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Abstract
We present an algorithm for minimizing an ob-
jective with hard-to-compute gradients by using
a related, easier-to-access function as a proxy.
Our algorithm is based on approximate proximal-
point iterations on the proxy combined with rela-
tively few stochastic gradients from the objective.
When the difference between the objective and
the proxy is δ-smooth, our algorithm guarantees
convergence at a rate matching stochastic gradi-
ent descent on a δ-smooth objective, which can
lead to substantially better sample efficiency. Our
algorithm has many potential applications in ma-
chine learning, and provides a principled means
of leveraging synthetic data, physics simulators,
mixed public and private data, and more.

1. Introduction
In many machine learning problems, it is difficult to access
the objective function, e.g., to compute its gradients for use
in training. This difficulty can come from a wide range of
sources. For example, it might be costly or time consuming
to collect labelled training examples, leading to a small
training set. In some applications, computing the gradient
of the loss might require waiting for an actual robot to
execute a policy in a physical environment, which could be
very slow. Moreover, physical execution can risk damage to
the robot or its surroundings. Finally, individuals’ data may
be subject to privacy or legal constraints, limiting access
for gradient computations. In all of these cases, we face
challenges that complicate training, and can lead to poor
performance using off-the-shelf algorithms like stochastic
gradient descent (SGD).

A natural solution to the problems above is to find a second,
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easier-to-access “proxy” function that can be used in place
of the real objective. When few samples are available, syn-
thetic data could be used to approximate the objective, or in
applications with sensitive data, we could train a generative
model using a privacy-preserving algorithm and define the
proxy using synthetic samples. To mitigate the cost and risk
of operating a physical robot, one could use a simulator that
is faster, cheaper, and safer.

Unfortunately, directly optimizing a hand-crafted proxy ob-
jective might not improve performance on the original prob-
lem, because the surrogate loss can introduce a bias. We
aim to remedy this in our work, and our main contribution
is a general algorithm that exploits curvature information
from the proxy loss in order to better optimize the objective
that we care about.

1.1. The problem

Our ultimate aim is to solve unconstrained convex optimiza-
tion problems of the form

minw∈Rd L(w) . (1)

Here, L could represent the population loss of a machine
learning model parametrized by weights w; it could also
be the training loss, or any other objective function to be
minimized. To solve (1), we use a proxy function L̂ and
stochastic gradients gk approximating ∇L(wk) and update

wk+1 ≈ argmin
w

{
L̂(w)︸ ︷︷ ︸

Proxy loss

+ ⟨gk −∇L̂(wk),w −wk⟩︸ ︷︷ ︸
Bias correction

+
1

2η
∥w −wk∥2︸ ︷︷ ︸

Regularization

}
. (2)

Thus, each iteration uses just a single stochastic gradient
from L, but requires a heavier computation based on L̂. If
we take L̂ ≡ 0 , we note that the update (2) is equivalent to
one stochastic gradient descent step

wk+1 = wk − ηgk . (3)

Therefore, SGD is a natural point of comparison for our
algorithm, and the main question is to what extent updating
using (2) (with non-zero L̂) rather than (3) is worth the
additional computational cost. We will show that when L̂
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is sufficiently “similar” to L, our algorithm’s updates, (2),
can converge to the minimum of L in substantially fewer
iterations than would be needed for SGD, (3). Accordingly,
the number of stochastic gradients from L that our algorithm
needs is less than what would be needed by SGD.

For this to work, we obviously require that L̂ somehow
resembles L, and the particular notion of similarity that we
consider is that the function h := L − L̂ is differentiable
and has δ-Lipschitz continuous gradients, which, in the
case that L and L̂ are twice-differentiable, is equivalent
to requiring that ∀w ∥∇2L(w) − ∇2L̂(w)∥op ≤ δ. This
measure, sometimes referred to as “δ-Hessian similarity”,
is common in the optimization literature (see, e.g., Mairal,
2013a; 2015; Arjevani & Shamir, 2015; Kovalev et al., 2022;
Chayti & Karimireddy, 2022). For certain problems, it can
be easy to construct a proxy that satisfies this similarity
condition for small δ. For instance, the Hessian of a least-
squares objective is simply the feature covariance matrix, so
an appropriate proxy can be defined using any estimate of
the covariance matrix that is δ-accurate in the operator norm.
In Section 3.1 we further show that for least squares and
logistic regression, proxies with δ = 0 can be constructed
without using any labels.

1.2. Our contributions

We present Algorithm 1, which substitutes cheaper accesses
to a proxy loss in place of costly accesses to the objective
itself. In Section 2.2, we prove convergence guarantees for
our algorithm in the convex and strongly convex settings,
and in Section 2.4, we show that these guarantees imply
statistical optimality as well as a dependence on the sim-
ilarity parameter, δ, in the place of other properties of L
itself, such as its potentially much larger smoothness param-
eter. On a technical level, our analysis improves over many
similar methods by allowing each iteration’s proximal-point
subproblem to be solved inexactly, with the inexactness
captured by a simple criterion that can be evaluated at the
time of execution. Furthermore, in Section 2.3 we show that
this criterion can be satisfied efficiently owing to the strong
convexity of the proximal-point subproblem’s objective. In
Section 3, we discuss potential applications of our algorithm
where the target objective is costly to access and a suitable
proxy is available. In Section 4, we conduct experiments to
show the efficacy of our algorithm in realistic problems, in-
cluding one with a non-convex objective. Finally, in Section
5, we discuss several possible extensions of our work and
we provide a preliminary analysis of our algorithm for the
non-convex setting.

1.3. Background and related work

Using a more tractable surrogate in the place of the actual tar-
get loss is a very old idea in statistics and machine learning,

and some type of surrogate is used in almost any application.
For instance, convex loss functions like the hinge or logistic
loss are often used as surrogates for the discontinuous 0-1
classification loss. This avoids the computational intractabil-
ity of minimizing the 0-1 loss (see, e.g., Arora et al., 1997),
but note that this does not per se mitigate other difficulties
with accessing the objective in the sense that we have dis-
cussed, e.g., limited access to training samples. Another
classic example is empirical risk minimization (Vapnik &
Chervonenkis, 1968) where the training loss is used as a
surrogate for the real objective, the population loss. This
more closely aligns with our motivation since it replaces the
hard-to-evaluate population loss—which is defined by an
unknown data distribution—with the training loss, which
we can directly evaluate, compute gradients of, etc.

However, both of these examples rely on i.i.d. samples from
the target distribution while our approach can exploit addi-
tional “side-information”—synthetic data, simulators, etc.—
to complement a smaller collection of i.i.d. samples. More-
over, the way in which surrogates are classically used differs
from our approach: typically, the surrogate is directly mini-
mized and the result is taken as an estimate of the minimum
of the target objective, whereas we use the proxy to facilitate
optimization using stochastic gradients from the objective
itself. As such, the classic approach relies upon minima
of the surrogate approximating minima of the target, while
our method only requires the proxy and objective to have
similar second derivatives. This is not necessarily easier to
achieve, but it is easier in certain cases (see, e.g., Section
3.1), and it is much more amenable to applications involving
synthetic data, simulators, etc., where the proxy loss could
have different minima due to idiosyncrasies of the synthetic
data or simulator.

In more closely related work, Hendrikx et al. (2020) pro-
pose an algorithm, SPAG, for a strongly convex setting,
which builds upon a previous method, DANE (Shamir et al.,
2014), and which resembles an accelerated version of Al-
gorithm 1. Their guarantees are analogous to ours up to
acceleration, however both SPAG and DANE require exact
proximal-point updates, while our algorithm and analysis
allow these updates to be inexact. Motivated by the problem
of minimizing over a subset of parameters, Parpas (2017)
assumed that the surrogate subproblem is defined over a dif-
ferent space, with projection into that space and back only
introducing a multiplicative error. In other related work,
Chayti & Karimireddy (2022) propose several algorithms
that use a surrogate for non-convex optimization, one of
which resembles a momentum variant of Algorithm 1.

Mairal (2013a; 2015) studies the “majorization-
minimization” meta-algorithm, where an upper bound on
the objective is minimized in each iteration. Our method
can be viewed as an instance of majorization-minimization
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Algorithm 1 PROXYPROX

1: Input: initialization w0 ∈ Rd, stepsize η > 0
2: for k = 0, 1, . . . ,K − 1 do
3: Sample gk such that E[gk | wk] = ∇L(wk)
4: Set wk+1 ≈ argminw φk(w) where

φk(w) := ⟨gk, w⟩+DL̂(w;wk)+
1

2η
∥w−wk∥2.

with the surrogate being used to define the upper bound
on the loss. Mairal analyzes this method under the same
δ-similarity condition that we use and prove similar
convergence rates, but the key difference between this work
and ours is that Mairal’s methods require a guaranteed
upper bound on the objective—or on components of the
objective in the case of finite sum structured problems—and
require that this upper bound be exactly minimized in each
iteration, whereas we only require an in-expectation upper
bound and allow for only approximate minimization. In
this way, our setting is more appropriate for the stochastic
optimization problems that arise in machine learning.

Finally, in the most closely related work, Mairal (2013b)
study a stochastic majorization-minimization approach
which is applicable to the stochastic optimization problems
we are interested in. However, Mairal’s approach requires a
guaranteed upper bound of the loss function evaluated on
each sample and requires that the δ-similarity bound hold
almost surely for each sample. In contrast, we only require
an in-expectation upper bound and that the δ-similarity hold
in expectation, making it easier to find a suitable surrogate.
Furthermore, our convergence guarantees have a better scal-
ing with the number of iterations, K.

2. The algorithm and its analysis
We now present our algorithm and prove convergence guar-
antees in the convex and strongly convex settings. We will
also argue that our method can provide substantially better
guarantees than SGD when L̂ is sufficiently similar to L.

2.1. Setting and notation

Throughout this paper, we will use ∥u∥ to denote the Eu-
clidean norm of the vector u. We will assume the minimum
value of L, which we denote L∗, is realized, with w∗ denot-
ing an arbitrary minimizer. We use B2 := E∥w0 −w∗∥2
as shorthand to denote the distance between the (possibly
random) initialization, w0, and this minimizer.

A function f is µ-strongly convex if for all u,v

f(v) ≥ f(u) + ⟨∇f(u), v − u⟩+ µ

2
∥u− v∥2, (4)

where, in the event that f is not differentiable, ∇f(u) de-

notes here an arbitrary subgradient of f . When this holds
for µ = 0, f is merely convex. A function f is H-smooth
if it is differentiable and ∇f is H-Lipschitz continuous or,
equivalently, for all u,v

|f(v)− f(u)− ⟨∇f(u), v − u⟩| ≤ H

2
∥u− v∥2. (5)

We define the Bregman divergence with potential ψ as

Dψ(u;v) := ψ(u)− ψ(v)− ⟨∇ψ(v), u− v⟩ . (6)

While Bregman divergences are typically defined only for
strictly convex potentials ψ, in this paper we allow ψ to be
any differentiable function with Dψ simply defined as in (6).
The key property of Bregman divergences for our purposes
is the three-point identity:1 for all u,v,w

Dψ(u;v)−Dψ(u;w)−Dψ(w;v)

= ⟨∇ψ(v)−∇ψ(w), w − u⟩ . (7)

Our algorithm relies upon two main assumptions; one which
captures the similarity between the objective L and the
proxy L̂, and one which captures the level of noise in the
stochastic gradients gk. First, we assume

Assumption 2.1. The function h := L− L̂ is differentiable
and ∇h is δ-Lipschitz continuous.

That is, we require that our proxy L̂ has similar curvature to
the objective L. In light of (5), Assumption 2.1 implies that

|Dh(u;v)| =
∣∣DL(u;v)−DL̂(u;v)

∣∣ ≤ δ

2
∥u− v∥2.

This justifies the definition of φk in Algorithm 1 because,
when δ is small

φk(w) ≈ ⟨gk, w⟩+DL(w;wk) +
1

2η
∥w −wk∥2,

which corresponds to (inexact, stochastic) proximal-point
iterations directly on the objective L, which is well-known
to have good performance (see, e.g., Barré et al., 2022).

We note that Assumption 2.1 can accommodate non-
differentiable objectives, e.g., if L(w) = ℓ(w) + ψ(w)

and L̂(w) = ℓ̂(w) + ψ(w) with ℓ and ℓ̂ differentiable, be-
cause ψ does not appear in L−L̂. In this way, our algorithm
is compatible, e.g., with non-smooth regularizers such as an
L1 penalty as long as this is incorporated into the proxy.

In addition to Assumption 2.1, we require the following:

Assumption 2.2. For each k, E[gk |wk] = ∇L(wk) and
E
[
∥gk −∇L(wk)∥2

∣∣wk

]
≤ σ2. If L is not differentiable

but convex, this holds for some subgradient in ∂L(wk).

1This does not require convexity (Chen & Teboulle, 1993,
Lemma 3.1).
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The assumption that the stochastic gradients gk are unbiased
and have bounded variance is very common in the optimiza-
tion literature (Nemirovskii & Yudin, 1983; Dekel et al.,
2012; Bubeck, 2015).

2.2. Convergence guarantees and proof sketch

We begin with our main result:

Theorem 2.3. Under Assumptions 2.1 and 2.2, let L be
µ-strongly convex and let η ≤ 1

4δ . If for each k

E∥∇φk(wk+1)∥2 ≤ µ

4η
E∥wk+1 −wk∥2 +G2,

for some G, then a geometrically weighted average of the
iterates of Algorithm 1, w̄K (see (25)), satisfies

EL(w̄K)− L∗ ≤ 5B2

8η

(
1 +

2ηµ

5

)1−K
+ 2ησ2 +

G2

µ
,

where the expectation is taken over the randomness in both
the stochastic gradients and the selection of the iterates.

A detailed proof can be found in Appendices A and B. We
start with a straightforward algebraic manipulation of ∇φk.
Recalling that h = L− L̂, we write2

∇φk(wk+1) = −∇h(wk+1) +∇h(wk) +∇L(wk+1)

+ gk −∇L(wk) +
wk+1 −wk

η
. (8)

Next, (6) implies

L(wk+1)− L∗

= ⟨∇L(wk+1), wk+1 −w∗⟩ −DL(w
∗;wk+1). (9)

Rearranging (8) allows us to express ∇L(wk+1) in terms of
∇φk(wk+1) and the other quantities, which we substitute in
the place of ∇L(wk+1) in (9). After several straightforward
algebraic manipulations, including using the three-point
identity (7), we arrive at the key identity

L(wk+1)− L∗ (10)

=
1

2η
∥wk −w∗∥2 −Dh(w

∗;wk)

− 1

2η
∥wk+1 −w∗∥2 +Dh(w

∗;wk+1)

 (Telescope)

+ ⟨∇L(wk)− gk, wk+1 −w∗⟩
}

(Noise)

+ ⟨∇φk(wk+1), wk+1 −w∗⟩
}

(Inexact)

+Dh(wk+1;wk)−
1

2η
∥wk+1 −wk∥2

−DL(w
∗;wk+1) .

}
(Cancel)

2Here, for simplicity, assume L and L̂ are differentiable, but
see Appendix A for the general case.

Although the expression looks unwieldy at first, it leads us
directly towards a strategy for analyzing Algorithm 1.

The Telescope terms resemble those typically found in the
analysis of convex optimization algorithms. In the course of
proving Theorem 2.3, we, roughly speaking, average (10)
over k, causing all but two of these terms to cancel out, and
we show that under Assumption 2.1 with η ≤ 1

4δ , their total
contribution to the error is small.

The Noise term captures the effect of using noisy gradi-
ents gk rather than ∇L(wk). Under Assumption 2.2, its
expectation is at most 2ησ2 + 1

4ηE∥wk+1 −wk∥2. Impor-
tantly, since gk is unbiased, we can bound this in terms of
∥wk+1 −wk∥ rather than ∥wk+1 −w∗∥.

The Inexact term captures the effect of only approximately
computing the proximal-point update. If we could just
set wk+1 = argminw φk(w), the Inexact term would be
zero, but this is impossible in practice. Instead, a sim-
ple application of Young’s inequality bounds this term by
1
µ∥∇φk(wk+1)∥2 + µ

4 ∥wk+1 −w∗∥2.

Nowhere above did we use any property of L besides those
implied by Assumptions 2.1 and 2.2, but to address the
Cancel terms, which we use to eliminate unwanted quanti-
ties introduced above, we finally use that in the µ-strongly
convex setting, DL(w

∗;wk+1) ≥ µ
2 ∥wk+1 − w∗∥2. So,

when wk+1 is chosen so that ∥∇φk(wk+1)∥2 is suffi-
ciently small, this allows us to cancel out everything in
Noise and Inexact except for 2ησ2, and this leaves an extra
−µ

4 ∥wk+1 − w∗∥2 to be incorporated into the Telescope
terms to generate geometric shrinkage. Here, the strong con-
vexity of L is crucially needed to cancel the dependence of
the Inexact term on ∥wk+1 −w∗∥—without strong convex-
ity, it is not immediately clear how the Inexact term can be
controlled without setting ∇φk(wk+1) = 0. Filling in the
details and using standard arguments completes the proof.

While Theorem 2.3 requires L to be µ-strongly convex, a
similar guarantee can be achieved when L is convex via
regularization:

Theorem 2.4. Under Assumptions 2.1 and 2.2, let L be
convex and let η ≤ 1

4δ . Then applying Algorithm 1 to the
regularized objectives L(µ)(w) := L(w) + µ

2 ∥w −w0∥2

and L̂(µ)(w) := L̂(w) + µ
2 ∥w −w0∥2 with µ = 1

ηK and
any η ≤ 1

4δ ensures that if for each k

E∥∇φk(wk+1)∥2 ≤ 1

4η2K
E∥wk+1 −wk∥2 +G2

for some G, then

EL
(

1

K

K∑
k=1

wk

)
− L∗ ≤ 9B2

8ηK
+ 2ησ2 + ηKG2.

The proof, which we defer to Appendix B, simply observes
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that L(µ) and L̂(µ) satisfy the conditions needed for The-
orem 2.3, with larger µ leading to faster convergence. At
the same time, when µ is small enough, optimizing L(µ) is
essentially equivalent to optimizing L itself. We conclude
by choosing µ to balance between these competing goals.

Finally, choosing η optimally in the strongly convex and
convex settings yields the following complexity guarantee,
which we prove in Appendix C:
Corollary 2.5. In the setting of Theorem 2.3, there is a
universal constant c s.t. for any ε > 0, when G2 ≤ 1

2µε and

η =
5

µ(K − 1)

(
1 + ln

(5B2µ(K − 1)

ε

))
,

then the output, ŵ, of Algorithm 1 will have suboptimality
at most EL(ŵ)− L∗ ≤ ε whenever

K ≥ c ·
(
1 +

δ

µ
+
σ2

µε

)
ln
(
e+

(µ+ δ)B2

ε
+
σ2B2

ε2

)
.

Likewise, in the setting of Theorem 2.4, there is a universal
constant c s.t. for any ε > 0, when G2 ≤ σ2

K + δ2B2

K2 and

η = min
{ 1

4δ
,

B

σ
√
K

}
,

then the output, ŵ, of Algorithm 1 will have suboptimality
at most EL(ŵ)− L∗ ≤ ε whenever

K ≥ c ·
(δB2

ε
+
σ2B2

ε2

)
.

2.3. Making ∇φk small

Theorems 2.3 and 2.4 require that each update satisfy

E∥∇φk(wk+1)∥2 ≤ µ

4η
E∥wk+1 −wk∥2 +G2,

with µ = 1
ηK in the convex setting. This is a convenient

inexactness criterion, because it consists entirely of quan-
tities that can be evaluated at the time of execution, and
similar bounds on the inaccuracy have been studied in the
context of the classic proximal-point algorithm (see, e.g.,
Rockafellar, 1976; Barré et al., 2022). Nevertheless, this
raises the question of how difficult it is to find such a wk+1.
It turns out that this can be quite easy due to the 1

η -strong
convexity of the subproblem objective φk. For example, we
could use stochastic gradient descent:
Proposition 2.6. Let L̂ be convex and H-smooth and let
stochastic gradients be available for L̂ with variance at
most ρ2. Then for constants c, c′, the output, ŵ, of

T ≥ c(1 +Hη)max
{
ln
(c′(1 +Hη)

2

µη

)
,
ρ2

G2

}
steps of SGD on φk initialized at wk satisfies

E∥∇φk(ŵ)∥2 ≤ µ

4η
∥ŵ −wk∥2 +G2.

The proof, which we defer to Appendix E, is based on
the observation that L̂ being H-smooth implies that φk is
(H+ 1

η )-smooth, so ∥∇φk(ŵ)∥2 ≤ 2(H+ 1
η )(φk(ŵ)−φ∗

k),
and plugging in the standard suboptimality guarantee for T
steps of SGD on a smooth and strongly convex objective
eventually leads to the desired bound.

There is nothing particularly special about using SGD to
compute the update wk+1. An advantage of our method is
that any algorithm for approximately minimizing φk will
suffice when L̂ is smooth, so we can exploit structure in φk
by using a specialized optimization algorithm. There are
also other, more exotic SGD variants that directly target
a solution with a small gradient norm (Allen-Zhu, 2018;
Foster et al., 2019), and can have a better dependence on ρ2.

2.4. Comparison against directly optimizing L

To get a better sense of what Theorems 2.3 and 2.4 mean,
we will compare them against what we could do by just
directly optimizing the objective L using stochastic gradi-
ents. Suppose that Assumption 2.2 holds, the objective L
is H-smooth, ∥w0 −w∗∥2 = B2, and L is either convex
or µ-strongly convex. In this case, a natural and popular
approach to minimizing L using a total of K stochastic
gradients would be to execute K steps of SGD. Ignoring
constant factors, it is well-known that this would yield an
ε-accurate solution when (Nemirovskii & Yudin, 1983)

K ≥ HB2

ε
+
σ2B2

ε2
(11)

K ≥ H

µ
ln
HB2

ε
+
σ2

µε
. (12)

Instead, given a proxy L̂ satisfying Assumption 2.1, we
could use the same number of stochastic gradients from L
to execute K steps of Algorithm 1. Ignoring constants and a
logarithmic factor in the strongly convex setting, Corollary
2.5 shows that this yields an ε-accurate solution when

K ≥ δB2

ε
+
σ2B2

ε2
(13)

K ≥ δ

µ
ln
δB2

ε
+
σ2

µε
. (14)

Comparing (11) and (12) against (13) and (14), we see that
Algorithm 1 essentially replaces SGD’s dependence on H ,
the smoothness constant of L, with δ, the smoothness con-
stant of h = L − L̂. So if a proxy L̂ can be found with
δ ≪ H , Algorithm 1 may have a much better guarantee
than SGD.

On the other hand, the second, “statistical terms” of our
guarantees match those of SGD. These statistical terms
capture information-theoretic limits to optimizing L using
only K stochastic gradients with variance σ2, and these are
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known to be unimprovable in the worst case (Nemirovskii
& Yudin, 1983), so our algorithm is statistically optimal
(up to a logarithmic factor in the strongly convex setting).
In fact, long-standing lower bounds show that obtaining an
ε-accurate solution using any algorithm that only uses K
stochastic gradients from L requires at least (Nemirovskii
& Yudin, 1983)

K ≥ HB2

√
ε

+
σ2B2

ε2

K ≥

√
H

µ
ln
HB2

ε
+
σ2

µε
.

Therefore, when δ ≤ H√
ε

in the convex setting or δ ≲
√
Hµ

in the strongly convex case, then Algorithm 1 can surpass
this lower bound by exploiting the proxy L̂ in order to
achieve a better guarantee than could be achieved by any
algorithm that only uses K stochastic gradients from L.

Although Algorithm 1 only requires one stochastic gradient
from L for each iteration, each update does require finding
an approximate stationary point of the function φk, which
is more computationally expensive than one SGD update.
That said, in the µ-strongly convex case (the conclusion is
similar in the merely convex setting), if we ignore all con-
stant and logarithmic factors, Corollary 2.5 shows that for
K := δ

µ+
σ2

µϵ ,G2 = µϵ, and η = 1
µK , Algorithm 1 will find

an O(ϵ)-approximate minimizer of L. Furthermore, Propo-
sition 2.6 (with ρ = σ) shows that the proximal subproblem
in each iteration of Algorithm 1 can be solved to sufficient
accuracy using T := K

µK + Hσ2

µ2Kϵ steps of SGD on φk.
Therefore, the total number of gradient update computations
needed to implement Algorithm 1 is TK = H

µ + H
µ · σ

2

µϵ . In
contrast, (12) implies that SGD directly on L would require
S := H

µ + σ2

µϵ gradient update computations to reach an
O(ϵ)-approximate minimizer of L.

So, SGD directly on L could be computationally cheaper
than Algorithm 1 in terms of the total number of floating
point operations needed since S < TK. However, crucially,
Algorithm 1 only requires K stochastic gradients from L
itself (the other gradients come from L̂), while SGD needs
S > K. So to summarize, executing Algorithm 1 could
require more computation than SGD on L, but it can make
up for this by using fewer stochastic gradients fromL, which
could yield significant savings when L is harder to access.

2.5. Connection to Preconditioning

A useful way to understand Algorithm 1 is to consider the
special case where the proxy L̂(w) = 1

2w
⊤Pw + b⊤w

is quadratic. In this case, exactly solving the proximal

subproblems in Algorithm 1 amounts to solving

gk +∇L̂(wk+1)−∇L̂(wk) +
1

η
(wk+1 −wk) = 0

⇐⇒ wk+1 = wk − η(I+ ηP)
−1

gk. (15)

That is, each update in Algorithm 1 amounts to a single
preconditioned SGD update with preconditioning matrix
(I+ ηP)−1. When a quadratic proxy that satisfies Assump-
tion 2.1 can be found, then these updates with a fixed pre-
conditioning matrix will be very effective at minimizing the
objective.

However, for many objectives, the Hessian ∇2L is not
constant (nor close to constant) and so it cannot be well-
approximated everywhere by a matrix P and thus any fixed
preconditioner may not be effective. In this more gen-
eral case, we can view each step of Algorithm 1 as ap-
proximating a locally preconditioned SGD update with the
preconditioning matrix (I + η∇2L̂(wk))

−1. This is be-
cause for sufficiently smooth L̂, ∇L̂(wk+1)−∇L̂(wk) ≈
∇2L̂(wk)(wk+1 −wk) so

gk +∇L̂(wk+1)−∇L̂(wk) +
1

η
(wk+1 −wk) = 0

=⇒ wk+1 ≈ wk − η(I+ η∇2L̂(wk))
−1gk. (16)

Of course, this is not a perfect correspondence, but it demon-
strates the role of L̂, which is effectively to adapt each
update along the gk direction to the local curvature of L̂.
Furthermore, when the curvature of L̂ is close enough to
that of L, this also indicates why Algorithm 1’s updates
should be more effective than SGD directly on L.

3. Applications
Algorithm 1 allows us to reduce the number of stochastic
gradients needed from the objective L by approximately
solving a sequence of strongly convex subproblems based
on L̂. Accordingly, this approach is most advantageous
when L̂ is a faithful approximation of L in the sense that δ
is small, and also when the model L̂ is more accessible than
the true objective L. This can arise in numerous situations,
and in this section we will discuss several examples.

3.1. Regression and classification with costly labels

In supervised learning, we want to train using input-label
pairs (x, y) ∼ D. Often, we can easily collect a large sam-
ple of i.i.d. inputs x1, x2, . . . , but obtaining labels for these
inputs can be much more costly. For example, labelling
whether an MRI scan contains a tumor may require consult-
ing with (and likely paying) a trained medical technician.
So, we would like to learn using as few labels as possible,
and our algorithm can provide a means of doing this.
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For inputs x ∈ Rd and labels y ∈ R, least squares regres-
sion, where L(w) = 1

2E(x,y)∼D[(w
⊤x − y)2], is one of

the main workhorses of statistical analysis. Conveniently,
the Hessian of this loss, ∇2L(w) = Ex∼Dx

[xx⊤], does
not depend on the labels y, so we can construct a proxy
L̂(w) = 1

2w
⊤Ex∼Dx

[xx⊤]w that satisfies Assumption 2.1
with δ = 0 without using any labels! Thus, we can imple-
ment Algorithm 1 using just one labelled sample (xk, yk)
per iteration to estimate gk = (w⊤xk − yk)xk, and then
approximately minimizing φk only requires x samples.

Similarly, for inputs x ∈ Rd and binary labels y ∈ {0, 1},
the logistic regression loss function is

L(w) = − E
(x,y)∼D

[
y ln s(w⊤x) + (1− y) ln(1− s(w⊤x))

]
,

where s(z) = 1/(1+exp(−z)) denotes the logistic function.
As in the previous example, the Hessian of this loss is

∇2L(w) = E
(x,y)∼D

[
s(w⊤x)(1− s(w⊤x))xx⊤

]
,

which again does not depend on the labels y. Therefore, we
can construct a proxy loss by simply assigning all points the
label y = 1 (or assigning them any arbitrary labels):

L̂(w) := − E
x∼Dx

[ln s(w⊤xn)].

This ensures ∇2L̂ = ∇2L so that Assumption 2.1 holds
with δ = 0, despite using no labels. So again, Algorithm 1
can be implemented using as little as one label per iteration,
plus sufficient x samples to approximately minimize φk.

3.2. Synthetic data, simulators, and meta-learning

In many machine learning problems of interest, it is difficult
to collect i.i.d. samples from the target distribution. For
instance, as discussed in the previous section, obtaining a
label in medical imaging applications may require a con-
sultation with a radiologist and perhaps even an additional
biopsy in difficult cases. This can make it costly and time-
consuming to obtain a large training set. To mitigate this
issue, there has been great interest in using synthetic data as
a complement to or substitute for costly samples from the
target distribution. Recent advances in generative models
like generative adversarial networks (GANs), variational au-
toencoders, diffusion models, etc. have raised the possibility
of using a small seed of real data to generate an essentially
unlimited quantity of synthetic training data. For instance,
Frid-Adar et al. (2018) used a GAN to augment a small
dataset of 182 CT scans of liver lesions, which allowed
them to train a classifier with better performance. Similarly,
meta-learning (Hospedales et al., 2022), multitask learning
(Zhang & Yang, 2021), and transfer learning (Weiss et al.,
2016) are all efforts to improve performance on a given task
by leveraging data collected for other, related tasks. For

example, when learning to classify images of giraffes, it
is common to use another image dataset like ImageNet for
pretraining or joint training—even though ImageNet does
not contain labelled images of giraffes.

In addition to possible difficulties in obtaining the training
data, evaluating the loss or its gradient can be expensive. In
robotics, evaluating the reward achieved by a given policy
might require waiting for a physical robot to execute the
policy for a period of time, and waiting seconds or minutes
for each function or gradient evaluation can greatly slow
training. In addition, training something like a self-driving
car in the real world carries the risk of damaging the vehicle
or injuring pedestrians. As a result, it is very common
to use simulators like MuJoCo (Todorov et al., 2012) and
the OpenAI Gym (Brockman et al., 2016), which make it
possible to train models in a virtual environment, allowing
for faster, risk-free processing.

Synthetic data and simulators are often used to define a
surrogate loss function that is directly minimized to train
the model. In meta-learning, multitask learning, or trans-
fer learning, other tasks are usually used as a prior that
biases training towards models that also perform well on
all tasks simultaneously. Therefore, all of these approaches
will only work to the extent that the minima of the surro-
gate losses correspond to minima of the target loss L itself.
Indeed, recent work has cast some doubt on the utility of,
e.g., ImageNet pretraining (He et al., 2019; Kornblith et al.,
2019) and robots trained on simulators frequently general-
ize poorly to the real world (Zhao et al., 2020), presumably
because these surrogates can bias the model towards worse
solutions. In contrast, our approach does not rely on min-
ima of the proxy having any particular correspondence with
those of the target; instead, we use the curvature of the proxy
to speed up optimization of the objective itself.

3.3. Learning with public and private data

Another natural setting where our algorithm could be useful
is when the objective L is based on private data. One ap-
proach to learning from this data while maintaining rigorous
privacy guarantees is to use a differentially private algorithm
to generate a synthetic dataset, which could then be used
freely as described in the previous section (see, e.g., Amin
et al., 2019; Bowen & Snoke, 2021)

Our method might also be useful when a stock of non-private
data is be available in addition to the sensitive data. For ex-
ample, some patients could elect to provide their medical
data to researchers without restriction, while others only do
so on the condition that their privacy is rigorously protected.
Similarly, different individuals may be subject to different
regulatory regimes—data from E.U. residents must be used
in accordance with more stringent GDPR rules that do not
apply to, e.g., US residents. In these cases, one could use
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just the non-private data to learn, and avoid the trouble of
using the protected data, but this could be suboptimal if a
large fraction of the total data is private. Instead, we could
use the non-private data to define L̂ while using a privacy-
preserving mechanism to compute stochastic gradients of
L from the protected samples (Dwork et al., 2014). When
the private and non-private samples have similar distribu-
tions, we would expect Assumption 2.1 to hold with small
δ, meaning that relatively few iterations of Algorithm 1 will
be needed to achieve low error, and therefore the private
data would need to be accessed fewer times. Since privacy
guarantees degrade with the number of accesses, this could
allow for better performance and better privacy guarantees
than would be possible using the private data alone.

3.4. Handling distribution shifts

Often, we would like to learn in the face of distribution
shift—a situation where the training distribution differs from
the test distribution. For example, the distribution of inputs
and outputs could be changing over time, and the training
set is collected today and then the model is deployed tomor-
row. In recent work, Lazaridou et al. (2021) argue that the
performance of neural language models can degrade over
time for this very reason. To keep a model up-to-date, one
could periodically collect a new dataset and train a whole
new model. However, collecting a large enough quantity
of high-quality data could be expensive and time consum-
ing, and it would be better to take advantage of the older
data that is already available. To apply our algorithm, we
could have L be the loss on the current data distribution,
while out-of-date data could be used to define L̂. As long
as the distribution shift is not too dramatic, we could expect
Assumption 2.1 to hold with a relatively small δ, and so to
implement our method, only a small amount of new data
would needed.

Distribution shifts can also arise when the training distri-
bution is stationary but biased. For example, survey data
is often affected by selection, acquiescence, or social desir-
ability biases which can lead to differences between survey
results and reality. Relatedly, when learning from a data
source in which one group or class is rare, we may up-
weight the loss on the rare group in order to prevent the
model from learning to ignore it, which corresponds to tar-
geting a test distribution where that group’s prevalence is
higher. In either case, our algorithm could be applied as
described above using relatively few unbiased samples.

4. Experiments
To exhibit the effectiveness of our method in practice, we
conducted several experiments on realistic problems.

Logistic regression: First, we consider a simple binary

logistic regression problem with the ‘mushrooms’ dataset,
which consists of 8124 samples of dimension 112. In this
experiment, the objective L is the logistic regression loss
evaluated on the training data plus an ℓ2 regularizer with
weight µ = 10−6H , where H is the smoothness parameter
of the objective. Stochastic gradients for L are calculated
by evaluating the gradient on a minibatches of size 256
or 1024 drawn uniformly with replacement. To simulate
a situation where labels are hard to come by as discussed
in Section 3.1, we define the proxy L̂ by assigning random
labels to the input features. The results, depicted in Figure
1, show that our method PROXYPROX has competitive per-
formance compared with performing SGD directly on the
objective. We are also competitive with the AUXMOM and
AUXMVR algorithms proposed by Chayti & Karimireddy
(2022), which are momentum and variance-reduced ana-
logues of PROXYPROX. In Figure 1, the x-axis counts how
many stochastic gradients from L have been used by each
method, so this comparison holds constant the amount of ac-
cess to L, although the computational cost of PROXYPROX,
AUXMOM and AUXMVR is higher due to the approximate
proximal-point updates in each iteration. We approximately
solve each of the φk subproblems using gradient descent.
For each algorithm in the experiment, we selected hyper-
parameters like η using grid search to minimize the loss
after 250 steps and ran the best option for the full 1000 iter-
ations. We set AUXMOM and AUXMVR’s a = 0.1, which
corresponds to the standard momentum setting of 0.9.

ResNet-18: In this experiment, summarized in Figure 2, we
train a ResNet-18 network on CIFAR-10, defining L̂ using
a 2560 subset of the images, and using the full train dataset
of 50000 images for L. While L corresponds to the training
loss, we also plot the test loss to show that our method does
not overfit. We compare running our method with either
20 and 40 iterations of SGD (equivalent to 1 epoch and 2
epochs on the L̂ data) to approximately minimize φk, with
the stepsize tuned by grid search and ultimately set to 0.01.
Figure 2 indicates that a single pass over the subsampled
data seems sufficient to minimize φk. We use minibatch size
of 128 for both gk and the SGD updates to minimize φk.
Our method can be better than ADAMW for the first ∼ 25
epochs, and it improves more convincingly over SGD. We
use standard stepsizes: 0.1 for SGD, 0.001 for ADAMW,
and weight decay of 0.1 for ADAMW, which gave the best
test accuracy in a grid search, and all methods also used
cosine annealing. We note that just training on L̂ using
SGD plateaus at test accuracy 65 after just a few passes, so,
our method’s improvement is indeed coming from using L̂
jointly with L.
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Figure 1. Binary logistic regression on ‘mushrooms’. Left: batch size 1024; middle: batch size 256; right: performance of PROXYPROX

with L̂ subsampled from L, stochastic gradients of L computed with batch size 256.
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Figure 2. CIFAR-10 experiment. Left: the train loss, L; middle: the test accuracy; right: ∥∇φk(wk+1)∥ after optimizing φk with 20 or
40 SGD steps. The x-axis represents the number of passes over the full dataset defining L.

5. Open problems and future directions
In the convex setting, we show in Section 2.2 that under
Assumptions 2.1 and 2.2, Algorithm 1 can take advantage of
the proxy to achieve a convergence rate comparable to SGD
on a δ-smooth function—despite the fact that L may not
be smooth, and even if it is smooth, its smoothness param-
eter may be much larger than δ. However, the complexity
guarantees in Corollary 2.5 require knowledge of problem
parameters, including δ which may be hard to estimate in
practice. In future work, it may therefore be useful to ex-
plore whether similar performance could be achieved using
a method that is adaptive to unknown problem parameters.
Also, the uniform bound on the stochastic gradient variance
in Assumption 2.2 can be unrealistic, and in other contexts
it can be possible to show similar results under the weaker
assumption that the gradient variance is bounded only at w∗

(Bach & Moulines, 2011; Dragomir et al., 2021).

Going beyond the convex setting is also important in ma-
chine learning, where many models used in practice, like
neural networks, give rise to non-convex training objectives.
Conceptually, the idea of using the proxy L̂ to guide opti-
mization of the objective L seems sound even when these
functions are non-convex, and our CIFAR-10 experiment
shows that it can work well. However, there is still work
to do in proving theoretical guarantees. We can show that
Algorithm 1 converges to the vicinity of a stationary point:

Theorem 5.1. Under Assumptions 2.1 and 2.2, with L dif-

ferentiable but potentially non-convex, let η ≤ 1
4δ . If

E∥φk(wk+1)∥2 ≤ 7

16η2
E∥wk+1−wk∥2+

1

8
∥∇L(wk+1)∥2,

and Eφk(wk+1) ≤ Eφk(wk) for each k, then

1

K

K∑
k=1

E∥∇L(wk)∥2 ≤ 48(L(w0)− L∗)

ηK
+ 8σ2.

We prove this in Appendix D. Taking η = 1
4δ , this first

term becomes O(δ(L(w0) − L∗)/K), which matches the
rate of gradient descent on a δ-smooth objective, paralleling
our results in the convex setting. However, the noise term
remains Ω(σ2) regardless of η or K. It is not clear whether
this is merely a shortcoming in our analysis, or if this actu-
ally reflects the worst case performance of Algorithm 1. To
our knowledge, a satisfying analysis of stochastic proximal-
point methods in the non-convex setting is lacking more
generally, so this situation may not be unique to our method.
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A. Proof of Theorem 2.3
Our analysis requires that h = L− L̂ be differentiable under Assumption 2.1, but when L is convex, it is not necessary for
L itself to be differentiable. In particular, Assumption 2.2 requires that the expectation of each stochastic gradient gk must
be a subgradient of L at wk. Accordingly, in the following proofs, we will use ∇L(wk) := E[gk |wk] as notation to denote
the particular subgradient corresponding to the expectation of gk. Since h = L− L̂ is differentiable, we can use this, in
turn, to define ∇L̂(wk) := ∇L(wk)−∇h(wk). Finally, since 0 ∈ ∂L(w∗), we denote ∇L(w∗) := 0 even when L is not
differentiable at its minimizer.

Lemma A.1. Let w∗ ∈ argminw L(w) and η ≤ 1
4δ . Then under Assumptions 2.1 and 2.2, for any wk+1,wk

E[L(wk+1)− L∗] ≤ 1

2η
E∥wk −w∗∥2 − EDh(w

∗;wk)

− 1

2η
E∥wk+1 −w∗∥2 + EDh(w

∗;wk+1)

+ E ⟨∇φk(wk+1), wk+1 −w∗⟩+ 2ησ2

− 1

4η
E∥wk+1 −wk∥2 − EDL(w

∗;wk+1),

where the expectation is taken over the randomness in gk.

Proof. Computing ∇φk and rearranging yields

∇φk(wk+1) = ∇L̂(wk+1) + gk −∇L̂(wk) +
1

η
(wk+1 −wk)

=⇒ ∇L(wk+1) = ∇h(wk+1)−∇h(wk) +∇φk(wk+1) +∇L(wk)− gk −
1

η
(wk+1 −wk). (17)

Also, (6) immediately implies

L(wk+1)− L∗ = ⟨∇L(wk+1), wk+1 −w∗⟩ −DL(w
∗;wk+1). (18)

After substituting (17) into (18), we derive

L(wk+1)− L∗

= ⟨∇L(wk+1), wk+1 −w∗⟩ −DL(w
∗;wk+1)

=

〈
∇h(wk+1)−∇h(wk) +∇φk(wk+1) +∇L(wk)− gk +

1

η
(wk −wk+1), wk+1 −w∗

〉
−DL(w

∗;wk+1)

= Dh(w
∗;wk+1)−Dh(w

∗;wk) +Dh(wk+1;wk) + ⟨∇φk(wk+1) +∇L(wk)− gk, wk+1 −w∗⟩

+
1

2η
∥wk −w∗∥2 − 1

2η
∥wk+1 −w∗∥2 − 1

2η
∥wk+1 −wk∥2 −DL(w

∗;wk+1), (19)

where the third equality uses the three-point property with Dh, (7). To proceed, Assumption 2.2, Young’s inequality, and
η ≤ 1

4δ , together imply

E ⟨∇L(wk)− gk, wk+1 −w∗⟩ = E ⟨∇L(wk)− gk, wk+1 −wk⟩

≤ ηE∥∇L(wk)− gk∥2

1− 2ηδ
+

1− 2ηδ

4η
∥wk+1 −wk∥2

≤ 2ησ2 +
1− 2ηδ

4η
∥wk+1 −wk∥2,

where the expectation is taken over the randomness in gk. Since h is δ-smooth, in light of (5), |Dh(w;wk)| ≤ δ
2∥w−wk∥2,

so
E[Dh(wk+1;wk) + ⟨∇L(wk)− gk, wk+1 −w∗⟩] ≤ 2ησ2 +

1

4η
E∥wk+1 −wk∥2.

Taking the expectation of (19) and plugging this in completes the proof.
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Theorem 2.3. Under Assumptions 2.1 and 2.2, let L be µ-strongly convex and let η ≤ 1
4δ . If for each k

E∥∇φk(wk+1)∥2 ≤ µ

4η
E∥wk+1 −wk∥2 +G2,

for some G, then a geometrically weighted average of the iterates of Algorithm 1, w̄K (see (25)), satisfies

EL(w̄K)− L∗ ≤ 5B2

8η

(
1 +

2ηµ

5

)1−K
+ 2ησ2 +

G2

µ
,

where the expectation is taken over the randomness in both the stochastic gradients and the selection of the iterates.

Proof. For brevity, denote ∆k := 1
2η∥wk −w∗∥2 −Dh(w

∗;wk). Because L is strongly convex, it follows immediately
from (4) and (6) that DL(w

∗;wk+1) ≥ µ
2 ∥wk+1 −w∗∥2. Also, in light of (5), it follows under Assumption 2.1 that

|Dh(w
∗;wk+1)| ≤

δ

2
∥wk+1 −w∗∥2 ≤ 1

8η
∥wk+1 −w∗∥2.

This implies that

0 ≤ ∆k+1 ≤ 5

8η
∥wk+1 −w∗∥2 ≤ 5

4ηµ
DL(w

∗;wk+1).

Therefore, by Lemma A.1 and Young’s inequality

E[L(wk+1)− L∗]

≤ E∆k − E∆k+1 + 2ησ2 + E ⟨∇φk(wk+1), wk+1 −w∗⟩ − 1

4η
E∥wk+1 −wk∥2 − EDL(w

∗;wk+1)

≤ E∆k −
(
1 +

2ηµ

5

)
E∆k+1 + 2ησ2 + E ⟨∇φk(wk+1), wk+1 −w∗⟩ − 1

4η
E∥wk+1 −wk∥2 −

µ

4
E∥wk+1 −w∗∥2.

(20)

So by Young’s inequality and the assumed upper bound

∥∇φk(wk+1)∥2 ≤ µ

4η
E∥wk+1 −wk∥2 +G2 (21)

we conclude

E ⟨∇φk(wk+1), wk+1 −w∗⟩ ≤ 1

µ
E∥∇φk(wk+1)∥+

µ

4
E∥wk+1 −w∗∥2 (22)

≤ 1

4η
E∥wk+1 −wk∥2 +

µ

4
E∥wk+1 −w∗∥2 + G2

µ
. (23)

Plugging this into (20) yields

E[L(wk+1)− L∗] ≤ E∆k −
(
1 +

2ηµ

5

)
E∆k+1 + 2ησ2 +

G2

µ
. (24)

As is typical in strongly convex stochastic optimization, we now introduce weights αk = (1 + 2ηµ
5 )k−1 (see Section 5

in Nesterov & Vial, 2008, for a similar weighting) with sum AK :=
∑K
k=1 αk and we will attempt to upper bound the

suboptimality of the weighted iterate

w̄K :=
1

AK

K∑
k=1

αkwk. (25)

13
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By the convexity of L and (24),

EL(w̄K)− L∗ ≤ 1

AK

K∑
k=1

αkE[L(wk)− L∗]

≤ E∆0

AK
+ 2ησ2 +

G2

µ

≤ 5E∥w0 −w∗∥2

8ηAK
+ 2ησ2 +

G2

µ
.

Finally, we lower bound

AK =
5
((
1 + 2ηµ

5

)
K − 1

)
2ηµ

≥
(
1 +

2ηµ

5

)K−1

,

which completes the proof.

B. Proof of Theorem 2.4
Theorem 2.4. Under Assumptions 2.1 and 2.2, let L be convex and let η ≤ 1

4δ . Then applying Algorithm 1 to the regularized
objectives L(µ)(w) := L(w)+ µ

2 ∥w−w0∥2 and L̂(µ)(w) := L̂(w)+ µ
2 ∥w−w0∥2 with µ = 1

ηK and any η ≤ 1
4δ ensures

that if for each k

E∥∇φk(wk+1)∥2 ≤ 1

4η2K
E∥wk+1 −wk∥2 +G2

for some G, then

EL
(

1

K

K∑
k=1

wk

)
− L∗ ≤ 9B2

8ηK
+ 2ησ2 + ηKG2.

Proof. By construction, L(µ) is µ-strongly convex, and yet L(µ)− L̂(µ) = h, so this difference remains δ-smooth. Therefore,
our analysis from Theorem 2.3 can be applied to L(µ). Denote w∗

µ := argminw L
(µ)(w). In the course of proving Theorem

2.3, we showed in (24) that

E[L(µ)(wk+1)− L(µ)∗] ≤ E∆k −
(
1 +

2ηµ

5

)
E∆k+1 + 2ησ2 +

G2

µ

≤ E∆k − E∆k+1 + 2ησ2 +
G2

µ
,

where ∆k := 1
2η∥wk − w∗

µ∥2 − Dh(w
∗
µ;wk) and 0 ≤ ∆k ≤ 5

8η∥wk − w∗
µ∥2 for all k. Furthermore, L(µ)(wk+1) ≥

L(wk+1) and

L(µ)∗ ≤ L(µ)(w∗) = L∗ +
µ

2
∥w0 −w∗∥2.

Therefore, by the convexity of L

EL

(
1

K

K∑
k=1

wk

)
− L∗ ≤ 1

K

K∑
k=1

E[L(wk)− L∗]

≤ 1

K

K∑
k=1

E
[
L(µ)(wk)− L(µ)∗ +

µ

2
∥w0 −w∗∥2

]
≤ E∆0

K
+ 2ησ2 +

G2

µ
+
µ

2
E∥w0 −w∗∥2. (26)

Finally,
0 = ∇L(µ)(w∗

µ) = ∇L(w∗
µ) + µ(w∗

µ −w0),

14
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so, ∥∥w0 −w∗
µ

∥∥2 − ∥w0 −w∗∥2 = −
∥∥w∗ −w∗

µ

∥∥2 + 2
〈
w0 −w∗

µ, w
∗ −w∗

µ

〉
= −

∥∥w∗ −w∗
µ

∥∥2 − 2

µ

〈
∇L(w∗

µ), w
∗
µ −w∗〉

≤ 0.

where for the last line we used the convexity of L. So,

∆0 ≤ 5

8η
∥w0 −w∗

µ∥2 ≤ 5

8η
∥w0 −w∗∥2.

When combined with (26), this means

EL

(
1

K

K∑
k=1

wk

)
− L∗ ≤ 5E∥w0 −w∗∥2

8ηK
+ 2ησ2 +

G2

µ
+
µ

2
E∥w0 −w∗∥2,

and plugging in our choice of µ = 1
ηK completes the proof.

C. Proof of Corollary 2.5
Corollary 2.5. In the setting of Theorem 2.3, there is a universal constant c s.t. for any ε > 0, when G2 ≤ 1

2µε and

η =
5

µ(K − 1)

(
1 + ln

(5B2µ(K − 1)

ε

))
,

then the output, ŵ, of Algorithm 1 will have suboptimality at most EL(ŵ)− L∗ ≤ ε whenever

K ≥ c ·
(
1 +

δ

µ
+
σ2

µε

)
ln
(
e+

(µ+ δ)B2

ε
+
σ2B2

ε2

)
.

Likewise, in the setting of Theorem 2.4, there is a universal constant c s.t. for any ε > 0, when G2 ≤ σ2

K + δ2B2

K2 and

η = min
{ 1

4δ
,

B

σ
√
K

}
,

then the output, ŵ, of Algorithm 1 will have suboptimality at most EL(ŵ)− L∗ ≤ ε whenever

K ≥ c ·
(δB2

ε
+
σ2B2

ε2

)
.

Proof. The complexity guarantee in the convex case follows immediately after plugging the chosen η into the guarantee of
Theorem 2.4 and then choosing K large enough that the expected suboptimality is less than ε.

Moving on to the strongly convex setting, to apply Theorem 2.3, we require η ≤ 1
4δ . Suppose for now that η also satisfies

η ≥ 1

2µ(K − 1)
.

Then the first term in the guarantee from Theorem 2.3 is at most

5B2

8η

(
1 +

2ηµ

5

)1−K

≤ 5B2µ(K − 1)

4

(
1 +

2ηµ

5

)1−K

.

Next, we note that for g(z) = ln(1 + z), and any z ≥ 0

g′(z) =
1

1 + z
= 1− z

1 + z
≥ 1− z.

15
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Therefore, for z ≥ 0

ln(1 + z) =

∫ z

0

g′(t)dt ≥
∫ z

0

(1− t)dt = z − 1

2
z2.

Thus, (
1 +

2ηµ

5

)1−K

= exp

(
−(K − 1) ln

(
1 +

2ηµ

5

))
≤ exp

(
−2(K − 1)ηµ

5

(
1− ηµ

5

))
therefore, as long as we choose η ≤ 5

2µ , then it follows that

5B2

8η

(
1 +

2ηµ

5

)1−K

≤ 5B2µ(K − 1)

4
exp

(
− (K − 1)ηµ

5

)
.

Therefore, if all of the following constraints on η are satisfied:

η ≤ 1

4δ
(27)

η ≤ 5

2µ
(28)

η ≥ 1

2µ(K − 1)
(29)

η ≥ 5

µ(K − 1)
ln

(
5B2µ(K − 1)

4ε

)
(30)

then this first term in the guarantee from Theorem 2.3 is upper bounded by ε. We therefore set

η =
5

µ(K − 1)

(
1 + ln

(
5B2µ(K − 1)

4ε

))
. (31)

This value always satisfies (29) and (30), and we will proceed to choose K large enough that it also satisfies (27) and (28).
In particular, we require K such that

K ≥ 1 + 2max

{
1,

10δ

µ

}(
1 + ln

(
5B2µ(K − 1)

4ε

))
. (32)

Plugging the stepsize (31) into the second term of the guarantee from Theorem 2.3 yields

2ησ2 =
10σ2

µ(K − 1)

(
1 + ln

(
5B2µ(K − 1)

4ε

))
.

So, to make this smaller than ε, we require

K ≥ 1 +
10σ2

µε

(
1 + ln

(
5B2µ(K − 1)

4ε

))
.

Combining this with (32), we conclude that with η set according to (31), if

K ≥ 10max

{
1,
δ

µ
,
σ2

µε

}(
1 + ln

(
5B2µK

4ε

))
(33)

and, in addition G ≤ √
µε, then the expected suboptimality is at most 3ε, so using ε′ = ε/3 instead above ensures accuracy

ε.

To conclude the proof, we note for A,B > 0, the inequality

X ≥ A(1 + ln(BX))

is satisfied by setting
X ≥ A(1 + 4 ln(e+AB)).

16



Two Losses Are Better Than One: Faster Optimization Using a Cheaper Proxy

To show this, we first note that because z 7→
√
z is a concave function on z > 0, we have the inequality

√
z ≤

√
1 + (z − 1)

(
d

dz

√
z

∣∣∣∣
z=1

)
= 1 +

z − 1

2
=

1 + z

2
.

This implies that for z > 0
d

dz

√
z =

1

2
√
z
≥ 1

1 + z
=

d

dz
ln(1 + z), (34)

Finally, since
√
0 = ln(1 + 0), this implies that ln(1 + z) ≤

√
z for all z ≥ 0.

So, suppose that
X = αA(1 + 4 ln(e+AB)). (35)

for some α ≥ 1. Then,

A(1 + ln(BX)) = A(1 + ln(α) + ln(AB) + ln(1 + 4 ln(e+AB)))

≤ A(1 + ln(α) + ln(e+AB) +
√
4 ln(e+AB))

≤ A(1 + ln(α) + 3 ln(e+AB))

≤ 1

α
X + ln(c)A

≤ 1 + ln(α)

α
X

≤ X,

where we used that 1 + ln(α) ≤ α for all α ≥ 1.

Therefore, for a sufficiently large constant c, setting

K = c ·
(
1 +

δ

µ
+
σ2

µε

)
ln

(
e+

(
1 +

δ

µ
+
σ2

µε

)
µE∥w0 −w∗∥2

ε

)
satisfies (33), completing the proof.

D. Proof of Theorem 5.1
Lemma D.1. Under Assumptions 2.1 and 2.2, let η ≤ 1

4δ . Then for any w such that Eφk(w) ≤ Eφk(wk),

E[L(w)− L(wk)] ≤ − 1

4η
E∥w −wk∥2 + 2ησ2.

Proof. Under Assumption 2.1, h = L− L̂ is δ-smooth. So,

L(w)− L̂(w) ≤ L(wk)− L̂(wk) +
δ

2
∥w −wk∥2 +

〈
∇L(wk)−∇L̂(wk), w −wk

〉
.

Rearranging and substituting φk, this implies

L(w)− L(wk) ≤ φk(w)− φk(wk)−
1− ηδ

2η
∥w −wk∥2 + ⟨∇L(wk)− gk, w −wk⟩ .

Next we use Young’s inequality with Assumption 2.2 to upper bound

E ⟨∇L(wk)− gk, w −wk⟩ ≤
ηE∥∇L(wk)− gk∥2

1− 2ηδ
+

1− 2ηδ

4η
E∥w −wk∥2 ≤ ησ2

1− 2ηδ
+

1− 2ηδ

4η
E∥w −wk∥2.

The fact that η ≤ 1
4δ and Eφk(w) ≤ Eφk(wk) completes the proof.
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Lemma D.2. Under Assumptions 2.1 and 2.2, let L be differentiable and let η ≤ 1
4δ . If wk+1 satisfies

E∥φk(wk+1)∥2 ≤ 7

16η2
E∥wk+1 −wk∥2 +

1

8
∥∇L(wk+1)∥2

then

− 1

4η
∥wk+1 −wk∥2 ≤ − η

48
E∥∇L(wk+1)∥2 +

ησ2

6
.

Proof. By the relaxed triangle inequality, for any vectors a, b, c, d,

∥a∥2 = ∥a+ b+ c+ d− b− c− d∥2 ≤ 4(∥a+ b+ c+ d∥2 + ∥b∥2 + ∥c∥2 + ∥d∥2). (36)

Furthermore,

∇φk(wk+1) = ∇L̂(wk+1)−∇L(wk+1)−∇L̂(wk)+∇L(wk)+gk−∇L(wk)+∇L(wk+1)+
1

η
(wk+1−wk). (37)

So (36) with

a = ∇L(wk+1)

b = −∇φk(wk+1)

c = ∇L̂(wk+1)−∇L(wk+1)−∇L̂(wk) +∇L(wk)

d = gk −∇L(wk)

so a+ b+ c+ d = 1
η (wk −wk+1), implies that under Assumptions 2.1 and 2.2

1

η2
∥w −wk∥2

≥ 1

4
E∥∇L(w)∥2 − E∥∇φk(w)∥2 − E∥gk −∇L(wk)∥2 − E∥∇L̂(w)−∇L(w)−∇L̂(wk) +∇L(wk)∥2

≥ 1

4
E∥∇L(w)∥2 − E∥∇φk(w)∥2 − δ2E∥w −wk∥2 − σ2

≥ 1

8
E∥∇L(w)∥2 − 1

2η2
E∥w −wk∥2 − σ2,

where we used the upper bound on E∥∇φk(w)∥2 and the fact that η ≤ 1
4δ . Rearranging completes the proof.

Theorem 5.1. Under Assumptions 2.1 and 2.2, with L differentiable but potentially non-convex, let η ≤ 1
4δ . If

E∥φk(wk+1)∥2 ≤ 7

16η2
E∥wk+1 −wk∥2 +

1

8
∥∇L(wk+1)∥2,

and Eφk(wk+1) ≤ Eφk(wk) for each k, then

1

K

K∑
k=1

E∥∇L(wk)∥2 ≤ 48(L(w0)− L∗)

ηK
+ 8σ2.

Proof. By Lemmas D.1 and D.2

E[L(wk+1)− L(wk)] ≤ − 1

4η
E∥wk+1 −wk∥2 + 2ησ2 ≤ − η

48
E∥∇L(wk+1)∥2 +

ησ2

6
. (38)

Therefore, rearranging and averaging over k yields

1

K

K∑
k=1

E∥∇L(wk)∥2 ≤ 48(L(w0)− L(wK))

ηK
+ 8σ2 ≤ 48(L(w0)− L∗)

ηK
+ 8σ2 (39)

which completes the proof.
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E. Proof of Proposition 2.6
Proposition 2.6. Let L̂ be convex and H-smooth and let stochastic gradients be available for L̂ with variance at most ρ2.
Then for constants c, c′, the output, ŵ, of

T ≥ c(1 +Hη)max
{
ln
(c′(1 +Hη)

2

µη

)
,
ρ2

G2

}
steps of SGD on φk initialized at wk satisfies

E∥∇φk(ŵ)∥2 ≤ µ

4η
∥ŵ −wk∥2 +G2.

Proof. Since φk(w) = L̂(w) + 1
2η∥w−wk∥2 up to an additional affine term, it is easy to see that φk is 1

η -strongly convex
and (H + 1

η )-smooth. Therefore, for any w

∥∇φk(w)∥2 ≤ 2

(
H +

1

η

)
(φk(w)− φk(w

∗
φ)), (40)

where w∗
φ = argminw φk(w). In addition, the output, ŵ, of SGD on φk using the optimal stepsize and initialized at wk is,

for universal constants c, c′ ≥ 1 (Nemirovskii & Yudin, 1983)

E[φk(ŵ)− φk(w
∗
φ)] ≤ c

(
H +

1

η

)
∥wk −w∗

φ∥2 exp
(
− T

c′(1 +Hη)

)
+
cηρ2

T
. (41)

So, by the relaxed triangle inequality and the strong convexity of φk∥∥wk −w∗
φ

∥∥2 ≤ 2∥ŵ −wk∥2 + 2
∥∥ŵ −w∗

φ

∥∥2 (42)

≤ 2∥ŵ −wk∥2 + 4η
(
φk(ŵ)− φk(w

∗
φ)
)

(43)

≤ 2∥ŵ −wk∥2 +
4cη2ρ2

T
+ 4c(1 +Hη) exp

(
− T

c′(1 +Hη)

)
∥wk −w∗

φ∥2. (44)

Therefore, if
T ≥ c′(1 +Hη) ln(8c(1 +Hη)) (45)

then ∥∥wk −w∗
φ

∥∥2 ≤ 4∥ŵ −wk∥2 +
8cη2ρ2

T
, (46)

and thus

∥∇φk(ŵ)∥2 ≤ 2

(
H +

1

η

)
(φk(ŵ)− φk(w

∗
φ)) (47)

≤ 2c

(
H +

1

η

)2

exp

(
− T

c′(1 +Hη)

)
∥wk −w∗

φ∥2 +
2c(1 +Hη)ρ2

T
(48)

≤ 2c

(
H +

1

η

)2

exp

(
− T

c′(1 +Hη)

)(
4∥ŵ −wk∥2 +

8cη2ρ2

T

)
+

2c(1 +Hη)ρ2

T
(49)

≤ 8c

(
H +

1

η

)2

exp

(
− T

c′(1 +Hη)

)
∥ŵ −wk∥2 +

4c(1 +Hη)ρ2

T
. (50)

Therefore, choosing

T ≥ max

{
c′(1 +Hη) ln

(
32c(1 +Hη)

2

µη

)
,
4c(1 +Hη)ρ2

G2

}
(51)

ensures that
∥∇φk(ŵ)∥2 ≤ µ

4η
∥ŵ −wk∥2 +G2. (52)
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Finally, we note that our choice of T (51) satisfies the condition (45) because L̂ being H smooth implies that L is
(H + δ)-smooth and therefore

µ ≤ H + δ ≤ H +
1

η
=⇒ 1 +Hη

ηµ
≥ 1.
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