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Abstract
In large scale machine learning, random sampling
is a popular way to approximate datasets by a
small representative subset of examples. In partic-
ular, sensitivity sampling is an intensely studied
technique which provides provable guarantees on
the quality of approximation, while reducing the
number of examples to the product of the VC
dimension 𝑑 and the total sensitivity S in remark-
ably general settings. However, guarantees going
beyond this general bound of S𝑑 are known in
perhaps only one setting, for ℓ2 subspace embed-
dings, despite intense study of sensitivity sam-
pling in prior work. In this work, we show the
first bounds for sensitivity sampling for ℓ𝑝 sub-
space embeddings for 𝑝 ̸= 2 that improve over the
general S𝑑 bound, achieving a bound of roughly
S2/𝑝 for 1 ≤ 𝑝 < 2 and S2−2/𝑝 for 2 < 𝑝 < ∞.
For 1 ≤ 𝑝 < 2, we show that this bound is
tight, in the sense that there exist matrices for
which S2/𝑝 samples is necessary. Furthermore,
our techniques yield further new results in the
study of sampling algorithms, showing that the
root leverage score sampling algorithm achieves
a bound of roughly 𝑑 for 1 ≤ 𝑝 < 2, and that
a combination of leverage score and sensitivity
sampling achieves an improved bound of roughly
𝑑2/𝑝S2−4/𝑝 for 2 < 𝑝 < ∞. Our sensitivity sam-
pling results yield the best known sample com-
plexity for a wide class of structured matrices that
have small ℓ𝑝 sensitivity.

1. Introduction
In typical large scale machine learning problems, one en-
counters a dataset represented by an 𝑛× 𝑑 matrix A, con-
sisting of 𝑑 features and a large number 𝑛 ≫ 𝑑 of training
examples. While an extremely large 𝑛 can cause various
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data analytic tasks to be intractable, it is often the case that
not all 𝑛 training examples are necessary, and random sam-
pling can effectively reduce the number of training examples
while approximately preserving the information necessary
for downstream prediction tasks.

Uniform sampling is perhaps the simplest instance of this
idea that is often used in practice. However, uniform sam-
pling can lead to significant information loss when there are
a small number of important training examples that must
be kept under sampling. Thus, recent work, both in theory
(Langberg & Schulman, 2010; Feldman & Langberg, 2011)
and in practice (Katharopoulos & Fleuret, 2017; Johnson
& Guestrin, 2018), has focused on importance sampling
methods that sample more important examples with higher
probability.

In this work, we focus on the use of importance sampling
techniques for approximating objective functions for em-
pirical risk minimization problems. Consider an objective
function 𝑓 : 𝑋 → R≥0 of the form of a sum along the
coordinates, i.e.,

𝑓(x) =

𝑛∑︁
𝑖=1

𝑓𝑖(x),

where 𝑋 is some domain set and 𝑓𝑖 : 𝑋 → R≥0 are
non-negative loss functions for 𝑖 ∈ [𝑛] = {1, 2, . . . , 𝑛}.
Then, we seek algorithms that sample a subset 𝑆 ⊆ [𝑛] and
weights w𝑖 for 𝑖 ∈ 𝑆 such that, with high probability, the
function

𝑓(x) :=
∑︁
𝑖∈𝑆

w𝑖𝑓𝑖(x)

satisfies

for every x ∈ 𝑋 , 𝑓(x) = (1± 𝜀)𝑓(x) (1)

for some accuracy parameter 0 < 𝜀 < 1. We will also refer
to the 𝜀 parameter as the sampling error. Note then that
if |𝑆| ≪ 𝑛, then 𝑓 can be used as a surrogate objective
function in downstream applications that can be processed
much more efficiently than 𝑓 itself.

Sensitivity Sampling. The sensitivity sampling frame-
work, introduced by (Langberg & Schulman, 2010; Feld-
man & Langberg, 2011), provides one method of achieving
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guarantees of the form of (1). In this framework, one first
computes1 sensitivity scores of each coordinate 𝑖 ∈ [𝑛]:

𝜎𝑖 := sup
x∈𝑋

𝑓𝑖(x)∑︀𝑛
𝑗=1 𝑓𝑗(x)

.2

Then, each 𝑖 ∈ [𝑛] is independently sampled with probabil-
ity 𝑝𝑖 proportional to 𝜎𝑖, and the sampled row is assigned
a weight of 1/𝑝𝑖. It is easy to see that this preserves the
objective function 𝑓(x) in expectation for every x ∈ 𝑋 . Fur-
thermore, it can be shown that sampling �̃�(𝜀−2S𝑑) rows
provides a (1 ± 𝜀)-factor approximation to the objective
function (Braverman et al., 2016; Feldman et al., 2020),
where S =

∑︀𝑛
𝑖=1 𝜎𝑖 is known as the total sensitivity and 𝑑

is the VC dimension of an associated set system.

Sampling Algorithms for ℓ𝑝 Linear Regression. We
now turn to sampling algorithms for ℓ𝑝 linear regression,
which is the main problem of study of this work. Consider
an input matrix A ∈ R𝑛×𝑑 with 𝑛 rows a𝑖 ∈ R𝑑, a label
vector b ∈ R𝑛, and 1 ≤ 𝑝 < ∞. We then seek to minimize

𝑓(x) =

𝑛∑︁
𝑖=1

|⟨a𝑖,x⟩ − b𝑖|𝑝 = ‖Ax− b‖𝑝𝑝.

Note that this problem is in the form of an empirical
risk minimization problem as discussed previously, with
𝑓𝑖(x) = |⟨a𝑖,x⟩ − b𝑖|𝑝 and 𝑋 = R𝑑. Furthermore, in the
case of ℓ𝑝 regression, we may use the scale invariance of
the ℓ𝑝 norm to fold the weights w𝑖 into the objective 𝑓𝑖, so
we can write the sampling procedure as a diagonal map:

Definition 1.1 (ℓ𝑝 Sampling Matrix). Let 1 ≤ 𝑝 < ∞. A
random diagonal matrix S ∈ R𝑛×𝑛 is a random ℓ𝑝 sampling
matrix with sampling probabilities {𝑞𝑖}𝑛𝑖=1 if for each 𝑖 ∈
[𝑛], the 𝑖th diagonal entry is independently set to be

S𝑖,𝑖 =

{︃
1/𝑞

1/𝑝
𝑖 with probability 𝑞𝑖

0 otherwise

Our goal then is to compute probabilities {𝑝𝑖}𝑛𝑖=1 such that
the associated ℓ𝑝 random sampling matrix S satisfies

for every x ∈ R𝑑, ‖Ax− b‖𝑝𝑝 = (1± 𝜀)‖SAx− Sb‖𝑝𝑝

Note that we may in fact also assume that b = 0, since we
can append b to be one of the columns of A. Thus, our
problem is to compute probabilities {𝑝𝑖}𝑛𝑖=1 satisfying

for every x ∈ R𝑑, ‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝, (2)

which is known as an ℓ𝑝 subspace embedding of A.

1While computing sensitivity scores exactly is often inefficient,
efficiently computable approximations exist and suffice in many
cases.

2We define the fraction to be 0 when the denominator is 0.

We introduce the following notation for sensitivity sampling
when specifically applied to ℓ𝑝 subspace embeddings:

Definition 1.2 (ℓ𝑝 sensitivities). Let A ∈ R𝑛×𝑑 and 𝑝 ≥ 1.
Then, for each 𝑖 ∈ [𝑛], we define the 𝑖th ℓ𝑝 sensitivity to be

𝜎𝑝
𝑖 (A) := sup

x∈R𝑑,Ax ̸=0

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
3

and the total ℓ𝑝 sensitivity to be S𝑝(A) :=
∑︀𝑛

𝑖=1 𝜎
𝑝
𝑖 (A).

Note that the calculation of ℓ𝑝 sensitivities can be formulated
as an ℓ𝑝 regression problem, and can be computed efficiently
using recent developments in algorithms for ℓ𝑝 regression.
Indeed, it is easy to see that

1

𝜎𝑝
𝑖 (A)

= min
[Ax](𝑖)=1

‖Ax‖𝑝𝑝,

which can be efficiently approximated to high precision in
nearly matrix multiplication time (Adil et al., 2019a;b; Adil
& Sachdeva, 2020).

For 𝑝 = 2, the ℓ𝑝 sensitivities are exactly equal to the
leverage scores.

Definition 1.3 (Leverage scores). Let A ∈ R𝑛×𝑑. Then,
for each 𝑖 ∈ [𝑛], we define the 𝑖th leverage score to be
𝜏 𝑖(A) := 𝜎2

𝑖 (A).

For ℓ𝑝 subspace embeddings, it is known that the total sen-
sitivity is at most 𝑑 for 𝑝 ≤ 2 and at most 𝑑𝑝/2 for 𝑝 > 2,
where 𝑑 is the dimension. Thus, sensitivity sampling applies
in this setting, and has indeed been successfully applied in
prior work (Braverman et al., 2020; 2021). There are also
other sampling schemes, based on Lewis weights, which we
discuss more below.

For 𝑝 = 2, which corresponds to the standard least squares
regression problem, it has long been known that sensitivity
sampling, known as leverage score sampling in this case,
yields ℓ2 subspace embeddings (2) with nearly optimal sam-
ple complexity of4 �̃�(𝜀−2𝑑) (Mahoney, 2011). However, it
is also known that the total sensitivity S is exactly 𝑑 in this
setting, and the dimension is also 𝑑. Thus, in the natural
setting of ℓ2 subspace embeddings, the bound of S𝑑 = 𝑑2

for sensitivity sampling is quadratically loose in the analysis.
However, to the best of our knowledge, no bound which
improves over the general bound of S𝑑 specifically for sen-
sitivity sampling is known in any other setting. We thus
arrive at the central question of our work:

Question 1.4.

How many samples are necessary for sensitivity sampling
to output an ℓ𝑝 subspace embedding (2)?

3We write [Ax](𝑖) for the 𝑖th entry of the vector Ax ∈ R𝑛.
4We write �̃�(𝑓) to denote 𝑓 poly log 𝑓 .
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1.1. Our Contributions

In this work, we make progress towards resolving Ques-
tion 1.4 by obtaining the first bounds for sensitivity sampling
that go beyond the general S𝑑 bound:

Theorem 1.5 (Informal Restatement of Theorem D.2 and
Theorem D.4). Let 1 ≤ 𝑝 < ∞ and let A ∈ R𝑛×𝑑. Let 𝛼 >
0 and let 𝑞𝑖 = min{1, 1/𝑛+ 𝜎𝑝

𝑖 (A)/𝛼} for 𝑖 ∈ [𝑛]. Then,
there is an 𝛼 such that the random ℓ𝑝 sampling matrix S with
sampling probabilities {𝑞𝑖}𝑛𝑖=1 satisfies (2) and samples at
most 𝑚 rows with probability at least 1− 1/ poly(𝑛), with

𝑚 =

⎧⎪⎪⎨⎪⎪⎩
S𝑝(A)2/𝑝

𝜀2
poly log 𝑛 1 ≤ 𝑝 < 2

S𝑝(A)2−2/𝑝

𝜀2
poly log 𝑛 2 < 𝑝 < ∞

Sample Complexity Bounds for ℓ𝑝 Sensitivity Sampling

𝑝

𝑑𝑝/2+1

𝑑𝑝−1

𝑑2
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𝑑
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Figure 1. Dependence on 𝑑 for sensitivity sampling when
S𝑝(A) = 𝑑1∨(𝑝/2) (i.e., worst-case). The y axis indicates the
exponent on 𝑑 in the sample complexity. The red line indicates
prior bounds, blue indicates our results.

For 1 ≤ 𝑝 < 2, we show that our bound of Theorem 1.5 is in
fact tight, in the sense that there exist matrices such that, up
to logarithmic factors, S𝑝(A)2/𝑝 samples are necessary to
obtain ℓ𝑝 subspace embeddings. We show this by showing
that random matrices have a total sensitivity of at most
S𝑝(A) = �̃�(𝑑𝑝/2), which implies the claim since 𝑑 rows
are necessary to even maintain the rank.

Theorem 1.6. Let 1 ≤ 𝑝 < 2. Let 𝑛 = 𝑑𝑂(𝑝) be
large enough, and let A be a random 𝑛 × 𝑑 standard
Gaussian matrix. Then, with probability at least 2/3,
S𝑝(A) ≤ 𝑂(𝑑 log 𝑑)𝑝/2.

Furthermore, we show the first bounds showing that the total
ℓ𝑝 sensitivity cannot be any smaller than the construction in
Theorem 1.6, up to logarithmic factors:

Theorem 1.7. Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Then,

S𝑝(A) ≥

{︃
𝑑/2 𝑝 > 2

𝑑𝑝/2/2 𝑝 < 2

Comparison to ℓ𝑝 Lewis Weight Sampling. We now
compare our results to the well-known ℓ𝑝 Lewis weight sam-
pling technique, which yields nearly optimal bounds for
ℓ𝑝 subspace embeddings for matrices with worst-case total
ℓ𝑝 sensitivity (Cohen & Peng, 2015; Woodruff & Yasuda,
2023). More specifically, it is known that the total ℓ𝑝 sen-
sitivity is at most 𝑑 for 𝑝 < 2 and at most 𝑑𝑝/2 for 𝑝 > 2
for all matrices A ∈ R𝑛×𝑑, and ℓ𝑝 Lewis weight sampling
provides a way to reduce the number of rows to at most
roughly 𝑑1∨(𝑝/2) rows5 for all matrices A:

Theorem 1.8 (ℓ𝑝 Lewis weight sampling). Let A ∈ R𝑛×𝑑

and 𝑝 > 0. Let S be a random ℓ𝑝 sampling matrix with
sampling probabilities {𝑞𝑖}𝑛𝑖=1 proportional to the ℓ𝑝 Lewis
weights. Then, S samples 𝑂(𝜀−2𝑑1∨(𝑝/2)(log 𝑑)2 log(𝑑/𝜀))
rows and satisfies (2).

In particular, ℓ𝑝 Lewis weight sampling yields better sam-
pling complexity bounds than our Theorem 1.5 when 𝑝 < 2
or when the ℓ𝑝 total sensitivity S𝑝(A) is close to 𝑑𝑝/2. How-
ever, our results on ℓ𝑝 sensitivity sampling have a number
of advantages over the existing ℓ𝑝 Lewis weight sampling
results. First, Lewis weight sampling, to the best of our
knowledge, is not known to admit bounds better than 𝑑𝑝/2

for matrices with very small total sensitivity S𝑝(A) ≪ 𝑑𝑝/2

for 𝑝 > 2. Thus, for matrices with substantially smaller to-
tal sensitivity, ℓ𝑝 sensitivity sampling yields far improved
bounds. We illustrate a number of such applications below.
Second, sensitivity sampling generalizes to sampling prob-
lems beyond ℓ𝑝 subspace embeddings and has been applied
to subspace embeddings for general 𝑀 -estimators and Or-
licz norms (Clarkson & Woodruff, 2015a;b; Tukan et al.,
2020; Musco et al., 2022), logistic regression (Munteanu
et al., 2018) and other generalized linear models (Munteanu
et al., 2022), as well as general shape fitting problems in-
cluding clustering and subspace approximation (Huang &
Vishnoi, 2020) and projective clustering (Varadarajan &
Xiao, 2012). Thus, our techniques may be useful for im-
proving the analyses of a broad range of sampling problems.

Other Sampling Algorithms. In addition to ℓ𝑝 sensitivity
sampling, our techniques yield other new results on sam-
pling algorithms for ℓ𝑝 subspace embeddings.

Our next result is a new analysis of root leverage score sam-
pling, which is a popular method for efficiently computing
upper bounds to sensitivity scores for loss functions of at
most quadratic growth, including ℓ𝑝 losses for 1 ≤ 𝑝 < 2,
the Huber loss, and the logistic loss (Clarkson & Woodruff,
2015b; Munteanu et al., 2018; Ghadiri et al., 2021). In this
technique, the 𝑝𝑖 are set proportionally to the square root
of the ℓ2 leverage scores (Definition 1.3). While the sum of
the root leverage scores can be as large as

√
𝑛𝑑, this sam-

pling procedure can be recursively applied for 𝑂(log log 𝑛)

5We write 𝑎 ∨ 𝑏 to denote the maximum of 𝑎 and 𝑏.
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iterations to reduce the sample complexity to poly(𝑑).

As with sensitivity sampling, the only previously known
analyses of root leverage score sampling proceed by a naı̈ve
union bound, which can only reduce the number of samples
to 𝑑2, which is loose by a 𝑑 factor. Our techniques for
analyzing sensitivity sampling can be modified to show that
root leverage score sampling in fact leads to a nearly optimal
number of samples:
Theorem 1.9 (Informal Restatement of Theorem D.6 and
Theorem D.8). Let 1 ≤ 𝑝 < 2 and let A ∈ R𝑛×𝑑. Let
𝛼 > 0 and let 𝑝𝑖 = min{1, 𝜏 𝑖(A)𝑝/2/𝛼} for 𝑖 ∈ [𝑛]. Then,
there is an 𝛼 such that the random ℓ𝑝 sampling matrix S with
sampling probabilities {𝑝𝑖}𝑛𝑖=1 satisfies (2) and samples at
most 𝑚 rows with probability at least 1− 1/ poly(𝑛), with

𝑚 =
𝑛1−𝑝/2𝑑𝑝/2

𝜀2
poly log 𝑛.

Recursively applying this result gives a matrix S satisfying
(2) with at most 𝑚 rows, for

𝑚 =
𝑑

𝜀4/𝑝
poly log 𝑛.

Our analysis of root leverage score sampling provides a
promising direction towards resolving the problem of de-
signing nearly optimal sampling algorithms for preserving
subspaces under the Huber loss, which has been raised as an
important question on sampling algorithms in a number of
works (Adil & Sachdeva, 2020; Ghadiri et al., 2021; Musco
et al., 2022) for its applications in Huber regression and fast
algorithms for ℓ𝑝 regression. Here, the best known upper
bound is a sampling algorithm reducing the number of rows
to roughly6 𝑑4−2

√
2 ≈ 𝑑1.172, whereas 𝑑 is conjectured to

be possible (Musco et al., 2022). Root leverage scores are
known to upper bound the sensitivities for the Huber loss
(Clarkson & Woodruff, 2015a;b; Ghadiri et al., 2021), so
our Theorem 1.9 suggests that root leverage score sampling
may yield a sampling algorithm reducing the number of
samples to 𝑑 for the Huber loss as well.

We additionally show that by incorporating ℓ2 leverage
scores into ℓ𝑝 sensitivity sampling, we can obtain sampling
guarantees that further improve over the guarantee of Theo-
rem 1.5 for 𝑝 > 2. We note that our proof of this result uses
a recursive “flattening and sampling” scheme for this result,
rather than a direct sampling result as in our earlier results.
Theorem 1.10 (Informal Restatement of Theorem D.10).
Let 2 < 𝑝 < ∞ and let A ∈ R𝑛×𝑑. Then, there is an
efficient algorithm which computes a matrix S ∈ R𝑚×𝑛

satisfying (2), for

𝑚 =
𝑑2/𝑝S𝑝(A)1−2/𝑝

𝜀2
poly log 𝑛.

6A polylogarithmic dependence on 𝑛 is necessary and sufficient
here, but we omit this from our discussion for simplicity.

Although Theorem 1.10 does not specifically use sensitivity
sampling, to the best of our knowledge, it is the best known
sampling result for ℓ𝑝 subspace embeddings with small ℓ𝑝
total sensitivity S𝑝(A).

Applications. We now show several examples in struc-
tured regression problems in which our new sensitivity sam-
pling results give the best known sample complexity results
for ℓ𝑝 subspace embeddings for 𝑝 > 2. We start by pre-
senting a couple of lemmas which show that certain natural
classes of matrices have total ℓ𝑝 sensitivity ≪ 𝑑𝑝/2.

The first result is a lemma extracted from a result of (Meyer
et al., 2022) bounding the total ℓ𝑝 sensitivity for a sparse
perturbation of low rank matrices:

Lemma 1.11 (Sensitivity Bounds for Low Rank + Sparse
Matrices (Meyer et al., 2022)). Let A = K+S ∈ R𝑛×𝑑 for
a rank 𝑘 matrix K and an S with at most 𝑠 nonzero entries
per row. Let 1 ≤ 𝑝 < ∞. Then, S𝑝(A) ≤ 𝑑𝑠(𝑘 + 𝑠)𝑝.

We provide a self-contained proof in Appendix A.3.

In a second example, we show that “concatenated Vander-
monde” matrices, which were studied in, e.g., (Avron et al.,
2013), also have small total ℓ𝑝 sensitivity. These matrices
naturally arise as the result of applying a polynomial feature
map to a matrix.

Definition 1.12 (Vandermonde matrix). Given a vector a ∈
R𝑛, the degree 𝑞 Vandermonde matrix 𝑉 𝑞(a) ∈ R𝑛×(𝑞+1)

is defined entrywise as 𝑉 𝑞(a)𝑖,𝑗 = a𝑗𝑖 for 𝑗 = 0, 1, . . . , 𝑞.

Definition 1.13 (Polynomial feature map). Given a matrix
A ∈ R𝑛×𝑘 and an integer 𝑞, we define the matrix 𝑉 𝑞(A) ∈
R𝑛×𝑘(𝑞+1) to be the horizontal concatenation of the Vander-
monde matrices 𝑉 𝑞(Ae1), 𝑉

𝑞(Ae2), . . . , 𝑉
𝑞(Ae𝑘).

We show the following result, proven in Appendix A.3.

Lemma 1.14 (Sensitivity Bounds for Matrices Under Poly-
nomial Feature Maps). Let A ∈ R𝑛×𝑘 and let 𝑞 be an
integer. Let 1 ≤ 𝑝 < ∞. Then, S𝑝(𝑉 𝑞(A)) ≤ (𝑝𝑞 + 1)𝑘.

This generalizes a result of (Meyer et al., 2022), which
bounds the ℓ𝑝 sensitivities of a single Vandermonde matrix.

In the low-sensitivity matrices of Lemma 1.11 and
Lemma 1.14, it is in fact possible to apply Lewis weight
sampling to obtain sampling bounds that match these sen-
sitivity bounds, by using the tensoring trick (Meyer et al.,
2022). However, when a tiny amount of noise is added
to these matrices, then algebraic tricks such as tensoring
break down, and the sensitivity bounds derived from Lewis
weights increase substantially to 𝑑𝑝/2 for 𝑝 > 2. On the
other hand, sensitivity sampling itself is robust with respect
to the addition of noise, as it depends only on norms rather
than brittle quantities such as rank. Indeed, we have the
following fact, which we prove in Appendix A.4:
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Lemma 1.15. Let A ∈ R𝑛×𝑑 be a rank 𝑑 matrix with mini-
mum singular value 𝜎min. Let E ∈ R𝑛×𝑑 be an arbitrary
perturbation matrix with

‖E‖2 ≤ 𝜎min

2𝑛1+1/𝑝
.

Then, S𝑝(A+E) ≤ 2𝑝(S𝑝(A) + 1).

Thus, for small perturbations of structured matrices with
small ℓ𝑝 sensitivity as specified by Lemma 1.15, Theo-
rem 1.5 and Theorem 1.10 give the tightest known bounds
on the sample complexity for ℓ𝑝 subspace embeddings. Such
perturbations may arise due to roundoff error or finite pre-
cision on a computer, and no prior bounds beating Lewis
weight sampling or the naı̈ve S𝑑 bound for sensitivity sam-
pling were known for the applications above.

1.2. Other Related Work

The problem of designing sampling algorithms for ℓ𝑝 sub-
space embeddings has a long and rich history, dating back to
works in the functional analysis literature and culminating
in the Lewis weight sampling result (Lewis, 1978; Schecht-
man, 1987; Bourgain et al., 1989; Talagrand, 1990; Ledoux
& Talagrand, 1991; Talagrand, 1995; Schechtman & Zvav-
itch, 2001). More recently, the theoretical computer science
community has studied this problem for its applications to
ℓ𝑝 linear regression and other empirical risk minimization
problems. The early works of (Clarkson, 2005; Dasgupta
et al., 2009) obtained sampling algorithms for ℓ𝑝 regression
based on sensitivity score upper bounds given by various
constructions of ℓ𝑝 well-conditioned bases for A. The the-
ory of Lewis weight sampling was brought to the theoretical
computer science literature by (Cohen & Peng, 2015), and
has been improved both in the computation of the weights
(Lee, 2016; Fazel et al., 2022; Jambulapati et al., 2022) and
sampling guarantees (Woodruff & Yasuda, 2022; 2023).

2. Sampling Error Bounds
We now give a more detailed discussion of our techniques
and results. While our discussion in this section will present
most of the major ideas necessary to prove our new results,
all of the full proofs will be deferred to the appendix due to
space considerations.

2.1. Prior Approaches

We start by describing the standard proof of the �̃�(𝜀−2S𝑑)
sample complexity bound for sensitivity sampling (Schecht-
man, 1987). Using Bernstein bounds, it can be shown that
sampling 𝑂(𝜀−2S log 1

𝛿 ) rows preserves the ℓ𝑝 norm of
a fixed vector Ax up to a (1 ± 𝜀) factor with probability
at least 1 − 𝛿. One can then consider an 𝜀-net 𝑁 , which
is a set of size roughly 1/𝜀𝑑 such that any ℓ𝑝 unit vector

Ax is 𝜀-close to some Ax′ ∈ 𝑁 . By a union bound, the
norm preservation guarantee holds simultaneously for every
Ax′ ∈ 𝑁 with constant probability, if we set 𝛿 = 𝜀𝑑. Now
for an arbitrary ℓ𝑝 unit vector Ax, the norm preservation
guarantee holds for an 𝜀-close point Ax′ ∈ 𝑁 , which im-
plies the norm preservation guarantee for Ax itself by a
standard argument. Finally, scale invariance ensures that the
same conclusion holds for all vectors Ax, rather than just
unit vectors.

To improve over this argument, the ℓ𝑝 Lewis weight sam-
pling technique was developed in a line of work from the
functional analysis literature (Lewis, 1978; Bourgain et al.,
1989; Talagrand, 1990; Ledoux & Talagrand, 1991; Ta-
lagrand, 1995), which incorporates chaining arguments.
Chaining arguments are a way of improving 𝜀-net argu-
ments by using a sequence of 𝜀-nets at different “scales”,
rather than using a single scale of 𝜀, and using tighter bounds
for net constructions (i.e., smaller cardinality nets) at larger
scales (see, e.g., (Nelson, 2016) for a survey of chaining
applications in computer science).

We now delve into a discussion of the overall strategy to-
wards bounding the sampling error of our ℓ𝑝 sampling re-
sults, which is a random variable Λ depending on S given
by

Λ := sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒
. (3)

Note that if Λ ≤ 𝜀, then ‖SAx‖𝑝𝑝 = (1 ± 𝜀)‖Ax‖𝑝𝑝 for
every x ∈ R𝑑. In our discussions in this section, we will
focus on bounding Λ in expectation, although our full proofs
in the appendix will bound higher moments of Λ to obtain
high probability bounds.

2.2. Generalized Chaining Bounds for ℓ𝑝 Subspace
Embeddings

Our main technical lemma towards bounding (3) is a gen-
eralization of the chaining argument framework for Lewis
weight sampling, which bounds the sampling error of ℓ𝑝
sampling algorithms by the leverage scores and ℓ𝑝 sensitiv-
ities of the sampled matrix SA, rather than by the Lewis
weights of SA.

First, we introduce our sampling bounds obtained by gen-
eralizing the chaining arguments of (Bourgain et al., 1989;
Ledoux & Talagrand, 1991). In this result, we obtain the fol-
lowing bound on a certain Rademacher process, which can
be interpreted as the sampling error of a uniform sampling
process, as we describe in Section 2.4.

Lemma 2.1 (Rademacher Process Bound, Simplified). Let
A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let 𝜏 ≥ 𝜏 𝑖(A) and 𝜎 ≥
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𝜎𝑝
𝑖 (A) for every 𝑖 ∈ [𝑛]. Let

𝐸 := E
𝜀∼{±1}𝑛

sup
‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖|[Ax](𝑖)|𝑝
⃒⃒⃒⃒
⃒.

Then,

𝐸 ≤

{︃
𝑂(𝜏1/2)(log 𝑛)3/2 𝑝 < 2

𝑂(𝜏1/2)(𝜎𝑛)1/2−1/𝑝(log 𝑛)3/2 𝑝 > 2

This result follows from a Gaussianization argument
(Lemma D.1), followed by an application of Dudley’s en-
tropy integral theorem (Theorem C.2), and then bounding
the entropy integral in Lemma C.6 and Lemma C.7.

As we discuss in Section 2.4, Lemma 2.1 will be a key
ingredient in bounding the sampling error in our sensitivity
sampling analysis.

2.3. Leverage Score and Sensitivity Bounds

In our final argument, Lemma 2.1 will be applied with
the matrix A set to be (a modified version of) the sampled
matrix SA. Thus, we require a bound on the leverage scores
and sensitivities 𝜏 and 𝜎 of SA. In fact, 𝜎 is naturally
bounded by the ℓ𝑝 sensitivity sampling algorithm: indeed, if
we a priori assume that ‖SAx‖𝑝𝑝 ≥ (1/2)‖Ax‖𝑝𝑝 for every
x ∈ R𝑑, then 𝜎𝑝

𝑖 (SA) is at most

sup
SAx̸=0

|[SAx](𝑖)|𝑝

‖SAx‖𝑝𝑝
≤ 2 sup

Ax ̸=0

1

𝑝𝑖

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2𝜎𝑝

𝑖 (A)

𝑝𝑖
(4)

which is at most 2𝛼 if 𝑝𝑖 ≥ 𝜎𝑝
𝑖 (A)/𝛼. While this is only

an informal argument, this intuition can be formalized, as
we discuss later in this section.

Next, we require a bound on the leverage scores 𝜏 of SA,
which is more challenging, as sensitivity sampling does
not directly bound this quantity. To address this problem,
we show how to bound the leverage scores of an arbitrary
matrix by the ℓ𝑝 sensitivities of the matrix. In particular, we
show that for 𝑞 ≥ 𝑝, the largest ℓ𝑞 sensitivity bounds the
largest ℓ𝑝 sensitivity.

Lemma 2.2 (Monotonicity of Max ℓ𝑝 Sensitivity). Let 𝑞 ≥
𝑝 > 0 and y ∈ R𝑛. Then,

‖y‖𝑝∞
‖y‖𝑝𝑝

≤
‖y‖𝑞∞
‖y‖𝑞𝑞

.

We also use an “approximate converse” of the above result:

Lemma 2.3 (Reverse Monotonicity of Max ℓ𝑝 Sensitivity).
Let 𝑞 ≥ 𝑝 > 0 and y ∈ R𝑛. Then,

‖y‖𝑞∞
‖y‖𝑞𝑞

≤

(︃
‖y‖𝑝∞
‖y‖𝑝𝑝

)︃𝑞/𝑝

𝑛𝑞/𝑝−1.

While these lemmas only apply to the max ℓ𝑝 sensitivity and
are quite loose when the max ℓ𝑝 sensitivity can be arbitrary,
we use the crucial fact that the ℓ𝑝 sensitivities of SA are
essentially “flat”, that is, the maximum ℓ𝑝 sensitivity will be
within a small factor of the average ℓ𝑝 sensitivity S𝑝(A)/𝑛.
Thus, Lemma 2.2 and Lemma 2.3 allow us to bound the
leverage scores by the ℓ𝑝 sensitivities for 𝑝 > 2 and 𝑝 < 2,
respectively. This idea also allows us to prove Theorem 1.7.

2.4. Gaussianization Reduction for Sampling
Algorithms

In the works of (Bourgain et al., 1989; Ledoux & Talagrand,
1991), a version of Lemma 2.1 tailored to ℓ𝑝 Lewis weight
sampling is used as a part of a recursive sampling algorithm,
where the Rademacher process represents the sampling error
of a process that samples each row 𝑖 ∈ [𝑛] with probability
1/2 and scales the result by 2. Indeed, if S𝑖,𝑖 takes the value
0 or 21/𝑝 with probability 1/2 each and ‖Ax‖𝑝𝑝 = 1, then
(S𝑝

𝑖,𝑖 − 1) is a Rademacher variable and

‖SAx‖𝑝𝑝 − 1 =

𝑛∑︁
𝑖=1

(S𝑝
𝑖,𝑖 − 1)|[Ax](𝑖)|𝑝,

and thus Lemma 2.1 bounds (3). While this only reduces the
number of rows by a factor of 2, this process can be applied
recursively for 𝑂(log 𝑛) rounds to reduce the number of
rows to poly(𝑑).

However, we instead primarily use Lemma 2.1 in a reduction
based on (Cohen & Peng, 2015) for an algorithm with one
round of sampling. In this reduction, we bound the sampling
error (3) by introducing an independent copy S′ of S and
estimate

Λ ≤ E sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − ‖S′Ax‖𝑝𝑝

⃒⃒⃒
Because S and S′ are identically distributed, multiplying
each coordinate 𝑖 ∈ [𝑛] by a Rademacher variable 𝜀𝑖 ∼
{±1} does not change the distribution. Then by applying
the triangle inequality, it follows that

Λ ≤ 2 E
𝜀∼{±1}𝑛

sup
‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒, (5)

which closely resembles Lemma 2.1.

At this point, for each fixing of S, we wish to apply
Lemma 2.1 with A replaced by SA, with sensitivities
bounded using the idea of (4). However, we cannot a priori
assume that ‖SAx‖𝑝𝑝 ≥ (1/2)‖Ax‖𝑝𝑝. To fix this, the idea
of (Cohen & Peng, 2015) is to introduce an auxiliary sub-
space embedding S′ such that S′A also has ℓ𝑝 sensitivities
bounded by 𝛼, and does satisfy ‖S′Ax‖𝑝𝑝 = Θ(1)‖Ax‖𝑝𝑝
for every x ∈ R𝑑. Then, we can apply the result of
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Lemma 2.1 to the concatenated matrix

A′ :=

(︃
SA

S′A

)︃
.

It can then be shown that the quantity 𝐸 bounded in
Lemma 2.1 indeed bounds the quantity in (5), and further-
more, we can fix the argument of (4) by bounding

sup
A′x̸=0

|[SAx](𝑖)|𝑝

‖A′x‖𝑝𝑝
≤ sup

Ax ̸=0

1

𝑝𝑖

|[Ax](𝑖)|𝑝

‖S′Ax‖𝑝𝑝
≤ 𝑂(𝜎𝑝

𝑖 (A))

𝑝𝑖
.

Importantly, we only need to use the existence of S′ for the
analysis and thus S′ can be constructed in any way, rather
than just by sensitivity sampling.

2.5. Construction of Auxiliary ℓ𝑝 Subspace Embeddings

We now delve into further detail about the other key piece
of our analysis, which is the construction of auxiliary ℓ𝑝
subspace embeddings S′ which are compatible with the
reduction argument in Section 2.4.

2.5.1. SENSITIVITY SAMPLING, 𝑝 < 2

For our sensitivity sampling result for 𝑝 < 2 in Theorem 1.5,
we aim to sample roughly 𝑚 = 𝜀−2S𝑝(A)2/𝑝 rows. We
first briefly sketch the intuition behind this bound. If we
sample each row 𝑖 ∈ [𝑛] with probability roughly 𝜎𝑝

𝑖 (A)/𝛼
for an oversampling parameter 𝛼 > 0, then we expect the
ℓ𝑝 sensitivities of SA to be bounded by 𝛼 according to
the informal reasoning of (4). We then wish to bound the
sampling error using Lemma 2.1, which, combined with
the bound on the leverage scores using the sensitivities in
Lemma 2.3, gives a bound of

𝜏 ≤ 𝛼2/𝑝𝑚2/𝑝−1 = 𝛼S𝑝(A))2/𝑝−1

by using that 𝑚 is S𝑝(A)/𝛼 in expectation. Since we want
this to be at most 𝜀2, we set 𝛼 = 𝜀2/S𝑝(A)2/𝑝−1, which
gives a bound of 𝑚 = 𝜀−2S𝑝(A)2/𝑝 as claimed.

Now coming back to the formal argument using the aux-
iliary ℓ𝑝 subspace embedding S′, we wish to construct a
subspace embedding S′ that preserves ℓ𝑝 norms of Ax up
to a constant factor, but also has ℓ𝑝 sensitivities at most 𝛼,
since this is the bound that SA will satisfy. To construct
this S′, we proceed by first using Lewis weight sampling
(Theorem 1.8) to construct a Θ(1)-approximate ℓ𝑝 subspace
sampling with �̃�(𝑑) rows. Importantly, we show that this
sampling procedure can only increase the total ℓ𝑝 sensitivity
by a constant factor (see Lemma A.1). We then apply a
flattening procedure (see Lemma A.4), which yields an ℓ𝑝
isometry with at most S𝑝(A)/𝛼 rows such that the sensitiv-
ity of each row is bounded by 𝛼. Furthermore, because the
number of rows S𝑝(A)/𝛼 of this auxiliary subspace embed-
ding S′ is at most the bound 𝑚 that we seek, we can apply

the same reasoning as before using Lemma 2.3 to bound the
leverage scores of S′A to recover the same bound as that
for SA. Thus, we obtain our desired construction of the
auxiliary ℓ𝑝 subspace embedding, allowing the reduction
argument as described in Section 2.4 to go through.

2.5.2. SENSITIVITY SAMPLING, 𝑝 > 2

For our result on sensitivity sampling when 𝑝 > 2, the in-
tuition and reasoning roughly follows the case of 𝑝 < 2.
However, we must be more careful with the construction
of the auxiliary ℓ𝑝 subspace embedding, since we can-
not use Lewis weight sampling to construct it; this is be-
cause the sample complexity of �̃�(𝑑𝑝/2) for Lewis weight
sampling is larger than our sample complexity bound of
𝑚 = 𝜀−2S𝑝(A)2−2/𝑝 that we aim for. Thus, in order
to obtain our auxiliary ℓ𝑝 subspace embedding, we must
essentially achieve the same results that we claim in The-
orem 1.5, using an alternate construction that does not
directly use one-shot sensitivity sampling. For this, we
instead revisit the recursive sampling process mentioned
earlier in Section 2.4, which originates from the functional
analysis literature. Here, we first flatten our input matrix us-
ing Lemma A.4 to a matrix with at most (4/3)𝑛 rows and ℓ𝑝
sensitivities at most 𝑂(S𝑝(A)/𝑛), and then use Lemma 2.1
directly as the sampling error bound for a uniform sampling
algorithm which samples each row with probability 1/2.
Note then that overall, we retain (4/3)(1/2)𝑛 = (2/3)𝑛
rows altogether in expectation after this result, and further-
more, we have a sampling error of at most 𝜀. Then, because
we sample only a constant fraction of rows after each ap-
plication of the procedure, it can be shown that recursively
applying this result for 𝑂(log 𝑛) iterations accumulates a
total sampling error of 𝑂(𝜀 log 𝑛), while reducing the num-
ber of rows down to 𝜀−2S𝑝(A)2−2/𝑝, which matches the
number of rows that we claim for sensitivity sampling in
Theorem 1.5. By rescaling 𝜀 by an 𝑂(log 𝑛) factor, we can
obtain a total error of 𝜀 while only losing polylogarithmic
factors in 𝑛. This is carried out in Lemma D.3. Thus, we
may again carry out the reduction argument as described in
Section 2.4.

2.5.3. ROOT LEVERAGE SCORE SAMPLING, 𝑝 < 2

For our root leverage score sampling theorem Theorem 1.9,
we take a conceptually different approach for obtaining the
leverage score bound required in Lemma 2.1. For sensitiv-
ity sampling, our idea was to bound the leverage scores by
relating them to the ℓ𝑝 sensitivities, which were controlled
by the sensitivity sampling process. For root leverage score
sampling, however, the idea is that by sampling by the root
leverage scores, we directly control the leverage scores of
the sampled matrix SA, rather than the sensitivity scores. In-
deed, one can show that if the sampling probabilities 𝑝𝑖 sat-
isfy 𝑝𝑖 ≥ 𝜏 𝑖(A)𝑝/2/𝛼, and if ‖SAx‖22 ≥ (1/2)‖Ax‖22 for
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every x ∈ R𝑑, then the leverage scores of SA are bounded
by

sup
SAx̸=0

|[SAx](𝑖)|2

‖SAx‖22
≤ 2 sup

Ax ̸=0

1

𝑝
2/𝑝
𝑖

|[Ax](𝑖)|2

‖Ax‖22
≤ 2

𝜏 𝑖(A)

𝑝
2/𝑝
𝑖

(6)
which is at most 2𝛼2/𝑝. However, it is not clear that
‖SAx‖22 ≥ (1/2)‖Ax‖22 should hold at all, since S is only
a subspace embedding for ℓ𝑝 and not ℓ2. For this intuition
to go through, we require an auxiliary ℓ𝑝 subspace embed-
ding that preserves both ℓ𝑝 norms and ℓ2 norms, with flat ℓ2
leverage scores.

To make this argument work, we crucially use the fact that
the bound in Lemma 2.1 does not depend polynomially on
the number of rows of the input matrix. Thus, we can afford
to construct S′A to have many rows, as long as its leverage
scores are controlled. Thus, in Lemma D.5, we take the
approach of constructing an ℓ𝑝 isometry of A by splitting
every row a𝑖 into 𝑘 copies of a𝑖/𝑘1/𝑝, where we will set
𝑘 = 1/𝛼. Note then that after splitting, every row contains
at most a 1/𝑘 fraction of the ℓ2 mass, so the ℓ2 leverage
scores are all at most 𝛼 (in fact, all ℓ𝑞 sensitivities for any 𝑞
are at most 𝛼). Furthermore, crucially, the ℓ2 norm will be
preserved up to a factor of 𝛼1/𝑝−1/𝑞. Then altogether, we
can fix (6) and instead bound

sup
SAx̸=0

|[SAx](𝑖)|2

‖A′x‖22
≤ 2 sup

Ax ̸=0

1

𝑝
2/𝑝
𝑖

|[Ax](𝑖)|2

𝛼2/𝑝−1‖Ax‖22

which is at most 2𝛼, where A′ is the concatenation of SA
and S′A. These ideas lead to our Theorem 1.9.

2.5.4. LEVERAGE SCORE + SENSITIVITY SAMPLING,
𝑝 > 2

Finally, for our Theorem 1.10, we take essentially the same
approach as the recursive form of our sensitivity sampling
result for 𝑝 > 2 in Theorem 1.5, except that we improve
our flattening approach by flattening leverage scores as well,
which is formalized in Lemma D.9. Note that when we only
flatten ℓ𝑝 sensitivities using Lemma A.4, then the resulting
bound on the leverage scores is just roughly the average
ℓ𝑝 sensitivity, which is S𝑝(A)/𝑛. We show that by also
flattening the leverage scores, we can improve this bound to(︂

𝑑

𝑛

)︂2/𝑝(︂
S𝑝(A)

𝑛

)︂1−2/𝑝

.

Because S𝑝(A) is always at least 𝑑/2 for 𝑝 > 2 due to our
Theorem 1.7, this is always better than the previous bound of
S𝑝(A)/𝑛, which ultimately leads to our improved sampling
algorithm Theorem 1.10.

We note that we do not obtain a corresponding one-shot sam-
pling algorithm, where the main difficulty is in constructing

an auxiliary ℓ𝑝 subspace embedding that has few rows, flat
leverage scores, does not increase ℓ𝑝 norms, and does not
decrease ℓ2 norms. Nonetheless, the recursive sampling
procedure still leads to an efficient algorithm.

3. Conclusion and Future Directions
Our work introduces a new analysis for sensitivity sam-
pling for ℓ𝑝 subspace embeddings, which breaks a pre-
vious general sampling barrier of �̃�(𝜀−2S𝑝(A)𝑑) sam-
ples via a simple union bound argument, to obtain an im-
proved bound of �̃�(𝜀−2S𝑝(A)2/𝑝) samples for 𝑝 < 2 and
�̃�(𝜀−2S𝑝(A)2−2/𝑝) samples for 𝑝 > 2. We also present
other novel results for sampling algorithms for ℓ𝑝 subspace
embeddings based on our techniques, showing that the
popular root leverage score sampling algorithm yields a
bound of �̃�(𝜀−4/𝑝𝑑) for 𝑝 < 2, as well as an improved
�̃�(𝜀−2𝑑2/𝑝S𝑝(A)2−4/𝑝) bound for 𝑝 > 2 using a recursive
sampling algorithm that combines ℓ𝑝 sensitivity flattening
with leverage score flattening. Our improved analyses of
sensitivity sampling as well as our novel leverage score
and sensitivity flattening algorithm give the best known
sampling guarantees for a number of structured regression
problems with small arbitrary noise.

We conclude with several open questions. Perhaps the most
natural is to completely resolve Question 1.4 by characteriz-
ing the sample complexity of sensitivity sampling. We con-
jecture that a sample complexity of �̃�(𝜀−2(S𝑝(A) + 𝑑)) is
possible for ℓ𝑝 subspace embeddings, and perhaps for more
broad settings where sensitivity sampling applies as well.
Furthermore, for 𝑝 > 2, we believe it is of interest to obtain
this bound even without the use of sensitivity sampling via
other methods. Finally, we raise the question of obtaining
sampling algorithms for subspace embeddings for the Huber
loss with nearly optimal sample complexity, for which our
results may be useful.
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A. Properties of ℓ𝑝 Sensitivities
A.1. Monotonicity of Max ℓ𝑝 Sensitivity

We first provide proofs of Lemma 2.2 and Lemma 2.3. The results are similar to results used in (Braverman et al., 2020;
Musco et al., 2022). In particular, it generalizes Lemma 4.6 of (Braverman et al., 2020) and is a simplification of a specific
instance of Lemma C.3 of (Musco et al., 2022).

Proof of Lemma 2.2. We have that

‖y‖𝑞𝑞 =

𝑛∑︁
𝑖=1

|y(𝑖)|𝑞 ≤ ‖y‖𝑞−𝑝
∞

𝑛∑︁
𝑖=1

|y(𝑖)|𝑝 = ‖y‖𝑞−𝑝
∞ ‖y‖𝑝𝑝,

so
‖y‖𝑝∞
‖y‖𝑝𝑝

≤ ‖y‖𝑝∞
‖y‖𝑞𝑞/‖y‖

𝑞−𝑝
∞

=
‖y‖𝑞∞
‖y‖𝑞𝑞

.

Proof of Lemma 2.3. Since ‖y‖𝑝 ≤ ‖y‖𝑞𝑛1/𝑝−1/𝑞 , we have that

‖y‖𝑞∞
‖y‖𝑞𝑞

≤ |y(𝑖)|𝑞

‖y‖𝑞𝑝 · 𝑛1−𝑞/𝑝
≤ ‖y‖𝑞∞

‖y‖𝑞𝑝 · 𝑛1−𝑞/𝑝
=

(︃
‖y‖𝑝∞
‖y‖𝑝𝑝

)︃𝑞/𝑝

𝑛𝑞/𝑝−1.

A.2. Total Sensitivity

We now derive bounds on the total ℓ𝑝 sensitivity.

A.2.1. SAMPLING PRESERVES TOTAL SENSITIVITY

Lemma A.1 (Sampling Preserves Total Sensitivity). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let S be a random ℓ𝑝 sampling
matrix such that with probability at least 3/4,

‖SAx‖𝑝 = (1± 1/2)‖Ax‖𝑝

simultaneously for every x ∈ R𝑑. Then, with probability at least 1/2,

Pr{S𝑝(SA) ≤ 8S𝑝(A)} ≥ 1

2
.

Proof. We have that

S𝑝(SA) =

𝑛∑︁
𝑖=1

sup
SAx̸=0

|[SAx](𝑖)|𝑝

‖SAx‖𝑝𝑝
=

𝑛∑︁
𝑖=1

S𝑝
𝑖,𝑖 sup

SAx̸=0

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

≤
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) sup

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

.

We are guaranteed that

Pr

{︃
sup

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

≤ 2

}︃
≥ 3

4
.

On the other hand, we have that

E

[︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A)

]︃
=

𝑛∑︁
𝑖=1

E[S𝑝
𝑖,𝑖]𝜎

𝑝
𝑖 (A) = S𝑝(A)
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so by Markov’s inequality,

Pr

{︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) ≤ 4S𝑝(A)

}︃
≥ 3

4
.

By a union bound,

Pr{S𝑝(SA) ≤ 8S𝑝(A)} ≥ 1

2
.

We also prove a high probability and high accuracy version of Lemma A.1.

Lemma A.2 (Sensitivity Sampling Preserves Total Sensitivity: High Probability and Accuracy). Let A ∈ R𝑛×𝑑 and
1 ≤ 𝑝 < ∞. Let 0 < 𝜀, 𝛿 < 1. Let S be a random ℓ𝑝 sampling matrix such that with probability at least 1− 𝛿,

‖SAx‖𝑝 = (1± 𝜀)‖Ax‖𝑝

simultaneously for every x ∈ R𝑑. Furthermore, suppose that

𝜎𝑖

𝑞𝑖
≤ 𝑀 :=

𝜀2S𝑝(A)

3 log 2
𝛿

for every 𝑖 ∈ [𝑛]. Then, with probability at least 1− 2𝛿,

Pr{S𝑝(SA) = (1±𝑂(𝜀))S𝑝(A)} ≥ 1− 2𝛿.

Proof. The proof follows Lemma A.1. Just as in Lemma A.1, we have that

S𝑝(SA) ≤
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) sup

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

.

Similarly,

S𝑝(SA) ≥
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) inf

SAx̸=0

‖Ax‖𝑝𝑝
‖SAx‖𝑝𝑝

.

Furthermore, since 𝜎𝑖/𝑞𝑖 ≤ 𝑀 , S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A)/𝑀 is a random variable bounded by 1, with

E

[︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A)

𝑀

]︃
=

S𝑝(A)

𝑀
≥ 3

𝜀2
log

2

𝛿
.

Thus by Chernoff bounds, we have that

Pr

{︃
𝑛∑︁

𝑖=1

S𝑝
𝑖,𝑖𝜎

𝑝
𝑖 (A) = (1± 𝜀)S𝑝(A)

}︃
≥ 1− 𝛿.

We conclude by a union bound as in Lemma A.1.

A.2.2. TOTAL SENSITIVITY LOWER BOUNDS

We start with the classical result that the total ℓ2 sensitivity is exactly 𝑑:

Lemma A.3. Let A ∈ R𝑛×𝑑 and let U ∈ R𝑛×𝑑 be an orthnormal basis for the column space of A. Then,

𝜏 𝑖(A) =
⃦⃦
e⊤𝑖 U

⃦⃦2
2

and
𝑛∑︁

𝑖=1

𝜏 𝑖(A) = ‖U‖2𝐹 = 𝑑.
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Proof. We have that

𝜏 𝑖(A) = sup
x∈R𝑑,Ax ̸=0

|[Ax](𝑖)|2

‖Ax‖22
= sup

x∈R𝑑,Ux ̸=0

|[Ux](𝑖)|2

‖Ux‖22
= sup

x∈R𝑑,x̸=0

|[Ux](𝑖)|2

‖x‖22
=
⃦⃦
e⊤𝑖 U

⃦⃦2
2
.

We now use Lemma A.3 together with Lemma 2.2 and Lemma 2.3 to derive lower bounds on S𝑝(A).

By using a simple argument based on “splitting rows” (see, e.g., (Ledoux & Talagrand, 1991; Cohen & Peng, 2015; Chen &
Derezinski, 2021; Musco et al., 2022)), it is possible to assume without loss of generality that the maximum ℓ𝑝 sensitivity is
related to the average ℓ𝑝 sensitivity, up to a factor of 2:

Lemma A.4 (ℓ𝑝 Sensitivity Flattening). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let 𝐶 ≥ 1. Then, there exists a A′ ∈ R𝑚×𝑑 for
𝑚 = (1+1/𝐶)𝑛 such that ‖Ax‖𝑝 = ‖A′x‖𝑝 for every x ∈ R𝑑, S𝑝(A) = S𝑝(A′), and 𝜎𝑝

𝑖′(A
′) ≤ 𝐶S𝑝(A)/𝑛 for every

𝑖′ ∈ [𝑚].

Proof of Lemma A.4. Suppose that for any row a𝑖 ∈ R𝑑 of A for 𝑖 ∈ [𝑛] with 𝜎𝑝
𝑖 (A) ≥ 𝐶S𝑝(A)/𝑛, we replace the row

with 𝑘 := ⌈𝜎𝑝
𝑖 (A)/(𝐶S𝑝(A)/𝑛)⌉ copies of a𝑖/𝑘1/𝑝 to form a new matrix A′. Then, we add at most

∑︁
𝑖:𝜎𝑝

𝑖 (A)≥S𝑝(A)/𝑛

⌈︂
𝜎𝑝

𝑖 (A)

𝐶S𝑝(A)/𝑛

⌉︂
− 1 ≤

∑︁
𝑖:𝜎𝑝

𝑖 (A)≥S𝑝(A)/𝑛

𝜎𝑝
𝑖 (A)

𝐶S𝑝(A)/𝑛
=

S𝑝(A)

𝐶S𝑝(A)/𝑛
=

𝑛

𝐶

rows. Furthermore, we clearly have that ‖Ax‖𝑝 = ‖A′x‖𝑝 for every x ∈ R𝑑, and also for any row 𝑖′ ∈ [𝑚] that comes
from row 𝑖 ∈ [𝑛] in the original matrix,

|[A′x](𝑖′)|𝑝

‖A′x‖𝑝𝑝
≤ 𝐶S𝑝(A)/𝑛

𝜎𝑝
𝑖 (A)

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 𝐶S𝑝(A)

𝑛
.

Finally, it is also clear that the sum of the sensitivities is also preserved, since the sum of the sensitivities of the 𝑘 copies of
each row 𝑖 ∈ [𝑛] in the original matrix is 𝜎𝑝

𝑖 (A).

We can now prove Theorem 1.7:

Proof of Theorem 1.7. Let A′ ∈ R2𝑛×𝑑 be the matrix given by Lemma A.4 applied with 𝐶 = 1. Then for 𝑝 > 2, we have
by Lemma 2.2 that

𝑑

𝑛
≤ 𝑛

max
𝑖=1

𝜎2
𝑖 (A

′) ≤ 𝑛
max
𝑖=1

𝜎𝑝
𝑖 (A

′) ≤ 2S𝑝(A)

𝑛

and for 𝑝 < 2, we have by Lemma 2.3 that

𝑑

𝑛
≤ 𝑛

max
𝑖=1

𝜎2
𝑖 (A

′) ≤
(︁

𝑛
max
𝑖=1

𝜎𝑝
𝑖 (A

′)
)︁2/𝑝

𝑛2/𝑝−1 ≤
(︂
2S𝑝(A)

𝑛

)︂2/𝑝

𝑛2/𝑝−1 =
22/𝑝S𝑝(A)2/𝑝

𝑛

which yield the claimed results.

A.2.3. RANDOM MATRICES HAVE SMALL TOTAL SENSITIVITY

We show that the above lower bounds can be tight, up to logarithmic factors. We will use Dvoretzky’s theorem, which can
be found in, e.g., Fact 15 in (Sohler & Woodruff, 2018):

Theorem A.5 (Dvoretzky’s Theorem). Let 1 ≤ 𝑝 < 2. Let 𝑛 = (𝑑/𝜀)𝑂(𝑝) be sufficiently large, and let A be a suitably
scaled random 𝑛× 𝑑 Gaussian matrix. Then, with probability at least 99/100, we have for every x ∈ R𝑑 that

‖Ax‖𝑝 = (1± 𝜀)‖x‖2.

This gives a proof of Theorem 1.6:
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Proof of Theorem 1.6. By applying Theorem A.5 with 𝜀 = 1/2, we have that ‖Ax‖𝑝𝑝 = Θ(𝑛)‖x‖𝑝2 with probability at least
99/100. Note also that

𝑛
max
𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦
2
≤ 𝑂(

√︀
𝑑 log 𝑛) = 𝑂(

√︀
𝑑 log 𝑑)

which also happens with probability at least 99/100. By a union bound, both events happen with probability at least 98/100.

Now for any x ∈ R𝑑 with unit ℓ2 norm, we have that

|[Ax](𝑖)|𝑝 ≤
⃦⃦
e⊤𝑖 A

⃦⃦𝑝
2
· ‖x‖𝑝2 =

⃦⃦
e⊤𝑖 A

⃦⃦𝑝
2
≤ 𝑂(𝑑 log 𝑑)𝑝/2.

Thus,

S𝑝(A) ≤ 𝑛 · 𝑛
max
𝑖=1

sup
‖x‖2=1

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 𝑛 · 𝑛

max
𝑖=1

sup
‖x‖2=1

𝑂(𝑑 log 𝑑)𝑝/2

Θ(𝑛)
= 𝑂(𝑑 log 𝑑)𝑝/2.

A.3. Structured Matrices with Small Sensitivity, 𝑝 > 2

Proof of Lemma 1.11. Let 𝑟 be an integer such that 2𝑟 ≤ 𝑝 < 2𝑟+1. Then, for each 𝑖 ∈ [𝑛], we may write

a𝑖 = k𝑖 + s𝑖 =

𝑘∑︁
𝑗=1

𝛼𝑖,𝑗v𝑗 +

𝑠∑︁
𝑗=1

𝛽𝑖,𝑗e𝑖𝑗

where v𝑗 ∈ R𝑑 for 𝑗 ∈ [𝑘]. Then, the tensor product a⊗2𝑟

𝑖 of a𝑖 with itself 2𝑟 times can be written as a linear combination
of tensor products y1 ⊗ · · · ⊗ y2𝑟 , where each y𝑞 for 𝑞 ∈ [2𝑟] is one of {v1,v2, . . . ,v𝑘, e𝑖1 , e𝑖2 , . . . , e𝑖𝑠}. Thus, a⊗𝑟

𝑖 lies
in the span of at most (𝑘 + 𝑠)2

𝑟

vectors, for a fixed choice of e𝑖1 , e𝑖2 , . . . , e𝑖𝑠 . Since there are at most 𝑑𝑠 possible choices
of the sparsity pattern, every a⊗2𝑟

𝑖 for 𝑖 ∈ [𝑛] lies in the span of at most 𝑑′ := 𝑑𝑠(𝑘 + 𝑠)2
𝑟

vectors. That is, if A⊗2𝑟 is the
Khatri-Rao 2𝑟th power of A, then A⊗2𝑟 is a rank 𝑑′ matrix. Then, we have that

|[Ax](𝑖)|𝑝 = (|[Ax](𝑖)|2
𝑟

)𝑝/2
𝑟

= (⟨a𝑖,x⟩2
𝑟

)𝑝/2
𝑟

=
⃒⃒⃒⟨
a⊗2𝑟

𝑖 ,x⊗2𝑟
⟩⃒⃒⃒𝑝/2𝑟

so

sup
Ax ̸=0

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
= sup

Ax ̸=0

⃒⃒
[A⊗2𝑟x⊗2𝑟 ](𝑖)

⃒⃒𝑝/2𝑟
‖A⊗2𝑟x⊗2𝑟‖𝑝/2

𝑟

𝑝/2𝑟

≤ sup
A⊗2𝑟 x̸=0

⃒⃒
[A⊗2𝑟x](𝑖)

⃒⃒𝑝/2𝑟
‖A⊗2𝑟x‖𝑝/2

𝑟

𝑝/2𝑟

that is, the ℓ𝑝/2𝑟 sensitivities of A⊗2𝑟 upper bound the ℓ𝑝 sensitivities of A. Since 𝑝/2𝑟 ≤ 2, the total ℓ𝑝/2𝑟 sensitivity of
A⊗2𝑟 is bounded by its rank, which is 𝑑′.

Proof of Lemma 1.14. Let 𝑟 be an integer such that 2𝑟 ≤ 𝑝 < 2𝑟+1. Fix some x ∈ R𝑘(𝑞+1). Now consider the vector ⟨a,x⟩,
where a is a 𝑘(𝑞 + 1)-dimensional vector of monomials of degree 0 through 𝑞 of the indeterminate variables 𝑎1, 𝑎2, . . . , 𝑎𝑘,
that is,

a = (1, 𝑎1, 𝑎
2
1, . . . , 𝑎

𝑞
1, 1, 𝑎2, 𝑎

2
2, . . . , 𝑎

𝑞
2, . . . , 1, 𝑎𝑘, 𝑎

2
𝑘, . . . , 𝑎

𝑞
𝑘).

Then, ⟨a,x⟩ is a degree 𝑞 polynomial in the indeterminates 𝑎1, 𝑎2, . . . , 𝑎𝑘 with coefficients specified by x, so ⟨a,x⟩2
𝑟

is
a polynomial in the indeterminates 𝑎1, 𝑎2, . . . , 𝑎𝑘, such that every monomial term is at most degree 2𝑟𝑞 in each variable.
Note that there are at most 𝑘 variables, so there can be at most (2𝑟𝑞 + 1)𝑘 possible monomials, by choosing the degree of
each of the monomials. Let x′ denote the coefficients of this polynomial in the monomial basis, for a given set of original
coefficients x.

Now consider the matrix 𝑉 𝑞(A). Then, for a fixed x ∈ R𝑘(𝑞+1), [𝑉 𝑞(A)x](𝑖)2
𝑟

is the evaluation of ⟨a,x⟩2
𝑟

at the 𝑖th
row a𝑖 of A for the indeterminates 𝑎1, 𝑎2, . . . , 𝑎𝑘, so it can be written as the linear combination of at most (2𝑟𝑞 + 1)𝑘

monomials evaluated at a𝑖, with coefficients x′. Thus, [𝑉 𝑞(A)x](𝑖)2
𝑟

= A′x′ for some A′ with rank at most (2𝑟𝑞 + 1)𝑘.

Finally, note that
|[𝑉 𝑞(A)x](𝑖)|𝑝 = (|[𝑉 𝑞(A)x](𝑖)|2

𝑟

)𝑝/2
𝑟

= |[A′x′](𝑖)|𝑝/2
𝑟

.

Thus, the total ℓ𝑝 sensitivity of 𝑉 𝑞(A) is bounded by the total ℓ𝑝/2𝑟 sensitivity of A′, which is at most (2𝑟𝑞 + 1)𝑘 ≤
(𝑝𝑞 + 1)𝑘.
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A.4. Total ℓ𝑝 Sensitivity Under Perturbations

Proof of Lemma 1.15. For any x ∈ R𝑑, we have that

‖(A+E)x‖𝑝 = ‖Ax‖𝑝 ± ‖Ex‖𝑝
= ‖Ax‖𝑝 ±

√
𝑛‖Ex‖2

= ‖Ax‖𝑝 ±
𝜎min√

𝑛
‖x‖2

= ‖Ax‖𝑝 ±
𝜎min√

𝑛

1

𝜎min
‖Ax‖2

= ‖Ax‖𝑝 ±
1

2
‖Ax‖𝑝

= (1± 1/2)‖Ax‖𝑝
so

|[(A+E)x](𝑖)|𝑝

‖(A+E)x‖𝑝𝑝
≤ 2𝑝−1 |[Ax](𝑖)|𝑝

‖(A+E)x‖𝑝𝑝
+ 2𝑝−1 |[Ex](𝑖)|𝑝

‖(A+E)x‖𝑝𝑝
≤ 2𝑝

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
+ 2𝑝

|[Ex](𝑖)|𝑝

‖Ax‖𝑝𝑝
.

The first term is clearly bounded by 2𝑝𝜎𝑝
𝑖 (A) for any x. On the other hand, the second term is bounded by

2𝑝
|[Ex](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2𝑝

‖Ex‖𝑝𝑝
‖Ax‖𝑝𝑝

≤ 2𝑝𝑛𝑝/2 ‖Ex‖𝑝2
‖Ax‖𝑝𝑝

≤ 2𝑝
𝜎𝑝
min

𝑛𝑝/2+1

‖x‖𝑝2
‖Ax‖𝑝𝑝

≤ 2𝑝
1

𝑛𝑝/2+1

‖Ax‖𝑝2
‖Ax‖𝑝𝑝

≤ 2𝑝
‖Ax‖𝑝𝑝
𝑛‖Ax‖𝑝𝑝

=
2𝑝

𝑛
.

Thus, the total sensitivity is bounded by

2𝑝
𝑛∑︁

𝑖=1

𝜎𝑝
𝑖 (A) +

1

𝑛
= 2𝑝(S𝑝(A) + 1).

B. Entropy Estimates
In this section, we collect our results on estimates on various metric entropies, which are needed for our chaining arguments.
Our results here are based on similar results given by (Bourgain et al., 1989). However, we modify their arguments to only
depend on leverage scores and ℓ𝑝 sensitivities, rather than using Lewis weights (Lewis, 1978; Bourgain et al., 1989).

B.1. Preliminaries

We first recall general definitions from convex geometry that are relevant to this section.
Definition B.1 (𝑑𝑋 -balls). Let 𝑑𝑋 be a metric on R𝑑. Then, for x ∈ R𝑑 and 𝑡 ≥ 0, we define the 𝑑𝑋 -ball of radius 𝑡
𝐵𝑑(x, 𝑡) to be

𝐵𝑋(x, 𝑡) :=
{︀
x′ ∈ R𝑑 : 𝑑𝑋(x,x′) ≤ 𝑡

}︀
.

Definition B.2 (Covering numbers and metric entropy). Let 𝐾,𝑇 ⊆ R𝑑 be two convex bodies. Then, the covering number
𝐸(𝐾,𝑇 ) is defined as

𝐸(𝐾,𝑇 ) := min

{︃
𝑘 ∈ N : ∃{x𝑖}𝑘𝑖=1,𝐾 ⊆

𝑘⋃︁
𝑖=1

(x𝑖 + 𝑇 )

}︃
.

If 𝑑𝑋 is a metric and 𝑡 > 0 a radius, then 𝐸(𝐾, 𝑑𝑋 , 𝑡) is defined as

𝐸(𝐾, 𝑑𝑋 , 𝑡) := 𝐸(𝐾,𝐵𝑋(0, 𝑡))

(see Definition B.1). The metric entropy is the logarithm of the covering number.

Next, we introduce some notation that is specific to our setting of ℓ𝑝 subspace embeddings.
Definition B.3. For a matrix A ∈ R𝑛×𝑑 and 𝑝 ≥ 1, we define the ball

𝐵𝑝(A) :=
{︁
Ax ∈ R𝑛 : ‖Ax‖𝑝 ≤ 1

}︁
.

We simply write 𝐵𝑝 if A is clear from context.
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B.2. Dual Sudakov Minoration

One powerful tool for bounding covering numbers for covers of the Euclidean ball is the dual Sudakov minoration theorem,
which bounds covering numbers in terms of the so-called Levy mean:
Definition B.4 (Levy mean). Let ‖·‖𝑋 be a norm. Then, the Levy mean of ‖·‖𝑋 is defined to be

𝑀𝑋 :=
Eg∈𝒩 (0,I𝑑)‖g‖𝑋
Eg∈𝒩 (0,I𝑑)‖g‖2

.

Bounds on the Levy mean imply bounds for covering the Euclidean ball by ‖·‖𝑋 -balls via the following result:
Theorem B.5 (Dual Sudakov minoration, Proposition 4.2 of (Bourgain et al., 1989)). Let ‖·‖𝑋 be a norm, and let 𝐵 ⊆ R𝑑

denote the Euclidean ball in 𝑑 dimensions. Then,

log𝐸(𝐵, ‖·‖𝑋 , 𝑡) ≤ 𝑂(𝑑)
𝑀2

𝑋

𝑡2

B.3. Entropy Estimates for 𝑝 > 2

We now use the preceding results to obtain the entropy estimates necessary to prove our main result for 𝑝 > 2. We start by
bounding the Levy mean for the norm defined by x ↦→ ‖Ax‖𝑞 for some matrix A.

Lemma B.6. Let 𝑞 ≥ 2 and let A ∈ R𝑛×𝑑. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Then,

E
g∼𝒩 (0,I𝑑)

‖Ag‖𝑞 ≤ 𝑛1/𝑞√𝑞 · 𝜏 .

Proof. We have for every 𝑖 ∈ [𝑛] that

E|[Ag](𝑖)|𝑞 =
2𝑞/2Γ( 𝑞+1

2 )
√
𝜋

‖e⊤𝑖 A‖𝑞2 ≤ 𝑞𝑞/2 · 𝜏 𝑞/2

since [Ag](𝑖) is distributed as a Gaussian random variable. Then by Jensen’s inequality and linearity of expectation,

E
g∼𝒩 (0,I𝑑)

‖Ag‖𝑞 ≤
(︂

E
g∼𝒩 (0,I𝑑)

‖Ag‖𝑞𝑞
)︂1/𝑞

=
(︁
𝑛 · 𝑞𝑞/2 · 𝜏 𝑞/2

)︁1/𝑞
= 𝑛1/𝑞√𝑞 · 𝜏

By combining the above calculation with Theorem B.5, we obtain the following:

Corollary B.7. Let 2 ≤ 𝑞 < ∞ and let A ∈ R𝑛×𝑑 be orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Then,

log𝐸(𝐵2, 𝐵𝑞, 𝑡) ≤ 𝑂(1)
𝑛2/𝑞𝑞 · 𝜏

𝑡2

Proof. For A orthonormal, 𝐵2(A) = 𝐵2 is isometric to the Euclidean ball in 𝑑 dimensions, and thus Theorem B.5
applies.

We also get a similar result for 𝑞 = ∞, by applying Corollary B.7 with 𝑞 = 𝑂(log 𝑛).

Corollary B.8. Let A ∈ R𝑛×𝑑 be orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Then,

log𝐸(𝐵2, 𝐵∞, 𝑡) ≤ 𝑂(1)
(log 𝑛) · 𝜏

𝑡2

Proof. This follows from the fact that for y ∈ R𝑛,

‖y‖∞ ≤ ‖y‖𝑞 ≤ 𝑛1/𝑞‖y‖∞ = 𝑂(1)‖y‖∞
for 𝑞 = 𝑂(log 𝑛).
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B.4. Entropy Estimates for 𝑝 < 2

By interpolation, we can improve the bound in Corollary B.7, which is needed for our results for 𝑝 < 2:

Lemma B.9. Let 2 < 𝑟 < ∞ and let A ∈ R𝑛×𝑑 be orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Let 1 ≤ 𝑡 ≤ poly(𝑑). Then,

log𝐸(𝐵2, 𝐵𝑟, 𝑡) ≤ 𝑂(1)
1

(𝑡/2)2𝑟/(𝑟−2)
·
(︂

𝑟

𝑟 − 2
log 𝑑+ log 𝑛

)︂
𝜏

Proof. Let 𝑞 > 𝑟, and let 0 < 𝜃 < 1 satisfy
1

𝑟
=

1− 𝜃

2
+

𝜃

𝑞

Then by Hölder’s inequality, we have for any y ∈ R𝑛 that

‖y‖𝑟 =

(︃
𝑛∑︁

𝑖=1

|y(𝑖)|𝑟(1−𝜃)|y(𝑖)|𝑟𝜃
)︃1/𝑟

≤

(︃
𝑛∑︁

𝑖=1

|y(𝑖)|2
)︃(1−𝜃)/2(︃ 𝑛∑︁

𝑖=1

|y(𝑖)|𝑞
)︃𝜃/𝑞

= ‖y‖1−𝜃
2 ‖y‖𝜃𝑞

Then for any y,y′ ∈ 𝐵2, we have

‖y − y′‖𝑟 ≤ ‖y − y′‖1−𝜃
2 ‖y − y′‖𝜃𝑞 ≤ 2‖y − y′‖𝜃𝑞

so

log𝐸(𝐵2, 𝐵𝑟, 𝑡) ≤ log𝐸(𝐵2, 𝐵𝑞, (𝑡/2)1/𝜃) ≤ 𝑂(1)
𝑛2/𝑞𝑞 · 𝜏
(𝑡/2)2/𝜃

by Corollary B.7. Now, we have
2

𝜃
= 2

1
2 − 1

𝑞
1
2 − 1

𝑟

=
𝑞 − 2

𝑞

2𝑟

𝑟 − 2

so by taking 𝑞 = 𝑂( 𝑟
𝑟−2 log 𝑑+ log 𝑛), we have that 𝑛2/𝑞 = 𝑂(1) and (𝑡/2)1/𝜃 = Θ(1)(𝑡/2)2𝑟/(𝑟−2), so we conclude as

claimed.

Using Lemma B.9, we obtain the following analogue of Corollary B.7 for 𝑝 < 2.

Lemma B.10. Let 1 ≤ 𝑝 < 2 and let A ∈ R𝑛×𝑑 be orthonormal. Let 𝜏 ≥ max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2
. Then,

log𝐸(𝐵𝑝, 𝐵∞, 𝑡) ≤ 𝑂(1)
1

𝑡𝑝

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏.

Proof. In order to bound a covering of 𝐵𝑝 by 𝐵∞, we first cover 𝐵𝑝 by 𝐵2, and then use Corollary B.8 to cover 𝐵2 by 𝐵∞.

We will first bound 𝐸(𝐵𝑝, 𝐵2, 𝑡) using Lemma B.9. For each 𝑘 ≥ 0, let ℰ𝑘 ⊆ 𝐵𝑝 be a maximal subset of 𝐵𝑝 such that for
each distinct y,y′ ∈ ℰ𝑘, ‖y − y′‖2 > 8𝑘𝑡, with ℰ𝑘 := {0} for 8𝑘+1𝑡 > 𝑛1/𝑝−1/𝑞 . Note then that

|ℰ𝑘| ≥ 𝐸(𝐵𝑝, 𝐵2, 8𝑘𝑡).

By averaging, for each 𝑘, there exists y(𝑘) ∈ ℰ𝑘 such that if

ℱ𝑘 :=
{︁
y ∈ ℰ𝑘 : ‖y − y(𝑘)‖2 ≤ 8𝑘+1𝑡

}︁
,

then

|ℱ𝑘| ≥
|ℰ𝑘|

𝐸(𝐵𝑝, 𝐵2, 8𝑘+1𝑡)
≥ 𝐸(𝐵𝑝, 𝐵2, 8𝑘𝑡)

𝐸(𝐵𝑝, 𝐵2, 8𝑘+1𝑡)

We now use this observation to construct an ℓ𝑝′ -packing of 𝐵2, where 𝑝′ is the Hölder conjugate of 𝑝. Let

𝒢𝑘 :=

{︂
1

8𝑘+1𝑡
(y − y(𝑘)) : y ∈ ℱ𝑘

}︂
.
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Then, 𝒢𝑘 ⊆ 𝐵2 and 𝒢𝑘 ⊆ 𝐵𝑝 · 2/8𝑘+1𝑡, and ‖y − y′‖2 > 1/8 for every distinct y,y′ ∈ 𝒢𝑘. Then by Hölder’s inequality,

1

82
≤ ‖y − y′‖22 ≤ ‖y − y′‖𝑝‖y − y′‖𝑝′ ≤

4

8𝑘+1𝑡
‖y − y′‖𝑝′

so ‖y − y′‖𝑝′ ≥ 2 · 8𝑘−2𝑡. Thus, 𝒢𝑘 is an ℓ𝑝′ -packing of 𝐵2, so

log𝐸(𝐵2, 𝐵𝑝′
, 8𝑘−2𝑡) ≥ log|𝒢𝑘| = log|ℱ𝑘| ≥ log𝐸(𝐵𝑝, 𝐵2, 8𝑘𝑡)− log𝐸(𝐵𝑝, 𝐵2, 8𝑘+1𝑡). (7)

Summing over 𝑘 gives

log𝐸(𝐵𝑝, 𝐵2, 𝑡) =
∑︁
𝑘≥0

log𝐸(𝐵𝑝, 𝐵2, 8𝑘𝑡)− log𝐸(𝐵𝑝, 𝐵2, 8𝑘+1𝑡)

≤
∑︁
𝑘≥0

log𝐸(𝐵2, 𝐵𝑝′
, 8𝑘−2𝑡) (7)

≤ 𝑂(1)
1

(𝑡/2)2𝑝′/(𝑝′−2)
·
(︂

𝑝′

𝑝′ − 2
log 𝑑+ log 𝑛

)︂
𝜏 Lemma B.9 and Corollary B.8

= 𝑂(1)
1

(𝑡/2)2𝑝/(2−𝑝)
·
(︂

𝑝

2− 𝑝
log 𝑑+ log 𝑛

)︂
𝜏

where we take 𝑝′/(𝑝′ − 2) = 1 for 𝑝′ = ∞. Using this and Corollary B.8, we now bound

log𝐸(𝐵𝑝, 𝐵∞, 𝑡) ≤ log𝐸(𝐵𝑝, 𝐵2, 𝜆) + log𝐸(𝐵2, 𝐵∞, 𝑡/𝜆)

≤ 𝑂(1)
1

(𝜆/2)2𝑝/(2−𝑝)
·
(︂

𝑝

2− 𝑝
log 𝑑+ log 𝑛

)︂
𝜏 +𝑂(1)

(log 𝑛) · 𝜏
(𝑡/𝜆)2

for any 𝜆 ∈ [1, 𝑡]. We choose 𝜆 satisfying
1

(𝜆/2)2𝑝/(2−𝑝)
=

(𝜆/2)2

𝑡2
,

which gives

(𝜆/2)2𝑝/(2−𝑝) =
(︀
𝑡2
)︀ 2𝑝/(2−𝑝)

2+2𝑝/(2−𝑝) = 𝑡𝑝

so we obtain a bound of

𝑂(1)
1

𝑡𝑝

(︂
1

2− 𝑝
log 𝑑+ log 𝑛

)︂
𝜏.

C. Bounding a Gaussian Process
Using our estimates from Appendix B, we study estimates on the Gaussian process given by

𝑋 : y ↦→
𝑛∑︁

𝑖=1

g𝑖|y(𝑖)|𝑝, y ∈ 𝐵𝑝(A)

for g ∼ 𝒩 (0, I𝑛), and in particular, tail bounds and moment bounds on the quantity

sup
y∈𝐵𝑝(A)

|𝑋(y)| = sup
‖Ax‖𝑝≤1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

g𝑖|[Ax](𝑖)|𝑝
⃒⃒⃒⃒
⃒

As we show later, this Gaussian process bounds the error of the sensitivity sampling estimate. Our techniques here are based
on similar results obtained by (Ledoux & Talagrand, 1991).

The main tool is Dudley’s tail inequality for Gaussian processes:
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Theorem C.1 (Theorem 8.1.6, (Vershynin, 2018)). Let (𝑋(𝑡))𝑡∈𝑇 be a Gaussian process with pseudo-metric 𝑑𝑋(𝑠, 𝑡) :=
‖𝑋(𝑠)−𝑋(𝑡)‖2 =

√︀
E(𝑋(𝑠)−𝑋(𝑡))2 and let

diam(𝑇 ) := sup{𝑑𝑋(𝑠, 𝑡) : 𝑠, 𝑡 ∈ 𝑇}

Then, there is a constant 𝐶 = 𝑂(1) such that for every 𝑧 ≥ 0,

Pr

{︂
sup
𝑡∈𝑇

𝑋𝑡 ≥ 𝐶

[︂∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢+ 𝑧 · diam(𝑇 )

]︂}︂
≤ 2 exp(−𝑧2)

The expectation bound version of the theorem will also be useful:

Theorem C.2 (Theorem 8.1.3, (Vershynin, 2018)). Let (𝑋(𝑡))𝑡∈𝑇 be a Gaussian process with pseudo-metric 𝑑𝑋(𝑠, 𝑡) :=
‖𝑋(𝑠)−𝑋(𝑡)‖2 =

√︀
E(𝑋(𝑠)−𝑋(𝑡))2. Then, there is a constant 𝐶 = 𝑂(1) such that

E sup
𝑡∈𝑇

𝑋𝑡 ≤ 𝐶

∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢.

C.1. Bounds on 𝑑𝑋

We first bound 𝑑𝑋 as well as the 𝑑𝑋 -diameter of 𝐵𝑝(A).

Lemma C.3. Let 1 ≤ 𝑝 < ∞ and let A ∈ R𝑛×𝑑. Define the pseudo-metric

𝑑𝑋(y,y′) :=

⎛⎝ E
g∼𝒩 (0,I𝑛)

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

g𝑖|y(𝑖)|𝑝 −
𝑛∑︁

𝑖=1

g𝑖|y′(𝑖)|𝑝
⃒⃒⃒⃒
⃒
2
⎞⎠1/2

Let 𝜎 ≥ max𝑛𝑖∈𝑆 𝜎𝑝
𝑖 (A). Then, for any y,y′ ∈ 𝐵𝑝(A),

𝑑𝑋(y,y′) ≤

{︃
2‖y − y′‖𝑝/2∞ 𝑝 < 2

2𝑝 · 𝜎1/2−1/𝑝 · ‖y − y′‖∞ 𝑝 > 2

Proof. Note first that by expanding out the square and noting that E[g𝑖g𝑗 ] = 1(𝑖 = 𝑗), we have

𝑑𝑋(y,y′) =

(︃
𝑛∑︁

𝑖=1

(|y(𝑖)|𝑝 − |y′(𝑖)|𝑝)2
)︃1/2

For 𝑝 < 2, we bound this as

𝑑𝑋(y,y′)2 =

𝑛∑︁
𝑖=1

(|y(𝑖)|𝑝 − |y′(𝑖)|𝑝)2

=

𝑛∑︁
𝑖=1

(|y(𝑖)|𝑝/2 − |y′(𝑖)|𝑝/2)2(|y(𝑖)|𝑝/2 + |y′(𝑖)|𝑝/2)2

≤
𝑛∑︁

𝑖=1

(|y(𝑖)− y′(𝑖)|𝑝/2)2(|y(𝑖)|𝑝/2 + |y′(𝑖)|𝑝/2)2

≤ 2‖y − y′‖𝑝∞
𝑛∑︁

𝑖=1

|y(𝑖)|𝑝 + |y′(𝑖)|𝑝

≤ 4‖y − y′‖𝑝∞.

For 𝑝 > 2, we have by convexity that

|y(𝑖)|𝑝 − |y′(𝑖)|𝑝 ≤ 𝑝|y(𝑖)− y′(𝑖)|(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)
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and that ‖y‖∞ ≤ 𝜎1/𝑝, so we have

𝑑𝑋(y,y′)2 =

𝑛∑︁
𝑖=1

(|y(𝑖)|𝑝 − |y′(𝑖)|𝑝)2

≤ 𝑝2
𝑛∑︁

𝑖=1

|y(𝑖)− y′(𝑖)|2(|y(𝑖)|𝑝−1 + |y′(𝑖)|𝑝−1)2

≤ 2𝑝2‖y − y′‖2∞
𝑛∑︁

𝑖=1

|y(𝑖)|2𝑝−2 + |y′(𝑖)|2𝑝−2

≤ 2𝑝2 max{‖y‖∞, ‖y′‖∞}𝑝−2‖y − y′‖2∞
𝑛∑︁

𝑖=1

|y(𝑖)|𝑝 + |y′(𝑖)|𝑝

≤ 4𝑝2𝜎1−2/𝑝‖y − y′‖2∞

Lemma C.4. Let 1 ≤ 𝑝 < ∞ and let A ∈ R𝑛×𝑑. Let 𝜎 ≥ max𝑛𝑖=1 𝜎
𝑝
𝑖 (A). Then, the diameter of 𝐵𝑝(A) with respect to

𝑑𝑋 is bounded by

diam(𝐵𝑝(A)) ≤

{︃
4 · 𝜎1/2 𝑝 < 2

4𝑝 · 𝜎1/2 𝑝 > 2

Proof. For any y ∈ 𝐵𝑝(A), we have that ‖y‖∞ ≤ 𝜎1/𝑝, so combining the triangle inequality and Lemma C.3 yields the
result.

C.2. Computing the Entropy Integral

We may now evaluate the entropy integral required in Theorem C.1. We use the following calculus lemma:

Lemma C.5. Let 0 < 𝜆 ≤ 1. Then,∫︁ 𝜆

0

√︂
log

1

𝑡
𝑑𝑡 = 𝜆

√︀
log(1/𝜆) +

√
𝜋

4
erfc(

√︀
log(1/𝜆)) ≤ 𝜆

(︂√︀
log(1/𝜆) +

√
𝜋

2

)︂
Proof. We calculate∫︁ 𝜆

0

√︂
log

1

𝑡
𝑑𝑡 = 2

∫︁ ∞

√
log(1/𝜆)

𝑥2 exp(−𝑥2) 𝑑𝑥 𝑥 =
√︀

log(1/𝑡)

= −
∫︁ ∞

√
log(1/𝜆)

𝑥 · −2𝑥 exp(−𝑥2) 𝑑𝑥

= −

(︃
𝑥 exp(−𝑥2)

⃒⃒⃒∞
√

log(1/𝜆)
−
∫︁ ∞

√
log(1/𝜆)

exp(−𝑥2) 𝑑𝑥

)︃
integration by parts

= 𝜆

√︂
log

1

𝜆
+

√
𝜋

2
erfc

(︃√︂
log

1

𝜆

)︃

Lemma C.6 (Entropy integral bound for 𝑝 < 2). Let 1 ≤ 𝑝 < 2 and let A ∈ R𝑛×𝑑 be orthonormal. Let 𝜏 ≥
max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2

and let 𝜎 ≥ max𝑛𝑖=1 𝜎
𝑝
𝑖 (A). Then,

∫︁ ∞

0

√︀
log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝜏1/2)

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂1/2

log
𝑑𝜎

𝜏
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Proof. Note that it suffices to integrate the entropy integral to diam(𝐵𝑝(A)) rather than ∞, which is at most 4𝜎1/2 for
𝑝 < 2 and 4𝑝𝜎1/2 for 𝑝 > 2 by Lemma C.4.

By Lemma C.3, we have that

log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) ≤ log𝐸(𝐵𝑝, 2‖·‖𝑝/2∞ , 𝑡) = log𝐸(𝐵𝑝, 𝐵∞, (𝑡/2)2/𝑝)

For small radii less than 𝜆 for a parameter 𝜆 to be chosen, we use a standard volume argument, which shows that

log𝐸(𝐵𝑝, 𝐵∞, 𝑡) ≤ 𝑂(𝑑) log
𝑛

𝑡

so ∫︁ 𝜆

0

√︀
log𝐸(𝐵𝑝, 𝐵∞, 𝑡) 𝑑𝑡 =

∫︁ 𝜆

0

√︂
𝑑 log

𝑛

𝑡
𝑑𝑡 ≤ 𝜆

√︀
𝑑 log 𝑛+

√
𝑑

∫︁ 𝜆

0

√︂
log

1

𝑡
𝑑𝑡

≤ 𝜆
√︀
𝑑 log 𝑛+

√
𝑑

(︃
𝜆

√︂
log

1

𝜆
+

√
𝜋

2
𝜆

)︃
Lemma C.5

≤ 𝑂(𝜆)

√︂
𝑑 log

𝑛

𝜆

On the other hand, for large radii larger than 𝜆, we use the bounds of Lemma B.10, which gives

log𝐸(𝐵𝑝, 𝐵∞, (𝑡/2)2/𝑝) ≤ 𝑂(1)
1

𝑡2

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏

so the entropy integral gives a bound of

𝑂(1)

[︂(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏

]︂1/2 ∫︁ 4𝑝𝜎1/2

𝜆

1

𝑡
𝑑𝑡 = 𝑂(1)

[︂(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂
𝜏

]︂1/2
log

4𝑝𝜎1/2

𝜆
.

We choose 𝜆 =
√︀
𝜏/𝑑, which yields the claimed conclusion.

An analogous result and proof holds for 𝑝 > 2.

Lemma C.7 (Entropy integral bound for 𝑝 > 2). Let 2 < 𝑝 < ∞ and let A ∈ R𝑛×𝑑 be orthonormal. Let 𝜏 ≥
max𝑛𝑖=1

⃦⃦
e⊤𝑖 A

⃦⃦2
2

and let 𝜎 ≥ max𝑛𝑖=1 𝜎
𝑝
𝑖 (A). Then,∫︁ ∞

0

√︀
log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) 𝑑𝑡 ≤ 𝑂(𝑝𝜏1/2) · (𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 · log 𝑝2𝑑𝜎

𝜏

Proof. The proof is similar to the case of 𝑝 < 2. We again introduce a parameter 𝜆. For radii below 𝜆, the bound is the
same as Lemma C.6. For radii above 𝜆, we use Lemma C.3 to bound

log𝐸(𝐵𝑝, 𝑑𝑋 , 𝑡) ≤ log𝐸(𝐵𝑝, 2𝑝 · 𝜎1/2−1/𝑝 · ‖·‖∞, 𝑡) ≤ log𝐸(𝐵𝑝, 𝐵∞, 𝑡/2𝑝 · 𝜎1/2−1/𝑝)

Then by Corollary B.8,

log𝐸(𝐵𝑝, 𝐵∞, 𝑡/2𝑝 · 𝜎1/2−1/𝑝) ≤ log𝐸(𝐵2, 𝐵∞, 𝑡/2𝑝 · (𝜎𝑛)1/2−1/𝑝)

≤ 𝑂(𝑝2)
(log 𝑛) · 𝜏

𝑡2
· (𝜎𝑛)1−2/𝑝

so the entropy integral gives a bound of

𝑂(𝑝𝜏1/2) · (𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 ·
∫︁ diam(𝐵𝑝(A))

𝜆

1

𝑡
𝑑𝑡 ≤ 𝑂(𝑝𝜏1/2) · (𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 · log 𝑝𝜎1/2

𝜆

Choosing 𝜆 =
√︀
𝜏/𝑑 yields the claimed conclusion.
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C.3. Moment Bounds

Finally, using our tail bound from combining Theorem C.1 with the entropy bounds of Appendix C.2 and Lemma C.4, we
obtain the following moment bounds:
Lemma C.8. Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let 𝜏 ≥ max𝑛𝑖=1 𝜏 𝑖(A) and let 𝜎 ≥ max𝑛𝑖=1 𝜎

𝑝
𝑖 (A). Let

Λ := sup
‖Ax‖𝑝≤1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

g𝑖|[Ax](𝑖)|𝑝
⃒⃒⃒⃒
⃒

Let ℰ :=
∫︀∞
0

√︀
log𝐸(𝐵𝑝(A), 𝑑𝑋 , 𝑢) 𝑑𝑢 and 𝒟 = diam(𝐵𝑝(A)). Then,

E
g∼𝒩 (0,I𝑛)

[|Λ|𝑙] ≤ (2ℰ)𝑙(ℰ/𝒟) +𝑂(
√
𝑙𝒟)𝑙

Proof. By Theorem C.1, we have for 𝑇 = 𝐵𝑝(A) that

Pr

{︂
Λ ≥ 𝐶

[︂∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢+ 𝑧 · diam(𝑇 )

]︂}︂
≤ 2 exp(−𝑧2)

for a constant 𝐶 = 𝑂(1). Then,

E[(Λ/𝒟)𝑙] = 𝑙

∫︁ ∞

0

𝑧𝑙 Pr{Λ ≥ 𝑧𝒟} 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 + 𝑙

∫︁ ∞

2ℰ/𝒟
𝑧𝑙 Pr{Λ ≥ 𝑧𝒟} 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 + 𝑙

∫︁ ∞

2ℰ/𝒟
𝑧𝑙 Pr{Λ ≥ ℰ + (𝑧/2)𝒟} 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 + 2𝑙

∫︁ ∞

0

𝑧𝑙 exp(−𝑧2/4) 𝑑𝑧

≤ (2ℰ/𝒟)𝑙+1 +𝑂(𝑙)𝑙/2

so
E[Λ𝑙] ≤ (2ℰ)𝑙(ℰ/𝒟) +𝑂(

√
𝑙𝒟)𝑙.

D. Sampling Guarantees
We first reduce our proof of sampling guarantees to the problem of bounding a Gaussian process:
Lemma D.1 (Reduction to Gaussian processes). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < ∞. Let S be a random ℓ𝑝 sampling matrix
(Definition 1.1). Then,

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
≤ (2𝜋)𝑙/2 E

S
E

g∼𝒩 (0,I𝑛)
sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

g𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

,

where 𝑆 ⊆ [𝑛] is the set of rows with sampling probability 𝑞𝑖 < 1.

Proof. By a standard symmetrization argument (Cohen & Peng, 2015; Chen & Derezinski, 2021), we have that

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
≤ 2𝑙 E

S,𝜀
sup

‖Ax‖𝑝≤1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

𝜀𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

,

where 𝜀 ∼ {±1}𝑛 are independent Rademacher variables. In turn, the right hand side is bounded by

2𝑙(𝜋/2)𝑙/2 E
S,g

sup
‖Ax‖𝑝≤1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

g𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

via a Rademacher-Gaussian comparison theorem (see, e.g., Equation 4.8 of (Ledoux & Talagrand, 1991)).
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D.1. Sensitivity Sampling, 𝑝 < 2

Our first result is a sensitivity sampling guarantee for 𝑝 < 2.

Theorem D.2 (Sensitivity Sampling for 𝑝 < 2). Let A ∈ R𝑛×𝑑 and 1 ≤ 𝑝 < 2. Let S be a random ℓ𝑝 sampling matrix with
sampling probabilities 𝑞𝑖 = min{1, 1/𝑛+ 𝜎𝑝

𝑖 (A)/𝛼} for an oversampling parameter 𝛼 set to

1

𝛼
=

S𝑝(A)2/𝑝−1

𝜀2

[︂
𝑂(𝑙 log 𝑛)2/𝑝−1

(︂
log 𝑑

2− 𝑝
+ log

𝑙 log 𝑛

𝜀

)︂
(log 𝑑)2 + 𝑙

]︂
=

S𝑝(A)2/𝑝−1

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
,

1

2− 𝑝

)︂
for

𝑙 = 𝑂

(︂
log

1

𝛿
+ log log 𝑛+ log

1

2− 𝑝
+ log

𝑑

𝜀

)︂
.

Then, with probability at least 1− 𝛿, simultaneously for all x ∈ R𝑑,

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝.

Furthermore, with probability at least 1− 𝛿, S samples

S𝑝(A)2/𝑝

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
, log

1

2− 𝑝

)︂
rows.

Proof. Our approach is to bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
for a large even integer 𝑙. Using Lemma D.1, we first bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
≤ (2𝜋)𝑙/2 E

S
E

g∼𝒩 (0,I𝑛)
sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

g𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

where 𝑆 = {𝑖 ∈ [𝑛] : 𝑞𝑖 < 1}. For simplicity of presentation, we assume 𝑆 = [𝑛], which will not affect our proof.

By Theorem 1.8, there exists a matrix A′ ∈ R𝑚1×𝑑 with 𝑚1 = 𝑂(𝑑(log 𝑑)3) such that

‖A′x‖𝑝𝑝 = (1± 1/2)‖Ax‖𝑝𝑝

for all x ∈ R𝑑. Furthermore, because A′ in Theorem 1.8 is constructed by random sampling, Lemma A.1 shows that
S𝑝(A′) ≤ 8S𝑝(A) (note that we only need existence of this matrix). We then construct a matrix A′′ ∈ R𝑚2×𝑑 with
𝑚2 = 𝑂(𝛼−1S𝑝(A) + 𝑑(log 𝑑)3) = 𝑂(𝛼−1S𝑝(A)) such that

𝜎 :=
𝑛

max
𝑖=1

𝜎𝑝
𝑖 (A

′′) ≤ 𝛼,

S𝑝(A′) = S𝑝(A′′), and ‖A′x‖𝑝 = ‖A′′x‖𝑝 for all x ∈ R𝑑 by viewing A′ as an (𝑚1 + 𝛼−1S𝑝(A))× 𝑑 matrix with all
zeros except for the first 𝑚1 rows and then applying Lemma A.4.

Now let

A′′′ :=

(︃
A′′

SA

)︃
be the (𝑚2 +𝑛S)× 𝑑 matrix formed by the vertical concatenation of A′′ with SA, where 𝑛S is the number of rows sampled
by S.
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Sensitivity Bounds for A′′′. We will first bound the ℓ𝑝 sensitivities of A′′′. For any row 𝑖 corresponding to a row of A′′,
the ℓ𝑝 sensitivities are already bounded by 𝛼, and furthermore, ℓ𝑝 sensitivities can clearly only decrease with row additions.
For any row 𝑖 corresponding to a row of SA that is sampled with probability 𝑞𝑖 < 1, we have that

|[SAx](𝑖)|𝑝

‖A′′′x‖𝑝𝑝
≤ 2

|[SAx](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2

1

𝑞𝑖

|[Ax](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2

𝜎𝑝
𝑖 (A)

𝑞𝑖
= 2𝛼.

Thus, we have that 𝜎𝑝
𝑖 (A

′′′) ≤ 2𝛼 for every row 𝑖 of A′′′.

With a bound on the ℓ𝑝 sensitivities of A′′′ in hand, we may then convert this into a bound on the leverage scores of A′′′

using Lemma 2.3, which gives
𝜏 :=

𝑛
max
𝑖=1

𝜏 𝑖(A
′′′) ≤ (2𝛼)2/𝑝(𝑚2 + 𝑛S)

2/𝑝−1

where 𝑛S is the number of nonzero entries of S.

Moment Bounds on the Sampling Error. We now fix a choice of S, and define

𝐹S := sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒
.

Note that the event that 𝑛S is at least

𝑛thresh := 𝑂(𝑙 log 𝑛)E[𝑛𝑆 ] = 𝑂(𝑙 log 𝑛)𝛼−1S𝑝(A),

occurs with probability at most poly(𝑛)−𝑙 by Chernoff bounds over the randomness of S, and

𝐹 𝑙
S ≤

[︃
1 +

𝑛∑︁
𝑖=1

1

𝑞𝑖

]︃𝑙
≤ (𝑛+ 1)2𝑙,

and thus this event contributes at most poly(𝑛)−𝑙 to the moment bound E𝐹 𝑙
S. Thus, we focus on bounding E𝐹 𝑙

S conditioned
on 𝑛S ≤ 𝑛thresh. Define

𝐺S := sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒

for g ∼ 𝒩 (0, I𝑚2+𝑛S
). Then,

‖A′′′x‖𝑝𝑝 ≤ (1 + 2 + 𝐹S)‖Ax‖𝑝𝑝
so

𝐹 𝑙
S ≤ 2𝑙 sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 2𝑙(1 + 2 + 𝐹S)
𝑙 sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 22𝑙−1(3𝑙 + 𝐹 𝑙
S)𝐺

𝑙
S.

(8)

We then take expectations on both sides with respect to g ∼ 𝒩 (0, I𝑚2+𝑛S
), and bound the right hand side using Lemma C.8,

which gives

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤ (2ℰ)𝑙 ℰ
𝒟

+𝑂(
√
𝑙𝒟)𝑙

where ℰ is the entropy integral and 𝒟 = 4𝜎1/2 is the diameter by Lemma C.4. We have by Lemma C.6 that

ℰ ≤ 𝑂(𝜏1/2)

(︂
log 𝑑

2− 𝑝
+ log(𝑚2 + 𝑛S)

)︂1/2

log
𝑑𝜎

𝜏

≤ 𝑂(𝛼1/𝑝(𝑚2 + 𝑛S)
1/𝑝−1/2)

(︂
log 𝑑

2− 𝑝
+ log(𝑚2 + 𝑛S)

)︂1/2

log
𝑑𝜎

𝜏
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Thus, conditioned on 𝑛S ≤ 𝑛thresh, we have that

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤

[︃
𝑂(𝛼1/𝑝𝑛

1/𝑝−1/2
thresh )

(︂
log 𝑑

2− 𝑝
+ log 𝑛thresh

)︂1/2

log 𝑑

]︃𝑙
+𝑂(

√
𝑙
√
𝛼)𝑙.

Note that

𝛼1/𝑝𝑛
1/𝑝−1/2
thresh = 𝑂(𝑙 log 𝑛)1/𝑝−1/2𝛼1/𝑝(𝛼−1S𝑝(A))1/𝑝−1/2 = 𝑂(𝑙 log 𝑛)1/𝑝−1/2𝛼1/2S𝑝(A)1/𝑝−1/2,

which shows that
E

g∼𝒩 (0,I𝑚2+𝑛S
)
𝐺𝑙

S ≤ 𝜀𝑙𝛿

due to our choice of 𝛼 and 𝑙.

Now if we take conditional expectations on both sides of (8) conditioned on the event ℱ that 𝑛S ≤ 𝑛thresh, then we have

E[𝐹 𝑙
S | ℱ ] ≤ 22𝑙−1(3𝑙 +E[𝐹 𝑙

S | ℱ ])𝜀𝑙𝛿 ≤ (3𝑙 +E[𝐹 𝑙
S | ℱ ])(4𝜀)𝑙𝛿

which means

E[𝐹 𝑙
S | ℱ ] ≤ (12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿

for (4𝜀)𝑙𝛿 ≤ 1/2. We thus have

E[𝐹 𝑙
S] ≤

(12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿 + poly(𝑛)−𝑙

altogether. Finally, we have by a Markov bound that

𝐹 𝑙
S ≤ 2(12𝜀)𝑙 +

1

𝛿
poly(𝑛)𝑙 ≤ 3(12𝜀)𝑙

with probability at least 1− 𝛿, which means that

𝐹S ≤ 3 · 12𝜀 = 36𝜀

with probability at least 1− 𝛿. Rescaling 𝜀 by constant factors yields the claimed result.

D.2. Sensitivity Sampling, 𝑝 > 2

For 𝑝 > 2, we first need a construction of a matrix with a small number of rows and small sensitivity. While this construction
can be made to be a randomized algorithm succeeding with high probability, it uses a sophisticated recursive sampling
strategy. While this is necessary for our results later in Theorem D.10, such a complicated algorithm may be undesirable.
In Theorem D.4, we use this result to show that a more direct one-shot sensitivity sampling can in fact achieve a similar
guarantee.

Lemma D.3 (Recursive Sensitivity Sampling). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 < ∞. Let 0 < 𝜀 < 1. Then, there exists a matrix
A′ ∈ R𝑚×𝑑 for

𝑚 = 𝑂(𝑝2)
S𝑝(A)2−2/𝑝

𝜀2
log(𝑝𝑑)2 log

𝑝𝑑

𝜀

such that
‖A′x‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝

for every x ∈ R𝑑 and S𝑝(A′) ≤ (1 +𝑂(𝜀))S𝑝(A).

Proof. Let A′ ∈ R𝑚×𝑑 be the flattened isometric matrix given by Lemma A.4 with 𝐶 = 4, where 𝑚 ≤ (5/4)𝑛. Then for
all 𝑖 ∈ [𝑚], we have that

𝜎𝑝
𝑖 (A

′) ≤ 4
S𝑝(A)

𝑛
≤ 5

S𝑝(A′)

𝑚
.
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Now consider the random sampling matrix S with sampling probabilities 𝑞𝑖 = 1/2. Note then that sampling with probability
𝑞𝑖 = 1/2 and scaling by 1/𝑞𝑖 = 2 corresponds to muliplying by the random variable 𝜀𝑖 + 1, where 𝜀𝑖 is a Rademacher
variable. Thus,

E
S

sup
‖A′x‖𝑝=1

⃒⃒⃒
‖SA′x‖𝑝𝑝 − 1

⃒⃒⃒
= E

𝜀
sup

‖A′x‖𝑝=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

(𝜀𝑖 + 1)|[A′x](𝑖)|𝑝 − |[A′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒ = E

𝜀
sup

‖A′x‖𝑝=1

⃒⃒⃒⃒
⃒

𝑛∑︁
𝑖=1

𝜀𝑖|[A′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒.

By Lemma D.1 and Theorem C.2, this is bounded by

𝑂(1)

∫︁ ∞

0

√︀
log𝐸(𝑇, 𝑑𝑋 , 𝑢) 𝑑𝑢 ≤ 𝑂(𝑝𝜏1/2) · (𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 · log 𝑝2𝑑𝜎

𝜏

where 𝜏 is an upper bound on the leverage scores of A′ and 𝜎 is an upper bound on the ℓ𝑝 sensitivities of A′. By Lemma 2.2,
we have that 𝜏 ≤ 𝜎, and furthermore, we can take 𝜎 = 5S𝑝(A′)/𝑚. Thus, the resulting bound on the expected sampling
error is at most

𝜀A := 𝑂(𝑝)
S𝑝(A)1−1/𝑝

√
𝑛

(log 𝑛)1/2 log(𝑝𝑑)

so with probability at least 99/100, the same bound holds up to a factor of 100. Furthermore, S samples 𝑚/2 ≤ (5/8)𝑛
rows in expectation, so by Markov’s inequality, it samples at most (3/2)𝑚/2 ≤ (15/16)𝑛 rows with probability at least
1/3. We also have that

𝜎𝑝
𝑖 (A)

𝑞𝑖
= 2𝜎𝑝

𝑖 (A
′) ≤ 10

S𝑝(A′)

𝑚

so by Lemma A.2, we have that

Pr{S𝑝(SA′) = (1±𝑂(𝜀A))S𝑝(A)} ≥ 99

100
.

By a union bound, SA′ samples at most (15/16)𝑛 rows, has sampling error at most 𝜀𝑛, and has ℓ𝑝 total sensitivity at most
(1 +𝑂(𝜀A))S𝑝(A) with probability at least 1/3− 1/100− 1/100 > 0. Thus, such an instantiation of SA′ exists.

We now recursively apply our reasoning, by repeatedly applying the flattening and sampling operation. Note that each time
we repeat this procedure, the number of rows goes down by a factor of 15/16, while the total sensitivity and total sampling
error accumulates. Let A𝑙 denote the matrix obtained after 𝑙 recursive applications of this procedure and let 𝑛𝑙 denote the
number of rows of A𝑙. Then,

𝜀A𝑙+1
= 𝑂(𝑝)

S𝑝(A𝑙+1)
1−1/𝑝

√
𝑛𝑙+1

(log 𝑛𝑙+1)
1/2 log(𝑝𝑑)

≥ (1−𝑂(𝜀A𝑙
))𝑂(𝑝)

S𝑝(A𝑙)
1−1/𝑝

√
𝑛𝑙+1

(log 𝑛𝑙+1)
1/2 log(𝑝𝑑)

≥
√︂

16

15
(1−𝑂(𝜀A𝑙

))𝑂(𝑝)
S𝑝(A𝑙)

1−1/𝑝

√
𝑛𝑙

(log 𝑛𝑙)
1/2 log(𝑝𝑑)

≥ 101

100
· 𝜀A𝑙

as long as 𝜀A𝑙
is less than some absolute constant. Thus, the sum of the 𝜀A𝑙

are dominated by the last 𝜀A𝑙
, up to a constant

factor. Now let 𝐿 be the smallest integer 𝑙 such that 𝜀A𝑙
≤ 𝜀. Then, we have that

S𝑝(A𝐿) ≤ (1 +𝑂(𝜀))S𝑝(A)

and thus
‖A𝐿x‖𝑝𝑝 = (1±𝑂(𝜀))‖Ax‖𝑝𝑝

for every x ∈ R𝑑. Furthermore, 𝑛𝐿 satisfies

𝜀 = 𝑂(𝑝)
S𝑝(A)1−1/𝑝

√
𝑛𝐿

(log 𝑛𝐿)
1/2 log(𝑝𝑑)
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or

𝑛𝐿 = 𝑂(𝑝2)
S𝑝(A)2−2/𝑝

𝜀2
log(𝑝𝑑)2 log

𝑝𝑑

𝜀
.

Theorem D.4 (Sensitivity Sampling for 𝑝 > 2). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 < ∞. Let S be a random ℓ𝑝 sampling matrix
with sampling probabilities 𝑞𝑖 = min{1, 1/𝑛+ 𝜎𝑝

𝑖 (A)/𝛼} for an oversampling parameter 𝛼 set to

1

𝛼
= 𝑂(𝑝2)S𝑝(A)1−2/𝑝(𝑙 log 𝑛)1−2/𝑝 log(𝑝𝑑) log

𝑙 log 𝑛

𝜀
+𝑂(𝑝2)𝑙

for

𝑙 = 𝑂

(︂
log

1

𝛿
+ log log 𝑛+ log 𝑝+ log

S𝑝(A)

𝜀

)︂
.

Then, with probability at least 1− 𝛿, simultaneously for all x ∈ R𝑑,

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝.

Furthermore, with probability at least 1− 𝛿, S samples

S𝑝(A)2−2/𝑝

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
, 𝑝

)︂
rows.

Proof. Our approach is to bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
for a large even integer 𝑙. Using Lemma D.1, we first bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
≤ (2𝜋)𝑙/2 E

S
E

g∼𝒩 (0,I𝑛)
sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

g𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

where 𝑆 = {𝑖 ∈ [𝑛] : 𝑞𝑖 < 1}. For simplicity of presentation, we assume 𝑆 = [𝑛], which will not affect our proof.

By Lemma D.3, there exists a matrix A′ ∈ R𝑚1×𝑑 with 𝑚1 = 𝑂(S2−2/𝑝 log(𝑝𝑑)3) such that

‖A′x‖𝑝𝑝 = (1± 1/2)‖Ax‖𝑝𝑝

for all x ∈ R𝑑, and S𝑝(A′) ≤ 𝑂(1)S𝑝(A). Then for 𝑚2 = 𝑂(𝑚1 +S𝑝(A)𝛼−1), let A′′ ∈ R𝑚2×𝑑 be the matrix given
by Lemma A.4 such that 𝜎𝑝

𝑖 (A
′′) ≤ 𝛼 for every 𝑖 ∈ [𝑚2] and ‖A′′x‖𝑝 = ‖A′x‖𝑝 for every x ∈ R𝑑. Now let

A′′′ :=

(︃
A′′

SA

)︃

be the (𝑚2 +𝑛S)× 𝑑 matrix formed by the vertical concatenation of A′′ with SA, where 𝑛S is the number of rows sampled
by S.

Sensitivity Bounds for A′′′. We will first bound the ℓ𝑝 sensitivities of A′′′. For any row 𝑖 corresponding to a row of A′′,
the ℓ𝑝 sensitivities are already bounded by 𝛼, and furthermore, ℓ𝑝 sensitivities can only decrease with row additions. For any
row 𝑖 corresponding to a row of SA that is sampled with probability 𝑞𝑖 < 1, we have that

|[SAx](𝑖)|𝑝

‖A′′′x‖𝑝𝑝
≤ |[SAx](𝑖)|𝑝

‖A′′x‖𝑝𝑝
≤ 2

|[SAx](𝑖)|𝑝

‖Ax‖𝑝𝑝
≤ 2𝛼.

By Lemma 2.2, this immediately implies that the ℓ2 sensitivities, or the leverage scores, are also bounded by 2𝛼.
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Moment Bounds on Sampling Error. We now fix a choice of S, and define

𝐹S := sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒
Note that the event that 𝑛S is at least

𝑛thresh := 𝑂(𝑙 log 𝑛)E[𝑛𝑆 ] = 𝑂(𝑙 log 𝑛)𝛼−1S𝑝(A),

occurs with probability at most poly(𝑛)−𝑙 by Chernoff bounds over the randomness of S, and

𝐹 𝑙
S ≤

[︃
1 +

𝑛∑︁
𝑖=1

1

𝑞𝑖

]︃𝑙
≤ (𝑛+ 1)2𝑙,

and thus this event contributes at most poly(𝑛)−𝑙 to the moment bound E𝐹 𝑙
S. Thus, we focus on bounding E𝐹 𝑙

S conditioned
on 𝑛S ≤ 𝑛thresh. Now define

𝐺S := sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒

for g ∼ 𝒩 (0, I𝑚2+𝑛S
). Then,

‖A′′′x‖𝑝𝑝 ≤ (1 + 2 + 𝐹S)‖Ax‖𝑝𝑝
so

𝐹 𝑙
S ≤ 2𝑙 sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 2𝑙(1 + 2 + 𝐹S)
𝑙 sup
‖A′′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 22𝑙−1(3𝑙 + 𝐹 𝑙
S)𝐺

𝑙
S.

(9)

We then take expectations on both sides with respect to g ∼ 𝒩 (0, I𝑚2+𝑛S
), and bound the right hand side using Lemma C.8,

which gives

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤ (2ℰ)𝑙 ℰ
𝒟

+𝑂(
√
𝑙𝒟)𝑙

where ℰ is the entropy integral and 𝒟 = 4𝑝𝜎1/2 is the diameter by Lemma C.4. We have by Lemma C.7 that

ℰ ≤ 𝑂(𝑝𝜏1/2) · (𝜎(𝑚2 + 𝑛S))
1/2−1/𝑝(log(𝑚2 + 𝑛S))

1/2 · log 𝑝2𝑑𝜎

𝜏

≤ 𝑂(𝑝𝛼1/2) · (𝛼(𝑚2 + 𝑛S))
1/2−1/𝑝(log(𝑚2 + 𝑛S))

1/2 · log(𝑝𝑑).

Thus, conditioned on 𝑛S ≤ 𝑛thresh, we have that

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤
[︁
𝑂(𝑝𝛼1/2)(𝛼(𝑚2 + 𝑛thresh))

1/2−1/𝑝(log(𝑚2 + 𝑛thresh))
1/2

log(𝑝𝑑)
]︁𝑙

+𝑂(
√
𝑙𝑝
√
𝛼)𝑙

≤
[︁
𝑂(𝑝𝛼1−1/𝑝)𝑛

1/2−1/𝑝
thresh (log 𝑛thresh)

1/2
log(𝑝𝑑)

]︁𝑙
+𝑂(

√
𝑙𝑝
√
𝛼)𝑙

Note that

𝛼1−1/𝑝𝑛
1/2−1/𝑝
thresh = 𝑂(𝑙 log 𝑛)1/2−1/𝑝𝛼1−1/𝑝(𝛼−1S𝑝(A))1/2−1/𝑝 = 𝑂(𝑙 log 𝑛)1/2−1/𝑝𝛼1/2S𝑝(A)1/2−1/𝑝,

which shows that
E

g∼𝒩 (0,I𝑚2+𝑛S
)
𝐺𝑙

S ≤ 𝜀𝑙𝛿
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due to our choice of 𝛼 and 𝑙.

Now if we take conditional expectations on both sides of (9) conditioned on the event ℱ that 𝑛S ≤ 𝑛thresh, then we have

E[𝐹 𝑙
S | ℱ ] ≤ 22𝑙−1(3𝑙 +E[𝐹 𝑙

S | ℱ ])𝜀𝑙𝛿 ≤ (3𝑙 +E[𝐹 𝑙
S | ℱ ])(4𝜀)𝑙𝛿

which means

E[𝐹 𝑙
S | ℱ ] ≤ (12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿

for (4𝜀)𝑙𝛿 ≤ 1/2. We thus have

E[𝐹 𝑙
S] ≤

(12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿 + poly(𝑛)−𝑙

altogether. Finally, we have by a Markov bound that

𝐹 𝑙
S ≤ 2(12𝜀)𝑙 +

1

𝛿
poly(𝑛)𝑙 ≤ 3(12𝜀)𝑙

with probability at least 1− 𝛿, which means that

𝐹S ≤ 3 · 12𝜀 = 36𝜀

with probability at least 1− 𝛿. Rescaling 𝜀 by constant factors yields the claimed result.

D.3. Root Leverage Score Sampling, 𝑝 < 2

We start with a flattening lemma, which shows how to obtain an ℓ𝑝 isometry that simultaneously flatten all ℓ𝑞 sensitivities.
Lemma D.5 (Flattening All Sensitivities). Let 1 ≤ 𝑝 < ∞ and A ∈ R𝑛×𝑑. Let 0 < 𝛼 < 1. Then, there exists A′ ∈ R𝑚×𝑑

for 𝑚 = 𝑂(𝑛𝛼−1) such that
𝜎𝑞

𝑖 (A
′) ≤ 𝛼

for every 𝑖 ∈ [𝑚] and 1 ≤ 𝑞 < ∞. Furthermore, for any 1 ≤ 𝑞 < ∞ and x ∈ R𝑑, we have that ‖A′x‖𝑞 =

Θ(𝛼1/𝑝−1/𝑞)‖Ax‖𝑞 .

Proof. Let 𝑘 := ⌈1/𝛼⌉. Then, we construct A′ ∈ R𝑚×𝑑 for 𝑚 = 𝑛𝑘 by replacing the 𝑖th row a𝑖 of A for every 𝑖 ∈ [𝑛]
with 𝑘 copies of a/𝑘1/𝑝. Then, for every row 𝑗 ∈ [𝑚] that is a copy of row 𝑖 ∈ [𝑛], we have that

𝜎𝑞
𝑗(A) = sup

Ax ̸=0

|[A′x](𝑖)|𝑞

‖A′x‖𝑞𝑞
≤ sup

Ax ̸=0

⃒⃒
[𝑘−1/𝑝Ax](𝑖)

⃒⃒𝑞
𝑘 ·
⃒⃒
[𝑘−1/𝑝Ax](𝑖)

⃒⃒𝑞 ≤ 1

𝑘
≤ 𝛼

as desired. The second conclusion holds since

‖A′x‖𝑞𝑞 = 𝑘 · 𝑘−𝑞/𝑝‖Ax‖𝑞𝑞 = 𝑘1−𝑞/𝑝‖Ax‖𝑞𝑞.

Theorem D.6 (Root Leverage Score Sampling). Let A ∈ R𝑛×𝑑 and let 1 ≤ 𝑝 < 2. Let 0 < 𝜀, 𝛿 < 1. Let S be a random ℓ𝑝
sampling matrix with sampling probabilities 𝑞𝑖 = min{1, 𝜏 𝑖(A)𝑝/2/𝛼} for an oversampling parameter 𝛼 set to

1

𝛼
= 𝑂(𝜀−2)(log 𝑑)2

(︂
log 𝑑

2− 𝑝
+ log 𝑛+ log

1

𝛿

)︂
Then, with probability at least 1− 𝛿, simultaneously for all x ∈ R𝑑,

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝.

Furthermore, with probability at least 1− 𝛿, S samples

𝑛1−𝑝/2𝑑𝑝/2

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
,

1

2− 𝑝

)︂
rows.
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Proof. Our approach is to bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
for a large even integer 𝑙. Using Lemma D.1, we first bound

E
S

sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒𝑙
≤ (2𝜋)𝑙/2 E

S
E

g∼𝒩 (0,I𝑛)
sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒∑︁
𝑖∈𝑆

g𝑖|[SAx](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

where 𝑆 = {𝑖 ∈ [𝑛] : 𝑞𝑖 < 1}. For simplicity of presentation, we assume 𝑆 = [𝑛], which will not affect our proof.

By Lemma D.5, there exists a matrix A′ ∈ R𝑚1×𝑑 with 𝑚1 = 𝑂(𝑛/𝛼) such that ‖A′x‖𝑝 = ‖Ax‖𝑝 and ‖A′x‖2 =
Θ(𝛼1/𝑝−1/2)‖Ax‖2 for all x ∈ R𝑑, and 𝜏 𝑖(A) = 𝜎2

𝑖 (A) ≤ 𝛼 and 𝜎𝑝
𝑖 (A) ≤ 𝛼 for all 𝑖 ∈ [𝑛]. Now let

A′′ :=

(︃
A′

SA

)︃

be the (𝑚1 + 𝑛S)× 𝑑 matrix formed by the vertical concatenation of A′ with SA, where 𝑛S is the number of rows sampled
by S.

Leverage Score Bounds for A′′. We will first bound the leverage scores (or ℓ2 sensitivities) of A′′. For any row 𝑖
corresponding to a row of A′, the ℓ2 sensitivities are already bounded by 𝛼, and furthermore, ℓ2 sensitivities can clearly
only decrease with row additions. For any row 𝑖 corresponding to a row of SA that is sampled with probability 𝑞𝑖 < 1, we
have that

|[SAx](𝑖)|2

‖A′′x‖22
≤ |[SAx](𝑖)|2

‖A′x‖22
=

|[SAx](𝑖)|2

Θ(𝛼2/𝑝−1)‖Ax‖22
≤ 1

𝑞
2/𝑝
𝑖

|[Ax](𝑖)|2

Θ(𝛼2/𝑝−1)‖Ax‖22
≤ 𝜏 𝑖(A)

Θ(𝛼2/𝑝−1)𝑞
2/𝑝
𝑖

= 𝑂(𝛼).

Thus, we have that 𝜏 𝑖(A
′′) = 𝜎2

𝑖 (A
′′) ≤ 𝑂(𝛼) for every row 𝑖 of A′′. By monotonicity of max sensitivity Lemma 2.2, we

also have that 𝜎𝑝
𝑖 (A) ≤ 𝑂(𝛼).

Moment Bounds on the Sampling Error. We now fix a choice of S, and define

𝐹S := sup
‖Ax‖𝑝=1

⃒⃒⃒
‖SAx‖𝑝𝑝 − 1

⃒⃒⃒
𝐺S := sup

‖A′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚2+𝑛S∑︁
𝑖=1

g𝑖|[A′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒

for g ∼ 𝒩 (0, I𝑚2+𝑛S
). Then,

‖A′′x‖𝑝𝑝 ≤ (1 + 2 + 𝐹S)‖Ax‖𝑝𝑝
so

𝐹 𝑙
S ≤ 2𝑙 sup

‖Ax‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚1+𝑛S∑︁
𝑖=1

g𝑖|[A′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 2𝑙(1 + 2 + 𝐹S)
𝑙 sup
‖A′′x‖𝑝=1

⃒⃒⃒⃒
⃒
𝑚1+𝑛S∑︁
𝑖=1

g𝑖|[A′′x](𝑖)|𝑝
⃒⃒⃒⃒
⃒
𝑙

≤ 22𝑙−1(3𝑙 + 𝐹 𝑙
S)𝐺

𝑙
S.

(10)

We then take expectations on both sides with respect to g ∼ 𝒩 (0, I𝑚2+𝑛S
), and bound the right hand side using Lemma C.8,

which gives

E
g∼𝒩 (0,I𝑚2+𝑛S

)
𝐺𝑙

S ≤ (2ℰ)𝑙 ℰ
𝒟

+𝑂(
√
𝑙𝒟)𝑙
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where ℰ is the entropy integral and 𝒟 = 4𝜎1/2 ≤ 4𝛼1/2 is the diameter by Lemma C.4. We have by Lemma C.6 that

ℰ ≤ 𝑂(𝜏1/2)

(︂
log 𝑑

2− 𝑝
+ log(𝑚1 + 𝑛S)

)︂1/2

log
𝑑𝜎

𝜏

≤ 𝑂(𝛼1/2)

(︂
log 𝑑

2− 𝑝
+ log 𝑛

)︂1/2

log 𝑑

By our choice of 𝛼 and 𝑙, we have
E

g∼𝒩 (0,I𝑚2+𝑛S
)
𝐺𝑙

S ≤ 𝜀𝑙𝛿.

Now if we take conditional expectations on both sides of (10), then we have

E[𝐹 𝑙
S] ≤ 22𝑙−1(3𝑙 +E[𝐹 𝑙

S])𝜀
𝑙𝛿 ≤ (3𝑙 +E[𝐹 𝑙

S])(4𝜀)
𝑙𝛿

which means

E[𝐹 𝑙
S] ≤

(12𝜀)𝑙𝛿

1− (4𝜀)𝑙𝛿
≤ 2(12𝜀)𝑙𝛿

for (4𝜀)𝑙𝛿 ≤ 1/2. Finally, we have by a Markov bound that 𝐹 𝑙
S ≤ 2(12𝜀)𝑙 with probability at least 1− 𝛿, which means that

𝐹S ≤ 2 · 12𝜀 = 24𝜀 with probability at least 1− 𝛿. Rescaling 𝜀 by constant factors yields the claimed sampling error bound.

Note that the expected number of rows sampled is at most

1

𝛼

𝑛∑︁
𝑖=1

𝜏 𝑖(A)𝑝/2 ≤ 1

𝛼
𝑛1−𝑝/2

(︃
𝑛∑︁

𝑖=1

𝜏 𝑖(A)

)︃𝑝/2

=
1

𝛼
𝑛1−𝑝/2𝑑𝑝/2

by Hölder’s inequality. This implies the bound on number of sampled rows by Chernoff bounds.

Finally, we show that by recursively applying Theorem D.6, we can reduce the number of rows to roughly 𝑑/𝜀4/𝑝. To bound
the size, we need to solve a recursion for an upper bound on the number of rows. This is given by the following:

Lemma D.7 (Lemma 6.12, (Musco et al., 2022)). Suppose (𝑎𝑖)
∞
𝑖=0 satisfies the recurrence 𝑎𝑖+1 = 𝜆𝑎𝑖 + 𝑏 for some 𝑏 > 0

and 𝜆 ∈ (0, 1). Then,

𝑎𝑖 =
1

1− 𝜆

(︀
𝑏− 𝜆𝑖(𝑏− (1− 𝜆)𝑎0)

)︀
.

This gives the following

Theorem D.8 (Recursive Root Leverage Score Sampling). Let A ∈ R𝑛×𝑑 and let 1 ≤ 𝑝 < 2. Let 0 < 𝜀, 𝛿 < 1. Let S
be the result of recursively applying Theorem D.6 with failure probability 𝛿/Θ(log log 𝑛) and accuracy 𝜀/Θ(log log 𝑛)
recursively until the number of rows is at most

𝑚 =
𝑑

𝜀4/𝑝
poly

(︂
log 𝑛, log

1

𝛿
, log

1

2− 𝑝

)︂
Then, with probability at least 1− 𝛿, simultaneously for all x ∈ R𝑑,

‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝.

Proof. We apply Theorem D.6 with failure probability 𝛿/Θ(log log 𝑛) and accuracy 𝜀/Θ(log log 𝑛) recursively for at most
𝑅 = 𝑂(log log 𝑛) rounds, until the number of rows is at most the claimed bound. By a union bound, we succeed at achieving
𝜀/Θ(log log 𝑛) sampling error and sampling bound on all 𝑅 rounds, that is, for any number of rows 𝑚, we reduce the
number of rows to at most

𝑚1−𝑝/2𝑑𝑝/2

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
,

1

2− 𝑝

)︂
.
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We then apply the recurrence lemma Lemma D.7 on the logarithm of the above bound, so 𝜆 = (1− 𝑝/2) and

𝑏 = log

(︂
𝑑𝑝/2

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
,

1

2− 𝑝

)︂)︂
.

Then, after 𝑖 = 𝑂(log log 𝑛) iterations, our log row count upper bound is

𝑎𝑖 = log𝑚𝑖 =
2

𝑝

(︀
𝑏− (1− 𝑝/2)𝑖(𝑏− (𝑝/2) log 𝑛)

)︀
≤ 2

𝑝

(︀
𝑏+ (1− 𝑝/2)𝑖(𝑝/2) log 𝑛

)︀
≤ 2

𝑝
(𝑏+ 1)

or

𝑚𝑖 ≤ 𝑂

(︂
𝑑𝑝/2

𝜀2
poly

(︂
log 𝑛, log

1

𝛿
,

1

2− 𝑝

)︂)︂2/𝑝

=
𝑑

𝜀4/𝑝
poly

(︂
log 𝑛, log

1

𝛿
,

1

2− 𝑝

)︂

D.4. Leverage Score + ℓ𝑝 Sensitivity Sampling, 𝑝 > 2

We start with a flattening lemma for 𝑝 > 2, which shows how to slightly flatten leverage scores while preserving ℓ𝑝 norms,
and with only a small blow up in the number of rows.

Lemma D.9 (Flattening ℓ𝑝 Sensitivities and Leverage Scores). Let A ∈ R𝑛×𝑑 and let 2 < 𝑝 < ∞. Let 𝐶 ≥ 1. Then, there
exists A′ ∈ R𝑚×𝑑 for 𝑚 ≤ (1+1/𝐶)𝑛 such that ‖Ax‖𝑝 = ‖A′x‖𝑝 and ‖A′x‖2 ≥ ‖Ax‖2 for every x ∈ R𝑑 and satisfies

max
𝑖∈[𝑚]

𝜎𝑝
𝑖 (A

′) ≤ max
𝑖∈[𝑛]

𝜎𝑝
𝑖 (A)

max
𝑖∈[𝑚]

𝜏 𝑖(A
′) ≤ (𝐶𝑑/𝑛)2/𝑝 max

𝑖∈[𝑚]
𝜏 𝑖(A

′)1−2/𝑝

S𝑝(A′) = S𝑝(A)

Proof. The idea roughly follows Lemma A.4, except that we split rows that have large leverage score, rather than rows that
have large ℓ𝑝 sensitivity. For each 𝑖 ∈ [𝑛], let 𝑘𝑖 = ⌈𝜏 𝑖(A)/(𝐶𝑑/𝑛)⌉. Then for each 𝑖 ∈ [𝑛] such that 𝑘𝑖 > 1, we replace
𝑖th row a𝑖 of A by 𝑘𝑖 copies of a𝑖/𝑘1/𝑝. Clearly, we have that ‖A′x‖𝑝 = ‖Ax‖𝑝 for every x ∈ R𝑑. Furthermore, the
number of rows added is at most∑︁

𝑖:𝜏 𝑖(A)≥𝐶𝑑/𝑛

⌈︂
𝜏 𝑖(A)

𝐶𝑑/𝑛

⌉︂
− 1 ≤

∑︁
𝑖:𝜏 𝑖(A)≥𝐶𝑑/𝑛

𝜏 𝑖(A)

𝐶𝑑/𝑛
=

𝑑

𝐶𝑑/𝑛
=

𝑛

𝐶
.

Next, note that for every x ∈ R𝑑,

𝑘𝑖 ·
⃒⃒⃒
𝑘
−2/𝑝
𝑖 [Ax](𝑖)

⃒⃒⃒2
≥ |[Ax](𝑖)|2

since 𝑘𝑖 ≥ 1, so we have that ‖A′x‖2 ≥ ‖Ax‖2. Then, for any row 𝑗 ∈ [𝑚] that is a copy of row 𝑖 ∈ [𝑛] of A, we have that

𝜏 𝑗(A
′) = sup

Ax ̸=0

|[A′x](𝑖)|2

‖A′x‖22
≤ sup

Ax ̸=0

𝑘
−2/𝑝
𝑖 |[Ax](𝑖)|2

‖Ax‖22
≤ (𝐶𝑑/𝑛)2/𝑝

𝜏 𝑖(A)2/𝑝
𝜏 𝑖(A) = (𝐶𝑑/𝑛)2/𝑝𝜏 𝑖(A)1−2/𝑝.

Finally, it is clear that the ℓ𝑝 sensitivities can only decrease and that the total ℓ𝑝 sensitivity is preserved.

Now using Lemma D.9, we first obtain a construction of a small ℓ𝑝 approximate isometry in a way analogous to Lemma D.3.

Theorem D.10 (Recursive Leverage Score + ℓ𝑝 Sensitivity Sampling). Let A ∈ R𝑛×𝑑 and 2 < 𝑝 < ∞. Let 0 < 𝜀, 𝛿 < 1.
Then, there exists an efficient algorithm producing a matrix S ∈ R𝑚×𝑛 for

𝑚 = 𝑂(𝑝2)
𝑑2/𝑝S𝑝(A)2−4/𝑝

𝜀2

(︂
log

𝑝𝑑

𝛿

)︂2

log
𝑝𝑑

𝜀
.

such that
‖SAx‖𝑝𝑝 = (1± 𝜀)‖Ax‖𝑝𝑝

for every x ∈ R𝑑 and S𝑝(A′) ≤ (1 +𝑂(𝜀))S𝑝(A).
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Proof. Our proof is almost identical to Lemma D.3, but we will use high probability versions of the results, as we will
directly use the recursive sampling procedure algorithmically. A similar algorithmic recursive sampling procedure is
considered in (Musco et al., 2022). We first replace A′ in Lemma D.3 with the matrix formed by first applying Lemma A.4
with 𝐶 = 4, and then applying Lemma D.9 with 𝐶 = 4. The resulting A′ has at most (5/4)2𝑛 = (25/16)𝑛 rows, preserves
ℓ𝑝 norms and ℓ𝑝 total sensitivity, and has

𝜎𝑝
𝑖 (A

′) ≤ 𝑂(1)
S𝑝(A)

𝑛

𝜏 𝑖(A
′) ≤ 𝑂(1)

(︂
𝑑

𝑛

)︂2/𝑝(︂
S𝑝(A)

𝑛

)︂1−2/𝑝

= 𝑂(1)
𝑑2/𝑝S𝑝(A)1−2/𝑝

𝑛

(11)

We then again consider sampling half of the rows of A′ via an ℓ𝑝 sampling matrix S with 𝑞𝑖 = 1/2. By Lemma D.1 and
Theorem C.1, we then have that

Pr

{︃
sup

‖A′x‖𝑝=1

⃒⃒⃒
‖SA′x‖𝑝𝑝 − 1

⃒⃒⃒
≤ 𝑂(𝑝𝜏1/2) · (𝜎𝑛)1/2−1/𝑝(log 𝑛)1/2 · log 𝑝2𝑑𝜎

𝜏
+ 4𝑝𝜎1/2 · 𝑧

}︃
≥ 1− 2 exp(𝑧2)

where 𝜏 is an upper bound on the leverage scores of A′ and 𝜎 is an upper bound on the ℓ𝑝 sensitivities of A′. These are
bounded by (11), and thus applying these bounds and setting 𝑧 = 𝑂(log(𝑛/𝛿)) gives

Pr

{︃
sup

‖A′x‖𝑝=1

⃒⃒⃒
‖SA′x‖𝑝𝑝 − 1

⃒⃒⃒
≤ 𝑂(𝑝)

𝑑1/𝑝S𝑝(A′)1−2/𝑝

√
𝑛

(︂
(log 𝑛)1/2 · log(𝑝𝑑) + log

log 𝑛

𝛿

)︂}︃
≥ 1− 𝛿

poly log 𝑛
.

By a union bound, the same bound holds for the first 𝑂(log 𝑛) recursive calls to our recursive sampling algorithm, up to a
different poly log 𝑛 factor in the denominator of the failure rate bound. Furthermore, by Chernoff bounds, we have that the
number 𝑛S of rows sampled by S

Pr{𝑛S ≤ (25/32)(5/4)𝑛 < 0.98𝑛} ≥ 1− exp

(︂
−1

3
· 1

16
· 25
32

𝑛

)︂
≥ 1− 𝛿

poly log 𝑛

as long as 𝑛 ≥ 𝐶 log 1
𝛿 for a sufficiently large constant 𝐶. By a union bound, the same bound also holds for the first 𝑂(log 𝑛)

recursive calls to our sampling algorithm. In this case, our sampling process terminates in at most 𝑂(log 𝑛) rounds, so both
the bound on 𝑛S and the sampling error bound hold for all 𝑂(log 𝑛) rounds.

We now apply the same reasoning as Lemma D.3 to bound the total sampling error. Let A𝑙 denote the 𝑛𝑙 × 𝑑 sampled
matrix after 𝑙 rounds of the recursive sampling procedure, and let

𝜀A𝑙
= 𝑂(𝑝)

𝑑1/𝑝S𝑝(A𝑙)
1−2/𝑝

√
𝑛𝑙

(︂
(log 𝑛𝑙)

1/2 · log(𝑝𝑑) + log
log 𝑛𝑙

𝛿

)︂
.

Then,

𝜀A𝑙+1
= 𝑂(𝑝)

𝑑1/𝑝S𝑝(A𝑙+1)
1−2/𝑝

√
𝑛𝑙+1

(︂
(log 𝑛𝑙+1)

1/2 log(𝑝𝑑) + log
log 𝑛𝑙+1

𝛿

)︂
≥ (1−𝑂(𝜀A𝑙

))𝑂(𝑝)
𝑑1/𝑝S𝑝(A𝑙)

1−2/𝑝

√
𝑛𝑙+1

(︂
(log 𝑛𝑙+1)

1/2 log(𝑝𝑑) + log
log 𝑛𝑙+1

𝛿

)︂
≥
√︂

1

0.98
(1−𝑂(𝜀A𝑙

))𝑂(𝑝)
𝑑1/𝑝S𝑝(A𝑙)

1−2/𝑝

√
𝑛𝑙

(︂
(log 𝑛𝑙)

1/2 log(𝑝𝑑) + log
log 𝑛𝑙

𝛿

)︂
≥ 101

100
· 𝜀A𝑙

so the sum of the 𝜀A𝑙
are dominated by the last 𝜀A𝑙

, up to a constant factor. Now let 𝐿 be the smallest integer 𝑙 such that
𝜀A𝑙

≤ 𝜀. Then, we have that
S𝑝(A𝐿) ≤ (1 +𝑂(𝜀))S𝑝(A)
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and thus
‖A𝐿x‖𝑝𝑝 = (1±𝑂(𝜀))‖Ax‖𝑝𝑝

for every x ∈ R𝑑. Furthermore, 𝑛𝐿 satisfies

𝜀 = 𝑂(𝑝)
𝑑1/𝑝S𝑝(A)1−2/𝑝

√
𝑛𝐿

(︂
(log 𝑛𝐿)

1/2 log(𝑝𝑑) + log
log 𝑛𝐿

𝛿

)︂
or

𝑛𝐿 = 𝑂(𝑝2)
𝑑2/𝑝S𝑝(A)2−4/𝑝

𝜀2

(︂
log

𝑝𝑑

𝛿

)︂2

log
𝑝𝑑

𝜀
.
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