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Abstract
Graph augmentation plays a crucial role in achiev-
ing good generalization for contrastive graph self-
supervised learning. However, mainstream Graph
Contrastive Learning (GCL) often favors random
graph augmentations, by relying on random node
dropout or edge perturbation on graphs. Ran-
dom augmentations may inevitably lead to se-
mantic information corruption during the training,
and force the network to mistakenly focus on se-
mantically irrelevant environmental background
structures. To address these limitations and to
improve generalization, we propose a novel self-
supervised learning framework for GCL, which
can adaptively screen the semantic-related sub-
structure in graphs by capitalizing on the proposed
gradient-based Graph Contrastive Saliency (GCS).
The goal is to identify the most semantically dis-
criminative structures of a graph via contrastive
learning, such that we can generate semanti-
cally meaningful augmentations by leveraging
on saliency. Empirical evidence on 16 bench-
mark datasets demonstrates the exclusive merits
of the GCS-based framework. We also provide
rigorous theoretical justification for GCS’s robust-
ness properties. Code is available at https:
//github.com/weicy15/GCS.

1. Introduction
Graph Neural Networks (GNNs) are powerful frameworks
for modeling non-Euclidean structured data, with practical
applications in the fields like biochemistry, physics, and
social science (Senior et al., 2020; Hu et al., 2020a; Shlomi
et al., 2021). However, conventional training methods for
GNNs usually require human annotations, which requires
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domain expertise and is often time-consuming and expen-
sive (Hu et al., 2020b; Sun et al., 2020). In contrast, self-
supervised learning (SSL) pretraining offers a promising
alternative, enabling effective representation learning of
models without labeling efforts.

Contrastive learning is one of the most popular paradigms of
SSL, demonstrating impressive progress in the field of com-
puter vision (CV) (Chen et al., 2020; Grill et al., 2020). Re-
cently, graph contrastive learning (GCL) techniques start to
emerge by translating the central spirits of contrastive learn-
ing into graph-structured data (You et al., 2020). Among
different algorithm variations, effective graph augmentation
constructions turn out to be the bread and butter for the GCL
methods to achieve success (Suresh et al., 2021). How-
ever, random augmentation is still a default for conventional
graph SSL (You et al., 2020; Zhu et al., 2020; Rong et al.,
2020), which lead to intrinsic drawbacks in achieving good
representation generalization:

• Semantic information corruption. Random augmen-
tation can easily corrupt semantic information and de-
stroy the predictive structure of the graph. For example,
specific topological structures in molecules are critical
for chemistry functioning. Random augmentation may
destroy such structures (Li et al., 2022b).

• Environmental information overemphasis. The pre-
dictive structure of a graph sometimes is only deter-
mined by a small subset of nodes/edges, with the ma-
jority of remaining nodes/edges being environmental
background information irrelevant to semantics (Yu
et al., 2022). Random augmentations might mistakenly
encourage GNNs to focus on dominant background
information during contrastive learning instead of se-
mantics (Suresh et al., 2021).

To partially mitigate the above concerns, we probe an alter-
native solution and propose the unsupervised Graph Con-
trastive Saliency (GCS) learning method particularly tai-
lored for graph SSL1. GCS takes inspiration from recent
advancements in explanation methods such as Graph Ratio-
nalization (GR) (Wu et al., 2022; Sui et al., 2022; Liu et al.,

1This paper focuses on training self-supervised GNNs for
graph-level tasks, but the idea may generalize to node-level tasks.
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2022a) and gradient-based explanation technique like Class
Activation Mapping (CAM) (Selvaraju et al., 2017). Unlike
GR methods that always require ground-truth information of
downstream tasks (Liu et al., 2022a), GCS jettisons the need
for knowledge on downstream tasks. Nevertheless, GCS can
still effectively help disentangle semantic and environmen-
tal background structures of the graph, by capitalizing only
on the gradient-based saliency measurements. In contrast to
CAM which was initially designed for euclidean-structured
images, GCS extends beyond and makes gradient-based ex-
planation an appealing tool for graph semantic explanation.
Leveraging on the semantic and environmental structures
decomposition of GCS, our proposed augmentation pipeline
learns to (1) construct positive paired samples for GCL that
preserve semantics in the graph and (2) suppress environ-
mental background information via hard negative samples
by intentionally destroying the identified semantics for the
following GCL. We also incorporate an iterative refinement
procedure to be associated with GCS. This procedure se-
quentially locates residual salient structures on the graph
omitted in the last iteration and ensures that the extracted
semantic substructure of the graph remains discriminative.

We extensively evaluate GCS-based framework on 16 bench-
marks for molecule property-related and social network-
related tasks. Empirical results demonstrate the superior
performance of GCS compared to state-of-the-art graph con-
trastive learning methods, including AD-GCL (Suresh et al.,
2021) and RGCL (Li et al., 2022b). We also demonstrate
rigorous theoretical justification in terms of the robustness
of the GCS-based framework.

2. Related Works
Graph Contrastive Learning Graph contrastive learning
is one of the mainstream routes of graph self-supervised
learning (Liu et al., 2022c), where the model is trained
by maximizing the mutual information between two dif-
ferent views constructed from the original graph. Data
augmentation plays a crucial role in contrastive learning.
Mainstream GCL methods generate augmented views by
randomly altering the anchor graph’s topological structure,
node properties, or edge attributes (Zhu et al., 2020; Qiu
et al., 2020). GraphCL (You et al., 2020) systematically
studies the impact of combining various random augmenta-
tions. However, randomness in augmentations can lead to
undesired loss of semantic information. To address this is-
sue, some works have employed domain knowledge to iden-
tify salient features in graph augmentations (Subramonian,
2021; Liu et al., 2022b; Zhu et al., 2021), which undermines
the self-supervised learning’s goal of reducing supervision.
Additionally, AD-GCL (Suresh et al., 2021) adopts an adver-
sarial edge dropping mechanism as augmentations to reduce
the amount of redundant information taken by encoders.

Explanation Methods and Causal Learning In super-
vised learning, rationalization techniques refer to expla-
nation methods that identify a small subset of input fea-
tures by maximizing predictive performance based only
on the subset, known as the rationale. To eliminate the
spurious correlation between input features and the output,
INVRAT (Chang et al., 2020) proposed the concept of in-
variant rationalization by modeling different environments
as non-causal input to train predictors. Causal learning
modeling-based methods also aim to extract causal seman-
tics by identifying the spurious correlation between the class
label and the semantic-irrelevant environmental variables.
IRM (Rosenfeld et al., 2021) provided formal guarantees for
improving invariant causal prediction on out-of-distribution
generalization. By incorporating causal modeling into GNN
optimization, StableGNN (Fan et al., 2021) presented a
causal representation framework for GNN models to per-
form on out-of-distribution graphs. OOD-GNN (Li et al.,
2022a) used a novel nonlinear graph representation decor-
relation method that utilized random Fourier features to
encourage GNNs to eliminate the statistical dependence
between relevant and irrelevant graph representations. Re-
cently, DIR (Wu et al., 2022) proposed a causal rationales
approach for GNNs to improve interpretability and predic-
tive performance on out-of-distribution data.

In this paper, we propose to use gradient-based saliency as
an effective measurement for SSL augmentation construc-
tions. A closely related work is RGCL (Li et al., 2022b)
which extends the DIR (Wu et al., 2022) approach to GCL
from the perspective of invariant rationale discovery, by
utilizing a GNN-MLP combined rationale generator to gen-
erate rationales in a learnable manner. In comparison to
RGCL which utilizes an additional network to generate the
graph rationale, our proposed GCS conveniently captures
graph saliency through the gradient computed as contrastive
learning process evolves. GCS then generates efficient aug-
mentations by respecting the extracted semantics/saliency
and waives the need for an extra augmentation generation
network. It is also worth noting that all the aforementioned
works assume the availability of a downstream task whereas
GCS is agnostic to downstream tasks’ knowledge.

3. Notations and Preliminaries
We begin with some preliminary concepts and notations for
further exposition. In this work, we let G = (V,E) denote
an attributed graph where V is the node set and E is the
edge set. Apart from the topological structure, graph G may
have node attributes {Xv ∈ RF |v ∈ V } and edge attributes
{Xe ∈ RF |e ∈ E} of dimension F . We use Nv to denote
the neighbor set of node v.

Graph Representation Learning Let G denote the graph
space and Gi ∈ G, i = 1, 2, . . . , n. Graph representation
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learning aims to learn an encoder f : G → Rd, where the
learned graph embedding f(Gi) can be further used in the
downstream task. In the downstream task, each graph Gi

is assigned with a label yi ∈ Y with a fixed labeling rule
G → Y . We learn another model q : Rd → Y to predict yi,
which can be formulated as q(f(Gi)). We assume each Gi

is independent and identically distributed (i.i.d.) sampled
from an unknown distribution PG from space G. And each
(Gi, yi) is also i.i.d sampled from a distribution PG×Y =
PGPY|G , where PY|G is the conditional distribution of the
graph label in the downstream task.

We adopt GNNs as the encoder f . Formally, for a graph G =
(V,E), we denote the node representation for node v as hv

and it can be initialized as h(0)
v = Xv . By message passing

mechanism (Suresh et al., 2021), the node representation
h(k−1)
v is updated using node v’s neighborhood Nv during

the k-th iteration, which can be expressed as:

h(k)
v = f

(k)
combine

(
h(k−1)

v , f
(k)
aggregate

(
{h(k−1)

u |u ∈ Nv}
))

, (1)

where faggregate(·) is a trainable function that maps the set of
node representations to an aggregated vector, and fcombine is
another trainable function that maps both v’s current repre-
sentation h(k−1)

v and the aggregated vector to v’s updated
representation h(k)

v . After K iterations of the message pass-
ing as defined in Eq. (1), most GNN utilizes the pooling
techniques on the final representation of V to obtain the
graph representation as:

hG = f (G) = fpool

(
h(K)

v |v ∈ V
)
.

Existing works consider using different fcombine, faggregate
and fpool (Hamilton et al., 2017; Velickovic et al., 2018).

Graph Contrastive Learning Graph Contrastive Learn-
ing (GCL) typically follows the InfoMax principle (Linsker,
1988), which aims to learn an encoder f(·) that maximizes
the mutual information or the correspondence between the
graph and its representation:

InfoMax: max
f

I (f(G);G) .

In order to optimize Eq. (3), GCL methods usually learn f(·)
to attract semantically similar samples (i.e., positives) with
G, and push semantically different samples (i.e., negatives)
away from G. The positive pairs are usually generated
through graph data augmentation (GDA) processes such as
node perturbation on graphs.
Definition 1 (GDA). For a graph G ∈ G, T (G) denote
a graph augmentation action of G, which is a distribution
defined over G conditioned on G. t(G) ∈ G denote a sample
from T (G).

Correspondingly, given two augmentation distributions T1

and T2, the objective of GCL can be defined as:

max
f

I (f (t1(G)) , f (t2(G))) ,

where tm(G) ∼ Tm(G),m ∈ {1, 2}. In practice, I(·, ·) is
usually hard to estimate (Belghazi et al., 2018) and can be
instead approximated by contrastive loss function, such as
NCE (Misra & van der Maaten, 2020), InfoNCE (van den
Oord et al., 2018), and NT-Xent (Chen et al., 2020).

4. Methodology
We present our unsupervised Graph Contrastive Saliency
(GCS) framework. Our motivation is to respectively identify
which components/nodes of the training data best preserve
semantic content of the graph, that represents the intrinsic
true latent classes of the graph; and to also identify the com-
plementary nodes causing semantic-irrelevant variations
due the change of “environment”. Through such decomposi-
tion into “semantic” and “environment” components, GCS
can generate diverse data augmentations with improved
invariance among semantically similar graphs, and with
suppressed spurious correlations out of environmental varia-
tions. The augmentations are then used to construct positive
and negative samples for the following graph contrastive
learning with less bias, leading to improved generalization.

4.1. Unsupervised Semantic Screening for Graph
Contrastive Learning

Semantic screening aims at finding the semantically dis-
criminative substructures in a graph. These could be certain
functional groups of molecules, or certain groups of people
in social networks. In order to capture these semantically
meaningful nodes, we take inspiration from the gradient-
based class activation map (CAM) (Selvaraju et al., 2017).
CAM is conventionally used to locate salient regions in
images. In contrast, we propose a novel non-euclidean
gradient-based explanation technique called the graph con-
trastive saliency (GCS) method. GCS extends beyond CAM
and is exclusively suitable for training graph representation
learning in an unsupervised manner. We elaborate detailed
GCS procedure in the following section.

Overview The overall framework of GCS is illustrated
in Figure 1. Blue nodes represent the semantics to be
preserved, while red nodes represent the detected environ-
mental information. In each refine iteration, the upper left
is the original graph, the lower left is the residual graph
out of the previous iteration (by masking newly obtained
saliency nodes from original graph). The gradually evolving
subgraph in the lower right represents the saliency scores
learned by the model where darker color indicates higher
saliency score. The upper right graph is the resultant graph
with semantic nodes and environmental nodes determined
by GCS via thresholding the saliency scores in the lower
right graph. GCS refines the saliency results through multi-
ple iterations and obtains the final augmentation in the third
iteration, i.e., the upper right graph.

3



Boosting Graph Contrastive Learning via Graph Contrastive Saliency

Attract Attract Attract

Original Graph Original Graph Original Graph

SaliencySaliency SaliencySaliency SaliencySaliency

AggregateAggregate AggregateAggregate AggregateAggregate

Iteration 1 Iteration 2 Iteration 3

G3G3G2G2G1 = GG1 = G

Attract

Contrastive Learning

Figure 1. Illustration of the Iterative Graph Contrastive Saliency (T = 3) procedure and the generated augmentations based on GCS. Blue:
semantic content; Red: enviromental content; Grey (darker) : saliency score (higher); Black: final semantic by thresholding the saliency
score; White: final enviromental content by thresholding saliency score.

Graph Contrastive Saliency The basic thread of think-
ing is to find the critical semantic substructure on G′ that
maximizes mutual information I(G′, G), where G′ = t(G)
is augmentation of graph G with similar semantics. In the
meanwhile, these substructure should maintain discrimi-
nativeness to distinguish G from other graphs. Formally
speaking, we define graph representation hG′ as:

hG′ = f(G′) = fpool
(
hv|v ∈ V ′) ,

where hv ∈ Rd is node v’s final-layer representation
h(K)
v and for simplicity, we omit its subscript (K). Per-

turbation to some node representation of graph G, i.e.,
hv ± ∆h, v ∈ V , will cause the change ∆I of the mu-
tual information I(G′, G) = I(hG′ , hG). If ∆I turns out
large, the disturbed node on G through the mapping of f is
considered critical in distinguishing the semantic changes
between G and G′. Inspired from Mo et al. (2021), we
perform “trail perturbation” by computing the closed form
gradient of estimated mutual information I(hG′ , hG), with
respect to the p-th dimension of hv, v ∈ V ′, to locate these
semantically important substructure of the G:

αv,p =
∂I (hG′ , hG)

∂hv,p
, (2)

where we later elaborate the used estimator on I(hG′ , hG)
in Section 4.2. These gradients αv,p flowing back are global-
average-pooled over all the nodes v to obtain the “impor-
tance weight” of dimension p:

αp = ReLU

(
1

|V ′|
∑
V ′

αv,p

)
, (3)

where ReLU(·) is used to discard the negative signals. In-
spired by CAM, we define the saliency score ωv of each
node v as the weighted sum of all the dimensions of the
node’s representation, yielding:

ωv = Normalize

(
ReLU

(
d∑

p=1

αphv,p

))
, (4)

where Normalize(x) = x−min x
max x−min x is a normalization

function that maps the elements to [0, 1]. For edge saliency
score, it is intuitively legitimate to average the correspond-
ing node saliency scores: ωuv = (ωu + ωv)/2. After calcu-
lating both the node and edge saliency scores, we binarize
the scores by thresholding respectively at hyperparameter
ϕnode and ϕedge in order to generate corresponding mask
generate the node mask vector MV ∈ R|V | and edge mask
vector ME ∈ R|E|. This procedure can be formally pre-
sented as:

MV [u] =

{
1 , u ∈ V & ωu > ϕnode

0 , Otherwise
,

ME [u, v] =

{
1 , eu,v ∈ E & ωuv > ϕedge

0 , Otherwise
.

Iterative Refinement An additional advantage of our GCS
method is that it can be further improved through an iterative
refinement procedure in computing Eq. (4) similarly to Mo
et al. (2021). The intuition is to remove the old identified
semantic contents to construct new G′, estimating the new
mutual information I(hG′ , hG) based on these removals on
G′, then identify the residual new salient structure in G′ that
maximizes new I(hG′ , hG), and finally update the Eq. (4).
This procedure can iterate several times (a hyperparameter)
to best screen the semantic representative structures in G
and obtain the final ωv. Mathematically, at the t iteration,
we perform the GCS on the original G with Gt to compute
the saliency score:

ωt = GCS(Gt, G) ,

where ωt is the saliency score (of both nodes and edges) in
the t-th iteration. We initialize G1 with the original graph,
i.e., G1 = G. In order to continuously capture the saliency
part on the graph, We always aggregate the new GCS scores
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with the old ones as follows:

ωt = max
l≤t

ωl . (5)

Finally, we binarize the saliency score ωt to obtain the actual
masks:

Mt
V ,M

t
E = Binarize

(
ωt

)
,

and we mask the salient regions of the graph with the (re-
verse of) current mask to obtain the updated Gt+1:

Gt+1 =
(
V ⊙

(
1−Mt

V

)
, E ⊙

(
1−Mt

E

))
. (6)

Here the saliency region in the t-th iteration will be masked
in Gt+1, which enables our GCS process to explore the un-
masked region. After iterating T times according to Eq. (6),
we use the final aggregated mask MT

V and MT
E at time T as

the output node mask to indicate whether the node or edge
is considered as the semantics of graph G. The complete
refinement procedure is illustrated in Figure 1.

4.2. Graph Contrastive Saliency-based Augmentations

After obtaining the semantic mask MT
V and MT

E as in Sec-
tion 4.1, it is now legitimate to decompose the input graph
G into the semantic subgraph Gs and the environment sub-
graph Ge such that we can generate new augmentations
based the decomposition:

Gs =
(
V ⊙MT

V , E ⊙Mt
E

)
,

Ge =
(
V T ⊙

(
1−Mt

V

)
, ET ⊙

(
1−Mt

E

))
.

In order to force the GNN to learn the semantic invariance
between G and its augmentations, it is critical to preserve the
semantic of augmentation G′ during the generative process
of augmentation. We then keep the learned Gs invariant and
perturb Ge by node dropout, edge dropout, or other graph
augmentation approaches to create the “positive” pair of
views of G:

Gm,+ = tm(Ge) +Gs , (7)

where tm(G) ∼ Tm(G),m ∈ {1, 2}. We then optimize the
following objective according to Definition 1 to maximize
the mutual information between positive samples:

Lsc : max
f

I
(
f
(
G1,+) , f (G2,+)) . (8)

Note that the graph model may focus wrongly and rely too
much on the environmental information to take shortcuts
in reaching an agreement for positive samples. This will
cause environmental augmentation overemphasis and pro-
vides helpless (and harmful) information to learn useful
semantic invariance. To remedy this issue, we can generate
hard “negative” graph samples to be composed of nodes
dominated by background information. The training then
explicitly pushes away the representations of G and its hard

negative sample G− to learn even the smallest and “delicate”
change in semantics, even if the environmental background
information is dominating. Given this motivation, and by
inspiration from Li et al. (2022b) and Mo et al. (2021), we
also create hard negative views for each graph by corrupting
its semantics, in addition to using the negative views derived
from other graphs. Specifically, for each G, we keep its en-
vironment subgraph Ge intact, and perform a certain ratio
of node dropout and edge dropout on the Gs to contaminate
its semantics:

G− = Ge + t′(Gs) , (9)

where G− is the constructed hard negative and t′(G) ∼
T ′(G) represents the graph data augmentation with a certain
ratio of node dropout and edge dropout. The objective is to
also dispel these hard negatives through penalizing:

Lenv : min
f

I(f(G), f(G−)) . (10)

Our overall objective function can be equivalently viewed
as a Lagrangian of the objectives Eq. (8) and Eq. (10):

min
f

L = −I
(
f
(
G1,+) , f (G2,+))+ λI

(
f (G) , f

(
G−)) ,

(11)
where λ is the hyperparameter that controls the strength
of the hard negatives. Note that our GCS-based SSL is a
backbone-agnostic graph SSL framework, which is applica-
ble to different backbones.

Without loss of generality, we adopt InfoNCE as the estima-
tor for mutual information I(·, ·) in Eq. (11) and in Eq. (2).
InfoNCE loss is known as a lower bound of the mutual in-
formation (Poole et al., 2019) in the context of contrastive
SSL (van den Oord et al., 2018; Chen et al., 2020). During
the training, given a mini-batch of N graphs {Gi}Ni=1, let
z′i = f(G′

i) and z′′i = f(G′′
i ) for any arbitrary G′

i and G′′
i ,

the mutual information between variables f(G′), f(G′′) is
approximately estimated as:

Î
(
f(G′), f(G′′)

)
=

1

N

N∑
i=1

log
exp

(
z′

T
i z

′′
i/τ
)

exp
(
z′Ti z

′′
i/τ
)
+
∑N

j=1,j ̸=i exp
(
z′Ti z

′′
j/τ
) .
(12)

Here, G′
i and G′′

i are viewed as sampled realizations of
variables G′ and G′′. We plug Î (f(G′), f(G′′)) estimated
via Eq. (12) to replace I (f(G′), f(G′′)) in Eq. (11), where
the definitions of G′ and G′′ become clear depending on the
contexts in Eq. (11).

5. Analysis
The proposed augmentation method leverages on the ex-
planation of Eq. (4). Since interpretability methods are
often prone to robustness issues (Ghorbani et al., 2019; Ade-
bayo et al., 2018; Slack et al., 2020; Bai et al., 2021), it is
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critical to provide a theoretical understanding of robustness
properties of Eq. (4). This section serves this purpose and es-
tablishes the provable robustness guarantee of the proposed
method. In detail, we demonstrate that the term inside the
ReLU of Eq. (4) satisfies C-Lipschitz continuity with some
Lipschitz constant C, and Eq. (4) is therefore guaranteed
to be robust to small changes when the number of nodes
in the graph approximately approaches infinity. We firstly
demonstrate the used definitions and assumptions required
to support our theorem.

Definition 2 (C-Lipschitz). A function f is C-Lipschitz if
there exists a constant C that satisfies ∥f(x) − f(x̂)∥2 ≤
C∥x− x̂∥2.

Assumption 1.
i) Admissible loss functions L (hv,p) are first-order differen-
tiable.

ii) The first order derivative of loss function L (hv,p), i.e.,
L̃ (hv,p) =

∂L(hv,p)
∂hv,p

is in bound in [−L̃max, L̃max], i.e.,

|L̃ (hv,p) | ≤ L̃max, and |hv,p| ≤ hmax.

iii) The pth dimension of feature hv,p across v ∈ V nodes
follows Gaussian distribution, i.e., hv,p ∼ N (µp, σ

2
p),∀v,

where µp is the mean value, and σ2
p is the variance. Define

µv has value µp at the pth dimension in µv .

Given the above definition and assumptions, we adapt from
the proving techniques in Agarwal et al. (2021) and pro-
pose the following theorem, which is closely related to the
explanation (saliency) obtained via Eq. (4):

Theorem 1. Let g be a function defined to be:

g (µp) = lim
V→∞

1

V

V∑
v=1

∂L (hv,p)

∂hv,p
, hv,p ∼ N (µp, σ

2
p),∀v

then Q (µv) =
∑

p g (µp)hv,p is
h∗
pL̃max

2σ -Lipschitz w.r.t. ℓ2
norm, h∗

p is a constant depending on L̃max and hmax.

Note if loss L (hv,p) = I(h′
G, hG), then g(µp) equals to αp

by omitting the ReLU (Mo et al., 2021) in Eq. (3), and by
assuming infinite number of nodes (V → ∞) are present
in graph. Function Q(µv) is correspondingly defined on
top of g(µp), with the goal to approximate the term inside
the ReLU operation inside Eq. (4), which is guaranteed

to be C-Lipschitz continuous with constant C =
h∗
pL̃max

2σ .
This directly justifies that Q(µv) used for computing the
explanation in Eq. (4) is provably robust to small changes as
long as Assumption 1 holds, showing the exclusive merits
of our proposed augmentation in the context of graph SSL.
We defer the proof to Appendix H.

6. Experiments
This section is dedicated to the empirical evaluation of the
proposed GCS-based GCL. Extensive experiments are con-
ducted to address the following two research questions:
RQ1: Do the proposed GCS-based augmentations improve
the performance of pre-trained backbones on downstream
tasks? RQ2: How effective is the GCS in capturing seman-
tically important structures in graphs? A summary of the
datasets and training details for specific experiments, as well
as the experimental analysis of hyperparameter sensitivity,
are provided in the appendix.

6.1. Comparison with State-of-the-Art Methods (RQ1)

Unsupervised Learning For the unsupervised graph-level
classification task, we trained graph encoders with different
GCL methods using unlabeled data, then fixed the represen-
tation model and trained the classifier using labeled data.
We used datasets from TU Dataset (Morris et al., 2020) for
evaluations. Following GraphCL (You et al., 2020), we used
a 5-layer GIN (Xu et al., 2019) with a hidden size of 128
as the graph encoder and utilized an SVM as the classifier.
The GIN was trained with a batch size of 128 and a learning
rate of 0.001. We conducted a 10-fold cross-validation on
each dataset, and each experiment was repeated 5 times.
We compared our method with kernel-based methods like
Graphlet Kernel (GL) (Shervashidze et al., 2009), Weisfeiler-
Lehman sub-tree kernel (WL) (Shervashidze et al., 2011)
and Deep Graph Kernel (DGK) (Yanardag & Vishwanathan,
2015). Other unsupervised graph learning methods like
node2vec (Grover & Leskovec, 2016), sub2vec (Adhikari
et al., 2018), and graph2vec (Narayanan et al., 2017), and
recent advanced GCL methods like InfoGraph (Sun et al.,
2020), GraphCL (You et al., 2020), JOAO (You et al., 2021),
AD-GCL (Suresh et al., 2021), and RGCL (Li et al., 2022b),
were also included. All reported values for baseline methods
are taken directly from Hu et al. (2020b) and their original
papers. Summaries of datasets and baselines are provided
in Appendix D.

Table 1 presents a comparison of different models for un-
supervised learning. Our proposed GCS-based method
achieved the best results on the MUTAG, IMDB-binary,
REDDIT-binary, and REDDIT-Multi-5K datasets and the
second-best results on the COLLAB dataset. The per-
formance of GCS on the PROTEINS dataset was also
comparable with the best results. Furthermore, GCS
achieved the best average performance (77.39%), surpass-
ing current state-of-the-art contrastive learning methods,
including GraphCL (75.71%), AD-GCL (75.02%), and
RGCL (76.15%).

Transfer Learning In this study, we evaluated the transfer
learning performance. We first conducted self-supervised
pre-training on the pre-processed ChEMBL dataset (Mayr
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Table 1. Unsupervised representation learning classification accuracy (%) on TU datasets. Bold denotes the best performance while
Underline represents the second best performance.

Model MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B RDT-M5K avg.

GL 81.66±2.11 - - - - 65.87±0.98 77.34±0.18 41.01±0.17 -
WL 80.72±3.00 72.92±0.56 - 80.01±0.50 - 72.30±3.44 68.82±0.41 46.06±0.21 -
DGK 87.44±2.72 73.30±0.82 - 80.31±0.46 - 72.30±3.44 78.04±0.39 41.27±0.18 -

node2vec 72.63±10.20 57.49±3.57 - 54.89±1.61 - - - - -
sub2vec 61.05±15.80 57.49±3.57 - 52.84±1.47 - 55.26±1.54 71.48±0.41 36.68±0.42 -
graph2vec 83.15±9.25 73.30±2.05 - 73.22±1.81 - 71.10±0.54 75.78±1.03 47.86±0.26 -

InfoGraph 89.01±1.13 74.44±0.31 72.85±1.78 76.20±1.06 82.00±0.29 73.03±0.87 82.50±1.42 53.46±1.03 75.43
GraphCL 86.80±1.34 74.39±0.45 78.62±0.40 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.28 75.71
JOAOv2 - 71.25±0.85 66.91±1.75 72.99±0.75 70.40±2.21 71.60±0.86 78.35±1.38 45.57±2.86 -
AD-GCL 88.62±1.27 75.04±0.48 75.73±0.51 75.86±0.62 74.89 ± 0.9 71.49±0.90 85.52±0.79 53.00±0.82 75.02
RGCL 87.66±1.01 75.03±0.43 78.86±0.48 78.14±1.08 70.92±0.65 71.85±0.84 90.34±0.58 56.38±0.40 76.15

GCS 90.45±0.81 75.02±0.39 77.22±0.30 77.37±0.30 75.56±0.41 73.43±0.38 92.98±0.28 57.04±0.49 77.39

et al., 2018) for 100 epochs. Subsequently, we fine-tuned
the backbone model on 8 benchmark multi-task binary clas-
sification datasets in the biochemistry domain, which are
included in MoleculeNet (Wu et al., 2018). We evaluated the
mean and standard deviation of ROC-AUC scores of 10 runs
with different random seeds on each downstream dataset,
which is consistent with the baselines. The baselines used
in this study included Infomax, EdgePred, AttrMasking,
and ContextPred which are manually designed pre-training
strategies from Pretrain-GNN (Hu et al., 2020b), which is
considered as a strong baseline for graph transfer learning.
We also involved other state-of-the-art pre-training meth-
ods, such as GraphCL, JOAO, AD-GCL, and RGCL. All
reported values for baseline methods are taken directly from
Hu et al. (2020b) and their original papers. The network
backbone of all these methods was GIN. Further details of
the experimental settings can be found in Appendix E.

Table 2 presents the results of the comparison among dif-
ferent methods. Our proposed method achieved the best
performance on 5 out of 8 datasets, and the second-best
performance on the ClinTox dataset. When compared
with GraphCL, our method consistently delivered better
performance, indicating the effectiveness of the semantic-
preserving augmentation views in transfer learning. Fur-
thermore, when compared with the current state-of-the-
art rationale-aware method, RGCL (Li et al., 2022b), our
method exhibited a considerable improvement in perfor-
mance, with an increase in the average score over all datasets
from 73.16% to 74.72%.

Summary The experiments on unsupervised learning and
transfer learning demonstrate the state-of-the-art perfor-
mance of our proposed GCS-based GCL. Especially, com-
pared with AD-GCL and RGCL, the results verify the advan-
tage of the graph contrastive saliency. By utilizing semantic-
preserving augmentation, GCS significantly improves the
transferability and the generalization ability of pre-trained

backbone graph encoders.

6.2. Effectiveness of GCS in Capturing Semantics (RQ2)

In this section, we present an evaluation of the effective-
ness of graph contrastive saliency in capturing semantics on
the MNIST-Superpixel dataset. This dataset is particularly
suited for this analysis as it possesses clear semantics and is
amenable to visual examination. We adopted the experimen-
tal setup described by You et al. (2020) for formulating the
pre-training dataset by removing the labels of the training
set in the MNIST-Superpixel dataset. The resulting dataset
is then employed to train the backbone encoder using GCS-
based GCL. Subsequently, we randomly select three cases
and generate GCS-based augmentations. For comparative
purposes, we also apply node dropping augmentation using
GraphCL with an augmentation ratio of 0.2, while masking
nodes with saliency scores in the bottom 20% of the graph.
Additional information regarding the MNIST-Superpixel
dataset can be found in Appendix B.

The visualization presented in Figure 2 illustrates the ca-
pability of GCS to effectively capture semantics, thereby
facilitating semantic-preserving augmentations for GCL.
These high-quality positive samples can assist graph en-
coders in avoiding semantic corruption during contrastive
learning. In contrast, GraphCL’s random augmentation ap-
proach may remove semantically essential nodes, resulting
in significant semantic changes. For instance, the GraphCL
approach results in the removal of the down-right part of the
9 superpixel graph, thereby altering its semantic information
from 9 to 0. Similarly, the semantics of 8 is transformed
to somewhat similar semantics to 6 in the GraphCL view.
Our method, on the other hand, tends to assign high saliency
scores to semantic areas and is more likely to drop nodes in
the environment, thus improving the diversity and robust-
ness of graphs with the same semantics. By perturbing the
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Table 2. Transfer learning ROC-AUC scores (%) on downstream graph classification tasks. Bold denotes the best performance while
Underline represents the second best performance.

Model BBBP Tox21 ToxCast SIDER ClinTox MUV HIV BACE avg.

No Pretrain 65.8±4.5 74.0±0.8 63.4±0.6 57.3±1.6 58.0±4.4 71.8±2.5 75.3±1.9 70.1±5.4 66.96

Infomax 68.8±0.8 75.3±0.5 62.7±0.4 58.4±0.8 69.9±3.0 75.3±2.5 76.0±0.7 75.9±1.6 70.29
EdgePred 67.3±2.4 76.0±0.6 64.1±0.6 60.4±0.7 64.1±3.7 74.1±2.1 76.3±1.0 79.9±0.9 70.28
AttrMasking 64.3±2.8 76.7±0.4 64.2±0.5 61.0±0.7 71.8±4.1 74.7±1.4 77.2±1.1 79.3±1.6 71.15
ContextPred 68.0±2.0 75.7±0.7 63.9±0.6 60.9±0.6 65.9±3.8 75.8±1.7 77.3±1.0 79.6±1.2 70.89
GraphCL 69.68±0.67 73.87±0.66 62.40±0.57 60.53±0.88 75.99±2.65 69.80±2.66 78.47±1.22 75.38±1.44 70.75
JOAOv2 71.39±0.92 74.27±0.62 63.16±0.45 60.49±0.74 80.97±1.64 73.67±1.00 77.51±1.17 75.49±1.27 72.12
AD-GCL 70.01±1.07 76.54±0.82 63.07±0.72 63.28±0.79 79.78±3.52 72.30±1.61 78.28±0.97 78.51±0.80 72.72
RGCL 71.42±0.66 75.20±0.34 63.33±0.17 61.38±0.61 83.38±0.91 76.66±0.99 77.90±0.80 76.03±0.77 73.16

GCS 71.46±0.46 76.16±0.41 65.35±0.17 64.20±0.35 82.01±1.90 80.45±1.67 80.22±1.37 77.90±0.26 74.72

Table 3. Ablation study for GCS on downstream unsupervised learning datasets.
Variation MUTAG PROTEINS DD NCI1 COLLAB IMDB-B REDDIT-B RDT-M5K avg.

GraphCL 86.80±1.34 74.39±0.45 78.62±0.40 77.87±0.41 71.36±1.15 71.14±0.44 89.53±0.84 55.99±0.28 75.71

w/o semantic-presvering aug. 87.38±0.54 74.31±0.27 78.90±0.26 77.71±0.55 72.21±0.41 72.37±0.46 90.88±0.63 55.19±0.34 76.12
w/o hard negative aug. 89.06±0.34 74.90±0.32 76.96±0.44 76.82±0.22 74.51±0.28 72.50±0.36 91.28±0.42 56.32±0.54 76.54
GCS (complete version) 90.45±0.81 75.02±0.39 77.22±0.30 77.37±0.30 75.56±0.41 73.43±0.38 92.98±0.28 57.04±0.49 77.39

structures in the environment, our method benefits the diver-
sity of graphs with the same semantics and thus improves
the robustness of the backbone models.

Furthermore, our GCS approach enables the generation of
hard negatives by applying high-ratio dropout to the se-
mantic nodes while retaining the environmental parts, as
depicted in Figure 3. These views and the original graph
possess many similar background elements, making it chal-
lenging to discern the original semantic information. By
minimizing the mutual information between these examples
and the original graphs, we can induce the backbone model
to suppress the encoded environmental information.

6.3. Ablation Study

In this section, we conduct ablation studies to evaluate the ef-
fectiveness of the proposed semantic-preserving augmenta-
tion (Eq. (8)) and the hard negative augmentation (Eq. (10))
based on GCS. We consider the following variants of GCL
with different components in the final objective (Eq. (11)):

• w/o semantic-preserving aug.: This variant model
replaces Lsc with the GraphCL loss, which constructs
positive views by randomly dropping edges or nodes.

• w/o hard negative aug.: This variant model removes
the Lenv term from the final objective L.

Taking the unsupervised learning task as an example, Ta-
ble 3 presents the experimental results. The results demon-
strate that the removal of either component of the method
negatively impacts the ability of the graph representation

learning to perform well. These results align with our hy-
pothesis that random augmentation may corrupt semantics
and overemphasize environmental information, thereby hin-
dering the generalization performance on downstream tasks.

6.4. GCS agaisnt varying graph size, sparsity, noise

In our main paper, we compared all the SOTA methods
on the widely used public benchmarks having a fixed size,
sparsity, and noise level. However, it indeed would be inter-
esting to test GCS against varying conditions. To reach this
goal, we divide the COLLAB dataset into 5 splits represen-
tative of different levels of size, sparsity, and noise levels.
For training against graph size, we first reorder all data
samples in COLLAB dataset in terms of graph sizes (node
size in ascending order). We then evenly split this reordered
dataset sequentially into 5 parts, where each part has 1000
training samples. In this way, different part corresponds
to different average graph sizes. Similarly, to test against
varying sparsity levels, we define Sparsity =

nedge

n2
node

, re-
order all data samples in COLLAB according to Sparsity,
and sequentially divide the reordered data (in ascending
order) into 5 splits. To test COLLAB against noise level,
we randomly flip certain proportions (noise level) of edges
in the graph of COLLAB, and report the results. The three
experiments are respectively presented as follows.

Varying graph size. COLLAB is ordered according to
the node numbers and divided equally into 5 split/part (1000
samples each part). Average node numbers for Part 1- Part
5 are respectively 34.319, 42.248, 52.791, 74.685, 168.431.
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Figure 2. Positive view visualization on the MNIST-Superpixel
dataset. Green nodes reflect the ground-truth saliency. Based on
GCS, our views effectively preserve semantic information.

Our Views 0 Our Views 8 Our Views 9

Figure 3. GCS-based hard negative views on MNIST-Superpixel.
Green nodes reflect the ground-truth saliency. Identified semantics
are intentionally destroyed.

The experiment results are presented in Table 4. We ob-
serve all methods are improving when graph size increases,
whereas GCS performs the best in most cases.

Table 4. GCS against varying graph size.
Part 1 Part 2 Part 3 Part 4 Part 5

ADGCL 63.3±1.1 67.1±0.5 75.1±1.3 83.1±1.0 93.6±0.8
RGCL 60.0±1.1 62.5±0.9 70.8±1.1 81.1±1.0 93.3±1.3
GCS 64.7±0.9 69.6±1.3 78.4±1.3 85.3±0.9 93.3±0.7

Varying sparsity level. COLLAB dataset is ordered ac-
cording to the sparsity level and divided equally into 5 parts
(1000 samples each part). The average sparsities for Part
1- Part 5 are respectively 0.16, 0.27, 0.42, 0.69, 0.96. The
experiment results are presented in Table 5. It seems all
methods are improving when the sparsity level increases,
whereas GCS demonstrates strong advantage.

Table 5. GCS against varying sparsity level.
Part 1 Part 2 Part 3 Part 4 Part 5

ADGCL 67.1±0.8 69.0±0.7 73.8±0.6 79.5±1.1 75.2±0.6
RGCL 62.7±0.6 65.6±1.3 67.7±1.2 74.8±1.4 77.0±0.5
GCS 68.3±0.6 73.6±1.3 76.8±1.2 81.6±1.3 76.9±0.4

Table 6. GCS against varying noise level.
noise-level 0 0.05 0.1 0.15 0.2

ADGCL 74.89±0.90 69.15±0.80 65.04±1.47 58.70±1.68 49.95±0.81
RGCL 70.92±0.65 67.27±1.55 63.68±0.92 60.46±1.98 54.34±0.85
GCS 75.56±0.41 72.15±1.19 69.70±1.40 67.38±1.38 63.09±1.43

Varying noise level. We randomly flip some proportions
(noise-level) of edges in the graph of the COLLAB dataset.
The experiment results are presented in Table 6. We observe
that all methods suffer performance drops when the noise
level increases, whereas GCS is always the most robust
method against noise.

7. Conclusion
GCL has demonstrated remarkable success for graph SSL.
To address the issues of conventional random augmentation
in GCL, we propose the graph contrastive saliency (GCS),
a simple and effective gradient-based approach that uti-
lizes contrastively trained models to capture semantics. By
leveraging the semantics, we introduce two data augmenta-
tion techniques to address the aforementioned challenges.
Through extensive experimentation on benchmark datasets,
we demonstrate that GCS improves the transferability and
generalization ability of contrastively pre-trained GNNs and
achieves state-of-the-art performance. We also provide vi-
sualizations of the generated graph views to show that GCS
is able to preserve discriminative structures of input graphs.
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A. Algorithm

Algorithm 1 Graph Contrastive Saliency for Graph Contrastive Learning
Input: Dataset {Gi : i = 1, 2, . . . , n}, initial encoder f(·), projection head g(·), iteration number T , hard negative

efficient λ, binary threshold ϕnode and ϕedge.
Output: Optimized encoder f(·)

1: for sampled minibatch of data {Gi : i = 1, 2, . . . , N} do
2: for i = 1 to N do
3: Define: I(z′i, z′′i) = log

exp(z′T
i z′′

i/τ)∑m
j=1,j ̸=i exp(z

′T
i z′′

j/τ)

4: Initialize: Gmask
i = Gi, ω = 0

5: for t = 1 to T do
6: hi = f(Gi) ; hmask

i = f(Gi)
7: zi = g(hi) ; zmask

i = g(hmask
i )

8: Compute I(zi, z
mask
i )

9: ωt = GCS(I(zi, zmask
i ), hi) (Algorithm 2)

10: ω = Max(ωt, ω) if t > 1 else ωt (Eq. (5))
11: Mt

V ,M
t
E = Binarize(ω)

12: Gmask
i = (V t ⊙ (1−Mt

V ), E
t ⊙ (1−Mt

E))
13: end for
14: Perform semantic-preserved augmentation: G1,+

i and G2,+
i ; (Eq. (7))

15: Perform environment-distilled augmentation: G−
i (Eq. (9))

16: Define: Li = −I(f(G1,+
i ), f(G2,+

2 )) + λI(f(Gi), f(G
−
i ))

17: end for
18: L = 1

N

∑N
n=1 Li

19: Update encoder f(·) and g(·) to minimize L
20: end for
21: Return: f(·)

Algorithm 2 Graph Contrastive Saliency (GCS)
Input: Mutual information I(z, zmask), graph representation h.
Output: Graph contrastive saliency score ωu and ωuv of graph G = (V,E), where vu ∈ V and euv ∈ E.

1: grad = Autograd(I(z, zmask), h) (Eq. (2));
2: weight = Average Pooling(grad) (Eq. (3));
3: ωu = Normalize(Sum(weight, h)) (Eq. (4));
4: ωuv = (ωu + ωv)/2;
5: Return ωu, ωuv

B. MNIST-superpixel Dataset
We summarize the statistics of the MNIST-superpixel dataset in Table 7. The detailed information for MNIST-superpixel
can be referred in (Monti et al., 2017).

Table 7. Statistics for MNIST-superpixel dataset.

Dataset Category # of Graphs Avg. # of Nodes Avg. Degree

MNIST SuperPixel 70,000 70.57 8

C. Baselines
Here we briefly introduce some important graph self-supervised learning baseline methods.
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• InfoGraph (Sun et al., 2020) InfoGraph maximizes the mutual information between the graph-level representation and
the representations of substructures of different scales.

• Attribute Masking (Hu et al., 2020b) Attribute Masking learns the regularities of the node/edge attributes distributed
over graph structure to capture inherent domain knowledge.

• Context Prediction (Hu et al., 2020b) Context Prediction predicts the surrounding graph structures of subgraphs to
pre-train a backbone GNN, so that it maps nodes appearing in similar structural contexts to nearby representations.

• GraphCL (You et al., 2020) GraphCL learns unsupervised representations of graph data through contrastive learning
with random graph augmentations.

• JOAOv2 (You et al., 2021) JOAOv2 leverages GraphCL as the baseline model and automates the selection of
augmentations when performing contrastive learning.

• AD-GCL (Suresh et al., 2021) AD-GCL optimizes adversarial graph augmentation strategies used in GCL to avoid
capturing redundant information.

• RGCL (Li et al., 2022b) RGCL uses a rationale generator to reveal salient features about graph instance-discrimination
as the rationale, and then creates rationale-aware views for contrastive learning.

D. Unsupervised Learning Settings
Dataset We summarize the statistics of the TU-datasets (Morris et al., 2020) for unsupervised learning in Table 8. We
obtain the data from Pytorch Geometric Library2.

Table 8. Statistics of TU-datasets for unsupervised learning.

Dataset Category # of Graphs Avg. # of Nodes Avg. Degree

NCI1 Biochemical Molecule 4,110 29.87 1.08
PROTEINS Biochemical Molecule 1,113 39.06 1.86

DD Biochemical Molecule 1,178 284.32 715.66
MUTAG Biochemical Molecule 188 17.93 19.79
COLLAB Social Network 5,000 74.49 32.99

REDDIT-binary Social Network 2,000 429.63 1.15
REDDIT-Multi-5K Social Network 2,000 17.93 497.75

IMDB-binary Social Network 1,000 19.77 96.53

E. Transfer Learning Settings
Dataset We utilize MoleculeNet (Wu et al., 2018) as downstream tasks for transfer learning and summarize the statistics in
Table 9.

Table 9. Statistics of MoleculeNet dataset for downstream transfer learning.

Dataset Category # of Graphs Avg. # of Nodes Avg. Degree

BBBP Biochemical Molecule 2,039 24.06 51.90
TOX21 Biochemical Molecule 7,831 18.57 38.58

TOXCAST Biochemical Molecule 8,576 18.78 38.52
SIDER Biochemical Molecule 1,427 33.64 70.71

CLINTOX Biochemical Molecule 1,477 26.15 55.76
MUV Biochemical Molecule 93,087 24.23 52.55
HIV Biochemical Molecule 41,127 25.51 54.93

BACE Biochemical Molecule 1,513 34.08 73.71

2https://github.com/graphdeeplearning/benchmarking-gnns/tree/master/data
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Figure 4. Influence of hyperparameter T , λ, ϕnode and ϕedge.

Evaluation Protocol We follow the same evaluation protocol as outlined by Hu et al. (2020b). Our self-supervised methods
are trained on the ChEMBL dataset (Mayr et al., 2018), and are later evaluated for transferability by fine-tuning them on the
MoleculeNet datasets and evaluating them using the labels of these datasets. To ensure fair comparison, we use the same
GIN encoder and settings by Hu et al. (2020b). During fine-tuning, an additional linear graph prediction layer is added to
the encoder, which maps the representations to the task labels. This is trained end-to-end using gradient descent.

F. Model Structure and Hyperparameters
For fair comparison, we follow the backbone setting in You et al. (2020), which adopt the GIN as the graph encoder (Xu
et al., 2019). We summarize the corresponding hyperparameters in Table 10.

Table 10. Model architectures and hyperparameters.

Experiment Unsupervised Learning Transfer Learning

Backbone Type GIN GIN
Backbone hidden dim [32, 32, 32] [300, 300, 300, 300, 300]
Projector hidden dim [32, 32] [300, 300]

Pooling Type Global Add Pool Global Mean Pool

Temperature {0.05, 0.1, 0.2, 0.3, 0.5} {0.05, 0.1, 0.2, 0.3, 0.5}

G. Hyperparameter Sensitivity
In this section, we investigate the influence of four hyperparameters on both unsupervised learning and transfer learning
settings, which includes iteration number T , hard negative efficient λ, binary thresholds ϕnode and ϕedge. We present the
result in Figure 4.

Effect of T We vary T from 1 to 5 while keeping other parameters fixed. GCS significantly improves when the iteration
number increases from 1 to 2. We attribute this improvement to the fact that a small number of iterations often only detect
incomplete sub-regions of the semantic properties in a graph. Performing GCS-based augmentations on such incomplete
saliency may further harm the semantic consistency of the generated positive views. Therefore, it is important to perform
sufficient iterative refinement to obtain a confident mask. Figure 4 shows that increasing the iteration number substantially
enhances performance, with the best results achieved at 3 iterations. Our GCS-based method also shows stable results for a
large number of iterations (e.g., 5) and converges to some stationary values. This may be because the output saliency mask
will include the entire graph as the saliency, resulting in the model degenerating to GraphCL when performing GCS-based
augmentations.

Effect of λ We vary λ from 0 to 0.7 while keeping other parameters fixed. The environmental objective Lenv serves as a
regularizer in the training process, encouraging the graph model to not focus on environmental information. Note that when
λ = 0, the framework degenerate to the variant model w/o hard negative aug. in Section 6.3. However, overemphasizing it
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(e.g., setting a large value for λ) may also degrade performance. Therefore, we recommend tuning it around 0.1 based on
the experimental results in Figure 4, which benefits contrastive learning.

Effect of Threshold ϕnode and ϕedge Thresholds ϕnode and ϕedge control the sensitivity of our framework to dropping nodes
and edges, respectively. We vary ϕnode from 0 to 0.4 and ϕedge from 0 to 0.9 to investigate their effects. The results in
Figure 4 suggest choosing a relatively small number (e.g., 0.1 or 0.2) for the node dropping threshold ϕnode and a number
around 0.5 for the edge dropping threshold ϕedge. This may be because removing a selected node and all its connections
can cause a significant change in the original graph structure, requiring caution when dropping nodes. In contrast, edges
often contain less information and more noise, so we can choose a larger threshold to generate an augmentation view that is
significantly different from the original graph while still preserving semantics, improving the robustness of the graph model.

H. Proof of Theorem 1
Proof. To prove that Theorem 1 holds, we firstly refer to the supporting theorem given by Agarwal et al. (2021) :

Theorem 2. Let g be a function defined as:

g(µ) = Ea ∼ N(µ, σ2)[h(a)] .

Then g is (hmax/2σ) - Lipschitz w.r.t. ℓ2 norm.

Having Theorem 2, and the assumption that pth dimension of feature hv,p across v ∈ V nodes follows Gaussian distribution,
i.e., hv,p ∼ N (µp, σp

2),∀v, we may define:

g(µp) = αp =
1

V

V∑
v=1

∂L(hv,p)

∂hv,p

V→∞
= Ehv,p

∂L(hv,p)

∂hv,p

= Ehv,pL̃(hv,p) ,

hv,p denotes the pth dimension of the feature hv. The mean value of the pth dimension of the feature hv is denoted as µp.
We can then write:

L̃(hv,p) =
∂L(hv,p)

∂hv,p
.

According to Agarwal et al. (2021), we have the following lemma:

Lemma 1. Let X and Y be random variables over set S = {a ∈ Rd | ∥a∥2 ≤ amax and d ∈ N}, Then:

∥E[X]− E[X]∥2 ≤ amax

√
KL(X||Y )

2
.

We now develop the analysis specifically for the proposed GCS. Since g(µp) = Ehv,pL̃(hv,p) for (ours), and by virtue of
the assumption set given in the main paper, we specifically have that pth dimension of feature hv,p across v ∈ V nodes
follows Gaussian distribution, i.e., hv,p ∼ N (µp, σp

2),∀v, and ∥L̃(hv,p)∥2 ≤ L̃max. We define µ′
p, to be the mean value of

alternative graph composed of nodes v′, and hv′,p ∼ N (µ′
p, σp

2),∀v′. Given these conditions, we immediately have:

∥g(µp)− g(µ′
p)∥2

=∥Ehv,p
L̃(hv,p)− Ehv′,pL̃(hv′,p)∥2

≤L̃max

√
KL(L̃(hv,p)||L̃(hv′,p))

2

≤L̃max

√
KL(hv,p||hv′,p)

2

(
Data processing inequality, van Erven & Harremoës, 2012

)
≤L̃max

∥µp − µ′
p∥2

2σ
. (13)
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We now show that the function Q(µv) =
∑

p hv,pg(µv,p) is C-Lipschitz, which necessarily and sufficiently requires:

∥Q(µv)−Q(µ′
v)∥2 = ∥

∑
p

hv,pg(µv,p)−
∑
p

ĥv,pg(µv′,p)∥2

≤ C∥µv − µ′
v∥2.

Where vector µv collects the values of µp as the pth dimension in vector µv, and µ′
v collects the values of µp as the pth

dimension in vector µ′
v . To see this, we use the result from Eq. (13)

∥
∑
p

hv,pg(µp)−
∑
p

hv′,pg(µ
′
p)∥2

≤
∑
p

∥hv,p g(µp)− hv′,p g(µ
′
p)∥2 (triangle inequality)

≤
∑
p

h∗
p∥g(µp)− g(µ′

p)∥

≤
∑
p

h∗
pL̃max

∥µp − µ′
p∥2

2σ
(using Eq. (13))

≤h∗
pL̃max

∑
p

∥µp − µ′
p∥2

2σ

=
h∗
pL̃max

2σ
∥µv − µv′∥2

=C∥µv − µv′∥2. (14)

Here h∗
p = max

(
−hv′,p + |hv,p − hv′,p|L̃max/ϵ, hv,p + |hv,p − hv′,p|L̃max

)
/ϵ, which is a value depending on L̃max and

hmax. Here |hv,p − hv′,p| ≥ ϵ, and if ϵ = 0, the equality in Eq. (14) directly holds.

This completes the proof.

I. More Visualization Results
Following the setting in RGCL (Li et al., 2022b), we pre-trained the backbone model on Zinc-2M, a dataset of 2 million
unlabeled molecule graphs extracted from ZINC15 database (Sterling & Irwin, 2015). Subsequently, we evaluate the
performance of the pre-trained model on Mutag, a real-world benchmark dataset of molecules, to capture its saliency. As
can be seen in Figure 5, GCS mostly captures semantically meaningful substrucutres as saliency (blue parts), such as the
linking nodes between several carbon rings.

Convergence of α. It is actually non-trivial to prove the convergence of α in a principled way. But it is indeed helpful
to observe the change of α as GCS evolves. We illustrate the change of α at different training iterations, and include the
visualization results in in Figure 6. Here, Figure 6 presents the positive views created based on the computed saliency under
different iterations. We find α beyond 6 iterations have converged to the same saliency pattern till the final iteration of 30,
whereas we can observe more evident changes of this α pattern during earlier iterations. This empirically demonstrates the
convergence of α.
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Figure 5. Visualization of Mutag Graphs. The first row presents the saliency labeled by chemistry experts and the second row presents
those discovered by our GCS.

Iteration 0 Iteration 3 Iteration 6 Iteration 10 Iteration 30

Iteration 0 Iteration 3 Iteration 6 Iteration 10 Iteration 30

Iteration 0 Iteration 3 Iteration 6 Iteration 10 Iteration 30

Figure 6. Positive view saliency visualization on the MNIST-Superpixel dataset. Green nodes reflect the ground-truth saliency. Based on
GCS, our views effectively preserve semantic information.
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