.

B.5. Proof of Theorem 3.4

Proof. Let Ei
∆Li

= Erri(∆Li) = (−1)Ui∆Li, then for any integers k1 and k0 such that k1 > k0, we have

Ei
∆Li

= Ei
∆Li,k0

+

k1∑
k=k0+1

(Ei
∆Li,k

− Ei
∆Li,k−1

) + Ei
∆Li

− Ei
∆Li,k1

.

By the definition of the stochastic chain (i.e. Definition A.4), we know that EEi
∆Li,k0

[
Ei

∆Li,k0

]
= 0 and

limk1→∞ Ei
∆Li,k1

= Ei
∆Li

. Therefore, let k1 → ∞ and taking expectation over (Ui,∆Li) ∼ PUi,∆Li
for both sides of the

equation above, we have

EUi,∆Li

[
Ei

∆Li

]
=

∞∑
k=k0+1

EUi,∆Li,k,∆Li,k−1

[
Ei

∆Li,k
− Ei

∆Li,k−1

]
. (12)

Let U ′
i be an independent copy of Ui and recall Lemma A.1, we have

E∆Li,k,∆Li,k−1

[
DKL

(
PUi|∆Li,k,∆Li,k−1

||PU ′
i

)]
≥E∆Li,k,∆Li,k−1

[
sup
t>0

tEUi|∆Li,k,∆Li,k−1

[
Ei

∆Li,k
− Ei

∆Li,k−1

]
− lnEU ′

i

[
e
t
(
Ei

∆Li,k
−Ei

∆Li,k−1

)]]
≥ sup

t>0
tEUi,∆Li,k,∆Li,k−1

[
Ei

∆Li,k
− Ei

∆Li,k−1

]
− E∆Li,k,∆Li,k−1

lnEU ′
i

[
et(−1)U

′
i (∆Li,k−∆Li,k−1)

]
,

where the second inequality is by applying Jensen’s inequality to the supremum.

Notice that the LHS above is equivalent to I(∆Li,k,∆Li,k−1;Ui). Since (−1)U
′
i is bounded between [−1, 1], by Lemma A.2,

we have

I(∆Li,k,∆Li,k−1;Ui) ≥ sup
t>0

tEUi,∆Li,k,∆Li,k−1

[
Ei

∆Li,k
− Ei

∆Li,k−1

]
− E∆Li,k,∆Li,k−1

ln e
t2(∆Li,k−∆Li,k−1)2

2 .

Thus, let d(∆Li,k,∆Li,k−1) = |∆Li,k −∆Li,k−1|, we have

EUi,∆Li,k,∆Li,k−1

[
Ei

∆Li,k
− Ei

∆Li,k−1

]
≤

√
2E∆Li,k,∆Li,k−1

[d2(∆Li,k,∆Li,k−1)]I(∆Li,k,∆Li,k−1;Ui).
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Plugging the inequality above into Eq. (12) and taking average over i, we have,

Err =
1

n

n∑
i=1

EUi,∆Li

[
Ei

∆Li

]
≤ 1

n

n∑
i=1

∞∑
k=k0+1

√
2E∆Li,k,∆Li,k−1

[d2(∆Li,k,∆Li,k−1)]I(∆Li,k,∆Li,k−1;Ui).

From the third point of Definition A.4, we know that Ui − ∆Li − ∆Li,k − ∆Li,k−1 is a Markov chain, so
I(∆Li,k,∆Li,k−1;Ui) = I(∆Li,k;Ui) + I(∆Li,k−1;Ui|∆Li,k) = I(∆Li,k;Ui). This gives us the final form of the
bound,

Err ≤ 1

n

n∑
i=1

∞∑
k=k0+1

√
2E∆Li,k,∆Li,k−1

[d2(∆Li,k,∆Li,k−1)]I(∆Li,k;Ui).

This concludes the proof.

B.6. Additional Result: Chained MI Bound for Bounded Loss

Corollary B.1. Let 2−k0 ≥ diam(Γ) and let {Pk}∞k=k0
be an increasing sequence of partitions of Γ, where for each k ≥ k0,

Pk is a 2−k-partition of (Γ, d). Let ∆Li,k be the center of the covering ball of the partition cell that ∆Li belongs to the
partition Pk, then

Err ≤ 3

n

n∑
i=1

∞∑
k=k0

2−k
√

2I(∆Li,k;Ui).

Proof. By the triangle inequality, we have d(∆Li,k,∆Li,k−1) ≤ d(∆Li,k,∆Li) + d(∆Li,∆Li,k−1).

Since Pk is a 2−k partition, d(∆Li,k,∆Li) ≤ 2−k, then d(∆Li,k,∆Li)+d(∆Li,∆Li,k−1) ≤ 2−k+2−(k−1) = 3×2−k.
Plugging this into Theorem 3.4, we have

Err ≤ 1

n

n∑
i=1

∞∑
k=k0+1

√
2E∆Li,k,∆Li,k−1

[d2(∆Li,k,∆Li,k−1)]I(∆Li,k;Ui) ≤
1

n

n∑
i=1

∞∑
k=k0+1

3× 2−k
√

2I(∆Li,k;Ui).

This completes the proof.

C. Omitted Proofs and Additional Results in Section 4
C.1. Proof of Lemma 4.1

Proof. By the definition of Err, we can decompose it into two terms,

Err =
1

n

n∑
i=1

EL+
i ,L−

i ,Ui

[
Li,Ui

− Li,Ui

]
=
1

n

n∑
i=1

EL+
i ,L−

i ,Ui

[
(−1)Ui(L−

i − L+
i )

]
=
1

n

n∑
i=1

[
EL−

i ,Ui

[
(−1)UiL−

i

]
+ EL+

i ,Ui

[
−(−1)UiL+

i

]]
=
1

n

n∑
i=1

[
EL−

i ,Ui

[
(−1)UiL−

i

]
+ EL+

i ,Ui

[
(−1)UiL+

i

]]
,

where the last equality is by −(−1)UiL+
i = (−1)UiL+

i . We now show that the following holds

EL−
i ,Ui

[
(−1)UiL−

i

]
= EL+

i ,Ui

[
(−1)UiL+

i

]
.

Recall that Z̃ and U are i.i.d drawn from µ2n and the Bernoulli distribution, respectively, and Z̃ ⊥⊥ U . Usually, a
learning algorithm may depend on the order of training instances (i.e. for i ̸= j, even if two training instances satisfy
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zi = zj , PW |zi may not be the same with PW |zj ), but it should be invariant to the row index of the supersample Z̃, then
the distribution PL−

i ,Ui
and the distribution PL+

i ,Ui
have some symmetric property, namely, PL−

i |Ui=1 = PL+
i |Ui=0 and

PL−
i |Ui=0 = PL+

i |Ui=1. Or equivalently, the distribution of the training loss (or testing loss) of the ith training instance (or
testing instance) is invariant to Ui. Hence, we have PL−

i
= PL+

i
, we say L−

i and L+
i are identically but not independently

distributed. Then,

EL−
i |Ui=0

[
L−
i

]
=

∫ 1

0

ℓ−i dPL−
i |Ui=0(ℓ

−
i ) =

∫ 1

0

ℓ+i dPL+
i |Ui=1(ℓ

+
i ) = EL+

i |Ui=1

[
L+
i

]
,

EL−
i |Ui=1

[
−L−

i

]
=

∫ 1

0

−ℓ−i dPL−
i |Ui=1(ℓ

−
i ) =

∫ 1

0

−ℓ+i dPL+
i |Ui=0(ℓ

+
i ) = EL+

i |Ui=0

[
−L+

i

]
.

These give us

EL−
i ,Ui

[
(−1)UiL−

i

]
=

EL−
i |Ui=0

[
L−
i

]
+ EL−

i |Ui=1

[
−L−

i

]
2

=
EL+

i |Ui=1

[
L+
i

]
+ EL+

i |Ui=0

[
−L+

i

]
2

=EL+
i ,Ui

[
(−1)UiL+

i

]
.

Therefore,

Err =
1

n

n∑
i=1

[
EL−

i ,Ui

[
(−1)UiL−

i

]
+ EL+

i ,Ui

[
(−1)UiL+

i

]]
=
2

n

n∑
i=1

EL−
i ,Ui

[
(−1)UiL−

i

]
=

2

n

n∑
i=1

EL+
i ,Ui

[
(−1)UiL+

i

]
.

Notice that both (−1)Ui and (−1)Ui are Rademacher variables. This conclude the proof.

C.2. Proof of Theorem 4.1

Proof. Notice that 2(−1)U
′
iL+

i is bounded between [−2, 2], it is a subgaussian random variable with the variance proxy
σ = 2. Let the measurable function g(L+

i , Ui) in Lemma A.4 be 2(−1)UiL+
i , then g(L+

i , Ui) is 2-subgaussian under
PUiPL+

i
, we have ∣∣∣2EL+

i ,Ui

[
(−1)UiL+

i

]
− 2EL+

i ,U ′
i

[
(−1)U

′
iL+

i

]∣∣∣ ≤ 2
√
2I(L+

i ;Ui).

Since EL+
i ,U ′

i

[
(−1)U

′
iL+

i

]
=

E
L
+
i
[L+

i ]−E
L
+
i
[L+

i ]
2 = 0, then∣∣∣2EL+

i ,Ui

[
(−1)UiL+

i

]∣∣∣ ≤ 2
√

2I(L+
i ;Ui).

Recall Lemma 4.1,

Err =
2

n

n∑
i=1

EL+
i ,Ui

[
(−1)UiL+

i

]
.

Notice that U i and Ui are one-to-one mapping, so using any of them will give the same mutual information. Thus, by
applying Jensen’s inequality to the absolute function, we have

|Err| ≤ 1

n

n∑
i=1

∣∣∣2EL+
i ,Ui

[
(−1)UiL+

i

]∣∣∣ ≤ 2

n

n∑
i=1

√
2I(L+

i ;Ui).

In addition, to obtain the second inequality in the theorem, we first invoke the independence between Z̃ and Ui, I(L+
i ;Ui) +

I(Z̃;Ui|L+
i ) = I(L+

i , Z̃;Ui) = I(L+
i ;Ui|Z̃) and then use the DPI, I(L+

i ;Ui|Z̃) ≤ I(fW (X);Ui|Z̃), we have

|Err| ≤ 2

n

n∑
i=1

√
2I(L+

i ;Ui) ≤
2

n

n∑
i=1

√
2I(fW (X+

i );Ui|Z̃).

This completes the proof.
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C.3. Proof of Theorem 4.2

Proof. Notice that

EW,Z′
i

[
1fW (X′

i) ̸=Y ′
]
= EUi,Li

[
Li,Ui

]
=

EL−
i |Ui=0

[
L−
i

]
+ EL+

i |Ui=1

[
L+
i

]
2

= EL+
i |Ui=1

[
L+
i

]
= P (L+

i = 1|Ui = 1) = 1− qi.

Hence, Lµ =
∑n

i=1
1−qi
n .

For each i, we have I(L+
i ;Ui) = H(L+

i )−H(L+
i |Ui) = H( 1−qi

2 )− 1
2H(1− qi) ≤ H( 1−qi

2 ). Since the entropy function
H(·) is a concave function, we have 1

n

∑n
i=1 I(L

+
i ;Ui) ≤ 1

n

∑n
i=1 H( 1−qi

2 ) ≤ H(
Lµ

2 ).

C.4. Additional Result: Chained MI Bound Based on Single-Loss

When the loss is not discrete or even not bounded, let ξi(ℓ+i ) ≜ εiℓ
+
i be a random process and let L be the domain of L+

i .
Similar to Theorem 3.4, we can also have the corresponding chained bound of Theorem 4.1.

Theorem C.1. For each i ∈ [n], we assume {L+
i,k}∞k=k0

is a stochastic chain of (ξi(ℓ+i )}ℓ+i ∈L, L
+
i ), then

Err ≤ 2

n

n∑
i=1

∞∑
k=k0

√
2E

[
d2(L+

i,k, L
+
i,k−1)

]
I(L+

i,k;Ui),

where the RHS expectation is taken over (L+
i,k, L

+
i,k−1).

This theorem can be obtained by following the same development with the proof in Section B.5.

C.5. Proof of Lemma 4.2

Proof. A key step is the second equality of the following

ErrC1 =
1

n

n∑
i=1

EL−
i ,L+

i ,Ui

[
Li,Ui

− (1 + C1)Li,Ui

]
=
1

n

n∑
i=1

EL−
i ,L+

i ,Ui

[(
1 +

C1

2

)
(Li,Ui

− Li,Ui
)− C1

2
Li,Ui

− C1

2
Li,Ui

]

=
2 + C1

2n

n∑
i=1

[
EL−

i ,Ui

[
(−1)UiL−

i − C1

C1 + 2
L−
i

]
+ EL+

i ,Ui

[
−(−1)UiL+

i − C1

C1 + 2
L−
i

]]
.

Recall that PL−
i
= PL+

i
, we have EL−

i

[
C1

C1+2L
−
i

]
= EL+

i

[
C1

C1+2L
+
i

]
. Also, noting that EL−

i |Ui=0

[
L−
i

]
= EL+

i |Ui=1

[
L+
i

]
and EL−

i |Ui=1

[
−L−

i

]
= EL+

i |Ui=0

[
−L+

i

]
, we have

ErrC1 =
2 + C1

n

n∑
i=1

EL+
i ,Ui

[
(−1)UiL+

i − C1

C1 + 2
L+
i

]
=

2 + C1

n

n∑
i=1

EL+
i ,ε̃i

[
ε̃iL

+
i

]
, (13)

where ε̃i = εi − C1

C1+2 and εi ∼ Unif{−1,+1} is the Rademacher variable. In this case, ε̃i is called the shifted Rademacher
variable and its mean is − C1

C1+2 .

C.6. Proof of Theorem 4.3

Proof. Since ε̃i is obtained by a bijection function of Ui, they two can be replaced by each other in the mutual information.
Recall Lemma A.1 and let the measurable function g be t(C1 + 2)ε̃iL

+
i , we have

I(L+
i ;Ui) = I(L+

i ; ε̃i) =DKL

(
PL+

i ,ε̃i
||PL+

i
Pε̃′i

)
(14)

≥ sup
t>0

EL+
i ,ε̃i

[
t(C1 + 2)ε̃iL

+
i

]
− lnEL+

i ,ε̃′i

[
et(C1+2)ε̃′iL

+
i

]
. (15)
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We hope to have

EL+
i ,ε̃′i

[
et(C1+2)ε̃′iL

+
i

]
≤ 1. (16)

Since ε̃′i is independent of L+
i , and P (ε̃i =

2
C1+2 ) = P (ε̃i =

−2(C1+1)
C1+2 ) = 1

2 , then

EL+
i ,ε̃′i

[
et(C1+2)ε̃′iL

+
i

]
=

EL+
i

[
e−2t(C1+1)L+

i + e2tL
+
i

]
2

.

Notice that e−2t(C1+1)L+
i +e2tL

+
i is the summation of two convex function, which is still a convex function, so the maximum

value of this function is achieved at the endpoints of the bounded domain. Recall that L+
i ∈ [0, 1], we now consider two

cases, i) when L+
i = 0, we have e−2t(C1+1)L+

i + e2tL
+
i = 2; ii)when L+

i = 1, we need to require e−2t(C1+1) + e2t ≤ 2 s.t.
Eq (16) can hold. Note that this inequality implies that t ≤ ln 2

2 .

Replacing t by C2, let the values of C1, C2 be taken from the domain of {C1, C2|C1, C2 > 0, e−2C2(C1+1) + e2C2 ≤ 2},
so Eq. (16) will hold. Under this condition, by re-arranging the terms in Eq. (15), we have

(C1 + 2)EL+
i ,ε̃i

[
ε̃iL

+
i

]
≤ I(L+

i ;Ui)

C2
.

Plugging the inequality above into Eq. (13), we have

ErrC1
= Lµ − (1 + C1)Ln =

2 + C1

n

n∑
i=1

[
EL+

i ,ε̃i

[
ε̃iL

+
i

]]
≤

n∑
i=1

I(L+
i ;Ui)

C2n
.

Thus, the following inequality can be obtained,

Lµ ≤ min
C1,C2>0,e2C2+e−2C2(C1+1)≤2

(1 + C1)Ln +

n∑
i=1

I(L+
i ;Ui)

C2n
. (17)

We can also optimize the parameters C1, C2 by relaxing the condition of e−2C2(C1+1) + e2C2 ≤ 2. By invoking ex ≥ x+ 1
and e−x ≤ 1

1+x for x > −1, and ex ≤ 1
1−x for x < 1, it’s sufficient to have

1

1 + 2C2(C1 + 1)
+

1

1− 2C2
≤ 2, and 0 < C2 <

1

2
. (18)

Solving Eq (18) gives us 0 < C2 ≤ C1

4(C1+1) . Since C1

4(C1+1) ≤
1
4 < 1

2 , then Eq (18) holds when C2 ∈ (0, C1

4(C1+1) ]. Notice

that C1

4(C1+1) is also smaller than ln 2
2 .

Therefore, we obtain

Lµ ≤ min
C1,C2>0,e2C2+e−2C2(C1+1)≤2

(1 + C1)Ln +

n∑
i=1

I(L+
i ;Ui)

C2n

≤ min
C1>0,0<C2≤ C1

4(C1+1)

(1 + C1)Ln +

n∑
i=1

I(L+
i ;Ui)

C2n

=Ln +

n∑
i=1

4I(L+
i ;Ui)

n
+ 4

√√√√ n∑
i=1

LnI(L
+
i ;Ui)

n
,

where the last equality is achieved when C1 = 2

√∑n
i=1

I(L+
i ;Ui)

nLn
and C2 = C1

4(C1+1) .
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For the second part of the theorem, if A is an interpolating algorithm, then Ln = 0, in which case we can let C1 be arbitrarily
large.

Recall that we hope
e−2C2(C1+1) + e2C2 ≤ 2.

This can be satisfied by letting C2 = ln 2
2 and C1 → ∞.

Thus, the interpolating single-loss MI bound is

Lµ ≤
n∑

i=1

2I(L+
i ;Ui)

n ln 2
.

This completes the proof.

C.7. Proof of Lemma 4.3

Proof. By the definition of γ-variance, and notice that LS(W ) = 1
n

∑n
i=1 ℓ(W,Zi), we have

V (γ) =EW,S

[
1

n

n∑
i=1

(ℓ(W,Zi)− (1 + γ)LS(W ))
2

]

=EW,S

[
1

n

n∑
i=1

(
ℓ2(W,Zi)− 2(1 + γ)ℓ(W,Zi)LS(W ) + (1 + γ)2L2

S(W )
)]

=EW,S

[
1

n

n∑
i=1

ℓ2(W,Zi)

]
− EW,S

[
(1− γ2)L2

S(W )
]

=Ln − (1− γ2)EW,S

[
L2
S(W )

]
where the last equality is due to the fact that the loss is the zero-one loss (i.e. ℓ2(·, ·) = ℓ(·, ·)).

C.8. Proof of Lemma 4.4

Proof. By Lemma 4.3 and γ ∈ (0, 1), we notice that,

Err− C1V (γ) =Lµ − Ln − C1Ln + C1(1− γ2)EW,S

[
L2
S(W )

]
≤Lµ − (1 + C1)Ln + C1(1− γ2)EW,S [LS(W )] (19)

=Lµ − (1 + C1γ
2)Ln, (20)

where the inequality is because that LS(W ) ∈ [0, 1] (i.e. L2
S(W ) ≤ LS(W )).

Noting that in Eq (20), Err − C1V (γ) is upper bounded by a weighted generalization error. Thus, we can then directly
apply Lemma 4.2 by choosing C1γ

2 as the trade-off coefficient (i.e. replacing C1 in Lemma 4.2 by C1γ
2), which gives us

Err− C1V (γ) ≤ 2 + C1γ
2

n

n∑
i=1

EL+
i ,ε̃i

[
ε̃iL

+
i

]
,

where ε̃i = εi − C1γ
2

C1γ2+2 .

C.9. Proof of Theorem 4.4

Proof. The RHS of Eq. (20) in the proof of Lemma 4.4 has already been bounded in Theorem 4.3 by regarding C1γ
2 as the

weighted parameter C1 in Theorem 4.3. Then, there exist C1, C2 > 0 s.t.

Err− C1V (γ) ≤ Lµ − (1 + C1γ
2)Ln ≤

n∑
i=1

I(L+
i ;Ui)

nC2
.

21



Tighter Information-Theoretic Generalization Bounds from Supersamples

Furthermore, from the proof of Theorem 4.3, we note that the following is valid

Err ≤ min
C1,C2>0,e2C2+e−2C2(C1γ2+1)≤2

C1V (γ) +

n∑
i=1

I(L+
i ;Ui)

nC2
.

Notice that the original optimization space of the variance based bound should be larger than {C1, C2|C1, C2 > 0, e2C2 +

e−2C2(C1γ
2+1) ≤ 2} because in Eq. (19), we upper bound the most interested quantity Err−C1V (γ) by Lµ−(1+C1γ

2)Ln,
which restricts the original optimization space.

This completes the proof.

C.10. Proof of Lemma 4.5

Proof. By the definition of λ-sharpness, we notice that

Fi(λ) =EW,Zi

[
ℓ(W,Zi)− (1 + λ)EW |Zi

ℓ(W,Zi)
]2

=EZi

[
EW |Zi

[
ℓ(W,Zi)

2
]
− 2(1 + λ)E2

W |Zi
ℓ(W,Zi) + (1 + λ)2E2

W |Zi
ℓ(W,Zi)

]
=EW,Zi

[ℓ(W,Zi)]− (1− λ2)EZi

[
E2
W |Zi

ℓ(W,Zi)
]
,

where the last equality is due to the fact that the loss is the zero-one loss.

C.11. Proof of Lemma 4.6

Proof. By Lemma 4.5, we have

Err− C1

n

n∑
i=1

Fi(λ) =Lµ − (1 + C1)Ln +
(1− λ2)C1

n

n∑
i=1

EZi

[
E2
W |Zi

ℓ(W,Zi)
]

=
1

n

n∑
i=1

[
EUi,Li

[
Li,Ui

− (1 + C1)Li,Ui

]
+ (1− λ2)C1EZ̃i,Ui

[
E2
Li,Ui

|Z̃i,Ui

Li,Ui

]]
.

Let Λ(Z̃i,Ui
) = E2

Li,Ui
|Z̃i,Ui

Li,Ui
and Λ(Z̃i,Ui

) = E2
Li,Ui

|Z̃i,Ui

Li,Ui
. Let Λ(Z̃+

i ) = E2
L+

i |Z̃+
i ,Ui

L+
i and Λ(Z̃−

i ) =

E2
L−

i |Z̃−
i ,Ui

L−
i . A key observation is the following:

EUi,Li

[
Li,Ui

− (1 + C1)Li,Ui

]
+ (1− λ2)C1EZ̃i,Ui

[
Λ(Z̃i,Ui)

]
=(1 +

C1

2
)EUi,Li

[
Li,Ui

− Li,Ui

]
− C1

2
(1− λ2)EZ̃i,Ui

[
Λ(Z̃i,Ui

)− Λ(Z̃i,Ui
)
]

− C1

2

[
EUi,Li

[
Li,Ui

]
− (1− λ2)EZ̃i,Ui

[
Λ(Z̃i,Ui

)
]]

− C1

2

[
EUi,Li

[Li,Ui
]− (1− λ2)EZ̃i,Ui

[
Λ(Z̃i,Ui

)
]]

=EL−
i ,Ui

[
(−1)Ui

C1 + 2

2
L−
i − (−1)Ui

C1(1− λ2)

2
EZ̃−

i |Ui

[
Λ(Z̃−

i )
]

−C1

2
L−
i +

C1(1− λ2)

2
EZ̃−

i |Ui

[
Λ(Z̃−

i )
]]

+ EL+
i ,Ui

[
−(−1)Ui

C1 + 2

2
L+
i + (−1)Ui

C1(1− λ2)

2
EZ̃+

i |Ui

[
Λ(Z̃+

i )
]

−C1

2
L+
i +

C1(1− λ2)

2
EZ̃+

i |Ui

[
Λ(Z̃+

i )
]]

=(C1 + 2)EL+
i ,Ui

[
(εi −

C1

C1 + 2
)L+

i − C1(1− λ2)

C1 + 2
(εi − 1)EZ̃+

i |Ui

[
Λ(Z̃+

i )
]]
,
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where εi is the Rademacher variable.

Thus,

Err− C1

n

n∑
i=1

Fi(λ) =
C1 + 2

n

n∑
i=1

EL+
i ,Ui

[
(εi −

C1

C1 + 2
)Li,1 −

C1(1− λ2)

C1 + 2
(εi − 1)EZ̃+

i |Ui

[
E2
L+

i |Z̃+
i ,Ui

L+
i

]]
. (21)

This completes the proof.

C.12. Proof of Theorem 4.5

Proof. Recall Eq. (21),

Err− C1

n

n∑
i=1

Fi(λ) =
C1 + 2

n

n∑
i=1

EL+
i ,Ui

[
(εi −

C1

C1 + 2
)L+

i − C1(1− λ2)

C1 + 2
(εi − 1)EZ̃+

i |Ui

[
E2
L+

i |Z̃+
i ,Ui

L+
i

]]
.

Notice that we cannot directly apply Lemma A.1 starting from here since there is a quadratic term, namely,
EZ̃+

i |Ui

[
E2
L+

i |Z̃+
i ,Ui

L+
i

]
in the RHS.

Inspired by Yang et al. (2019), we now assume that there exists a random variable Ri s.t.

(C1 + 2)EL+
i ,Ui

[
(εi −

C1

C1 + 2
)L+

i − C1(1− λ2)

C1 + 2
(εi − 1)EZ̃+

i |Ui

[
E2
L+

i |Z̃+
i ,Ui

L+
i

]]
≤(C1 + 2)EL+

i ,Ui

[
(εi −

C1

C1 + 2
)L+

i − C1(1− λ2)

C1 + 2
(εi − 1)EZ̃+

i |Ui

[
RiEL+

i |Z̃+
i ,Ui

L+
i

]]
=(C1 + 2)EL+

i ,Ui

[
(εi −

C1

C1 + 2
)L+

i − C1(1− λ2)

C1 + 2
(εi − 1)EL+

i |Ui

[
RiL

+
i

]]
=(C1 + 2)EL+

i ,Ui

[(
(εi −

C1

C1 + 2
)− C1(1− λ2)

C1 + 2
(εi − 1)Ri

)
L+
i

]
. (22)

Such Ri could satisfy Ri ≥ supz̃+
i
EL+

i |Z̃+
i =z̃+

i ,Ui=ui
L+
i , for any fixed ui, and the randomness of Ri is controlled by Ui,

i.e. Ri is a function of Ui. A simple choice is to let Ri = 1 (so Ri always exists), and another choice could be letting
Ri = EL+′

i |Ui∼Qi

[
L+′
i

]
that satisfies the condition, where Qi is some distribution of L+

i , and L+′
i is independent of L+

i

and Z̃+
i given Ui.

Recall that the shifted Rademacher varaible ε̃i = εi − C1

C1+2 , and let another shifted Rademacher variable ε̂i = εi − 1. Then
we are ready to invoke Lemma A.1,

I(L+
i ;Ui) ≥ sup

t>0
tEL+

i ,Ui

[(
(C1 + 2)ε̃i − C1(1− λ2)ε̂iRi

)
L+
i

]
− lnEL+

i ,U ′
i

[
et((C1+2)ε̃′i−C1(1−λ2)ε̂′iR

′
i)L

+
i

]
. (23)

Similar to the proof of Theorem 4.3, we hope the following hold

EL+
i
EU ′

i

[
et((C1+2)ε̃′i−C1(1−λ2)ε̂′iR

′
i)L

+
i

]
≤ 1. (24)

By the independence, we have

EL+
i
EU ′

i

[
et((C1+2)ε̃′i−C1(1−λ2)ε̂′iR

′
i)L

+
i

]
= EL+

i

[
e2t(C1(1−λ2)r̃′i−C1−1)L+

i + e2tL
+
i

2

]
,

where r̃′i ∈ [0, 1] is the value (or the realization) of R′
i when U ′

i = 0 (or ε′i = −(−1)U
′
i = −1), e.g., r̃′i = EL+′

i |U ′
i=0

[
L+′
i

]
.

Then, since L+
i could be either 0 or 1. We now consider the two cases.
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(i) When L+
i = 0, then e

2t(C1(1−λ2)r̃′i−C1−1)L+
i +e2tL

+
i

2 = 1. Therefore, when L+
i = 0, the value of R′

i has no effect on the
moment generating function.

(ii) When L+
i = 1, we have the formula e

2t(C1(1−λ2)r̃′i−C1−1)+e2t

2 . Notably, only when ε′i = −1 (or U ′
i = 0) and L+

i = 1,
the value of R′

i, viz, r̃′i, has some impact on the moment generating function. Since r̃′i ∈ [0, 1], it’s sufficient to upper bound
R′

i by the random variable 1−ε′i
2 =

−ε̂′i
2 . Thus,

EL+
i
EU ′

i

[
et((C1+2)ε̃′i−C1(1−λ2)ε̂′iR

′
i)L

+
i

]
≤ EL+

i
EU ′

i

[
et((C1+2)ε̃′i+

C1
2 (1−λ2)ε̂′2i )L

+
i

]
. (25)

By the moment generating function of the Bernoulli random variable L+
i , we have

EU ′
i
EL+

i

[
et((C1+2)ε̃′i+

C1
2 (1−λ2)ε̂′2i )L

+
i

]
=EUi

[
1− EL+

i

[
L+
i

]
+ EL+

i

[
L+
i

]
et((C1+2)ε̃′i+

C1
2 (1−λ2)ε̂′2i )

]
=1− EL+

i

[
L+
i

]
+ EL+

i

[
L+
i

]e−2t(C1λ
2+1) + e2t

2
.

Since 0 ≤ EL+
i

[
L+
i

]
≤ 1, we only need to require that

e−2t(C1λ
2+1) + e2t

2
≤ 1.

Replacing t by C2 and putting everything together (Eq. (21-24)), we have

Err ≤ C1

n

n∑
i=1

Fi(λ) +

n∑
i=1

I(L+
i ;Ui)

nC2
.

This completes the proof.

C.13. Proof of Corollary 4.1

Proof. According to the proofs in Section C.9 and Section C.12, we know that the sufficient conditions to let Eq. (5) and
Eq. (6) hold are e2C2 + e−2C2(C1γ

2+1) ≤ 2 and e2C2 + e−2C2(C1λ
2+1) ≤ 2, respectively. Given that both γ, λ ∈ (0, 1),

there must exist C1, C2 to let both Eq. (5) and Eq. (6) hold. Then taking minimum of these two inequalities will give us the
desired result.

Additionally, in any of the following case: (i) Ln → 0; (ii)V (γ) → 0 for some γ ∈ (0, 1); (iii)F (λ) → 0 for some

λ ∈ (0, 1), we can let C1 → ∞ and let C2 = ln 2
2 , then Err ≤

∑n
i=1

2I(L+
i ;Ui)

n ln 2 . This justifies the remark after Corollary 4.1.

D. Some Background on Channel Capacity of Binary Channel
In this section, we follow the custom of the notations in Cover & Thomas (2006), where the logarithm usually has a
base of 2 (i.e. log2). In addition, for a binary random variable, the entropy function H(·) can be a binary entropy
function, for example, the random variable X has the value 0 and 1, and P (X = 1) = p, P (X = 0) = 1 − p, then
H(X) = H(p) = −p log2 p− (1− p) log2 (1− p). The channel capacity of a channel between input X and output Y is
defined as C ≜ maxPX

I(X;Y ).

D.1. Channel Capacity of Binary Symmetric Channel (BSC)

In a general case, the channel capacity of Figure 1(left) can be computed as in the following lemma.

Lemma D.1. When X ∼ PUi
, the channel capacity of the channel in Figure 1(left) is achieved and C = (1 −

α)
(
1−H

(
1−α−ϵ
1−α , ϵ

1−α

))
.

24



Tighter Information-Theoretic Generalization Bounds from Supersamples

We note that this lemma is an exercise problem in Cover & Thomas (2006, Problem 7.13).

Proof. Let P (X = 0) = π and P (X = 0) = 1− π, then I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(1− ϵ− α, α, ϵ).
It’s easy to see that H(Y ) = H(π(1−α− ϵ)+ ϵ(1−π), α, πϵ+(1−π)(1− ϵ−α)). We let A = π(1−α− ϵ)+ ϵ(1−π)
and B = πϵ+ (1− π)(1− ϵ− α)). Notice that A+B = 1− α, then

H(Y ) =H(π(1− α− ϵ) + ϵ(1− π), α, πϵ+ (1− π)(1− ϵ− α))

=−
[
(A+B) log2(1− α) + α log2 α+A log2

A

1− α
+B log2

B

1− α

]
=H(α)− (1− α)

[
A

1− α
log2

A

1− α
+

B

1− α
log2

B

1− α

]
=H(α) + (1− α)H(

A

1− α
,

B

1− α
) ≤ H(α) + 1− α.

To achieve the channel capacity (or to let the equality above hold), we need to let A = B, which indicates that π = 1
2 .

Thus,

C = H(α) + 1− α−H(1− ϵ− α, α, ϵ) =H(α) + 1− α−
(
H(α) + (1− α)H

(
1− ϵ− α

1− α
,

ϵ

1− α

))
=(1− α)

(
1−H

(
1− α− ϵ

1− α
,

ϵ

1− α

))
,

which completes the proof.

D.2. Channel Capacity of Binary Asymmetric Channel (BAC)

The channel capacity of the BAC channel in Figure 1(right) is given below.

Lemma D.2. The channel capacity of the BAC in Figure 1(right) is C = log2 (1 + β) − 1−q
1−p−qH(p) + p

1−p−qH(q),

where β = 2
H(p)−H(q)

1−p−q and the capacity is achived when P (Ui = 1) = 1−q(1+β)
(1−p−q)(1+β) . Further, if p = 0 (i.e. Z-channel),

C = log2

(
1 + 2

−H(q)
1−q

)
, and for small q, the capacity can be approximated by C ≈ 1− 1

2H(q).

Remark D.1. Notice that in this case, let X ∼ Bern(1/2) (i.e. X = Ui) will not achieve the channel capacity. Thus, in the
interpolating setting, except for Theorem 4.2, we have another upper bound for I(L+

i ;Ui), namely 1
n

∑n
i=1 I(L

+
i ;Ui) ≤

1
n

∑
i=1 ln

(
1 + 2

−H(1−qi)

1−qi

)
. If we further let qi be the same for each i (which indeed should be true), then I(L+

i ;Ui) ≤

ln

(
1 + 2

−H(Lµ)

Lµ

)
.

Proof. Let P (X = 1) = π, then I(X;Y ) = H(π(1 − p − q) + q) − π (H(p)−H(q)) − H(q). Let dI(X;Y )
dπ =

(1− p− q) log2

(
1

π(1−p−q)+q − 1
)
−H(p) +H(q) = 0, we have the optimal π∗ = 1−q(1+β)

(1−p−q)(1+β) where β = 2
H(p)−H(q)

1−p−q .

Plugging π = π∗ into the formula of I(X;Y ), we have I(X;Y ) = log2 (1 + β)− 1−q
1−p−qH(p) + p

1−p−qH(q).

E. Experimental Details and Additional Results
E.1. Experiment Setup

In our linear classifier experiment, we generate synthetic Gaussian data using the widely-used Python package scikit-learn
(Pedregosa et al., 2011). We draw each dimension (or feature) of X independently from some Gaussian distribution, and
let all the features be informative to its class labels Y . Specifically, we choose the dimension of data X to be 5 and we
create different class of points normally distributed (with the standard deviation being 1) about vertices of an 5-dimensional
hypercube, where its sides of length can be manually controlled. In addition, we utilize full-batch gradient descent with a
fixed learning rate of 0.01 to train the linear classifier. We perform training for a total of 500 epochs, and we employ early
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stopping when the training error reaches a sufficiently low threshold (e.g., < 0.5%). To ensure robustness and statistical
significance, we draw 50 different supersamples for each experiment. Within each supersample, we further generate 100
different mask random variables, resulting in a total of 5, 000 runs for each experimental setting. This comprehensive setup
enables us to compare both the unconditional MI bounds and the disintegrated MI bounds. Additionally, if the unconditional
MI bound is the sole evaluated objective, one has the option to completely restart the training process 5, 000 times.

In the neural networks experiments, we follow the same setup with (Harutyunyan et al., 2021; Hellström & Durisi, 2022a).
Specifically, we draw k1 samples of Z̃ and k2 samples of U for each given z̃. For the CNN on the binary MNIST dataset,
we set k1 = 5 and k2 = 30. The 4-layer CNN model is trained using the Adam optimizer with a learning rate of 0.001 and
a momentum coefficient of β1 = 0.9. The training process spans 200 epochs, with a batch size of 128. For ResNet-50
on CIFAR10, we set k1 = 2 and k2 = 40. The ResNet model is trained using stochastic gradient descent (SGD) with a
learning rate of 0.01 and a momentum coefficient of 0.9 for a total of 40 epochs. The batch size for this experiment is set to
64. In the SGLD experiment, we once again train a 4-layer CNN on the binary MNIST dataset. The batch size is set to 100,
and the training lasts for 40 epochs. The initial learning rate is 0.01 and decays by a factor of 0.9 after every 100 iterations.
Let t be the iteration index, the inverse temperature of SGLD is given by min{4000,max{100, 10et/100}}. We set the
training sample size to n = 4000, and k1 = 5 and k2 = 30. We save checkpoints every 4 epochs. All these experiments are
conducted using NVIDIA Tesla V100 GPUs with 32 GB of memory. For more comprehensive details, including model
architectures, we recommend referring to (Harutyunyan et al., 2021; Hellström & Durisi, 2022a).

Estimating the γ-variance and λ-sharpness in the CMI setting is a straightforward process. For example, to estimate
sharpness, for each fixed z̃, we store the training losses L+

i when Ui = 0 (corresponding to z̃+) and the training losses L−
i

when Ui = 1 (corresponding to z̃−) with different weight configurations W . By doing so, we collect the necessary data to
compute the second term of the equation in Lemma 4.5.
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Figure 4. Comparison of the square-root bounds on the synthetic dataset. Here f-CMI, e-CMI and se-CMI refer to the disintegrated f -CMI
bound (Harutyunyan et al., 2021), the unconditional e-CMI bound and the single-loss square-root bound in Theorem 4.1, respectively.

E.2. Additional Numerical Results: Comparison of Square-Root Bounds

We conduct a comparison of square-root bounds on the synthetic dataset, where we also include the disintegrated version of
the f -CMI bound proposed by Harutyunyan et al. (2021), an improved unconditional e-CMI bound (obtained by replacing
I(Li;Ui|Z̃) with I(Li;Ui)), and the single-loss square-root bound presented in Theorem 4.1. The results are illustrated
in Figure 4. Consistent with the observations in the main text, we find that the disintegrated bounds are tighter than the
unconditional MI bounds when the training loss approaches zero, but looser than the unconditional MI bounds when the
training loss is large. This suggests that while, according to the DPI, the unconditional e-CMI bound or ld-MI bound should
be tighter than the f -CMI bound, in some cases, the disintegrated version of the f -CMI bound may be tighter than the
unconditional e-CMI bound or ld-MI bound. For non-separable µ, the f -CMI bound becomes looser as the number of
classes increases, which provides justification for the remarks made after Theorem 3.1. In fact, it can be even worse than the
single-loss square-root bound in Theorem 4.1, which includes an undesired constant of 2.

E.3. Additional Numerical Results: Comparison of Fast-Rate Bounds

We conduct a comparison of fast-rate bounds, including Eq. (1) in Theorem 4.3, the variance bound in Theorem 4.4, and the
sharpness bound in Theorem 4.5, on the synthetic dataset with fixed values of C1 and C2. As mentioned in the main text, if
Ln → 0, both V (γ) and F (λ) become zero, resulting in the three bounds being equivalent. However, when Ln ̸= 0, the
variance bound and sharpness bound are always sharper than Eq. (1), as discussed earlier. In Figure 5, we compare these
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Figure 5. Comparison of three fast-rate bounds on the synthetic dataset. Here Fast-Rate refers to the fast-rate bound of Eq. (1) in
Theorem 4.3.

bounds with fixed values of C1 = 3 and C2 = 0.3. Figures 5a and 5c demonstrate that when Ln is small, the gap between
the variance bound and Eq. (1) is small, indicating that the loss variance in this case is also small. However, the sharpness
bound clearly outperforms the other two bounds. Furthermore, in Figures 5b and 5d, when Ln is large, both the sharpness
bound and the variance bound significantly improve upon Eq. (1). Notably, only the sharpness bound remains non-vacuous
in Figure 5d.
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