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Abstract
Although the variational autoencoder (VAE) repre-
sents a widely-used deep generative model, the un-
derlying energy function when applied to continu-
ous data remains poorly understood. In fact, most
prior theoretical analysis has assumed a simplified
affine decoder such that the model collapses to
probabilistic PCA, a restricted regime whereby
existing classical algorithms can also be trivially
applied to guarantee globally optimal solutions.
To push our understanding into more complex,
practically-relevant settings, this paper instead
adopts a deceptively sophisticated single-layer de-
coder that nonetheless allows the VAE to address
the fundamental challenge of learning optimally
sparse representations of continuous data origi-
nating from popular multiple-response regression
models. In doing so, we can then examine VAE
properties within the non-trivial context of solv-
ing difficult, NP-hard inverse problems. More
specifically, we prove rigorous conditions which
guarantee that any minimum of the VAE energy
(local or global) will produce the optimally sparse
latent representation, meaning zero reconstruc-
tion error using a minimal number of active latent
dimensions. This is ultimately possible because
VAE marginalization over the latent posterior se-
lectively smooths away bad local minima as has
been conjectured but not actually proven in prior
work. We then discuss how equivalent-capacity
deterministic autoencoders, even with appropri-
ate sparsity-promoting regularization of the latent
space, maintain bad local minima that do not cor-
respond with such parsimonious representations.
Overall, these results serve to elucidate key prop-
erties of the VAE loss surface relative to finding
low-dimensional structure in data.
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1. Introduction
The variational autoencoder (VAE) (Kingma & Welling,
2014; Rezende et al., 2014) is a commonly-used latent vari-
able model targeting, among other things, data x ∈ Rd as-
sumed to possess some unknown low-dimensional structure.
This is reflected in the trainable marginalized distribution
pθ(x) =

∫
pθ(x|z)p(z)dz that underpins canonical VAE

models, where θ ∈ Θ are flexible parameters and z ∈ Rκ

represents unobservable latent factors. Low-dimensional
structure is either explicitly enforced when κ < d, or implic-
itly whenever the dimensions of z that significantly influ-
ence x are limited in number. For example, the maximum
likelihood value of θ could be such that only a handful of
entries in z actually impact the distribution pθ(x|z).

In this vein, given a set of n training points X =
[x:1, . . . ,x:n] ∈ Rd×n, we may equivalently choose
to minimize the negative log-likelihood expression
1
n

∑
i − log [pθ (x:i)]. However, because the marginaliza-

tion over z required to produce pθ(x:i) is often intractable,
we may instead minimize the variational upper bound on
the negative log-likelihood given by L(θ, ϕ) ≜
n∑

i=1

{
−Eqϕ(z|x:i) [log pθ (x:i|z)] +KL [qϕ(z|x:i)||p(z)]

}
(1)

with equality iff qϕ(z|x:i) = pθ(z|x:i) for each datapoint i.
The trainable parameters ϕ define the variational distribution
qϕ(z|x:i) that is designed to approximate the true (but gen-
erally intractable) pθ(z|x). Excluding the KL-divergence-
based regularization factor, the first term in (1) amounts to a
form of stochastic reconstruction loss that mirrors the basic
structure of an autoencoder (AE) but modified to include
marginalization over the latent space. In fact, if qϕ(z|x)
collapses to a Dirac delta function this term directly defaults
to a deterministic AE (more on this later).

Given our present focus on continuous data, we adopt the
convention that the so-called decoder and encoder distribu-
tions satisfy

pθ (x|z) = N (x|µx, γI) and qϕ (z|x) = N (z|µz,Σz)
(2)

along with prior p(z) = N (z|0, I), where γ > 0 is a scalar
variance that may be trained or held fixed. The Gaussian
moment functions µx ≡ µx (z; θ), µz ≡ µz (x;ϕ), and
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Σz ≡ Σz (x;ϕ) are generally instantiated via neural net-
work layers, with input x for the encoder functions, and z
for the decoder. The VAE objective (1) can then be opti-
mized over {θ, ϕ} using SGD and a reparameterization trick
(Kingma & Welling, 2014; Rezende et al., 2014). Once
trained, the VAE model can be applied to generating new
samples via the prior and decoder distributions, or to produc-
ing compact latent representations of an arbitrary training
(or test) data point via z = µz (x;ϕ). As discussed be-
low, the latter can often be useful for downstream tasks not
directly related to generative modeling.

While frequently deployed in practical settings, either for
generating samples or representation learning, relatively
little analysis of the VAE energy function is currently avail-
able. As will detailed further in Section 2, essentially all
performance guarantees relate to simplified scenarios where
the VAE decoder is affine and the model collapses to simple
probabilistic PCA (Tipping & Bishop, 1999). Moreover,
these results do not actually differentiate the capabilities of
a VAE versus the corresponding deterministic AE with the
same affine decoder; both are equally capable of learning
the principal subspace of the training data (Dai et al., 2018;
Kunin et al., 2019; Lucas et al., 2019), and care must be
taken in extrapolating from such results.

To push past these limitations, this paper instead consid-
ers how VAE minima (local or global) can align with the
fundamental challenge of learning optimally sparse, low-
dimensional representations of data as formalized in Section
3, and later specialized to a widely-used multiple-response
regression setting in Section 4.1 using a deceptively sophisti-
cated single-layer decoder. From this vantage point, we can
then examine VAE properties within the non-trivial context
of solving difficult, NP-hard inverse problems that existing
conventional algorithms typically fail to solve, i.e., there is
no analogue to PCA for addressing such problems.

More specifically, in Section 4.2 we prove rigorous condi-
tions which guarantee that any minimum of the VAE en-
ergy (local or global) will produce a representation with
asymptotically negligible reconstruction error using a min-
imal number of active latent dimensions. This is possible
because VAE marginalization over the posterior qϕ (z|x)
during training effectively smooths away all bad local min-
ima that rely on an excessive number of latent dimensions
to reduce the reconstruction error. Section 4.3 then dis-
cusses how any possible deterministic AE (within a broadly
defined class), even with appropriate sparsity-promoting
regularization of the latent space and equivalent representa-
tional capacity, maintains a (possibly combinatorial) number
of bad local and/or global minima that do not correspond
with optimally parsimonious representations. We also an-
alyze the impact of diagonalizing Σz on the possibility of
spurious minima in Sections 4.4 and 4.5. And finally, we

provide corroborating simulation results in Section 5.

Overall, the pursuit of optimal sparse representations will
serve as a useful lens with which to quantitatively evalu-
ate the local minima profile of VAEs and highlight critical
advantages over deterministic AE models that are not nec-
essarily directly related to generating samples. Given these
considerations, our primary contributions distill as:

• We provide the first formal proof of a VAE model
whereby there are no bad local minima and all global
minima optimize a non-trivial inverse problem for
which classical alternative approaches do not exist
with an equivalent guarantee. This problem involves
producing an optimal sparse representation of train-
ing data, which in general is NP-hard but becomes
uniquely aligned with VAE optima in certain con-
ditions. This is ultimately possible because VAE
marginalization over the latent posterior fills in subop-
timal minima while preserving optimally sparse global
solutions. Such a selective VAE smoothing effect has
been conjectured as a possibility (Dai et al., 2018);
however, no rigorous proof has thus far been provided.

• We prove that no possible analogous AE with equiv-
alent capacity can achieve something similar. In do-
ing so, we elucidate the first clear-cut differentiation
between the performance of VAEs (with marginaliza-
tion) and AE models (without) in the specific context
of learning optimal low-dimensional representations.

2. Related Work
Analysis of VAE Local Minima: Of particular interest
herein is the analysis of situations where all local minima
can be explicitly characterized in term of some optimality
criteria. There are primarily two extremes that have been
previously considered for this purpose, differentiated by
the complexity of the VAE decoder. First, if the VAE de-
coder mean function is sufficiently simple and unstructured,
specifically a basic affine transformation for µx, then it has
been shown, e.g. (Dai et al., 2019; Lucas et al., 2019), that
all minima of the VAE objective produce principal compo-
nents of the data across a broad class of encoder functions
(see Section 3 below for a more formal treatment). Such
results may also loosely extend to some broader contexts
(Rolinek et al., 2019). In contrast, at the other extreme of
an arbitrarily complex decoder/encoder pair, where both
µx and µz are treated as infinite capacity functions with
no constraints, the calculus of variations can be applied to
easily obtain explicit expressions for any critical point of
the VAE loss (Rezende & Viola, 2018). The downside here
though is that the optimal solution essentially involves the
model memorizing the training data, with all probability
mass consumed by delta functions placed at each training
point, and optimal sparse representations are not meaningful
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in this context. And with unconstrained decoder complexity,
it has been shown that just a single active latent dimension
is sufficient for perfect reconstructions of any finite training
set (Dai et al., 2018).

Analysis of VAE Global Minima: In addition to the work
mentioned above, some effort has been made to more nar-
rowly explore characteristics of VAE global minima, under
conditions whereby local minimizers are known to likely
exist, but whose cardinality and properties are not easily
quantifiable or of central interest. We may further subdivide
research in this category between demonstrations of both
desirable and undesirable properties of global optima. With
respect to the latter, several pathologies have recently been
noted. For example, as addressed in (Mattei & Frellsen,
2018), if instead of Σx = γI as assumed herein the decoder
covariance is a flexible, data-dependent function, then even
relatively simple VAE models can have an energy that is un-
bounded from below by simply memorizing a single training
data point, assigning infinite density to this point and small
but nonzero density elsewhere. Other problematic VAE
global solutions may prioritize learning a good inference
model at the expense of learning a good generative model
(Yacoby et al., 2020; 2022). For example, this situation may
occur if the training data and VAE parameterization are such
that the true data likelihood is within the decoder capacity
but the latent posterior is poorly modeled by the encoder.

In contrast, desirable conditions have been derived (Dai
et al., 2018) whereby VAE models with flexible, data-
specific decoder variances are capable of reproducing NP-
hard robust PCA (Candès et al., 2011; Chandrasekaran et al.,
2011) solutions. This work also hypothesizes that VAE
marginalization has the ability to selectively smooth away
bad local minima while preserving desirable global optima;
however, no rigorous proof is provided whereby this phe-
nomena is guaranteed to occur. Additionally, (Dai & Wipf,
2019) derives technical conditions for perfect recovery of
ground-truth distributions in the limit of infinite training data
while complementary VAE optimization trajectory analysis
is contained in (Koehler et al., 2022). Other notable VAE
analysis work pointed out by reviewers includes (Damm
et al., 2023; Shekhovtsov et al., 2022; Zietlow et al., 2021).

Bayesian Precursors to the VAE: As already alluded to
above, probabilistic PCA (Tipping & Bishop, 1999) can be
viewed as a simplified precursor to more flexible VAE ar-
chitectures. Related probabilistic frameworks for structured
regression, such as sparse Bayesian learning (SBL) (Bishop
& Tipping, 2000; Tipping, 2001), also share commonalities
with the VAE, at least in the more narrow context of finding
optimal sparse representations (as opposed to explicitly gen-
erating new samples from a target distribution of interest).
And in certain cases the global and/or local minima from
such models may have optimality guarantees (Aravkin et al.,

2014; Prasad & Murthy, 2012; Wipf et al., 2011; 2015) of
the general sort we would ideally like to establish for the
VAE under relevant/analogous settings.

Loss Surface of (Deep) Linear Networks: The explo-
ration of VAE models with restrictive assumptions placed
on the decoder and/or encoder structure closely follows the
established tradition of analyzing the complex loss surface
of deep networks with linear layers and/or i.i.d. random ac-
tivation patterns (Choromanska et al., 2015a;b; Goodfellow
et al., 2016; Kawaguchi, 2016; Saxe et al., 2014). Likewise
for deterministic AE models with linear encoder/decoder
pairs, whereby it has been shown that all critical points are
associated with PCA directions (Kunin et al., 2019).

3. Optimal Sparse (Lossless) Representations
To begin we must precisely define and motivate what type
of low-dimensional or sparse representations will be con-
sidered optimal. At a high level, we require a means of
quantifying the most parsimonious latent representation of
the training data that nonetheless allows us to obtain high-
quality reconstructions when passed through a given class
of decoder networks. As a representative example, for data
lying on a low-dimensional linear subspace, the correspond-
ing optimal sparse representation obtainable via a linear
decoder could plausibly be defined by the smallest subspace
containing all or most of the data variance, i.e., the standard
PCA solution. With this conception in mind, we borrow the
following definition from (Dai et al., 2021):
Definition 3.1. An autoencoder-based architecture (VAE
or otherwise) with decoder µx (·; θ), constraint θ ∈ Θ, and
arbitrary encoder µz component produces an optimal sparse
representation of a training set X w.r.t. Θ if the following
two conditions simultaneously hold:

(i) The reconstruction error is zero, meaning
1
n

∑n
i=1 ∥x:i − µx [µz (x:i;ϕ) ; θ]∥22 = 0.

(ii) Conditioned on achieving perfect reconstructions per
criteria (i) above, the number of latent dimensions
such that µz (x:i;ϕ)j = 0 for all i is maximal across
any θ ∈ Θ and any encoder function µz . A j-th latent
dimension so-defined provides no benefit in reducing
the reconstruction error and could be removed.

In its reliance on lossless reconstructions, Definition 3.1
may at first glance seem to involve an overly restrictive
assumption. And yet, as pointed out in (Dai et al., 2021),
many celebrated under-determined inverse problems have
been formulated as the search for lossless reconstructions of
observed measurements subject to some optimal measure of
parsimony (Candès & Recht, 2009; Donoho & Elad, 2003;
Sun et al., 2018). And natural images, a popular input to
VAE models, have a very low intrinsic dimension relative to
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the high-dimensional pixel space, which facilitates nearly
exact reconstruction using low-dimensional representations
(Pope et al., 2021). Please see (Dai et al., 2021) for further
details regarding the relevance of Definition 3.1 to typical
VAE and VAE-adjacent application domains including fea-
ture extraction (Bengio et al., 2013; Ng, 2011), compression
(Ballé et al., 2018; Donoho, 2006; Minnen et al., 2018),
manifold learning (Silva et al., 2006), corruption removal
(Dai et al., 2018), or the generation of realistic samples (Dai
& Wipf, 2019).

Producing Optimal Representations Using VAEs: Even
while invoking a stochastic encoder, it has been shown in
(Dai & Wipf, 2019) that as γ → 0, VAE global minima
can produce representations that asymptotically align with
the conditions of Definition 3.1. This is possible because,
along a superfluous latent dimension j, the KL regulariza-
tion within the VAE energy favors qϕ (zj |x) → N (0, 1),
i.e., the posterior is converted to (zero-mean) white noise
that can be subsequently blocked/ignored by the decoder.
And along informative/active latent dimensions we have
σz (x:i;ϕ)j → 0 as γ → 0, ∀i. These diverging behaviors
allow the VAE global minima to produce reconstructions
satisfying

∑n
i=1 Eqϕ(z|x:i)

[
∥x:i − µx [z; θ]∥

2
2

]
→∑n

i=1 ∥x:i − µx [µz (x:i;ϕ) ; θ]∥22 → 0 (3)

to asymptotically satisfy criteria (i) of Definition 3.1, all
while utilizing the fewest number of informative latent di-
mensions to achieve criteria (ii). Of course actually finding
such a global optima while avoiding a potentially large
constellation of bad local minima may still be challenging.

VAE/PCA Equivalence w.r.t. Optimal Sparsity: For later
context in presenting our main results, it is useful to interpret
existing VAE analysis of minima, akin to (Dai et al., 2019;
Lucas et al., 2019), within the framework of optimal sparse
representations as follows:

Lemma 3.2. Assume a Gaussian VAE model of continuous
data defined by (2), where µx = W xz + bx for some
weight matrix W x and bias vector bx; similarly µz =
W zx + bz while Σz = diag[s]2, where s is an arbitrary
parameter vector independent of x. Then for any fixed value
of γ, all local minima of the resulting VAE objective with
respect to the remaining parameters {W x, bx,W z, bz, s}
are also global minima. Additionally, these global minima
will produce optimally sparse representations per Definition
3.1 in the limit γ → 0.

All proofs are deferred to the appendices. Intuitively, an
optimal sparse representation occurs because each possible
local/global optima defines the principal subspace of the
data using a minimum number of nonzero columns of W x.
Furthermore, at the indeces of these zero-valued columns,
elements of s tend to zero as γ → 0, while the correspond-

ing elements of µz convey the information about x (i.e.,
active, non-random dimensions) needed for losslessly re-
constructing the data. Elsewhere the latent variances will
be set to one while the means will equal zero, indicating
that no useful information about x is being transferred. Of
course the model described by Lemma 3.2 is obviously a
simplified version of the VAE; however, it nonetheless rep-
resents the only realistic scenario (e.g., excluding infinite
capacity decoders that memorize the training data) whereby
thus far the full constellation of VAE local minima has been
characterized as alluded to in Section 2.

4. New VAE Optimal Sparsity Guarantees
As we have seen, Lemma 3.2 provides sufficient conditions
for equating all VAE local minima with global, optimally
sparse representations akin to the principal subspace con-
taining the training data. But clearly this same task can be
accomplished using various PCA instantiations instead of an
AE or VAE model. Therefore, the underlying value of this
type of analysis is in elucidating properties of the respec-
tive energy functions, not in actually solving an important
practical problem per se.

In contrast, we now consider a more challenging regime
where, without further assumptions, the underlying recov-
ery of an optimally sparse representation is actually NP-
hard, i.e., no straightforward alternative procedure exists.
Within this more practically-relevant setting, we derive re-
sults whereby any VAE minima (local or global) is uniquely
associated with the optimally sparse representation. We
then discuss how analogous AEs within a broad class, even
with appropriate sparsity-promoting regularization, main-
tain a (potentially combinatorial) number of bad local/global
minima that do not correspond with optimal sparse rep-
resentations. Later, we relax the requirement of lossless
reconstructions and consider diagonalized VAE posterior
covariances.

4.1. The Simultaneous Sparse Approximation Problem

To begin, we consider n training points aggregated as X =
[x:1, . . . ,x:n] ∈ Rd×n that we assume were generated via
X = ΦU0. In this expression, Φ ∈ Rd×κ represents a
known dictionary of κ basis/feature vectors, U0 ∈ Rκ×n

denotes a row-sparse matrix of ground-truth latent factors,
and we allow for κ > d. More precisely, we assume U0 ∈

argmin
U

ρ(U), s.t. X = ΦU , ρ(U) ≜
κ∑

j=1

1 [∥uj:∥ ≠ 0] ,

(4)
where 1 [∥uj:∥ ≠ 0] denotes an indicator function on the
j-th row norm. This formulation implies that U0 is maxi-
mally row-sparse, or equivalently, that X is formed using an
expansion involving the fewest number of columns/features

4



No Bad VAE Local Minima Learning when Optimal Sparse Representations

from Φ. This observation naturally aligns U0 with our def-
inition of an optimal sparse representation. Note that any
feasible solution to (4) exhibits zero reconstruction error
consistent with criteria (i) of Definition 3.1, and minimizing
ρ(U) is tantamount to satisfying criteria (ii).

Solving this type of combinatorial problem, commonly re-
ferred to as simultaneous sparse approximation or multiple-
response sparse regression (Cotter et al., 2005; Tropp, 2006),
is foundational to many diverse application domains includ-
ing multi-task learning (Ji et al., 2009; Ling et al., 2013;
Wakin et al., 2006; Zeng et al., 2011), manifold learning
(Silva et al., 2006), array processing (Choi et al., 2017;
Malioutov et al., 2005; Thoota & Murthy, 2022; Wipf et al.,
2015), and functional brain imaging (Bannier et al., 2021;
Bhutada et al., 2022; Cai et al., 2018). Unfortunately though,
the underlying objective (4) is NP-hard, with a combinato-
rial number of suboptimal local minima. Convex relaxations
of the indicator function in ρ(U) have been proposed for
practical feasibility, but the resulting modified objective
will often fail to recover U0 when columns of Φ display
significant correlation structure, i.e., off-diagonal elements
of Φ⊤Φ are relatively large (Tropp, 2006). Hence unlike
probabilistic PCA, there is no readily-available classical al-
gorithm for guaranteeing that the correct solution can always
be found (beyond infeasible combinatorial search).

4.2. VAEs and Simultaneous Sparse Approximation

While perhaps not obvious at first glance, we will demon-
strate that the VAE energy function under the appropriate en-
coder/decoder parameterizations is particularly well-suited
to solving (4). As in (2), we adopt a Gaussian decoder given
that our data is continuous, and select Σx = γI as before,
with γ > 0. However, for the decoder mean, we choose
µx = Φdiag [wx] z, where wx ∈ Rκ denotes a parame-
ter vector to learn. For the encoder we adopt µz = W zx
(no bias term), but a full covariance Σz = SS⊤, where
S ∈ Rκ×κ is an arbitrary matrix independent of x. Per-
haps counterintuitively, this parameterization is sufficiently
flexible for addressing the difficulty in solving (4). Stated
differently, more complex, nonlinear encoder structures (or
a bias term) do not provide any advantage in optimizing the
overall VAE loss given the specified decoder assumptions.

With these stipulations in place, the VAE energy from (1) as
applied to the training set X reduces to

L(θ, ϕ) =
n∑

i=1

(
Eqϕ(z|x:i)

[
1
γ ∥x:i −Φdiag [wx] z∥22

]
(5)

+d log γ + tr
[
SS⊤

]
− log

∣∣∣SS⊤
∣∣∣+ ∥W zx:i∥22

)
,

with θ = {wx, γ} and ϕ = {W z,S}.

To proceed with the analysis of (5) as applied to solving (4),
for subtle technical reasons mentioned in (Wipf et al., 2015)

we assume that Φ = Ξ+ ϵ∆, (6)

where Ξ is any arbitrary matrix, ϵ > 0 is an arbitrarily
small constant, and ∆ is matrix formed with entries drawn
i.i.d. from any distribution with a properly-defined density
function. By constructing Φ in this way, we ensure that
each d× d sub-matrix of Φ is almost surely full rank. The
latter is equivalent to the requirement that spark[Φ] = d+1,
where spark[Φ] is defined as the smallest number of linearly
dependent columns in Φ (Donoho & Elad, 2003).

We are now prepared to describe conditions whereby the
objective (5) will be such that any minimum, global or local,
will produce an optimal sparse representation capable of
recovering the ground-truth U0. For convenience, we let
π(j) [U ] denote the value of the j-th largest ℓ2 row-norm of
a matrix U . We then have the following:

Theorem 4.1. Let {θ∗, ϕ∗} ≡ {w∗
x,W

∗
z,S

∗} denote any
local minimum of (5) in the limit as γ → 0. Then there
exists a set of d− 2 constants νj ∈ (0, 1] such that for any
X = ΦÛ generated with Φ satisfying (6), ρ(Û) < d, and
π(j+1)[Û ] ≤ νjπ(j)[Û ] for all j = 1, . . . , d − 2, we have
with probability one that

(i) {w∗
x,W

∗
z,S

∗} is also a global minimum of (5),

(ii)
∑n

i=1 ∥x:i − µx [µz (x:i;ϕ
∗) ; θ∗]∥22 = 0, i.e., per-

fect reconstructions,

(iii) diag [w∗
x]µz(x:i;ϕ

∗) = û:i for all i, i.e., the VAE
parameters allow us to analytically compute the un-
known Û , and

(iv) the problem (4) has a unique optimally sparse solution
U0 = Û .

Note that the reason we consider the limit γ → 0, rather
than simply γ = 0, is for technical reasons related the ill-
defined nature of Gaussian distributions with zero variance.
Moreover, as detailed in the proof, for any fixed γ, the
optimal solution w.r.t. the remaining parameters satisfies

µz (x:i;ϕ
∗) = diag [w∗

x]Φ
⊤
(
Φdiag [w∗

x]
2
Φ⊤ + γI

)−1

x:i.

(7)
And for data lying on a r < d dimensional subspace, the op-
timal diag[w∗

x] will be rank r such that the required inverse
is not actually defined when γ = 0. However, when we in-
stead take the limit γ → 0, we obtain the well-defined
limiting encoder mean µz(x:i;ϕ) → (Φdiag [w∗

x])
†
x:i

for all i, where (·)† denotes the Moore-Penrose pseudo-
inverse. In contrast, the optimal decoder mean satisfies
µx(z;ϕ

∗) = Φdiag [w∗
x] z for all z ∈ Rκ, and hence is

always well-defined.

But conceptually speaking, this result can be loosely viewed
as implying that there exists a γ′ > 0 sufficiently small such
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that for any nonzero γ < γ′ the basic idea holds. Addition-
ally, achieving the global VAE optimum actually requires
γ → 0 assuming sufficient capacity to reconstruct the train-
ing data (Dai & Wipf, 2019), so this is not a restrictive
stipulation per the present context.

Interpretation of Theorem 4.1: Beyond these minor
technical considerations, Theorem 4.1 defines a scenario
whereby any local minimum of the VAE loss surface is also a
global minimum (part i) that computes an optimal sparse rep-
resentation, meaning a solution that perfectly reconstructs
X (part ii) using the fewest number of informative latent
factors (parts iii and iv). In particular, if the row norms of the
ground-truth coefficient matrix are of sufficiently different
scales, then any VAE minima will be optimal, which entails
recovering all nonzero ground-truth latent factors no matter
how small some of them might be. This is remarkable given
that the original loss from (4), which defines the canonical
simultaneous sparse approximation problem, will necessar-
ily have a combinatorial number of suboptimal local minima,
including under the stated conditions of Theorem 4.1.

We also emphasize that Theorem 4.1 only involves sufficient
conditions for obtaining a loss surface devoid of suboptimal
minima, but these conditions are not necessary. Even if
appropriate row-norm scaling as mitigated by the constants
{νj}d−2

j=1 is not exactly present, the VAE is still likely to
produce good results in broader regimes whereby many,
even if not all, suboptimal minima have been smoothed away
via marginalization. But the overall impact of Theorem
4.1 is best appreciated when contrasted with an analogous
deterministic AE as will be explored next.

4.3. Comparisons with an Equivalent-Capacity AE

Consider the AE objective LAE(wx,W z) =

n∑
i=1

1
γ ∥x:i −Φdiag [wx] z:i∥22+∥wx∥22+

κ∑
j=1

h
(
1
n∥zj:∥22

)
,

(8)
s.t. z:i = W zx:i, where h represents a concave, non-

decreasing function of the squared row norms. Inspired
by (Ng, 2011), this expression is nothing more than an AE
model with encoder and decoder matching the VAE mean
functions from (5), plus a quadratic penalty on the decoder
weights (akin to weight decay as is frequently used in prac-
tice) and a sparsity-promoting penalty applied to the latent
codes (Chen et al., 2017; Fan & Li, 2001; Palmer et al.,
2006); both terms are needed to avoid problematic scaling
degeneracies.1 Hence, (8) has an equivalent modeling ca-

1For example, without the penalty on wx, we could simply
push z:i to zero for all i to reduce the h term, while proportion-
ally increasing wx towards infinity to maintain a perfect data fit.
However, w.l.o.g. we do not require an explicit trade-off parameter
applied to ∥wx∥22 given the 1/γ factor applied to the data term
and the fact that h can implicitly absorb any desirable scaling.

pacity as the VAE, but with a commonsense, deterministic
regularization scheme. Additionally, in the limit γ → 0,
the data-dependent term is effectively converted to an extra
constraint x:i = Φdiag [wx] z:i while the remaining factors
stay the same. This implies that as γ → 0, minimizers of
(8) are equivalent to minimizers of LAE(wx,W z) ≡

∥wx∥22 +
κ∑

j=1

h
(
1
n∥zj:∥22

)
, s.t.

z:i = W zx:i, ∀i
x:i = Φdiag [wx] z:i

,

(9)
in which any feasible solution produces perfect reconstruc-
tions and the corresponding latent codes are penalized to
favor sparsity.

Interestingly though, solving (8) in the stated limit does not
enjoy the same theoretical guarantees as the VAE.
Theorem 4.2. With probability one there will exist dictio-
naries Φ formed via (6) that satisfy the following: For any
set of d− 2 scaling constants νj ∈ (0, 1], there will always
be coefficients Û consistent with the requirements of Theo-
rem 4.1, such that any AE model in the form of (8) will have
minima (either local and/or global) that do not produce an
optimal sparse representation in the limit γ → 0.

In brief, this result indicates that even with the stated data
generation restrictions in place that ensure optimality of
the VAE loss surface vis-à-vis Theorem 4.1, the equivalent-
capacity AE model can still exhibit poor minima that fail to
produce optimal sparse representations or recover ground-
truth U0. Moreover, this negative result is independent of
the specific functional form for the latent-space penalty h
applied within (8). So indeed the VAE maintains a distinct
advantage in this regard. Note also that, although we assume
a quadratic penalty on the decoder weights wx, it is straight-
forward to extend Theorem 4.2 to arbitrary penalties of the
form

∑κ
j=1 f [(wx)j ]. So indeed this is a quite general result

that is not a nuanced consequence of this particular choice.

4.4. Impact of Diagonalizing Σz

In the previous sections we quantified an explicit, non-trivial
situation whereby the VAE model maintains a distinct ad-
vantage over the analogous deterministic AE. However, this
analysis did not restrict Σz to be a diagonal form as is
sometimes assumed in practical VAE implementations. We
now investigate the impact of this diagonalization via the
following straightforward result:
Lemma 4.3. Suppose that we replace Σz = SS⊤ with
Σz = diag[s]2 in (5), where s2 ∈ Rκ

+ defines the encoder
variances. Additionally, assume that h(·) = log(·) in (8).
Then in the limit as γ → 0, the objectives (5) and (8) are
equivalent (excluding constant terms).

Lemma 4.3 indicates that once we have diagonalized Σz , the
VAE no longer really has any advantage within the specified
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context over its AE counterpart as defined by (8). This
is because the restriction Σz = diag[s]2 will inexorably
introduce a combinatorial constellation of suboptimal local
minima in all but the most trivial of situations, and there is
in fact no scenario in which the diagonalized VAE satisfies
Theorem 4.1. This is quite unlike the probabilistic PCA
model analyzed in (Dai et al., 2019; Kunin et al., 2019;
Lucas et al., 2019) (which we referenced in Sections 2 and
3) whereby a diagonal covariance fragments the loss surface
into a number of distinct minima, but each separate basin
retains global optimality.

4.5. Extension to Lossy Reconstructions
For equivalent capacity models and an appropriate choice
for h, our results above have suggested that the relative
ability to smooth away or avoid bad local minima follows

full covariance VAE > diagonal covariance VAE = AE

in the limit γ → 0. However, there exists additional nuance
when we relax the strict requirement of zero reconstruction
error and instead compare VAE and AE models with γ set to
an arbitrary but fixed value greater than zero. While it is not
possible to exhaustively characterize the degree to which
local minima can be smoothed away via VAE marginaliza-
tion for any γ > 0, we can at least consider an admittedly
simplified scenario that is emblematic of behavior we have
empirically observed in a broader context (the experiments
in Section 5 provide a representative example). In doing so
we apply the notation wx,\i to describe wx with the i-th
element removed. Similarly, W z,\i refers to W z with the
i-th row removed.
Theorem 4.4. If we fix γ and wx,\i for any i ∈ {1, . . . , κ},
then all local minima are global when we optimize (5) over
the remaining parameters {wx,i,W z,S}.
Corollary 4.5. Theorem 4.4 does not hold if we replace S
with s, i.e., diagonalizing the encoder covariance can poten-
tially introduce bad (i.e., non-global) local minima within
the specified context. However, if we instead fix γ, wx,\i
and W z,\i for any i ∈ {1, . . . , κ}, then all local minima
are now global when we optimize (5) over the remaining
parameters {wx,i,wz,i:,S} or {wx,i,wz,i:, s}, i.e., diago-
nalization can no longer introduce any bad local minima.

And yet while the full covariance VAE still holds some
advantage per Theorem 4.4 and Corollary 4.5, the inferior
diagonalized counterpart is nonetheless still superior to the
AE in the following sense:
Corollary 4.6. A result analogous to Corollary 4.5 does
not hold for the AE model from (8) when we choose h(·) =
log(·); likewise for any h such that the composite h

(
[·]2

)
is

a concave, non-decreasing, nonlinear function.

Note that if our goal is obtaining optimally sparse latent
representations in general conditions (exact/lossless or oth-

erwise), then it can be shown that a concave nonlinear func-
tion (i.e., not simultaneously convex as would be the case
if h

(
[·]2

)
were linear) on the latent row norms is generally

required (Cotter et al., 2005).2 Hence Corollary 4.6 basi-
cally ensures that whenever we apply an optimal penalty for
maximal sparsity, we cannot rule out bad AE local minima
even within the restricted context described above. This
implies that the diagonalized VAE may indeed still maintain
some advantage over the analogous AE. To summarize then,
our results suggest that the revised extent of local minima
smoothing in inexact/lossy situations with γ > 0 is more
accurately characterized as

full covariance VAE > diagonal covariance VAE > AE,

meaning some degree of VAE local minima smoothing is
preserved despite the potentially deleterious effects of diago-
nalizing Σz . We will investigate this and other theoretically-
motivated observations via experiments described next.

4.6. Additional Perspectives

We close this section by providing additional context with
respect to the uniqueness of VAE solutions, prior analysis of
VAE global minima, and the broader positioning of VAEs
between alternative convex and non-convex approaches to
finding optimally sparse representations of data.

Uniqueness of VAE Solutions: While we demonstrated
conditions in Section 4.2 whereby any VAE minima of (5)
(local or global) will necessarily produce a unique, max-
imally sparse representation, we did not specify that the
VAE solution itself is unique, leaving open the possibility
of multiple VAE optima with equivalent recovery guaran-
tees. And in fact, a simple observation reveals that indeed
VAE minima need not be unique because of an intrinsic
invariance to sign permutations in the following sense: The
value of (5) is invariant to the transformations wx → Dwx,
W z → DW z , and S → DS, where D is a diagonal ma-
trix with diagonal elements given by 1 or −1. (This sign
ambiguity also naturally extends to more general VAE mod-
els as well, since we can always multiply the encoder net-
work by a diagonal sign matrix, and then compensate with
another diagonal sign matrix on the decoder side, while the
KL term remains unchanged.) Practically speaking though,
this sign ambiguity is inconsequential since the learned
VAE predictor for the latent ground-truth sparse U0 is given
by diag[wx]W zX = diag[Dwx]DW zX . Therefore if
all bad local minima have been smoothed away by VAE
marginalization (as we have shown is provably possible),
the global minima that remain, while not strictly unique,
are nonetheless all effectively equivalent in terms of finding

2A strictly concave function (Rockafellar, 1970) can be viewed
as a special case of a concave nonlinear function; similarly for the
selection h

(
[x]2

)
= 1 [x ̸= 0], which leads to an ℓ0-norm-based

regularization factor.
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ground-truth optimal sparse representations.

Global Minima Analysis from (Zheng et al., 2023): Prior
work from (Zheng et al., 2023) has derived quite general
conditions whereby VAE global optima are guaranteed to
produce optimal sparse representations, a conjecture orig-
inally proposed in (Dai & Wipf, 2019). Critically though,
none of these prior results address the challenging issue of
ruling out bad local optima. Indeed even standard AE mod-
els can be readily designed to have global minima that align
with optimal sparse latent codes, akin to Theorem 1 from
(Zheng et al., 2023). But of course the unresolved difficulty
for both VAE and AE models alike remains avoiding bad
local optima to actually find these desirable global solutions.
And it is with respect to the latter that our key contributions
in this section lie. This notion is further contextualized when
we consider the following.

Convex vs Non-Convex Methods: More broadly, prior
work on finding sparse representations (or related low-
dimensional structure) generally categorize as follows:

(i) A convex energy function is adopted such that the
global minimum is relatively easy to find, but this
global minima may not align with the optimal sparse
representation. For example, classical group-lasso-
based approaches (Malioutov et al., 2005; Yuan & Lin,
2006) to approximating (4) fall into this category.

(ii) A non-convex loss is chosen that, unlike the convex
case, may more generally maintain this desired align-
ment (meaning if we manage to find the global op-
timum we obtain maximal sparsity); however, this
comes at the cost of introducing a combinatorial ex-
plosion of local minima (so actually finding the global
optimum becomes difficult). Examples include AE
models with appropriate non-convex latent-space reg-
ularization as described in Section 4.3, as well as sim-
pler non-convex group-lasso-like models involving ℓp
pseudo-norms with p < 1 (Cotter et al., 2005).

Our message is that the VAE can accomplish something
remarkably different: It can preserve a global minima an-
chored to the maximally sparse solution (like prior non-
convex methods) while provably smoothing away bad local
optima (akin to convex relaxations). We believe this to be
a fundamental insight into the capabilities of VAE models
that has not been previously acknowledged in the literature.

5. Empirical Validation
Although this work is primarily a theoretical contribution,
the analysis from Section 4 can nonetheless be strength-
ened by an empirical demonstration of the natural ability of
VAE marginalization to selectively smooth away bad local
minima in securing optimally sparse representations.

5.1. Experiments with Verifiable Ground-Truth
We explore the simultaneous sparse approximation problem
in such a way that we can have access to ground-truth rep-
resentations to facilitate optimality comparisons. To this
end we generate data via X = ΦU0, where Φ and U0 are
drawn randomly and stored as ground-truth. Please see the
appendices for details regarding how these data were created
for each experiment, as well as additional results solving
a neuromagnetic inverse problem involving Φ chosen as a
MEG leadfield matrix (Sarvas, 1987).

Results are displayed in Figure 2, where each subplot in-
cludes the success percentage recovering U0 (y-axis) as a
function of the ground-truth number of nonzero/informative
dimensions of U0 (x-axis). We show performance curves
for the VAE from (5) along with the analogous AE from (8);
for the latter h is chosen to be the log function for the most
direct head-to-head comparison, i.e., with this choice, the
diagonalized VAE and AE energy functions converge to one
another as γ → 0 per Lemma 4.3. We also compare against
a group-lasso-based solution, which represents a popular
convex alternative to solving (4). This is tantamount to
replacing the ideal non-convex penalty ρ with the convex
mixed norm ∥U∥1,2 ≜

∑κ
j=1 ∥uj:∥2. In all cases results

are averaged over 100 independent trials.

First, in Figure 1(a) we display results where nonzero rows
of U0 have been scaled to unit ℓ2-norm. This scenario
deviates from the assumptions of Theorem 4.1 and pro-
vides a baseline for the minimal expected amount of VAE
local optima smoothing. And yet even in this regime the
full/non-diagonal VAE outperforms the AE. Meanwhile, the
diagonalized VAE performs equivalently to the AE since
we have chosen γ = 10−10 for all models (and hence per
Lemma 4.3 they will essentially be equivalent). Addition-
ally, both VAE and AE models outperform the convex group
lasso.

In contrast, for Figure 1(b) we conduct the same experi-
ment only now rows of U0 have been rescaled to loosely
approximate the favorable conditions predicted by Theorem
4.1. Consistent with expectations, we observe that the VAE
performance improves considerably, with nearly perfect
performance all the way up to the theoretical limit of any
possible algorithm; as detailed in the appendices, this occurs
when ρ(U0) = 100. Meanwhile, the other methods do not
actually benefit from this rescaling, with AE performance
actually degrading significantly.

And finally, we repeat the basic experiment from Figure
1(a) with the inclusion of 20dB additive Gaussian noise.
Results are presented in Figure 1(c), where λ is set to the true
noise variance for all VAE/AE models; for subtle technical
reasons (and to improve performance) λ is set to the square-
root of the noise variance for the group lasso estimator. Of
particular note, we observe that the diagonalized VAE curve
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(a)

(b)

(c)

Figure 1. Success rates producing optimal sparse representations.
(a) Unit-norm nonzero rows; (b) Highly scaled nonzero row norms
that loosely approximate the conditions of Theorem 4.1; (c) Repeat
of plot a with 20 dB additive noise.

is now superior to the AE, which suggests that even the
more modest degree of local minima smoothing described
in Section 4.5 may provide some advantage when the full
posterior covariance is not used.

5.2. Extension to More Complex Decoder Models

As suggested by an ICML reviewer during the initial evalu-
ation of our paper, it could be informative to examine the
degree to which the local minima smoothing that provably
exists in certain single-layer decoder settings informs be-
havior in more general multi-layer regimes. Motivated by
this possibility, we consider additional tests involving VAEs
applied to MNIST data with standard ResNet blocks form-
ing the encoder and decoder architectures. We then explore
two equivalent-capacity VAE variants that differ only in the

last layer of the respective encoder networks: (i) a standard
VAE with diagonal encoder variance, and (ii) an analogous
full covariance alternative. Per the arguments presented in
Section 4 and empirically verified in Section 5.1, we expect
that the VAE with full covariance is more likely to avoid
bad local minimizers that do not produce optimal sparsity.

Full details are deferred to a revised version of (Zheng
et al., 2023), where an experimental setup is described that
naturally accommodates head-to-head MNIST comparisons
between VAE models seeking to recover optimally sparse
representations. However, we nonetheless summarize the
main conclusions here. Simply put, these new experiments
inspired by our analysis unequivocally demonstrate that
the full-covariance VAE produces a lower reconstruction
error while simultaneously relying on a fewer number of
nonzero/active latent dimensions, i.e., dimensions that are
not set to the prior in accordance with Definition 3.1. This
outcome closely aligns with the predictions of our theory.

6. Conclusion
While the VAE remains a celebrated deep generative model
capable of producing high-quality samples when outfitted
with appropriate decoder/encoder architectures, it also ex-
hibits close ties with classical approaches for finding low-
dimensional structure in high-dimensional data, as well
as solving challenging underdetermined inverse problems.
With respect to the latter, we have demonstrated non-trivial
conditions whereby marginalization over the latent poste-
rior allows the VAE to selectively smooth away bad local
minima while retaining global optima anchored at optimal
sparse representations of the training data. Equivalent capac-
ity AE models, which lack such marginalization, enjoy no
such optimality guarantees, and when sharing an identical
decoder and encoder, and analogous regularization factors,
will generally possess a combinatorial number of bad local
minima. Additionally, we have also demonstrated that di-
agonalizing the VAE encoder covariance, which mutes the
impact of marginalization, can in fact introduce bad local
minima, although to a lesser extent than deterministic AEs.

Interestingly, these results are in contradistinction to prior
analysis of simpler, structure-free affine decoder models
whereby all local minima exactly align with probabilistic
PCA solutions regardless of whether or not Σz is diagonal.
As typical VAE use-cases often involve highly-structured de-
coders, our results therefore suggest that the consequences
of diagonalized covariances may be worth reconsidering if
the computational budget actually allows for handling full
covariances (or approximations thereof). Overall though, we
believe that the insights provided herein extend our knowl-
edge of the VAE loss surface and complement prior analyses,
build bridges with more traditional dimensionality reduction
methodologies, and suggest broader usage regimes for VAE
models, e.g., beyond generating samples from pθ(x).
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A. Details of Empirical Validation and an Additional Neuroimaging Example
In this section we provide more details regarding the setup of our experiments in Section 5 of the main paper. We also
include an additional neuroimaging example that demonstrates additional VAE advantages.

Basic Experimental Design: We first create Φ by drawing elements i.i.d. from a standardized Gaussian distribution. We
then scale each column to have unit ℓ2 norm as is customary in many/most applications. A ground-truth latent code matrix
U0 is created with r nonzero rows placed at indeces drawn from a uniform distribution. The nonzero submatrix of U0

formed by concatenating these rows is assigned the value
∑τ

t=1 ab
⊤. Here a ∈ Rr and b ∈ Rn are drawn i.i.d. from a

standardized Gaussian, and if we choose τ < r < n, then U0 will exhibit correlation structure along the nonzero rows
consistent with many application domains (Kuznetsova et al., 2021). We also scale the nonzero rows of U0 to have unit
ℓ2 norm. This is to contrast with later experiments described below where we rescale the rows such that the norms are
approximately consistent with the conditions of Theorem 4.1 in the main paper. And finally, we compute that actual
observed data via X = ΦU0. It can be shown that per this construction, U0 will almost surely provide the optimal sparse
representation of the data, i.e., with probability one there will not exist another feasible U ′ such that ρ(U ′) ≤ ρ(U0).

Given access to the optimal ground-truth representation, we can execute various algorithms provided with X and Φ and
compare success rates in recovering U0. We test the VAE from (M.5) along with the analogous AE from (M.8); for the
latter h is chosen to be the log function for the most direct head-to-head comparison, i.e., with this choice, the diagonalized
VAE and AE energy functions converge to one another as γ → 0 per Lemma 4.3. Although we could implement either
algorithm using SGD, for faster convergence we instead apply a simple majorization-minimization approach to exploit
the problem-specific structure (Cotter et al., 2005; Wipf & Rao, 2007) and allow for stable training with arbitrarily small
values of γ; unless otherwise specified, we chose γ = 10−10 for both VAE and AE models. We also compare against a
Group-Lasso-based solution, which represents a popular convex alternative to solving (M.4). This is tantamount to replacing
the ℓ0 row-norm with the convex mixed norm ∥U∥1,2 ≜

∑κ
j=1 ∥uj:∥2.

We iterate this experimental procedure as r, the number of nonzero rows, varies from 0 to 100. In all cases we use d = 100
and κ = 200, although the basic results and subsequent conclusions are similar across different problem sizes. For each
value of r, we conduct 100 independent trials and display the average success rate recovering the ground-truth U0 in Figure
2(a). The respective curves indicate that the full/non-diagonal VAE is superior to the AE. Given that γ ≈ 0, the latter is
effectively equivalent to the diagonalized version of the VAE as described in Section 4.4. Additionally, both VAE and AE
models outperform the convex Group Lasso.

Modifications that Approximate the Conditions of Theorem 4.1: We have thus far tested under conditions which are
explicitly counter to the stipulations of Theorem 4.1 given that the ground-truth nonzero rows are all of unit norm. We
now repeat the experiment described above, but with U0 → diag[ν]U0, were ν ∈ Rκ has elements νi drawn from a
heavily skewed distribution favoring values with significantly different scales. Specifically, each νi is sampled i.i.d. from
the approximate Jeffreys prior p(νi) = −1/[2 log(a)νi] for νi ∈ [a, 1/a] with range parameter a ∈ (0, 1), and p(νi) = 0
otherwise. Note that this distribution behaves like the scale-invariant Jeffreys prior within the range [a, 1/a]; for example,
if a = 0.01, the probability mass assigned to the range [0.1, 1] would equal the mass between [1, 10], etc. We choose
a = 0.01 for all experiments to loosely approximate the row-scaling assumption required by Theorem 4.1. Consistent with
expectations, Figure 2(b) demonstrates that the VAE performance improves considerably, with nearly perfect performance
all the way up to the theoretical limit of any possible algorithm when r = d = 100. Meanwhile, the other methods do not
actually benefit from this rescaling, with AE performance actually degrading significantly.

Inclusion of Dictionary formed from Real-World MEG Leadfield Matrix: The performance of most classical approaches
to solving the simultaneous sparse approximation problem is heavily dependent on the correlation structure among the
columns of Φ. Generally speaking, it is now well-established that the more correlated these columns (meaning Φ⊤Φ has
significant off-diagonal energy), the more difficult it is to recover U0 with existing methods (Tropp et al., 2006; Tropp,
2006). However, our analysis suggests that the local-minima smoothing capabilities of the VAE may still persist even when
strong dictionary correlations are present. To examine this possibility, we consider the MEG source localization problem
that involves estimating sparse neural currents within the brain using sensors placed near the surface of the scalp. The
effective dictionary or forward model is referred to as the MEG leadfield, which at a high level can be viewed as a mapping
from the electromagnetic (EM) activity within κ brain voxels to d sensors placed near the scalp surface. Computed using
Maxwell’s equations and a spherical shell head model (Sarvas, 1987), the resulting Φ is characterized by highly correlated
columns, as brain voxels in a local cortical patch tend to project similar EM signals to the scalp sensors. We repeat the basic
recovery experiment using such an MEG leadfield Φ, with results displayed in Figure 2(c). As expected, the Group Lasso
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(a) (b)

(c) (d)

Figure 2. Success rates producing optimal sparse representations. (a) Unit-norm nonzero rows; (b) Highly scaled nonzero row norms; (c)
Results using MEG leadfield matrix with correlated columns; (d) Repeat of plot a with 20 dB additive noise.

and AE performance drops off precipitously (the diagonalized VAE as well since it is equivalent to the AE per Lemma 4.3).
In contrast though, the full VAE maintains a high success rate owing to fewer bad local minima as suggested by the theory.

Noisy Experiment to Illustrate Theorem 4.4 and Corollaries 4.5 and 4.6: Finally, we repeat the basic experiment from
Figure 2(a) with the inclusion of 20dB additive Gaussian noise. Results are presented in Figure 2(d), where λ is set to
the true noise variance for all VAE/AE models; for subtle technical reasons (and to improve performance) λ is set to the
square-root of the noise variance for the Group Lasso estimator. Of particular note, we observe that the diagonalized VAE
curve is now superior to the AE, which suggests that even the more modest degree of local minima smoothing described in
Section 4.5 may provide some advantage when the full posterior covariance is not used.

B. Proof of Lemma 3.2
For simplicity we assume that the column mean of X is zero; if this were not the case then it is straightforward to show the
optimal bx will equal the column mean such that its influence can be subsequently ignored. An optimal sparse representation
under the stated assumptions of Lemma 3.2 and Definition 3.1 will then be such that

µz (x;ϕ
∗) = W ∗

xx

µx (z; θ
∗) = W ∗

zz

x:i = µx [µz (x:i;ϕ
∗) ; θ∗] = W ∗

xW
∗
zx:i ∀i (10)

ρ
(
[W ∗

x]
⊤) = ρ (W ∗

z) = rank[X].

Furthermore, from (Dai et al., 2019), it follows that any local minimum of the VAE loss will satisfy

µz (x:i;ϕ
∗) = W ∗

zx:i = (W ∗
x)

⊤ [
W ∗

x(W
∗
x)

⊤ + γI
]−1

x:i, (11)

where span[W ∗
x] and ρ

(
[W ∗

x]
⊤) are equal to the span and cardinality respectively of the singular vectors of X associated

with singular values greater than
√
γ. Additionally, we have that

lim
γ→0

(W ∗
x)

⊤ [
W ∗

x(W
∗
x)

⊤ + γI
]−1

x:i = (W ∗
x)

†
x:i, (12)
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where (·)† denotes the Moore-Penrose pseudoinverse. From this expression it then follows that ρ
(
[W ∗

x]
⊤) = ρ (W ∗

z) =
rank[X] and X = W ∗

x(W
∗
x)

†X such that all the conditions of (10) are satisfied.

C. Proof of Theorem 4.1
We first optimize over the encoder parameters to arrive at a condensed loss, which is subsequently analyzed w.r.t. the decoder
parameters, the latter occupying the bulk of the proof. We then combine pieces to show the four conclusions of Theorem 4.1.

C.1. Optimizing Away Encoder Parameters

The objective (5) immediately reduces to

L(θ, ϕ) =

n∑
i=1

([
1
γ ∥x:i −Φdiag [wx]W zx:i∥22

]
+ 1

γ tr
[
diag [wx]Φ

⊤Φdiag [wx]SS
⊤
]

+d log γ + tr
[
SS⊤

]
− log

∣∣∣SS⊤
∣∣∣+ ∥W zx:i∥22

)
(13)

with θ = {wx, γ} and ϕ = {W z,S}. Although a nonconvex loss, we can nonetheless take derivatives with
respect to SS⊤ to demonstrate the existence of a single stationary point. In doing so, we find that SS⊤ =(

1
γ diag [wx]Φ

⊤Φdiag [wx] + I
)−1

is the unique minimum which, when plugged into (13) leads to the revised cost

L(θ, ϕ) ≡
n∑

i=1

([
1
γ ∥x:i −Φdiag [wx]W zx:i∥22

]
+ d log γ

+ log
∣∣∣ 1γ diag [wx]Φ

⊤Φdiag [wx] + I
∣∣∣+ ∥W zx:i∥22

)
. (14)

As (14) is convex in W z , we may optimize away these parameters as well without encountering any bad local minima,
noting that the optimal value satisfies

W zX = diag [wx]Φ
⊤
(
Φdiag [wx]

2
Φ⊤ + γI

)−1

X. (15)

Note that column-wise this expression is tantamount to the requirement that

µz(x:i;ϕ) = diag [wx]Φ
⊤
(
Φdiag [wx]

2
Φ⊤ + γI

)−1

x:i, ∀i, (16)

which satisfies
lim
γ→0

µz(x:i;ϕ) = (Φdiag [wx])
†
x:i, ∀i, (17)

as will be useful later on below.

To simplify notation moving forward, we define w ≜ w2
x, where the squaring operator is understood to apply element-wise.

We also define W ≜ diag[w]. Given these definitions, we can plug (15) into (14) to further reduce the remaining parameters.
After applying standard determinant identities, the effective VAE cost can then be equivalently expressed as

L(w, γ) = tr
[
XX⊤Σ−1

x

]
+ n log |Σx| , with Σx ≜ ΦWΦ⊤ + γI. (18)

C.2. Handling Decoder Parameters

The remainder of the proof primarily involves demonstrating that any local minimum of (18) w.r.t. the decoder parameters
θ = {wx, γ} must satisfy the stated conditions of Theorem 4.1. This is in fact a considerable undertaking because while the
first term in convex in w, the second is concave and as such, could potentially introduce a huge constellation of bad local
minima. Note that almost any arbitrary function can be expressed as the sum of a convex and concave component (Yuille
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& Rangarajan, 2001), so we must explicitly rely on the specific form of (18) in framing our arguments. In this regard, it
can be shown that in the special case where n = 1, all local minimizers are necessarily constrained to a fixed set of

(
κ
d

)
possible candidates, each with exploitable decoupling properties that dramatically simplify the analysis per results from
(Wipf et al., 2011). Unfortunately though, with the more general VAE model involving n > 1 it is not possible to follow an
analogous route and exclude upfront local minimizers occurring beyond a fixed, quantifiable set. Consequently, we must
adopt a completely different strategy as detailed herein.

For later convenience, and without loss of generality, we will assume that Φ = [I H] ∈ Rd×κ, where I is an identity matrix
and H ∈ Rd×(κ−d) can be arbitrary. Such a dictionary can always be obtained from a general Φ by left-multiplication, and
as long as we left-multiply X by the same factor, the constraint set X = ΦU , as well as the overall VAE objective from
(18) is unchanged (at least when γ → 0 as stipulated). Likewise, the resulting H can still be implicitly decomposed as in (6)
with probability one.

We will also further assume that the rows of Û which putatively generated the data are arranged in decreasing order of row
norm, again without loss of generality since a permutation matrix and its inverse can always be inserted between Φ and X .
The rationale for this restructuring will become apparent as the proof progresses. Finally, we will require that the rows of
Û satisfy ∥û(i+1):∥2 ≤ ϵ∥ûi:∥2. Note however that if we prove this result for some ϵ ∈ (0, 1], there will always exist at
set of νi such that the proof also holds under the looser conditions of the theorem statement. We choose to work with a
single ϵ simply because it leads to less cluttered notation. Finally, we also define r ≜ ρ(Û) and ŵ ≜ [ŵ1, . . . , ŵκ]

⊤, where
ŵi ≜ 1

n∥ûi:∥22.

The overall strategy of the proof relies on induction. First we will demonstrate that, under the appropriate conditions, at any
candidate local minimum as γ → 0, it must be that w1 = ŵ1+O(ϵ2) while wi = O(ϵ2) for all i > 1. Later we will consider
for any K < r the set of solutions satisfying wi = ŵi + O(ϵ2i) for all i = 1, . . . ,K and wi = O(ϵ2K) for all i > K. If
such a solution is to represent a local minimum, we show that additionally, it must be that w(K+1) = ŵ(K+1) +O(ϵ2(K+1))

and wi = O(ϵ2(K+1) for all i > K + 1. Finally, we will establish that if K = r, there is a unique minimizer ŵ that satisfies
these bounds as well as conditions of the theorem statement.

We begin by considering feasible solutions to X = ΦU . Given the conditions described above, the i-th row of X is
given by xi: = ûi: for all i = 1, . . . , r and zero otherwise. Because the overall problem scaling is irrelevant, we may also
assume that ∥x1:∥2 = ∥û1:∥2 = 1, and therefore, by the theorem statement we have that ∥xi:∥2 = ∥ûi:∥2 = O

(
ϵ(i−1)

)
for

i = 1, . . . , r and zero otherwise.

Obviously there exist an infinite number of feasible solutions; however, the following lemma demonstrates that our
assumptions constrain the space of possibilities.

Lemma C.1. Let Ū denote any feasible solution to X = ΦU . For ϵ sufficiently small, the row norms of Ū must fall into
one of the following three categories:

1. At least d rows satisfy ∥ūi:∥2 = Ω(1).

2. Let f be some non-negative function such that f(ϵ) → 0 and f(ϵ)/ϵ → ∞ as ϵ → 0. Then ∥ū1:∥2 = Θ(1), and for at
least d− 1 other rows ∥ūi:∥2 = Θ(f(ϵ)). The remaining κ− d rows are O (f(ϵ)).

3. ∥ū1:∥2 = ∥û1:∥2 +O(ϵ) and ∥ūi:∥2 = O(ϵ) for all i > 1.

Proof: Note that X = Θ(1) per the above assumptions. Additionally, given that Φ must satisfy (6), it follows that
spark[Φ] = d+ 1. Hence any set of d columns of Φ excluding ϕ:1, denoted Φ̃, will be invertible and the corresponding d

nonzero rows of U given by Ũ = Φ̃
−1

X = Θ(1) will also form a feasible solution. Note that all rows of any such Ũ must
be of order Θ(1). Otherwise when ϵ becomes small, columns of X approach a scaled version of ϕ:1, and we violate the
spark assumption if any row norm of Ũ tends towards zero (this would imply that d or fewer columns of Φ are linearly
dependent). Of course we can always have additional feasible solutions with ρ(U) > d that are of order Ω(1), i.e., some
rows could become arbitrarily large. Collectively then, we have described the first category of solutions specified in the
lemma.

Now we consider the second category. Let Φ′ denote Φ with the first row and column removed, and let X ′ and U ′ be
the corresponding X and U with the first row removed. Any feasible solution to X = ΦU must also be feasible to
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X ′ = Φ′U ′ by construction given that Φ = [IH]. Now suppose that at most P < d− 1 rows of U ′ are Θ(f(ϵ)) and the
rest are O(ϵ).3 Let U ′

p denote these rows and Φ′
p the associated columns of Φ′. Then any feasible solution must be such

that X ′ = Φ′
pU

′
p +O(ϵ).

However, because Φ′
p must be both full rank and overdetermined by assumption, Φ′

pU
′
p = Θ(f(ϵ)). This is because

spark[Φ′] = spark[Φ]− 1 = d by design via (6). Therefore, since X ′ is O(ϵ), feasibility requires that Θ(f(ϵ)) = O(ϵ),
which is a contradiction. Hence at least d−1 rows of U ′ must be Θ(f(ϵ)). The remaining rows must be O (f(ϵ)), otherwise
we encounter the same contradiction. Additionally, if all rows of U ′ are at most Θ(f(ϵ)), then u1: must be Θ(1) to maintain
feasibility. This completes the second category.

Finally, the only remaining possibility is the third category, which includes the generative solution Û . ■

Lemma C.1 leads to useful information regarding Σx at any candidate local minimum.

Lemma C.2. Let w̄ denote an arbitrary candidate local minimum, with W̄ = diag[w̄]. Then the singular values
λ̄ = [λ̄1, . . . , λ̄d]

⊤ of Σ̄x = ΦW̄Φ⊤ + γI fall into one of the following two categories:

1. λ̄1 = Ω(1) and λ̄i = Ω
(
f(ϵ)2

)
for all i > 1.

2. λ̄1 = λ̂1 +O(ϵ2), λi = O(ϵ2) for all i > 1, where λ̂1 is the first singular value of ΦŴΦ⊤.

Proof: If w̄ truly represents a local minimum, then it must satisfy the fixed point equation

w̄i =
1
n∥ūi:∥22 + σ̄2

ii, ∀i, (19)

where σ̄2
ii denotes the i-th diagonal element of Σ̄ ≜ W̄ − W̄Φ⊤Σ̄

−1
x ΦW̄ . This follows from the upper bounds that were

used to arrive at (18). Because Σ̄ is a symmetric, positive semi-definite matrix, it follows that σ̄2
ii ≥ 0 ∀i. We may then

conclude that w̄i ≥ 1
n∥ūi:∥2. Consequently, if feasible solution Ū falls into the first or second category in Lemma C.1, then

it must be that λ̄i is at least Ω
(
f(ϵ)2

)
for all i given that spark[Φ] = d+ 1 with probability one. Additionally, λ̄1 must be

Ω(1). This is because for all categories from Lemma C.1, at least one row of Ū is always at least Θ(1) for feasibility.

In contrast, if Ū falls into the third category of Lemma C.1, we can consider the fact that any local minimizer w̄ must also
be a local minimizer to the upper bound on (18), evaluated at w̄, given by

L̄(w, γ) ≜ tr
[
ŪŪ

⊤
W−1

]
+ n log |Σx|+ C ≥ L(w̄, γ), (20)

where C is a constant independent of w. Although not convex, functions of this form have been shown to have a single
minimum, global or local. At this minimum, it must be that ∂L̄(w, γ)/∂wi = 0, or after a few standard manipulations, that

1
n∥ūi:∥22 = ϕ⊤

:i

(
Σ̄x

)−1
ϕ:i. (21)

When Ū falls into the third category of Lemma C.1, this fixed-point equation can always be satisfied by
w̄1 = 1

n∥ū1:∥22 + O(ϵ2) and w̄i = O(ϵ2) for all i > 1 when γ → 0. Based on these observations, Lemma C.2
directly follows. ■

The first category in Lemma C.2 only provides a lower bound on the singular values because it does not take into account the
effect of Σ̄ from (19) at each candidate local minimum, which as a non-negative additive term can only increase the value of
each wi and therefore each λi. However, we can also establish a simple but useful upper bound based on the following:

3Actually any O (g(ϵ)), where g is a nonnegative function such that f(ϵ)/g(ϵ) → ∞ as ϵ becomes small, would do here. However,
the simpler choice O(ϵ) can be assumed without loss of generality.
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Corollary C.3. At any local minimum, the singular values of Σ̄x also satisfy the upper bound λ̄i = O(1) for all i.

Proof: The second category of Lemma C.2 already achieves this upper bound. So here we focus on the first category, where
all singular values are lower bounded by Ω

(
f(ϵ)2

)
. Now suppose that some collection of P singular values is greater than

Θ(1), meaning they are of order Ω (h(ϵ)), where h(ϵ) → ∞ as ϵ → 0 for some non-negative function h. This implies that
at least P elements of w̄ are also of order Ω (h(ϵ)). Let I denote the indeces of these elements, and define Ψ such that
ΨΨ⊤ =

∑
i∈I w̄iϕ:iϕ

⊤
:i , which represents the contribution to Σ̄x of the associated basis vectors.

If W̄ is a local minimum, then it naturally follows that β = 0 must be a local minimum of

L(β) = n log
∣∣∣Σ̄x + βΨΨ⊤

∣∣∣+ trace
[
XX⊤

(
Σ̄x + βΨΨ⊤

)−1
]
, (22)

otherwise we could just add or subtract a contribution from ΨΨ⊤ to reduce the cost function. Given (22), a necessary
condition for a local minimum is therefore

∂L(β)
∂β

∣∣∣∣
β=0

= 0. (23)

Taking derivatives, we have

∂L(β)
∂β

∣∣∣∣
β=0

= ntr
[
Ψ⊤Σ̄

−1
x Ψ

]
− tr

[
Ψ⊤Σ̄

−1
x XX⊤Σ̄

−1
x Ψ

]
. (24)

The first term in (24) is Θ(1), and with ϵ small converges to nP . For the second term, we note that
(
Σ̄x

)−1
Ψ is of order

O
(
h(ϵ)−1/2

)
. Since XX⊤ = Θ(1), the second term is therefore O

(
h(ϵ)−1

)
which converges to zero. Hence we arrive at

a contradiction, and λ̄i cannot be more than Θ(1). However, since it can sometimes be smaller, we arrive at the upper bound
O(1). ■

The categorization and bounding of singular values provided by Lemma C.2 and Corollary C.3 ultimately allows us to
establish that local minimum must be highly constrained as follows:

Lemma C.4. If w̄ is a local minimum to the VAE objective under the previously stated conditions, then w̄1 = ŵ1 +O(ϵ2)
and w̄i = O(ϵ2) for all i > 1.

Proof: If w̄ is a local minimum, then it naturally follows that α = 1, β = 0 must be a local minimum of

L(α, β) = n log
∣∣∣αΦW̄Φ⊤ + βe1e

⊤
1

∣∣∣+ trace
[
XX⊤

(
αΦW̄Φ⊤ + βe1e

⊤
1

)−1
]
, (25)

where e1 represents a unit vector with all zeroes and a one in the first position (similarly for ei as will be applied in
presenting later results). This occurs because at a true local minimum we can never rescale w by some constant α to reduce
the cost, nor can we add a contribution from any column of Φ, for example, ϕ:1 = e1 without increasing the cost.

Given (34), necessary conditions for w̄ to be a local minimum are

∂L(α, β)
∂α

∣∣∣∣
α=1,β=0

= 0,
∂L(α, β)

∂β

∣∣∣∣
α=1,β=0

≥ 0, (26)

where we recognize that a positive gradient with respect to β can still be consistent with a local minimum if w̄1 = 0 (in
contrast, if w̄1 > 0, then β < 0 is within the allowable constraint set and the gradient would have to exactly equal zero).
Taking derivatives, this gives

∂L(α, β)
∂α

∣∣∣∣
α=1,β=0

= ntr [I]− tr
[
X⊤(Σ̄x)

−1X
]
,

∂L(α, β)
∂β

∣∣∣∣
α=1,β=0

= ntr
[
e⊤1 Σ̄

−1
x e1

]
− tr

[
e⊤1 Σ̄

−1
x XX⊤Σ̄

−1
x e1

]
. (27)
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where Σ̄x = ΦW̄Φ⊤ as before.

First consider the special case where all singular values achieve the upper bound from Corollary C.3, meaning λ̄i = Θ(1)

for all i and so Σ̄
−1
x is Θ(1) as well. Equating (27) to zero then requires that tr

[
X⊤Σ̄

−1
x X

]
= e⊤1 Σ̄

−1
x e1 +O(ϵ) = nd

since XX⊤ = e1e
⊤
1 +O(ϵ). Similarly, we note that

e⊤1 Σ̄
−1
x XX⊤Σ̄

−1
x e1 = e⊤1 Σ̄

−1
x e1e

⊤
1 Σ̄

−1
x e1 +O(ϵ). (28)

Plugging these results into (27), a necessary condition for a local minimum is that

e⊤1 Σ̄
−1
x e1 −

(
e⊤1 Σ̄

−1
x e1

)2

+O(ϵ) ≥ 0. (29)

However, with e⊤1 Σ̄
−1
x e1 = nd+O(ϵ) this is not possible. Hence we cannot have a local minimum with λ̄i = Θ(1) for all

i.

Now consider the more general case from Lemma C.2 where λ̄1 = Ω(1) and λ̄i = Ω
(
f(ϵ)2

)
for all i > 1. For the moment

we will also assume that σ̄2
ii = 0 for all i, which implies that λ̄1 = Θ(1) and λ̄i = Θ

(
f(ϵ)2

)
for all i > 1. This follows

from Lemma C.1) and the fact that we have already ruled out the first category where all the row norms are Ω(1), in which
case all the singular values would achieve the upper bound. Additionally, based on Lemmas C.1 and C.2, the only way such
a singular value decomposition is possible is if w̄1 = Θ(1) and w̄i = O

(
f(ϵ)2

)
for all i > 1.

We then partition Σ̄
−1
x as A =

[
a11 a⊤

21; a21 A22

]
, where a11 =

(
Σ̄

−1
x

)
11

, A22 represents Σ̄−1
x with the first row and

column removed, and the vectors a⊤
21 and a21 represent the remaining elements of the first row and column respectively.

Proceeding further, based on the expression for the inverse of a partitioned matrix, it follows that a11 and a21 are Θ(1),
given that w̄1ϕ:1ϕ

⊤
:1 = w̄1e1e

⊤
1 with w̄1 = Θ(1) and all other w̄i are of a smaller order. In contrast, A22 = Θ

(
f(ϵ)−2

)
.

Finally, in a similar manner we write XX⊤ =
[
b11 b⊤21; b21 B22

]
such that by construction b11 = 1, b21 is O(ϵ), and

B22 = O(ϵ2).

Returning to (27), we find that

tr
[
XX⊤(Σ̄x)

−1
]
= a11 +O

(
[ϵf(ϵ)−1]2

)
+O(ϵ). (30)

where ϵf(ϵ)−1 → 0 by definition. This implies that a11 = nd+O
(
[ϵf(ϵ)−1]2

)
+O(ϵ) at a local minimum. Again, similar

to above we have that
tr
[
e⊤1 Σ̄

−1
x XX⊤Σ̄

−1
x e1

]
= a211 +O(ϵ). (31)

Consequently, based on (27) at any local minimum we require that

a11 − a211 +O(ϵ) = nd− (nd)2 +O
(
[ϵf(ϵ)−1]2

)
+O(ϵ) ≥ 0. (32)

However this can never be the case when ϵ is small enough.

Finally, we must consider the more general situation where σ̄2
ii may be greater than zero for some or all i. Based on the

upper bound on the singular values of Σ̄x from Corollary C.3, it follows that σ̄2
ii = O(1) for all i; if any were larger then

one or more singular values would necessarily violate the bound. Given these conclusions we may proceed through the
same analysis as above, only now with

Ã ≜ Σ̄
−1
x =

[
A−1 +

∑
i

σ̄2
iiϕ:iϕ

⊤
:i

]−1

=
[
A−1 +O(1)

]−1
, (33)

where A is exactly same as before.

In this revised situation, the results turn out to be essentially equivalent. ã11 and ã21 are still of order Θ(1), while now
Ã22 = O

(
f(ϵ)−2

)
instead of Θ

(
f(ϵ)−2

)
. In other words Ã22 can potentially be smaller than before, which ultimately

contributes an even greater violation to the local minimum condition. The rest of the analysis carries through with ã11
replacing a11.
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In conclusion, the only remaining candidate for a local minimum is when λ̄1 = λ̂1 + O(ϵ2), λ̄i = O(ϵ2) for all i > 0.
Additionally, based on Lemmas C.1 and C.2, the only way such a singular value decomposition is possible is if w̄1 =
ŵ1 +O(ϵ2) and w̄i = O(ϵ2) for all i > 1. ■

The final remaining piece of the overall proof of Theorem 3 is the following inductive result.

Lemma C.5. Assume we are given the candidate solution w̄i = ŵi +O(ϵ2i) for all i = 1, . . . ,K and w̄i = O(ϵ2K) for
all i > K, with K < r. Now consider further optimization of the VAE cost function over only the w̄i with i > K (i.e.,
the first K elements remain fixed). If this w̄ truly represents a local minimum, then w̄K+1 = ŵK+1 + O(ϵ2(K+1)) and
w̄i = O(ϵ2(K+1) for all i > K + 1.

Proof: Per the stipulation of this lemma, we assume that w̄i = ŵi + O(ϵ2k) for all i = 1, . . . ,K and w̄i = O(ϵ2K)
for all i > K. Because the overall problem scaling is irrelevant, without loss of generality we may instead assume that
∥û:K+1∥ = 1. This then leads to the equivalent assumption that w̄i = ŵi+O(ϵ2(k−K)) for all k = 1, . . . ,K and w̄i = O(1)
for all i > K. Additionally, ∥x̂(K+1):∥ = ∥û(K+1):∥ = 1. We will now consider these first K parameters to be frozen and
investigate optimization with respect to the remaining κ−K w̄i values.

Let Φ\K denote Φ with the first K columns and rows removed and let X\K and U\K denote the corresponding X and U
with first K rows removed such that X\K = Φ\KU\K . We may apply Lemmas C.1 and C.2 to this reduced system to
obtain a lower bound on the singular values of the bottom d−K singular values of Σ̄x (the first K are of course fixed by
w̄1, . . . , w̄K).

We may also obtain an upper bound on the bottom d − K singular values using a slight modification of Corollary C.3.
Specifically, the derivative in (24) is nearly the same except that the first K columns and rows of Σ̄−1

x are now of order O(ϵ)

because of the effect of
∑K

i=1 w̄iϕ:iϕ
⊤
:i =

∑K
i=1 w̄ieie

⊤
i (note that because of the rescaling, w̄i = Ω(ϵ 1

n ) for all i ≤ K).
This is easily shown using the expression for the inverse of a partitioned matrix. But the essential conclusion still holds,
namely, the bottom d−K singular values are bounded by O(1).

From here we are positioned to show the desired result by adapting Lemma C.4. In particular, if w̄ is a local minimum, then
α = 1, β = 0 must be a local minimum of

L(α, β) = n log
∣∣Σ̄x

∣∣+ trace
[
XX⊤ (

Σ̄x

)−1
]
. (34)

where now

Σ̄x =

K∑
i=1

w̄ieie
⊤
i + α

κ∑
i=K+1

w̄iϕ:iϕ
⊤
:i + βe(K+1)e

⊤
(K+1). (35)

Again, using the formula for the inverse of a partitioned matrix and the lower bounds on singular values, the derivatives
from (27) and (27) become

∂L(α, β)
∂α

∣∣∣∣
α=1,β=0

= n(d−K)− tr
[
X⊤

\K
[
(Σ̄x)\K

]−1
X\K

]
+O(ϵ),

∂L(α, β)
∂β

∣∣∣∣
α=1,β=0

= (36)

ntr
[
e⊤1

[
(Σ̄x)\K

]−1
e1

]
− tr

[
e⊤1

[
(Σ̄x)\K

]−1
X\KX⊤

\K
[
(Σ̄x)\K

]−1
e1

]
+O(ϵ),

where (Σ̄x)\K denotes Σ̄x with the first K columns and rows removed and e1 has replaced e(K+1) to retain the proper
alignment. These derivatives behave exactly like in Lemma C.4 only now in the reduced (d−K)-dimensional subspace.
Hence we may borrow the previous arguments and conclude that w̄(K+1) = ŵ(K+1) + O(ϵ2) and w̄i = O(ϵ2) for
all i > K + 1. This is can be viewed as the generalized version of Lemma C.4. Finally, after rescaling the problem
back to its original form, and combining with the first K fixed values of w obtained previously, we obtain the desired result. ■

To summarize, by assimilating all of these results, we may conclude that under the stated conditions, at any locally
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minimizing solution w = w̄ it must be that w̄i = ŵi + O(ϵ2i) for all i = 1, . . . , r and w̄i = O(ϵ2r) for all i > r, where
r is the number of nonzero rows in Û . It is then a simple matter to show that in fact w̄i = 0 for all i > r. One way to
do this is to reconsider (22), only now with Σ̄x defined at the local solution converged to here and Ψ defined such that
ΨΨ⊤ =

∑κ
i=r+1 w̄iϕ:iϕ

⊤
:i , i.e., the remaining small values of w̄ (or more precisely, we actually need only add up the

remaining small values that are not already equal to zero).

With these changes we re-evaluate the derivative from (24). The first term will necessarily be Θ(1) under the stated conditions
and assuming Ψ ̸= 0. In contrast, using similar analysis in deriving previous results, we also have that Σ̄−1

x X = O(ϵ(1−D),
and therefore the second term will be O(ϵ2). Hence in combination, the derivative will always be positive unless Ψ, and
therefore w̄i = 0 for all i > r, equal zero.

Finally, the following result can be used to demonstrate that the remaining nonzero elements of w̄ at any minimum must be
such that w̄i = ŵi ≜ 1

n∥ûi:∥22, i.e., any deviations from ŵ as defined previously evaporate.

Lemma C.6. Consider the objective (18) with γ → 0 and any κ − d elements of w fixed at zero. Let wd ∈ Rd denote
the unconstrained elements of w, Φd ∈ Rd×d the corresponding columns of Φ, and Ud ≜ Φ−1

d X . Then w̄d represents a
minimum of the resulting constrained objective (global or local) iff w̄d, i =

1
n∥ud,i:∥22 (i.e., we are optimizing only those d

elements of w that are not fixed at zero).

Proof: Under the stated conditions, the constrained objective becomes

L(wd, 0) = tr
[
XX⊤

(
ΦdW dΦ

⊤
d

)−1
]
+ n log

∣∣∣ΦdW dΦ
⊤
d

∣∣∣ , (37)

where W d ≜ diag[wd]. After a few standard manipulations, (37) can be equivalently expressed as

L(wd, 0) ≡
d∑

i=1

1
n∥ud,i:∥22

wd,i
+

d∑
i=1

logwd,i + C, (38)

where C is a constant independent of wd. This function is separable, with a unique minimum each wd,i given by
w̄d, i =

1
n∥ud,i:∥22. The latter follows by simply taking gradients and equating to zero. ■

Applying Lemma C.6 to the solution defined previously with nonzeros aligned with ŵ (note that we can always fill out
d− κ additional unconstrained elements to enter the regime where the lemma applies), ensures that, if w̄ is any minimum to
(18) (whether global or local), it must be that

w̄i = ŵi =
1
n∥ûi:∥22, ∀i = 1, . . . , κ. (39)

C.3. Combining Pieces

We are now positioned to revisit the original four conclusions of Theorem 4.1. In brief, we first demonstrated that at any
minimum w.r.t the encoder parameters ϕ = {W z,S} (global or local), the VAE energy under the stated conditions reduces
to (18) for any arbitrary value of the decoder θ = {wx, γ}. We then showed that (18) has a unique minimum w.r.t wx in the
limit γ → 0 (with the limit taken outside of the minimization), namely w∗ = w̄ such that Conclusion (i) of Theorem 4.1 is
satisfied.

Conclusions (ii) and (iii) directly follow from Conclusion (i) and (17). Specifically, for (ii) we have that

Φdiag [w∗
x]µz(x:i;ϕ

∗) = Φdiag [w̄x] (Φdiag [w̄x])
†
x:i = x:i, ∀i. (40)

such that zero reconstruction error is achieved. Similarly, given that the support of w̄ and û:i are equivalent, and the
uniqueness of any feasible solution defined w.r.t. the corresponding columns of Φ, then for (iii) we have that

diag [w∗
x]µz(x:i;ϕ

∗) = diag [w̄x] (Φdiag [w̄x])
†
x:i = û:i, ∀i. (41)
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And lastly, Conclusion (iv) follows by repurposing the analysis that was used to arrive at Lemma C.1. Specifically, suppose
that U0 ̸= Û . This means that at least one of the r nonzero rows of Û must be zero in U0; if this were not the case, then
either U0 = Û or ρ(U0) > ρ(Û) which is a contradiction. Let K denote the index of the largest nonzero row of Û that is
zero in U0. If K = 1, then U0 will necessarily fall into the first category of candidate solutions specified by Lemma C.1, and
hence ρ(U0) > ρ(Û) which is a contradiction. For K > 1, let Φ′ denote the submatrix of Φ with the first K − 1 rows and
columns removed; similarly X ′ and U ′

0 the submatrices of X and U0 with the first K−1 rows removed. In this revised sce-
nario, we may leverage the same analysis as was used to prove Lemma C.1 to show that ρ(U ′

0) ≥ d−K+1, and therefore it
must be that ρ(U0) = K−1+ρ(U ′

0) ≥ d > ρ(Û), which again is a contradiction. Hence U0 = Û completing the proof. ■

D. Proof of Theorem 4.2
We first present the following lemma, which allows us to relax the constraint from (8).

Lemma D.1. If Z̄ is any minimum (global or local) of the function

L(Z) ≜
n∑

i=1

1
γ ∥x:i −Az:i∥22 +

κ∑
j=1

h
(
∥zj:∥22

)
(42)

defined via arbitrary matrix A ∈ Rd×κ and concave, non-decreasing function h, then it must be that Z̄ = BX for some
matrix B ∈ Rκ×d.

Proof: If Z̄ is any global or local minimum of (42), then it must also be a minimum of any convex upper bound L̃(Z) ≥ L(Z)
defined such that L̃(Z̄) = L(Z̄). If this were not the case, we could further minimize L̃(Z) along some descent path, which
would violate our assumption that the bound is tight at Z̄. In the present case, we can always construct such abound using a
quadratic approximation to h.

For example, because h is a concave, non-decreasing function, it can always be expressed as

h(x) = min
λ≥0

[λx− h∗(λ)] ≤ λx− h∗(λ), ∀λ ≥ 0, (43)

where h∗ is the concave conjugate of h (Rockafellar, 1970). Furthermore, per the basic rules of Fenchel duality, at
any point x′ we obtain equality with righthand-side upper bound when λ is set equal to λ′ ≜ ∂h(x)/∂x|x=x′ , i.e.,
h(x′) = λ′x′ − h∗(λ′). Consequently, if Z̄ is a local minimum to (42), it must also be a minimum to the convex objective

L̃(Z) ≜
n∑

i=1

1
γ ∥x:i −Az:i∥22 +

κ∑
j=1

λ̄j∥zj:∥22 + C, (44)

where λ̄j ≜ ∂h(x)/∂x|x=∥z̄j:∥2
2

and C is a constant independent of Z. But this is just a generalized form of penalized
ridge regression with optimal solution

Z = Λ̄A⊤
(
γI +AΛ̄A⊤

)−1

X, (45)

where Λ̄ ≜ diag[λ̄]. Therefore, it follows that any locally minimizing Z must be in the form Z̄ = BX . ■

Per Lemma D.1, we can relax the constraint Z = W zX and simply optimize over Z directly. In doing so, any local
minimum we enter will necessarily also be a local minimum to the original constrained objective. Hence we instead consider
the more convenient, relaxed objective

LAE(wx,Z) ≜
n∑

i=1

1
γ ∥x:i −Φdiag [wx] z:i∥22 + ∥wx∥22 +

κ∑
j=1

h
(
∥zj:∥22

)
. (46)
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If we define U ≜ diag [wx]Z ∈ Rκ×n then we may also obtain an equivalent reparameterization of (46) given by

LAE(U ,Z) ≜
n∑

i=1

1
γ ∥x:i −Φu:i∥22 +

κ∑
j=1

[
∥uj:∥22
∥zj:∥22

+ h
(
∥zj:∥22

)]
. (47)

From (47) we observe that dependency on Z is now restricted to the separable row norms which can be conveniently
optimized away. In particular, we apply the following simple lemma:

Lemma D.2. Let h̃(x) ≜ infα>0

[
x2

α + h(α)
]
, where h is a concave non-deceasing function. Then h̃ will be a concave

non-decreasing function of |x| defined on the domain [0,∞).

Proof: This result can be inferred from (Wipf & Zhang, 2014)[Theorem 2]. ■

Note that we can always minimize (47) with respect to Z without encountering spurious minima, and based on Lemma D.2,
the effective objective that emerges will be

LAE(U) ≜
n∑

i=1

1
γ ∥x:i −Φu:i∥22 +

κ∑
j=1

h̃ (∥uj:∥2) , (48)

where h̃ is a concave, non-decreasing function of the row norms of U (no longer the row-norms squared as with the function
h applied to Z). Such functions are well-known to favor row-sparse solutions, meaning matrices with many rows pushed to
exactly zero (Cotter et al., 2005). And finally, if we allow γ → 0, then (48) can be recast in the more interpretable equivalent
form

LAE(U) ≡
κ∑

j=1

h̃ (∥uj:∥2) , s.t. X = ΦU . (49)

It has been shown (Wipf et al., 2011)[Theorem 9] that in the special case of n = 1, any possible objective in the form of (49)
can have minima (either local or global) that do not produce an optimal sparse representation under an analogous scaling
constraint. This is sufficient to prove Theorem 4.2. ■

E. Proof of Lemma 4.3
Under the stated conditions, if we follow the encoder optimizations analogous to those used in the proof of Theorem 4.1, we
arrive at the VAE loss

L(θ, ϕ) =
n∑

i=1

1
γ ∥x:i −Φdiag [wx]m:i∥22 + n

κ∑
j=1

log
(
γ + w2

x,j∥ϕ:j∥22
)
+ ∥M∥2F , (50)

where wx,j denotes the j-th element of wx and we have aggregated encoder means into the matrix M ≜
[µz(x:1;ϕ), . . . ,µz(x:n;ϕ)] ∈ Rd×n. Then after taking the limit γ → 0 and regrouping terms, this becomes equiva-
lent to

L(θ, ϕ) ≡
κ∑

j=1

[
log

(
w2

x,j

)
+ 1

n∥mj:∥22
]
, s.t.

m:i = W zx:i

x:i = Φdiag [wx]m:i
, ∀i (51)

excluding irrelevant constants. From this expression we observe that the penalization applied to wx and each mj: is nearly
equivalent to that applied to wx and zj: in (9) when h(·) = log(·); the only difference is that the two penalty function
nonlinearities (·)2 and log(·)2 are flipped. However, since the reconstruction only depends on the product wx,j

1√
n
∥mj:∥2

for all j (not each factor in isolation), the aggregate penalization on this product is actually equivalent, i.e., switching the
two functions makes no difference beyond an inconsequential reparameterization. ■
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F. Proof of Theorem 4.4
Following the optimization over encoder parameters discussed in the proof of Theorem 4.1, the VAE energy from (5) reduces
to (18). From this expression, w.l.o.g. we decompose Σx as

Σx = w2
x,iϕ:iϕ

⊤
:i +Ψi, with Ψi ≜

∑
j ̸=i

w2
x,jϕ:jϕ

⊤
:j + γI. (52)

We then reexpress Ψi as
Ψi = γ′

iϕ:iϕ
⊤
:i +RiR

⊤
i , (53)

where Ri ∈ Rd×d−1 is a matrix with columns spanning the orthogonal complement of ϕ:i and γ′
i ≥ γ/∥ϕ:i∥22 is a projection

weight of Ψi in the direction of ϕ:i. In this way, by applying standard determinant and matrix inverse identities we can
reformulate (18) as

L(w, γ) = tr
[
XX⊤

(
[w2

x,i + γ′]ϕ:iϕ
⊤
:i +RiR

⊤
i

)−1
]
+ n log

∣∣∣[w2
x,i + γ′]ϕ:iϕ

⊤
:i +RiR

⊤
i

∣∣∣
=

x̃⊤
i x̃i(

w2
x,i + γ′

)
∥ϕ:i∥42

+ n log
(
w2

x,i + γ′)+ C

≡ a(
w2

x,i + γ′
) + log

(
w2

x,i + γ′) , (54)

where C is a constant independent of w2
x,i and x̃i ∈ Rn denotes a vector whose j-th element is x⊤

:jϕ:i and
a ≜ x̃⊤

i x̃i/
(
n∥ϕ:i∥42

)
. It is then a simple matter to show via differentiation that (54) either has a single stationary point at

w2
x,i = a−γ′ when a−γ′ ≥ 0, which serves as the unique minimum. Otherwise if a−γ′ < 0, then the minimum occurs as

w2
x,i = 0 and monotonically increases from there. Hence there is a single unique minimum, which proves Theorem 4.4. ■

G. Corollary 4.5
For the first part of the corollary, we optimize (50) from the proof of Lemma 4.3 over M , and then adopt the decompositions
(52) and (53) defined in the proof of Theorem 4.4. This leads to a modified version of (54) given by

L(w, γ) = tr
[
XX⊤

(
[w2

x,i + γ′]ϕ:iϕ
⊤
:i +RiR

⊤
i

)−1
]
+ n

κ∑
j=1

log
(
γ + w2

x,j∥ϕ:j∥22
)

≡ a(
w2

x,i + γ′
) + log

(
γ′′ + w2

x,i

)
, (55)

where γ′′ ≜ γ/∥ϕ:i∥22 and terms independent of w2
x,i have been omitted.

However, because γ′′ ≤ γ′, it is now actually possible for (55) to have multiple disconnected local minima. To see this, we
can take the gradient w.r.t. w2

x,i and equate to zero, revealing that two feasible stationary points with w2
x,i > 0 are possible.

Specifically, we have

w2
x,i =

a− 2γ′ ±
√
a2 + 4a(γ′′ − γ′)

2
(56)

as candidate solutions. Note that to guarantee no suboptimal local minima requires that the smaller candidate solution from
(56) is a non-negative real for all feasible values of {a, γ′, γ′′}; the latter consists of all non-negative selections satisfying
the constraint γ′ ≥ γ′′. However, it is straightforward to find feasible sets {a, γ′, γ′′} such that both w2

x,i solutions from
(56) are non-negative (e.g., a = 10, γ′ = 1, γ′′ = 0.01) and therefore, we cannot rule out suboptimal local minima when
Σz is diagonalized under the conditions of Theorem 4.4.

We now turn to the second part of the corollary. For the s case, we begin with (50) (where s has already been optimized
away with no bad local minima). We assume W z,\i is fixed, which for present purposes is tantamount to treating M\i as
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fixed (as opposed to optimizing it away). After defining

X̄i ≜ X −
∑
j ̸=i

ϕ:jwx,jmj: (57)

and excluding all terms that are independent of wx,i and mi: = wz,i:X , (50) can be reexpressed as

L(wx,i,wz,i:, γ) =
1
γ

∥∥X̄i − ϕ:iwx,imi:

∥∥2
F + n log

(
γ + w2

x,i∥ϕ:i∥22
)
+ ∥mi:∥22. (58)

This function is convex in mi:, and once optimized away, we obtain

L(wx,i, γ) =
ā

γ + w2
x,i∥ϕ:i∥22

+ log
(
γ + w2

x,i∥ϕ:i∥22
)
, (59)

where ā ≜ ϕ⊤
:i X̄iX̄

⊤
i ϕ:i/(n∥ϕ:i∥22). With a simple rescaling, this expression is in the same basic form as (54), and hence

has a single unique minima (global or local). And finally, for the S case, we follow similar steps as above, only now the
log-det term has an additional factor stemming from the decomposition from (53). The resulting simplified loss is then
structurally analogous to (55), with the critical difference that now γ′′ ≥ γ′. Upon differentiation and inspection, we then
observe that there is a unique minimum like the s case. ■

H. Proof of Corollary 4.6
Given

X̄i ≜ X −
∑
j ̸=i

ϕ:jwx,jzj: (60)

and excluding all terms that are independent of wx,i and zi: = wz,i:X , (8) can be reexpressed as

LAE(wx,i,wz,i:) =
1
γ

∥∥X̄i − ϕ:iwx,izi:

∥∥2
F + w2

x,i + h
(
1
n∥zi:∥22

)
. (61)

Using an analogous reparameterization as adopted in the proof of Theorem 4.2, (61) can be converted to the equivalent
objective

LAE(ui:) =
1
γ

∥∥X̄i − ϕ:iui:

∥∥2
F + h̃

(
1
n∥ui:∥22

)
, (62)

where it follows by construction that the composite h̃
(
[·]2

)
must be concave, non-decreasing, and nonlinear if h([·]2) is.

From here we can trivially choose any number of simple counter-examples. For example, if we choose n = 1, then (62)
reduces to a function f : R → R in the general form

f(u) = u2 − 2au+ γh̃(u2), (63)

where a ∈ R can be arbitrary. We can then apply (Wipf et al., 2011)[Theorem 6] which demonstrates that if h([·]2) is
strictly concave, f(x) can have multiple local minima. However, from examination of the proof, it is trivial to extend to any
concave, non-decreasing, and nonlinear h([·]2). ■
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