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Abstract
Explainability methods for NLP systems en-
counter a version of the fundamental problem of
causal inference: for a given ground-truth input
text, we never truly observe the counterfactual
texts necessary for isolating the causal effects of
model representations on outputs. In response,
many explainability methods make no use of coun-
terfactual texts, assuming they will be unavail-
able. In this paper, we show that robust causal
explainability methods can be created using ap-
proximate counterfactuals, which can be written
by humans to approximate a specific counterfac-
tual or simply sampled using metadata-guided
heuristics. The core of our proposal is the Causal
Proxy Model (CPM). A CPM explains a black-
box model N because it is trained to have the
same actual input/output behavior as N while
creating neural representations that can be in-
tervened upon to simulate the counterfactual in-
put/output behavior of N . Furthermore, we show
that the best CPM for N performs comparably
to N in making factual predictions, which means
that the CPM can simply replace N , leading to
more explainable deployed models. Our code is
available at https://github.com/frankaging/
Causal-Proxy-Model.

1. Introduction
The gold standard for model explanation methods in AI
should be to elucidate the causal role that a model’s repre-
sentations play in its overall behavior – to truly explain why
the model makes the predictions it does. Causal explanation
methods seek to do this by resolving the counterfactual ques-
tion of what the model would do if input X were changed
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to a relevant counterfactual version X ′. Unfortunately, even
though neural networks are fully observed, deterministic sys-
tems, we still encounter the fundamental problem of causal
inference (Holland, 1986): for a given ground-truth input X ,
we never observe the counterfactual inputs X ′ necessary for
isolating the causal effects of model representations on out-
puts. The issue is especially pressing in domains where it is
hard to synthesize approximate counterfactuals. In response
to this, explanation methods typically do not explicitly train
on counterfactuals at all.

In this paper, we show that robust explanation methods
for NLP models can be obtained using texts approximat-
ing true counterfactuals. The heart of our proposal is the
Causal Proxy Model (CPM). CPMs are trained to mimic
both the factual and counterfactual behavior of a black-box
model N . We explore two different methods for training
such explainers. These methods share a distillation-style
objective that pushes them to mimic the factual behavior of
N , but they differ in their counterfactual objectives. The
simpler of these two methods is the input-based CPMIN,
which appends to the factual input a new token associated
with the counterfactual concept value. This proves remark-
ably effective. However, we are able to achieve deeper
and more human-interpretable explanations with the hidden-
state CPMHI, which employs the Interchange Intervention
Training (IIT) method of Geiger et al. (2022) to localize in-
formation about the target concept in specific hidden states.
We show that both methods are effective even with very par-
tial causal models of the target domain. Figure 1 provides a
high-level overview.

We evaluate these methods on the CEBaB benchmark for
causal explanation methods (Abraham et al., 2022), which
provides large numbers of original examples (restaurant
reviews) with human-created counterfactuals for specific
concepts (e.g., service quality), with all the texts labeled
for their concept-level and text-level sentiment. This coun-
terfactual data is used to uncover the true counterfactual
behavior of a model, against which a causal explanation
of the model can be benchmarked. We consider two types
of approximate counterfactuals derived from CEBaB: texts
written by humans to approximate a specific counterfactual,
and texts sampled using metadata-guided heuristics. Both
strategies lead to state-of-the-art performance on CEBaB
for both CPMIN and CPMHI, comparing against all public
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results on CEBaB as well as new stronger baselines we es-
tablish. In addition, approximate counterfactuals rely only
on widely available metadata, which allows for easy use of
CPMs in new domains.

We additionally identify two other benefits of using CPMs to
explain models. First, both CPMIN and CPMHI have factual
performance comparable to that of the original black-box
modelN and can explain their own behavior extremely well.
Thus, the CPM for N can actually replace N , leading to
more explainable deployed models. Second, CPMHI models
localize concept-level information in their hidden represen-
tations, which makes their behavior on specific inputs very
easy to explain. We illustrate this using Path Integrated Gra-
dients (Sundararajan et al., 2017), which we adapt to allow
input-level attributions to be mediated by the intermediate
states that were targeted for localization. Thus, while both
CPMIN and CPMHI are effective methods, the qualitative
insights afforded by CPMHI models may given them the
edge when it comes to explanations.

We emphasize that our sole focus is characterizing model
behaviors in human-interpretable ways. This contrasts with
work aimed at using language data to make causal infer-
ences about real-world phenomena (Pryzant et al., 2021).
Although these efforts are aligned when we are explain-
ing good models, they are very different when we seek to
explain very bad models. For example, if a model is system-
atically wrong about a real-world phenomenon, the correct
explanation of that model will also be systematically wrong
about the real-world phenomenon. In such cases, we hope
that the explanation helps us understand the model’s failings.
For additional discussion, see Feder et al. 2020, §2.1.

2. Related Work
Understanding model behavior serves many goals for AI
systems, including transparency (Kim, 2015; Lipton, 2018;
Pearl, 2019; Ehsan et al., 2021), trustworthiness (Ribeiro
et al., 2016; Guidotti et al., 2018; Jacovi & Goldberg, 2020;
Jakesch et al., 2019), safety (Amodei et al., 2016; Otte,
2013), and fairness (Hardt et al., 2016; Kleinberg et al.,
2017; Goodman & Flaxman, 2017; Mehrabi et al., 2021).
With CPMs, our goal is to achieve explanations that are
causally motivated and concept-based, and so we concen-
trate here on relating existing methods to these two goals.

Feature attribution methods estimate the importance of fea-
tures, generally by inspecting learned weights directly or
by perturbing features and studying the effects this has
on model behavior (Molnar, 2020; Ribeiro et al., 2016).
Gradient-based feature attribution methods extend this gen-
eral mode of explanation to the hidden representations in
deep networks (Zeiler & Fergus, 2014; Springenberg et al.,
2014; Binder et al., 2016; Shrikumar et al., 2017; Sundarara-

jan et al., 2017). Concept Activation Vectors (CAVs; Kim
et al. 2018; Yeh et al. 2020) can also be considered feature
attribution methods, as they probe for semantically mean-
ingful directions in the model’s internal representations and
use these to estimate the importance of concepts on the
model predictions. While some methods in this space do
have causal interpretations (e.g., Sundararajan et al. 2017;
Yeh et al. 2020), most do not. In addition, most of these
methods offer explanations in terms of specific (sets of) fea-
tures/neurons. (Methods based on CAVs operate directly in
terms of more abstract concepts.)

Intervention-based methods study model representations by
modifying them in systematic ways and observing the result-
ing model behavior. These methods are generally causally
motivated and allow for concept-based explanations. Ex-
amples of methods in this space include causal mediation
analysis (Vig et al., 2020; De Cao et al., 2021; Ban et al.,
2022), causal effect estimation (Feder et al., 2020; Elazar
et al., 2021; Abraham et al., 2022; Lovering & Pavlick,
2022), tensor product decomposition (Soulos et al., 2020),
circuit-based analysis (Cammarata et al., 2020), and causal
abstraction (Geiger et al., 2020; 2021; 2023). CPMs are
most closely related to the method of IIT (Geiger et al.,
2021), which extends causal abstraction to optimization.

Probing is another important class of explanation method.
Traditional probes do not intervene on the target model,
but rather only seek to find information in it via supervised
models (Conneau et al., 2018; Tenney et al., 2019) or unsu-
pervised models (Clark et al., 2019; Manning et al., 2020;
Saphra & Lopez, 2019). Probes can identify concept-based
information, but they cannot offer guarantees that probed
information is relevant for model behavior (Geiger et al.,
2021). For causal guarantees, it is likely that some kind of
intervention is required. For example, Elazar et al. (2021)
and Feder et al. (2020) remove information from model rep-
resentations to estimate the causal role of that information.
Our CPMs employ a similar set of guiding ideas but are not
limited to removing information.

Counterfactual explanation methods aim to explain model
behavior by providing a counterfactual example that changes
the model behavior (Goyal et al., 2019; Verma et al., 2020;
Wu et al., 2021). Counterfactual explanation methods are in-
herently causal. If they can provide counterfactual examples
with regard to specific concepts, they are also concept-based.
In addition, some explanation methods train a model making
explicit use of intermediate variables representing concepts.
Manipulating these intermediate variables at inference time
yields causal concept-based model explanations (Koh et al.,
2020; Künzel et al., 2019).

Evaluating methods in this space has been a persistent chal-
lenge. In prior literature, explanation methods have of-
ten been evaluated against synthetic datasets (Feder et al.,
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2020; Yeh et al., 2020). In response, Abraham et al. (2022)
introduced the CEBaB dataset, which provides a human-
validated concept-based dataset to truthfully evaluate differ-
ent causal concept-based model explanation methods. Our
primary evaluations are conducted on CEBaB.

3. Causal Proxy Model (CPM)
Causal Proxy Models (CPMs) are causal concept-based
explanation methods. Given a factual input xu,v and a de-
scription of a concept intervention Ci ← c′, they estimate
the effect of the intervention on model output. The present
section introduces our two core CPM variants in detail. We
concentrate here on introducing the structure of these mod-
els and their objectives, and we save discussion of associated
metrics for explanation methods for Section 4.

A Structural Causal Model Our discussion is grounded
in the causal model depicted in Figure 1a, which aligns well
with the CEBaB benchmark. Two exogenous variables U
and V together represent the complete state of the world
and generate some textual data X . The effect of exogenous
variable U on the data X is completely mediated by a set
of intermediate variables C1, C2 . . . , Ck, which we refer to
as concepts. Therefore, we can think of U as the part of the
world that gives rise to these concepts {C}k1 .

Using this causal model, we can describe counterfactual
data – data that arose under a counterfactual state of the
world (right diagram in Figure 1a). Our factual text is xu,v ,
and we use xCi←c′

u,v for the counterfactual text obtained by
intervening on concept Ci to set its value to c′. The coun-
terfactual xCi←c′

u,v describes the output when the value of Ci

is set to c′, all else being held equal. In defining CPMs, we
use a wide variety of interventions Ci ← c′ and values u, v
for the exogenous variables U, V .

Approximate Counterfactuals Unfortunately, pairs like
(xu,v, x

Ci←c′

u,v ) are never observed, and thus we need strate-
gies for creating approximate counterfactuals x̃Ci←c′

u,v . Fig-
ure 1b describes the two strategies we use in this paper. In
the human-created strategy, we rely on a crowdworker to
edit xu,v to achieve a particular counterfactual goal – say,
making the evaluation of the restaurant’s food negative. CE-
BaB contains an abundance of such pairs (xu,v, x̃

Ci←c′

u,v ).
However, CEBaB is unusual in having so many human-
created approximate counterfactuals, so we also explore a
simpler strategy in which x̃Ci←c′

u,v is sampled with the re-
quirement that it match xu,v on all concepts but sets Ci to
c′. This strategy is supported in many real-world datasets –
for example, the OpenTable reviews underlying CEBaB all
have the needed metadata (Abraham et al., 2022).

CPMIN: Input-based CPM Given a dataset of approx-
imate counterfactual pairs (xu,v, x̃

Ci←c′

u,v ) and a black-box
model N , we train a new CPMIN model P with a counter-
factual objective as:

LIN = CES
(
N (x̃Ci←c′

u,v ),P(xu,v; tCi←c′)
)

(1)

where xu,v; tCi←c′ in Eqn. 1 denotes the concatenation of
the factual input and a randomly initialized learnable token
embedding tCi←c′ describing the intervention Ci ← c′.
CES represents the smoothed cross-entropy loss (Hinton
et al., 2015), measuring the divergence between the output
logits of both models. The objective in Eqn. 1 pushes P to
predict the counterfactual behavior of N when a descriptor
of the intervention is given (Figure 1d).1 CPMIN resembles
an input augmentation approach.

At inference time, approximate counterfactuals are inacces-
sible. To explain model N , we append the trained token
embedding tCi←c′ to a factual input, upon which P predicts
a counterfactual output for this input, used to estimate the
counterfactual behavior of N under this intervention.

CPMHI: Hidden-state CPM Unlike CPMIN which re-
quires input augmentation, CPMHI models rely on repre-
sentation learning via Interchange Intervention Training
(Geiger et al., 2022) by localizing concept information
within existing representations. It is trained to mimic both
the factual and counterfactual behavior of N .

A conventional intervention on a hidden representation H
of a neural network N fixes the value of the representation
H to a constant. In an interchange intervention, we instead
fix H to the value it would have been when processing
a separate source input s. The result of the interchange
intervention is a new model. Formally, we describe this new
model asNH←Hs

, where← is the conventional intervention
operator and Hs is the value of hidden representation H
when processing input s.

Given a dataset of approximate counterfactual input pairs
(xu,v, x̃

Ci←c′

u,v ) and a black-box model N , we train a new
CPMHI model P with the counterfactual objective

LHI = CES
(
N (x̃Ci←c′

u,v ),P
HCi←H

Ci
s
(xu,v)

)
(2)

Here HCi are hidden states designated for concept Ci. In
essence, we train P to fully mediate the effect of intervening
on Ci in the hidden representation HCi . The source input
s is any input xCi=c′

u′,v′ that has Ci = c′. As P only receives
information about the concept-level intervention Ci ← c′

via the interchange intervention HCi ← HCi
s , the model is

1Our objective is for a single approximate counterfactual pair
for the sake of clarity. At train-time, we aggregate the objective
over all considered training pairs. We take Ci to always represent
the intervened-upon concept. The weights ofN are frozen.
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xu,vci
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U = u

V = v

xCi←c′

u,vCi ← c′
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...

...
ck
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V = v

(a) A structural causal model leading to an actual text xu,v and
its counterfactual text xCi←c′

u,v . U is an exogenous variable over
experiences, c1, . . . , ck are mediating concepts, and V is an exoge-
nous variable capturing the writing (and star-rating) experience.
At right, we create a counterfactual in which concept Ci takes
on a different value. Unfortunately, we cannot truly create such
counterfactual situations and so we never observe pairs of texts
like these. Thus, we must rely on approximate counterfactuals.

Let xu,v be a text written in situation (u, v):

Human-created x̃Ci←c′
u,v

Crowdworker edit of xu,v to express that Ci had value c′,
seeking to keep all else constant.

Metadata-sampled x̃Ci←c′
u,v

Sampled text expressing that Ci has value c′ but agreeing with
xu,v on all other concepts.

(b) Approximate counterfactuals. In the human-created strategy,
humans revise an attested text to try to express a particular counter-
factual, seeking to simulate a causal intervention. In the metadata-
sampled strategy, we find a separate text that aligns with the orig-
inal for the value u insofar as it expresses all the same concepts
except for the target concept Ci.
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(c) LMimic: All CPMs (bottom) are trained to mimic the behavior
of the neural modelN to be explained (top) for all factual inputs
xu,v .
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(d) LIN: Examples xu,v and x̃Ci←c′
u,v are an approximate counter-

factual pair. The CPM is given xu,v augmented with a special
token tCi←c′ and trained to mimic the target model N when its
input is x̃Ci←c′

u,v .

x̃Ci←c′

u,v

n′11

n′21...
n′d1

n′12

n′22...
n′d2

. . .

. . .

. . .

n′1l

n′2l...
n′dl

n′out

xu,v

p21

p11

p31
...

pd1

P12 ← p′12

P22 ← p′22
p32

...
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. . .

. . .

. . .

. . .
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p∗1l

p∗3l...
p∗dl

p∗out

LHI

xCi=c′

u′,v′

p′11

p′21...
p′d1

p′12

p′22...
p′d2

. . .

. . .

. . .

p′1l

p′2l...
p′dl

p′out

(e) LHI: Examples xu,v and x̃Ci←c′
u,v are an approximate counter-

factual pair. The CPM (middle) is given input xu,v . The objective
is for it to mimicN (top) given x̃Ci←c′

u,v , but under the intervention
in which specific internal states are changed to those that the CPM
computes for input xCi=c′

u′,v′ (bottom), which is a distinct example
that is sampled with the only criteria being that it express Ci = c′.
The effect of this intervention is to localize information about
concept Ci at the intervention site, since the only indication the
CPM gets about Ci ← c′ is via the intervention.

Figure 1. Causal Proxy Model (CPM) summary. Every CPM for model N is trained to mimic the factual behavior of N (LMimic). For
CPMIN, the counterfactual objective is LIN. For CPMHI, the counterfactual objective is LHI.
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forced to store all causally relevant information with regard
to Ci in the corresponding hidden representation. This
process is described in Figure 1e.

Ideally, the source input xCi=c′

u′,v′ and xu,v share the same
value only for Ci and differ on all others, so that the coun-
terfactual signal for localization is pure. However, we do
not insist on this when we sample. In addition, we allow
null effect pairs in which xu,v and x̃Ci←c′

u,v are identical. Ap-
pendix A.2 gives further details on the sampling procedure.

At inference time, approximate counterfactuals are inac-
cessible, as before. To explain model N with regard to
intervention Ci ← c′, we manipulate the internal states of
model P by intervening on the localized representation HCi

for concept Ci. To achieve this, we sample a source input
xCi=c′

u′,v′ from the train set as any input x that has Ci = c′ to
derive HCi

s .

Training Objectives We include another distillation ob-
jective to predict the same output as N under conven-
tional circumstances as LMimic = CES

(
N (xu,v),P(xu,v)

)
.

The overall training objective for our models is thus L =
λ1LMimic +λ2LCounterfactual where LCounterfactual can be either
LIN or LHI. We set λ1 = 1.0 and λ2 = 3.0 for simplicity.

4. Experiment Setup
4.1. Causal Estimation-Based Benchmark (CEBaB)

CEBaB (Abraham et al., 2022) is a benchmark of high-
quality, labeled approximate counterfactuals for the task of
sentiment analysis on restaurant reviews. The benchmark
was created starting from a set of 2,299 original restaurant
reviews from OpenTable. For each of these original re-
views, approximate counterfactual examples were written
by human annotators; the annotators were tasked to edit the
original text to reflect a specific intervention, like ‘change
the food evaluation from negative to positive’ or ‘change
the service evaluation from positive to unknown’. In this
way, the original reviews were expanded with approximate
counterfactuals to a total of 15,089 texts. The groups of
originals and corresponding approximate counterfactuals
are partitioned over train/dev/test. The pairs in the dev and
test sets are used to benchmark explanation methods.

Each text in CEBaB was labeled by five crowdworkers
with a 5-star sentiment score. In addition, each text was
annotated at the concept level for four mediating con-
cepts {Cambiance, Cfood, Cnoise, and Cservice}, using the labels
{negative, unknown, positive}, again with five crowdwork-
ers annotating each concept-level label. We refer to Ap-
pendix A.1 and Abraham et al. 2022 for additional details.

As discussed in Section 3 and Figure 1b, we consider two
sources of approximate counterfactuals using CEBaB. For

human-created counterfactuals, we use the edited restaurant
reviews of the train set. For metadata-sampled counter-
factuals, we sample factual inputs from the train set that
have the desired combination of mediating concepts. Using
all the human-created edits leads to 19,684 training pairs
of factuals and corresponding approximate counterfactu-
als. Sampling counterfactuals leads to 74,574 pairs. We
use these approximate counterfactuals to train explainers.
Appendix A.2 for full details on our pairing process.

4.2. Evaluation Metrics

Much of the value of a benchmark like CEBaB derives
from its support for directly calculating the Estimated In-
dividual Causal Concept Effect (ÎCaCEN ) for a model N
given a human-generated approximate counterfactual pair
(xu,v, x̃

Ci←c′

u,v ):

ÎCaCEN (xu,v, x̃
Ci←c′

u,v ) = N (x̃Ci←c′

u,v )−N (xu,v) (3)

This is simply the difference between the vectors of output
scores for the two examples.

We do not expect to have pairs (xu,v, x̃
Ci←c′

u,v ) at inference
time, and this is what drives the development of explanation
methods EN that estimate this quantity using only a factual
input xu,v and a description of the intervention Ci ← c′. To
benchmark such methods, we follow Abraham et al. (2022)
in using the ICaCE-Error:

ICaCE-ErrorDN (E) =
1

|D|
∑

(xu,v,x̃
Ci←c′
u,v )∈D

Dist
(

ÎCaCEN ((xu,v, x̃
Ci←c′
u,v )), EN (xu,v;Ci ← c′)

)
(4)

Here, we assume that D is a dataset consisting entirely of
approximate counterfactual pairs (xu,v, x̃

Ci←c′

u,v ). Dist mea-

sures the distance between the ÎCaCEN for the model N
and the effect predicted by the explanation method. Abra-
ham et al. (2022) consider three values for Dist: L2, which
captures both direction and magnitude; Cosine distance,
which captures the direction of effects but not their mag-
nitude; and NormDiff (absolute difference of L2 norms),
which captures magnitude but not direction. We report all
three metrics.

4.3. Baseline Methods

BESTCEBaB We compare our results with the best results
obtained on the CEBaB benchmark. Crucially, BESTCEBaB
is not a single method but represents the best results aggre-
gated from a set of methods including CONEXP (Goyal
et al., 2020), TCAV (Kim et al., 2018), ConceptSHAP (Yeh
et al., 2020), INLP (Ravfogel et al., 2020), CausaLM (Feder
et al., 2020), and S-Learner (Künzel et al., 2019). Addition-
ally baselines such as X-Learner (Künzel et al., 2019) are
included in Appendix A.4.
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S-Learner Our version of S-Learner (Künzel et al., 2019)
learns to mimic the factual behavior of black-box model
N while making the intermediate concepts explicit. Given
a factual input, a finetuned model B is trained to predict
concept label for each concept as an aspect-based sentiment
classification task. Then, a logistic regression model LRN
is trained to map these intermediate concept values to the
factual output of black-box model N , under the objective

LS,B
Mimic = CES

(
N (xu,v), LRN (B(xu,v))

)
(5)

By intervening on the intermediate predicted concept values
at inference-time, we can hope to simulate the counterfactual
behavior of N :

ES,B
N (xu,v;Ci ← c′) =

LRN ((B(xu,v))Ci←c′)− LRN (B(xu,v)) (6)

When using S-Learner in conjunction with approximate
counterfactual inputs at train-time, we simply add this coun-
terfactual data on top of the observational data that is typi-
cally used to train S-Learner.

GPT-3 Large language models such as GPT-3 (175B) have
shown extraordinary power in terms of in-context learn-
ing (Brown et al., 2020). We use GPT-3 (davinci-002) to
generate a new approximate counterfactual at inference time
given a factual input and a descriptor of the intervention.
This generated counterfactual is directly used to estimate
the change in model behavior:

EGPT-3
N (xu,v;Ci ← c′) =

N (GPT-3(xu,v;Ci ← c′))−N (xu,v) (7)

where GPT-3(xu,v;Ci ← c′) represents the GPT-3 gener-
ated counterfactual edits. We prompt GPT-3 with demon-
strations containing approximate counterfactual inputs. Full
details on prompt construction are in Appendix A.7.

4.4. Causal Proxy Models

We train CPMs for the publicly available models released
for CEBaB, fine-tuned as five-way sentiment classifiers
on the factual data. This includes four model architec-
tures: bert-base-uncased (BERT; Devlin et al. 2019),
RoBERTa-base (RoBERTa; Liu et al. 2019), GPT-2 (GPT-2;
Radford et al. 2019), and LSTM+GloVe (LSTM; Hochre-
iter & Schmidhuber 1997; Pennington et al. 2014). All
Transformer-based models (Vaswani et al., 2017) have 12
Transformer layers. Before training, each CPM model is
initialized with the architecture and weights of the black-
box model we aim to explain. Thus, the CPMs are rooted in
the factual behavior of N from the start. We include details
about our setup in Appendix A.3.

The inference time comparisons for these models are as fol-
lows, where P in Eqn. 8 and Eqn. 9 refers to the CPM model

trained under CPMIN and CPMHI objectives, respectively:

ECPMIN
N (xu,v;Ci ← c′) = P(xu,v; tCi←c′)−N (xu,v) (8)

ECPMHI
N (xu,v;Ci ← c′) = P

HCi←H
Ci
s

(xu,v)−N (xu,v) (9)

Here, s is a source input with Ci = c′, and HCi is the neural
representation associated with Ci which takes value HCi

s on
the source input s. As HCi , we use the representation of the
[CLS] token. Specifically, for BERT we use slices of width
192 taken from the 1st intermediate token of the 10th layer.
For RoBERTa, we use the 8th layer instead. For GPT-2, we
pick the final token of the 12th layer, again with slice width
of 192. For LSTM, we consider slices of the attention-gated
sentence embedding with width 64. Appendix A.5 studies
the impact of intervention location and size.

Following the guidance on IIT given by Geiger et al. (2022),
we train CPMHI with an additional multi-task objective as
LMulti =

∑
Ci∈C CE(MLP(HCi

x ), c) where probe is param-
eterized by a multilayer perceptron MLP, and HCi

x is the
value of hidden representation for the concept Ci when
processing input x with a concept label of c for Ci.

5. Results
We first benchmark both CPM variants and our baseline
methods on CEBaB. We show that the CPMs achieve state-
of-the-art performance, for both types of approximate coun-
terfactuals used during training (Section 5.1). Given the
good factual performance achieved by CPMs, we subse-
quently investigate whether CPMs can be deployed both
as predictor and explanation method at the same time (Sec-
tion 5.2) and find that they can. Finally, we show that the
localized representations of CPMHI give rise to concept-
aware feature attributions (Section 5.3). Our supplementary
materials report on detailed ablation studies and explore the
potential of our methods for model debiasing.

5.1. CEBaB Performance

Table 1 presents our main results. The results are grouped
per approximate counterfactual type used during training.
Both CPMIN and CPMHI beat BESTCEBaB in every evalu-
ation setting by a large margin, establishing state-of-the-
art explanation performance. Interestingly, CPMHI seems
to slightly outperform CPMIN using sampled approximate
counterfactuals, while slightly underperforming CPMIN on
human-created approximate counterfactuals. Appendix A.6
reports on ablation studies that indicate that, for CPMHI,
this state-of-the-art performance is primarily driven by the
role of IIT in localizing concepts.

S-Learner, one of the best individual explainers from the
original CEBaB paper (Abraham et al., 2022), shows only a
marginal improvement when naively incorporating sampled
and human-created counterfactuals during training over us-
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no counterfactuals sampled counterfactuals human-created counterfactuals
(ours) (ours) (ours) (ours)

Model Metric BESTCEBaB S-Learner S-Learner GPT-3 CPMIN CPMHI S-Learner GPT-3 CPMIN CPMHI

BERT
L2 0.74 (.02) 0.74 (.02) 0.74 (.02) 0.71 (.01) 0.63 (.01) 0.60 (.01) 0.73 (.02) 0.45 (.01) 0.45 (.02) 0.45 (.03)

Cosine 0.59 (.03) 0.63 (.01) 0.63 (.01) 0.51 (.00) 0.46 (.00) 0.45 (.00) 0.60 (.01) 0.36 (.00) 0.35 (.00) 0.36 (.04)

NormDiff 0.44 (.01) 0.54 (.02) 0.53 (.02) 0.35 (.01) 0.39 (.01) 0.38 (.00) 0.52 (.02) 0.25 (.00) 0.24 (.01) 0.27 (.01)

RoBERTa
L2 0.78 (.01) 0.78 (.01) 0.78 (.00) 0.74 (.01) 0.66 (.01) 0.67 (.02) 0.77 (.00) 0.48 (.01) 0.46 (.01) 0.47 (.03)

Cosine 0.58 (.01) 0.64 (.01) 0.65 (.01) 0.53 (.01) 0.46 (.00) 0.47 (.00) 0.63 (.01) 0.39 (.00) 0.38 (.01) 0.39 (.03)

NormDiff 0.45 (.00) 0.59 (.01) 0.58 (.00) 0.36 (.00) 0.42 (.01) 0.45 (.03) 0.56 (.00) 0.28 (.01) 0.26 (.01) 0.29 (.05)

GPT-2
L2 0.60 (.02) 0.60 (.02) 0.61 (.01) 0.65 (.01) 0.55 (.01) 0.51 (.01) 0.61 (.01) 0.43 (.01) 0.41 (.01) 0.41 (.04)

Cosine 0.59 (.01) 0.59 (.01) 0.59 (.01) 0.52 (.00) 0.47 (.01) 0.46 (.00) 0.59 (.01) 0.40 (.00) 0.37 (.01) 0.39 (.05)

NormDiff 0.40 (.01) 0.40 (.01) 0.41 (.01) 0.34 (.00) 0.32 (.01) 0.30 (.00) 0.40 (.01) 0.24 (.01) 0.23 (.01) 0.27 (.05)

LSTM
L2 0.73 (.01) 0.73 (.01) 0.73 (.01) 0.76 (.00) 0.66 (.01) 0.64 (.02) 0.72 (.00) 0.49 (.00) 0.52 (.00) 0.54 (.01)

Cosine 0.64 (.01) 0.64 (.01) 0.64 (.01) 0.57 (.01) 0.50 (.00) 0.50 (.01) 0.63 (.01) 0.44 (.00) 0.45 (.01) 0.46 (.00)

NormDiff 0.50 (.01) 0.53 (.01) 0.53 (.00) 0.41 (.00) 0.42 (.00) 0.41 (.01) 0.54 (.00) 0.30 (.00) 0.34 (.01) 0.36 (.00)

Table 1. CEBaB scores measured in three different metrics on the test set for four different model architectures as a five-class sentiment
classification task. Lower is better. Results averaged over three distinct seeds, standard deviations in parentheses. The metrics are
described in Section 4. Best averaged result is bolded (including ties) per approximate counterfactual creation strategy.

sampled human-created
Black- counterfactuals counterfactuals

Model box CPMIN CPMHI CPMIN CPMHI

BERT 0.70 (.01) 0.70 (.00) 0.67 (.02) 0.70 (.01) 0.69 (.01)

RoBERTa 0.70 (.00) 0.70 (.00) 0.69 (.01) 0.71 (.01) 0.71 (.00)

GPT-2 0.65 (.00) 0.65 (.00) 0.67 (.01) 0.66 (.01) 0.68 (.00)

LSTM 0.60 (.01) 0.60 (.01) 0.56 (.00) 0.54 (.00) 0.59 (.01)

Table 2. Task performance measured as Macro-F1 score on the test
set (average of 3 distinct seeds; standard deviations in parentheses).

ing no counterfactuals. This indicates that the large perfor-
mance gains achieved by our CPMs over previous explainers
are most likely due to the explicit use of a counterfactual
training signal, and not primarily due to the addition of extra
(counterfactual) data.

GPT-3 occasionally performs on-par with our CPMs, gen-
erally only slightly underperforming our best explainer on
human-created counterfactuals, while being significantly
worse on sampled counterfactuals. While the GPT-3 ex-
plainer also explicitly uses approximate counterfactual data,
the results indicate that our proposed counterfactual mimic
objectives give better results. The better performance
of CPMs when considering sampled counterfactuals over
GPT-3 shows that our approach is more robust to the quality
of the approximate counterfactuals used. While the GPT-3
explainer is easy to set up (no training required), it might
not be suitable for some explanation applications regard-
less of performance, due to the latency and cost involved in
querying the GPT-3 API.

Across the board, explainers trained with human-created
counterfactuals are better than those trained with sampled
counterfactuals. This shows that the performance of expla-

sampled human-created
counterfactuals counterfactuals

Model Metric CPMIN CPMHI CPMIN CPMHI

BERT
L2 0.63 (.01) 0.52 (.04) 0.42 (.02) 0.38 (.03)

Cosine 0.46 (.00) 0.45 (.01) 0.34 (.02) 0.30 (.06)

NormDiff 0.39 (.01) 0.33 (.02) 0.23 (.01) 0.22 (.05)

RoBERTa
L2 0.66 (.01) 0.63 (.04) 0.40 (.01) 0.37 (.04)

Cosine 0.46 (.00) 0.48 (.01) 0.33 (.01) 0.29 (.04)

NormDiff 0.42 (.01) 0.42 (.05) 0.21 (.01) 0.23 (.05)

GPT-2
L2 0.55 (.01) 0.41 (.03) 0.38 (.01) 0.36 (.04)

Cosine 0.47 (.01) 0.39 (.02) 0.37 (.01) 0.35 (.05)

NormDiff 0.32 (.01) 0.25 (.02) 0.22 (.01) 0.24 (.05)

LSTM
L2 0.66 (.01) 0.41 (.01) 0.46 (.00) 0.42 (.01)

Cosine 0.50 (.00) 0.42 (.02) 0.50 (.02) 0.40 (.01)

NormDiff 0.42 (.00) 0.25 (.00) 0.31 (.00) 0.28 (.02)

Table 3. Self-explanation CEBaB scores measured in three differ-
ent metrics on the test set for four different model architectures as
a five-class sentiment classification task. Lower is better. Average
of 3 distinct seeds; standard deviations in parentheses.

nation methods depends on the quality of the approximate
counterfactual training data. While human counterfactu-
als give excellent performance, they may be expensive to
create. Sampled counterfactuals are cheaper if the relevant
metadata is available. Thus, under budgetary constraints,
sampled counterfactuals may be more efficient.

Finally, CPMIN is conceptually the simpler of the two CPM
variants. However, we discuss in Section 5.3 how the local-
ized representations of CPMHI lead to additional explain-
ability benefits.
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Model Predicted Concept Score Word Importance

Black-box neutral

ambiance +0.03 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.11 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise +0.04 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.26 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Multi-task neutral

ambiance +0.25 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.23 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise +0.31 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.16 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

IIT neutral

ambiance −0.24 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.11 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.98 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.16 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Table 4. Visualizations of word importance scores using Integrated Gradient (IG) by restricting gradient flow through the corresponding
intervention site of the targeted concept. Our target class pools positive and very positive. Individual word importance is the sum of
neuron-level importance scores for each input, normalized to [ −1 , +1 ]. −1 means the word contributes the most negatively to

predicting the target class (red); +1 means the word contributes the most positively (green).

5.2. Self-Explanation with CPM

As outlined in Section 3, CPMs learn to mimic both the
factual and counterfactual behavior of the black-box models
they are explaining. We show in Table 2 that our CPMs
achieve a factual Macro-F1 score comparable to the black-
box finetuned models.

Can we simply replace the black-box model with our CPM
and use the CPM both as factual predictor and counterfactual
explainer. To answer this question, we measure the self-
explanation performance of CPMs by replacingN in Eqn. 4
with our factual CPM predictions at inference time.

Table 3 reports these results. We find that both CPMIN
and CPMHI achieve better self-explanation performance
compared to providing explanations for another black-
box model. Furthermore, CPMHI provides better self-
explanation than CPMIN, suggesting our interchange in-
tervention procedure leads the model to localize concept-
based information in hidden representations. This shows
that CPMs may be viable as replacements for their black-
box counterpart, since they provide similar task performance
while providing faithful counterfactual explanations of both
the black-box model and themselves.

5.3. Concept-Aware Feature Attribution with CPMHI

CPMHI localizes concept-based information within repre-
sentations. We have shown that CPMHI provides trustwor-
thy explanations (Section 5.1). We now investigate whether
CPMHI learns representations that mediate the effects of
different concepts. We adapt Integrated Gradients (IG; Sun-
dararajan et al. 2017) to provide concept-aware feature attri-
butions, by only considering gradients flowing through the
hidden representation associated with a given concept. We
formalize this version of IG in Appendix A.8.

In Table 4, we compare concept-aware feature attibutions
for two variants of CPMHI (IIT and Multi-task) and the
original black-box (Finetuned) model. For IIT we re-
move the multi-task objective LMulti during training and
for Multi-task we remove the the IIT objective LHI. This
helps isolate the individual effects of both losses on con-
cept localization. All three models predict a neutral final
sentiment score for the considered input, but they show
vastly different feature attributions. Only IIT reliably high-
lights words that are semantically related to each concept.
For instance, when we restrict the gradients to flow only
through the intervention site of the noise concept, “loud” is
the word highlighted the most that contributes negatively.
When we consider the service concept, words like “friendly”
and “waiter” are highlighted the most as contributing posi-
tively. These contrasts are missing for representations of the
Multi-task and Finetuned models. Only the IIT training
paradigm pushes the model to learn causally localized rep-
resentations. For the service concept, we notice that the IIT
model wrongfully attributes “delicious”. This could be use-
ful for debugging purposes and could be used to highlight
potential failure modes of the model.

6. Conclusion
We explored the use of approximate counterfactual training
data to build more robust causal explanation methods. We
introduced Causal Proxy Models (CPMs), which learn to
mimic both the factual and counterfactual behaviors of a
black-box modelN . Using CEBaB, a benchmark for causal
concept-based explanation methods, we demonstrated that
both versions of our technique (CPMIN and CPMHI) signif-
icantly outperform previous explanation methods. CPMs
require only very partial causal models and highly approx-
imate counterfactuals to be achieve these state-of-the-art
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results.

Our results suggest that CPMs can be more than just expla-
nation methods. They achieve factual performance on par
with the model they aim to explain, and they can explain
their own behavior. This paves the way to using them as
deployed models that both perform tasks and offer expla-
nations. In addition, the causally localized representations
of our CPMHI variant are very intuitive, as revealed by our
concept-aware feature attribution technique. We believe
that causal localization techniques could play a vital role in
further model explanation efforts.
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A. Appendix
A.1. CEBaB Dataset Statistics

Table 5 shows dataset statistics of CEBaB. The variants of
CEBaB we consider only impact the train split. The top
panel shows the number of observational samples and edits
introduced in the CEBaB paper. The bottom panel shows
our paired versions, where we create approximate coun-
terfactual pairs. We explore two variants of approximate
counterfactuals: human-created and sampled counterfac-
tuals (Section 4.1). The human setting considers all pairs
made possible by using all data. The sampling setting con-
siders pairs sampled from only the observational data, as
discussed in Section A.2.

Dataset # train # dev # test

CEBaB (observational) 1,755 1,673 1,689
CEBaB (all) 11,728 1,673 1,689

CEBaB (paired, human) 19,684 3,898 3,958
CEBaB (paired, sampling) 74,574 3,898 3,958

Table 5. Dataset statistics.

A.2. Types of Approximate Counterfactual Pairs

Our approximate counterfactual training data comes in
paired sentences of (original sentence, approximate coun-

terfactual sentence). The approximate counterfactuals dif-
fers from their original counterparts in only one concept
value. We consider approximate counterfactual pairs to be
symmetric: we use both (original sentence, approximate
counterfactual sentence) and (approximate counterfactual
sentence, original sentence) as training pairs.

Human-created Counterfactuals CEBaB contains mul-
tiple counterfactual sentences for each original review. To
achieve this, the dataset creators asked annotators to edit the
original sentence to achieve a specified goal (e.g., ‘change
the evaluation of the restaurant’s food to negative’). These
originals and corresponding edits form our human pairs.

Metadata-sampled Counterfactuals Human-created
counterfactuals are not always available. With CEBaB,
we simulate a second type of approximate counterfactuals
by using metadata-guided heuristics: for a given original
sentence, we sample a counterfactual from the train set by
matching concept labels while allowing only one label to be
changed.

During training, we also consider null effect pairs in our
sampling setup. These pairs resemble cases where our ap-
proximate counterfactual sentence is identical to the origi-
nal sentence. When training our models on these pairs, we
expect our models to predict the same counterfactual and
factual output.

A.3. Training Regimes

CPMIN To train CPMIN, we use the same model architec-
ture as N , and initialize it with the model weights using
weights from N . The maximum number of training epochs
is set to 30 with a learning rate of 5e−5 and an effective
batch size of 128. The learning rate linearly decays to 0
over the 30 training epochs. We employ an early stopping
strategy for COSICaCE over the dev set for an interval of 50
steps with early stopping patience set to 20. We set the max
sequence length to 128 and the dropout rate to 0.1. We take
a weighted sum of two objectives as the loss term for train-
ing CPMHI. Specifically, we use [wMimic, wIN] = [1.0, 3.0].
For the smoothed cross-entropy loss, we use a temperature
of 2.0.

CPMHI To train CPMHI, we use the same model architec-
ture as N , and initialize it with the model weights using
weights from N . The maximum number of training epochs
is set to 30 with a learning rate of 8e−5 and an effective
batch size of 256. We use a higher learning rate of 0.001
for the LSTM model as it enables quicker convergence. The
learning rate linearly decays to 0 over the 30 training epochs.
We employ an early stopping strategy for COSICaCE over the
dev set for an interval of 10 steps with early stopping pa-
tience set to 20. We set the max sequence length to 128 and
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the dropout rate to 0.1. We take a weighted sum of three ob-
jectives as the loss term for training CPMHI. Specifically, we
use [wMimic, wMulti, wHI] = [1.0, 1.0, 3.0]. In Appendix A.6,
we conduct a set of ablation studies to isolate the individ-
ual contributions from each objective. For the smoothed
cross-entropy loss, we use a temperature of 2.0.

Our models are all implemented in PyTorch (Paszke et al.,
2019) and using the HuggingFace library (Wolf et al., 2019).
All of our results are aggregated over three distinct random
seeds. To foster reproducibility, we will release our code
repository and model artifacts to the public.

A.4. Additional Baseline Results

Table 6 shows baselines adapted from Abraham et al. (2022),
which contains the present state-of-the-art explanation meth-
ods for the CEBaB benchmark. We report the best scores
across these explanation methods in Table 1. These base-
lines are trained without using counterfactual data. Thus,
we build additional baselines that use counterfactual data
as shown in Table 7. S-Learner is selected as the best per-
forming models and included in Table 1 for comparisons.
The equations for the additional baselines are as follows:

Eapprox
N (xu,v;Ci ← c′) = N (sapprox)−N (xu,v)

E random
N (xu,v;Ci ← c′) = N (srandom)−N (xu,v)

ECaCE
N (Ci ← c′) =

1

|DCi←c′ |
∑

(xu,v,x̃
Ci←c′
u,v )∈DCi←c′(

N
(
x̃Ci←c′
u,v

)
−N (xu,v)

)
EATE(Ci ← c′) =

1

|DCi←c′ |
∑

(xu,v,x̃
Ci←c′
u,v )∈DCi←c′(

f
(
x̃Ci←c′
u,v

)
− f (xu,v)

)
where srandom is a randomly sampled training input, sapprox is
a training input sampled to match the concept-level labels of
the true counterfactual under intervention Ci ← c′, DCi←c′

is the set of all approximate counterfactual training pairs
that represent a Ci ← c′ intervention, and f is a look-up
function that returns the ground-truth label associated with
an input.

The signatures of EATE and ECaCE
N reflect that they are inde-

pendent of the specific factual input xu,v considered. Fur-
thermore, EATE is independent ofN given that this explainer
only uses ground-truth training labels to estimate causal ef-
fects.

Additionally, we consider X-Learner, a variant of S-Learner
(Künzel et al., 2019). Our X-Learner consists of three steps.
First, we cluster examples into groups by their concept
and predicted concept label pairs (e.g., select all examples
with food being positive)2. For each group, we fit logistic

2We use the finetuned concept-level sentiment analysis models

Model Metric Approx† S-Learner‡ INLP§

BERT
L2 0.81 (.01) 0.74 (.02) 0.80 (.02)

Cosine 0.61 (.01) 0.63 (.01) 0.59 (.03)

NormDiff 0.44 (.01) 0.54 (.02) 0.73 (.02)

RoBERTa
L2 0.83 (.01) 0.78 (.01) 0.84 (.01)

Cosine 0.60 (.01) 0.64 (.01) 0.58 (.01)

NormDiff 0.45 (.00) 0.59 (.01) 0.81 (.01)

GPT-2
L2 0.72 (.02) 0.60 (.02) 0.72 (.01)

Cosine 0.59 (.01) 0.59 (.01) 1.00 (.00)

NormDiff 0.41 (.01) 0.40 (.01) 0.58 (.03)

LSTM
L2 0.86 (.01) 0.73 (.01) 0.79 (.01)

Cosine 0.64 (.01) 0.64 (.01) 0.74 (.02)

NormDiff 0.50 (.01) 0.53 (.01) 0.60 (.01)

Table 6. CEBaB scores measured in three different metrics on
the test set for four different model architectures as a five-class
sentiment classification task. Results are adapted from Abraham
et al. (2022). Lower is better; standard deviations over 5 distinct
seeds in parentheses. Results are aggregated over all aspects and all
directional concept label changes. Details about these evaluation
metrics can be found in Section 4. Results are based on †Abraham
et al. (2022), ‡ Künzel et al. (2019), and §Ravfogel et al. (2020).

regression model µ̂(Ci,c) to predict the factual output of
black-box model N using concept labels for each example
except for labels for Ci. Next, we use the models from the
first step to build training sets for our individual treatment
effect (ITE) estimators. To achieve this, we calculate ITE
for each example as,

D̂Ci:c←c′

u,v = µ̂(Ci,c′)(B(x
Ci=c
u,v )′)−N (xCi=c

u,v )

where B(xCi=c
u,v )′ excludes the concept label for concept Ci.

It measures the ITE for xu,v when we change the concept
label of Ci from c to c′. We aggregate D̂Ci:c←c′

u,v over ex-
amples based on their editing concepts and concept labels.
Next, we fit a set of linear regression models as τCi:c←c′

to predict ITE for changing the concept labels for Ci given
concept labels of an example except for labels for Ci. Lastly,
we use τCi:c←c′ to predict counterfactual output changes as,

EX-Learner
N (xu,v;Ci ← c′) = p · τCi:c←c′(B(xCi=c

u,v )′)

+ (1− p) · τCi:c′←c(B(xCi=c
u,v )′)

where p is the propensity score which is calculated using B
as the probability of Ci taking concept label c′ for an input
example xu,v by considering two potential concept labels c
and c′.

B released by Abraham et al. (2022) for concept label prediction,
which is identical to the ones used in S-Learner in Section 4.3.
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Figure 2. CEBaB scores for different intervention site locations and sizes for CPMHI. The scores are measured in three different metrics
on the test set for four different model architectures as a five-class sentiment classification task. Results averaged over three distinct seeds.
Task performance as Macro-F1 score is reported when applicable. Shaded areas outline ± SD.

no counterfactuals sampled counterfactuals human-created counterfactuals
ATE- CaCE- ATE- CaCE-

Model Metric X-Learner Approx Explainer Explainer Random X-Learner Approx Explainer Explainer Random X-Learner

BERT
L2 0.78 (.02) 0.81 (.01) 0.81 (.02) 0.81 (.02) 0.84 (.02) 0.78 (.02) 0.79 (.02) 0.81 (.02) 0.80 (.02) 0.84 (.01) 0.75 (.02)

Cosine 0.68 (.01) 0.60 (.00) 0.72 (.01) 0.72 (.01) 0.53 (.00) 0.68 (.01) 0.56 (.01) 0.69 (.01) 0.69 (.01) 0.53 (.00) 0.64 (.01)

NormDiff 0.53 (.03) 0.44 (.01) 0.62 (.02) 0.62 (.02) 0.55 (.02) 0.53 (.03) 0.43 (.01) 0.62 (.02) 0.64 (.02) 0.54 (.02) 0.54 (.03)

RoBERTa
L2 0.82 (.00) 0.83 (.01) 0.85 (.00) 0.85 (.00) 0.87 (.00) 0.82 (.00) 0.81 (.01) 0.85 (.00) 0.84 (.00) 0.87 (.00) 0.79 (.00)

Cosine 0.70 (.02) 0.61 (.01) 0.73 (.00) 0.73 (.01) 0.53 (.00) 0.70 (.02) 0.57 (.01) 0.70 (.00) 0.70 (.00) 0.53 (.00) 0.67 (.02)

NormDiff 0.57 (.00) 0.46 (.01) 0.67 (.00) 0.67 (.00) 0.58 (.00) 0.57 (.00) 0.44 (.01) 0.67 (.00) 0.68 (.00) 0.59 (.00) 0.58 (.00)

GPT-2
L2 0.65 (.01) 0.72 (.02) 0.69 (.01) 0.68 (.01) 0.76 (.00) 0.65 (.01) 0.72 (.01) 0.68 (.01) 0.68 (.01) 0.76 (.00) 0.63 (.01)

Cosine 0.64 (.01) 0.59 (.00) 0.67 (.00) 0.67 (.00) 0.56 (.00) 0.64 (.01) 0.57 (.00) 0.66 (.00) 0.65 (.00) 0.56 (.00) 0.62 (.01)

NormDiff 0.41 (.00) 0.40 (.01) 0.48 (.01) 0.49 (.01) 0.47 (.00) 0.41 (.00) 0.40 (.00) 0.49 (.01) 0.50 (.01) 0.47 (.01) 0.42 (.01)

LSTM
L2 0.77 (.01) 0.87 (.00) 0.78 (.00) 0.78 (.00) 0.85 (.00) 0.77 (.01) 0.85 (.01) 0.78 (.00) 0.76 (.00) 0.84 (.00) 0.74 (.01)

Cosine 0.69 (.01) 0.65 (.00) 0.71 (.00) 0.71 (.00) 0.57 (.00) 0.69 (.01) 0.61 (.00) 0.69 (.00) 0.68 (.00) 0.56 (.00) 0.67 (.01)

NormDiff 0.52 (.01) 0.50 (.00) 0.59 (.00) 0.59 (.00) 0.55 (.00) 0.52 (.01) 0.49 (.00) 0.59 (.00) 0.61 (.00) 0.55 (.00) 0.55 (.01)

Table 7. CEBaB scores for additional baselines we considered. CEBaB scores are measured in three different metrics on the test set for
four different model architectures as a five-class sentiment classification task. Lower is better. Results averaged over three distinct seeds,
standard deviations in parentheses. Details about these evaluation metrics can be found in Section 4.

A.5. Intervention Site Location and Size

Previous work shows that neurons in different layers and
groups can encode different high-level concepts (Vig et al.,
2020; Koh et al., 2020). CPMHI pushes concept-related
information to localize at the targeted intervention site (the
aligned neural representations for each concept). In this
section, we investigate how the location and the size of the
intervention site impact CPMHI performance. We use the
optimal location and size found in this study for other results
presented in this paper.

Location For Transformer-based models, we vary the
location of the intervention site by intervening on the
“[CLS]” token embedding layer l. Specifically, we set
l = {2, 4, 6, 8, 10, 12}. We skip this experiment for non-
Transformer-based model (i.e., LSTM) since it only contains
a single sentence embedding.

As shown in the top panel of Figure 2, intervention location
significantly affects CPMHI performance. Our results show
that layer 10 for BERT, layer 8 for RoBERTa, and layer 12 for
GPT-2 lead to the best performance. This suggests layers
have different efficacy in terms of information localization.
Our results also show that intervening with deeper layers
tends to provide better performance. However, for both
BERT and RoBERTa, intervening on the last layer results in a
slightly worse performance compared to earlier layers. This
suggests that leaving Transformer blocks after the interven-
tion site helps localized information to be processed by the
neural network.

Size For Transformer-based models, we change the size
of the intervention site dc for each concept. Specifically, we
set dc = {1, 16, 64, 128, 192}. For instance when dc = 1,
we use a single dimension of the “[CLS]” token embedding
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Model Ablation L2 Cosine NormDiff Macro-F1

BERT

CPMHI 0.45 (.02) 0.36 (.03) 0.27 (.04) 0.69 (.01)

− LMulti 0.47 (.04) 0.38 (.04) 0.30 (.07) 0.69 (.01)

− LHI 0.79 (.02) 0.60 (.03) 0.64 (.02) 0.60 (.08)

+ random init 0.81 (.02) 0.52 (.00) 0.55 (.02) 0.08 (.02)

+ no training 0.80 (.02) 0.86 (.04) 0.76 (.02) 0.70 (.01)

RoBERTa

CPMHI 0.47 (.03) 0.39 (.03) 0.29 (.05) 0.71 (.00)

− LMulti 0.49 (.05) 0.41 (.05) 0.32 (.06) 0.70 (.00)

− LHI 0.81 (.00) 0.53 (.02) 0.63 (.01) 0.39 (.06)

+ random init 0.85 (.00) 0.51 (.00) 0.59 (.01) 0.06 (.00)

+ no training 0.84 (.01) 0.93 (.05) 0.83 (.00) 0.70 (.00)

GPT-2

CPMHI 0.41 (.04) 0.39 (.05) 0.27 (.05) 0.68 (.00)

− LMulti 0.43 (.03) 0.41 (.05) 0.29 (.04) 0.67 (.00)

− LHI 0.66 (.01) 0.58 (.04) 0.49 (.01) 0.58 (.04)

+ random init 0.73 (.00) 0.54 (.00) 0.47 (.01) 0.16 (.00)

+ no training 0.65 (.00) 0.61 (.00) 0.57 (.02) 0.65 (.00)

LSTM

CPMHI 0.54 (.01) 0.46 (.01) 0.36 (.00) 0.59 (.01)

− LMulti 0.56 (.02) 0.47 (.02) 0.41 (.02) 0.59 (.01)

− LHI 0.73 (.00) 0.64 (.02) 0.59 (.00) 0.59 (.01)

+ random init 0.82 (.00) 0.55 (.00) 0.55 (.00) 0.13 (.04)

+ no training 0.73 (.01) 0.74 (.00) 0.59 (.01) 0.60 (.01)

Table 8. Ablation study of our CPMHI method trained with human
approximate counterfactual strategy. CEBaB scores measured
in three different metrics on the test set for four different model
architectures as a five-class sentiment classification task. Lower
is better. Results averaged over three distinct seeds, standard
deviations in parentheses.

to represent each concept, starting from the first dimension
of the vector. For our non-Transformer-based model (LSTM),
we intervene on the attention-gated sentence embedding
whose dimension size is set to 300. Accordingly, we set
dc = {1, 16, 64, 75}.

As shown in Figure 2, larger intervention sites lead to better
performance for all Transformer-based models. For LSTM,
we find that the optimal size is the second largest one instead.
On the other hand, our results suggest that the performance
gain from the increase of size diminishes as we increase the
size for all model architectures.

A.6. Ablation Study of CPMHI

Geiger et al. (2022) show that training with a multi-task
objective helps IIT to improve generalizability. In this
experiment, we aim to investigate whether the multi-task
objective we added for CPMHI plays an important role in
achieving good performance. Specifically, we conduct two
ablation studies: removing the multi-task objective by set-
ting wMulti = 0.0, and removing the IIT objective by setting
wHI = 0.0.

Table 8 shows our results, which demonstrate that the IIT
objective is the main factor that drives CPMHI performance.
Our results also suggest that the multi-task objective brings
relatively small but consistent performance gains. Overall,
our findings corroborate those of Geiger et al. (2022) and
provide concrete evidence that the combination of two ob-

jectives always results in the best-performing explanation
methods across all model architectures.

Additionally, we explore two baselines for CPMHI. Firstly,
we randomly initialize the weights of CPMHI. Secondly, we
take the original black-box model as our CPMHI. Compared
to the results in Table 1, these two baselines fail catastrophi-
cally, suggesting the importance of our IIT paradigm.

As mentioned in Section 3, we sample a source input xCi=c′

u′,v′

from the train set as any input x that has Ci = c′ to estimate
the counterfactual output. Furthermore, we explore two
additional sampling strategies. First, we create a baseline
where we randomly sample a source input from the train
without any concept label matching. Second, we sample a
source input from the train set using the predicted concept
label of our multi-task probe, instead of the true concept
label from the dataset.

As shown in Table 9, the quality of our source inputs impact
our performance significantly. For instance, when sampling
source input at random, CPMHI fails catastrophically for all
evaluation metrics. On the other hand, when we sampling
source based on the predicted labels using the multi-task
probe, CPMHI maintains its performance.

A.7. GPT-3 Generation Process

We use the 175B parameter davinci GPT-3 model (Brown
et al., 2020) as a few-shot learner to generate approximate
counterfactual data. Let xu,v be a review text with an origi-
nal value c for the mediating concept Ci and an overall re-
view sentiment y (e.g., a restaurant review which is negative
about the service, and felt neutral about their overall dining
experience), and let c′ be the target value of Ci, for which
we would like to create a counterfactual review (e.g., change
the text to become positive about the mediating concept ser-
vice). In order to use GPT-3 as an n-shot learner, we sample
n = 6 approximate counterfactual pairs (xu′,v′ , x̃

Ci←c′

u′,v′ ),
where xu′,v′ shares with xu,v the same value c for Ci and
the same overall sentiment, and the counterfactual review
x̃Ci←c′

u′,v′ has the target value c′ for Ci. We prompt the model
with these pairs, and we also include the original review
xu,v. We then collect the text completed by GPT-3 as the
GPT-3 counterfactual review. An example for this n-shot
prompt and completion is in Figure 3. In addition, we also
prompt GPT-3 with pairs of original reviews and metadata-
sampled counterfactuals, and generate another set of GPT-3
counterfactual review for comparison. We sample n = 4
approximate counterfactual pairs in this case. An example
of metadata-sampled counterfactual generation with GPT-3
can be seen in Figure 4.

For each few-shot learning prompt, we insert an initial string
of the form of “Make the following restaurant reviews in-
clude c′ mentions of Ci.”, where c′ is expressed as one
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sampled counterfactuals human-created counterfactuals
Random Probe-based Random Probe-based

Model Metric CPMHI Source Source CPMHI Source Source

BERT
L2 0.60 (.01) 0.74 (.03) 0.61 (.01) 0.45 (.03) 0.70 (.03) 0.43 (.02)

Cosine 0.45 (.00) 0.53 (.01) 0.45 (.00) 0.36 (.04) 0.59 (.04) 0.35 (.01)

NormDiff 0.38 (.00) 0.54 (.02) 0.39 (.01) 0.27 (.01) 0.53 (.01) 0.25 (.02)

RoBERTa
L2 0.67 (.02) 0.79 (.01) 0.66 (.02) 0.47 (.03) 0.72 (.01) 0.44 (.01)

Cosine 0.47 (.00) 0.52 (.01) 0.46 (.01) 0.39 (.03) 0.57 (.03) 0.37 (.01)

NormDiff 0.45 (.03) 0.59 (.00) 0.44 (.03) 0.29 (.05) 0.55 (.01) 0.25 (.01)

GPT-2
L2 0.51 (.01) 0.65 (.02) 0.51 (.02) 0.41 (.04) 0.58 (.03) 0.39 (.02)

Cosine 0.46 (.00) 0.55 (.01) 0.46 (.01) 0.39 (.05) 0.56 (.02) 0.37 (.01)

NormDiff 0.30 (.00) 0.46 (.01) 0.31 (.01) 0.27 (.05) 0.44 (.01) 0.25 (.01)

LSTM
L2 0.64 (.02) 0.76 (.01) 0.65 (.02) 0.54 (.01) 0.69 (.03) 0.55 (.00)

Cosine 0.50 (.01) 0.57 (.01) 0.50 (.01) 0.46 (.00) 0.58 (.01) 0.46 (.01)

NormDiff 0.41 (.01) 0.54 (.01) 0.41 (.02) 0.36 (.00) 0.52 (.00) 0.38 (.01)

Table 9. Ablation study of our CPMHI method for different source input s sampling strategies at inference time. CEBaB scores measured
in three different metrics on the test set for four different model architectures as a five-class sentiment classification task. Lower is better.
Results averaged over three distinct seeds, standard deviations in parentheses.

of {“POSITIVE”, “NEGATIVE”, “NOT” } (“NOT” cor-
responds to making the review be unknown regarding the
concept Ci) and Ci is one of {“AMBIANCE”, “FOOD”,
“NOISE”, “SERVICE”}. We sample using a temperature of
0.9, without any frequency or presence penalties (since we
expect the counterfactual review to be similar to the origi-
nal review). In preliminary experimentation, we found that
capitalizing the mediating concept and target value results
and inserting line breaks between examples made for better
completions, although there is room for future research in
this area.

We used the OpenAI API to access GPT-3. At the cur-
rent price rate of $0.02 per 1,000 tokens, the total cost of
creating our counterfactuals (around 4,000 examples) was
approximately $50 per approximate counterfactuals creation
strategy.

A.8. Integrated Gradients

We adapt the Integrated Gradients (IG) method of Sundarara-
jan et al. (2017) to qualitatively assess whether CPMHI
learned explainable representations of mediated concepts
at its intervention sites. The IG algorithm computes the
average gradient from the model output to its input by incre-
mentally interpolating from a “blank” input x′ (consisting
only of “[PAD]” tokens) to the original input x. Eqn. 10
is the integrated gradients equation originally proposed in
Sundararajan et al. (2017), applied to a CPM model P on
input x.

IntegratedGradsj(x) = (xj − x′j)

·
∫ 1

α=0

∂P(x′ + α · (x− x′))

∂xj
∂α

(10)

Here, ∂P(x)
∂xj

is the derivative of P on the jth dimension of
x.

In our implementation of IG, we wish to show the per-token
attribution of input x on the model’s final output P(x),
mediated by the hidden representation of a concept in P .
That is, we’d like to ask, “What is the effect of the word
‘delicious’ in the input on the model’s output, when we
restrict our focus only on the model’s representation of the
concept food?”

To answer this question, we compute the gradient of the
model output P(x) with respect to the input x but restrict
the gradient to flow through the intervention site for a par-
ticular concept. This allows us to capture the per-token attri-
bution of the model’s final output (whether particular words
contributed to a positive, negative, or neutral sentiment pre-
diction), mediated by the concept that is represented by the
specified intervention site. For example, in Table 4, we can
see that “delicious” has a positive attribution to the output
of the model when we focus on its representation of the
concept food.

Formally, consider a trained CPM model P , an input x and
mediating concept Ci. Let HCi be the activation of P at
the intervention site for Ci. We define the gradient of P(x)
along dimension j, mediated by Ci, as

∂P(x)
∂xj

mediated by Ci =
∂P(x)
∂HCi

· ∂H
Ci

∂xj
. (11)

Eqn. 11 restricts the gradient to only flow through the hid-
den representation of the concept along which we’d like to
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Make the following restaurant reviews include POSITIVE mentions of SERVICE.

Original: I had two casual dinners at State & Lake and three lunches. The food was great but the
service was lacking. Everything was delicious. The interior is questionable, but not intrusive.

POSITIVE mentions of SERVICE: I had two casual dinners at State & Lake and three lunches. The
food and the service were always great. Everything was delicious. The interior is questionable,
but not intrusive.

Original: Food was excellent, but the service was not very attentive. Noise level was extremely
high due to close proximity of tables and poor acoustics.

POSITIVE mentions of SERVICE: Food and service was excellent. Noise level was extremely high
due to close proximity of tables and poor acoustics.

Original: Great food, poor and very snobbish service.

POSITIVE mentions of SERVICE: Great food, very good service.

Original: My dining experince was excellent! However, the server was not nice.

POSITIVE mentions of SERVICE: My dining experince was excellent!

Original: Hae been here a few times and it is just okay - Entrees and wine list a bit pricey
for what it is, inattentive staff.

POSITIVE mentions of SERVICE: Hae been here a few times and it is just okay - Entrees and wine
list a bit pricey for what it is. Food comes out on time.

Original: Tables fairly close together, mushroom appetiser very good, pork entree fair,
chicken good. The service was terrible.

POSITIVE mentions of SERVICE: Tables fairly close together, mushroom appetiser very good, pork
entree fair, chicken good. The service was great however.

Original: Service was very poor with the server unresponsive and misinformed on all requests.
The food was very good with a good selection of entrees. The ambiance was romantic with a
quiet excellence.

POSITIVE mentions of SERVICE: Service was very good with the server attentive and responsive
on all requests. The food was very good with a good selection of entrees. The ambiance was
romantic with a quiet excellence.

Figure 3. Example GPT-3 prompt (gray) and GPT-3 completion (bold). Note that all original examples convey the same sentiment towards
service (c = negative) and same overall sentiment (y = neutral), and that the counterfactual examples are all edited such that the
sentiment towards service is the same (c′ = positive).

interpret our model.

We integrate these mediated gradients over a straight path
between input x and baseline x′, analogous to Eqn. 10. We
implement our IG method using CaptumAI library.3 We use

3https://captum.ai/

the default parameters for our runs with number of iterations
set to 50, and we set the integral method as gausslegendre.
We set the multiply-by-inputs flag to True. To visualize
individual word importance, we conduct z-score normaliza-
tion of attribution scores over input tokens per each concept,
and then linearly scale scores between [−1, +1].
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Make the following restaurant reviews include POSITIVE mentions of SERVICE.

Original: Been here several times. Always a winner, except for the tasteless food!

POSITIVE mentions of SERVICE: I was very disappointed in the food but we did not wait long for
each course and or waiter was very pleasant.

Original: food was decent but not great.

POSITIVE mentions of SERVICE: Lovely evening - good service and wonderful food. Perfect for
fresh fish fans

Original: The restaurant was empty when we arrived, reservation not necessary? Wine list
limited. Food was bland, presentation was very well done. I would not eat here again.

POSITIVE mentions of SERVICE: Abby provided the best service that we’ve had after probably
two dozen visits. No thank you for making the risotto cake at lunch....Two Stars!

Original: A terrible place for lunch or dinner. All the food is excellent with top notch
ingredients

POSITIVE mentions of SERVICE: Excellent Valentine’s menu. Excellent service and food. Would
recommend this restaurant and will return.

Original: The food was average for the cost. My husband and I were so excited to visit Bobby
Flay’s restraunt and were really disappointed. The food was average at best.

POSITIVE mentions of SERVICE: The service was amazing and the food was alright.

Figure 4. Example GPT-3 prompt (gray) and GPT-3 completion (bold). Note that all original examples convey the same sentiment towards
service (c = unknown) and same overall sentiment (y = negative), and that the counterfactual examples are all metadata-sampled such
that the sentiment towards service is the same (c′ = positive).

Table 10 extends Table 4 in our main text with additional
ablation studies on our training objectives.

A.9. Model Debiasing

Being able to accurately predict outputs for counterfactual
inputs enables explanation methods to faithfully debias a
model with regard to a desired concept. For instance, with
CEBaB, debiasing a concept (e.g., “food”) is equivalent
to estimating the counterfactual output when we set the
concept label for a concept to be unknown.

In this section, we briefly study the extent to which the
CPMHI can function as a debiasing method. To debias a
concept, we enforce the sampled source input s as in Eqn. 2
to have unknown as its concept label for the concept to be
debiased.

To show our methods can faithfully debias a targeted con-
cept, we evaluate the correlations between the predicted
overall sentiment label for sentences and the concept la-
bels for each concept. Without any debiasing technique,

we expect concept labels to be highly correlated with the
overall sentiment label (e.g., if food is positive, it is more
likely that the overall sentiment is positive). We use CPMHI
trained for the BERT model architecture as an example, and
use examples in the test set.

Figure 5 shows correlation plots for the black-box model as
well as CPMHI. As expected, the correlation of the food con-
cept is weakened through the debiasing pipeline by 57.50%.
Our results also suggest that correlations of other concepts
are affected, which suggests a future research direction fo-
cused on minimizing the impact of the debiasing pipeline
on irrelevant concepts. We include results for the remaining
concepts in the Appendix A.9.

Figure 5a to Figure 5d show debiasing visualizations for
three concepts: ambiance, noise and service. We use a
CPMHI for the BERT model architecture as an example. We
calculate the distributions with examples in the test set.
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(a) Visualization for debiasing the ambiance concept.

(b) Visualization for debiasing the food concept.

(c) Visualization for debiasing the noise concept.

(d) Visualization for debiasing the service concept.

Figure 5. Debiasing visualizations for different concepts of a CPMHI with BERT model architecture. Individual plots are correlation plots
between concept labels of a concept and the overall sentence sentiment label.
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Model Predicted Concept Score Word Importance

Black-box neutral

ambiance +0.03 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.11 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise +0.04 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.26 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

CPMHI neutral

ambiance −0.61 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food −0.88 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.34 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.75 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Table 10. Additional visualizations of word importance scores using Integrated Gradient (IG) by restricting gradients flow through
corresponding intervention site of the targeted concept. This table extends Table 4 in the main text.

Figure 6. CEBaB scores measured in three different metrics on the dev and the test sets for a CPMHI with the BERT architectures for
different training epochs. Task performance as Macro-F1 score is reported.

A.10. Learning Dynamics

Figure 6 shows three different metrics measured on the dev
and the test sets for a CPMHI trained for the BERT model ar-
chitecture as an example. Since we use COSICaCE on the dev
set to early stop our training process, we find our CPMHI
reaches a local minimum on COSICaCE while L2ICaCE and
NormDiffICaCE are still trending downward. This suggests
future research may need to choose desired metrics to opti-
mize for during training, for early stopping to reach the best
performing model.

Table 11 visualizations of word importance scores using our
version of Integrated Gradient (IG). Different from Table 4
and Table 10, which show the visualizations of our opti-
mized model, we show a per-epoch result for for CPMHI,
followed with our best model appended at the end. Our
results suggest that early checkpoints in the training pro-
cess focus at drastically different input words comparing to
later checkpoints, though all models predict neutral for this
given sentence. In addition, gradient aggregations over input
words are rather stable towards the end the training. More
importantly, CPMHI learns how to highlight words that are
semantically related to each concept gradually. For instance,
we can see a clear trend of emphasising the word “deco-
rations” for the ambiance concept throughout the training
process. This suggests that our training procedure induces
causally motivated gradients over input words gradually

through the training process.

A.11. K-shots of Counterfactual Examples During
Training

Figure 7 shows performance change for different explainers
for during amount of approximated counterfactual examples
available during training. It is quite consistent that with
more counterfactual data available during training, explain-
ers perform better. Our findings also suggest that with as
little as 0.5K-1K meta-data sampled counterfactuals, CPMs
can outperform the strongest baselines which consume all
the counterfactuals.
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Epoch Predicted Concept Score Word Importance

1 neutral

ambiance −0.17 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.66 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.32 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.05 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

2 neutral

ambiance −0.25 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.54 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.24 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.02 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

3 neutral

ambiance −0.49 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.52 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.97 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +0.49 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

4 neutral

ambiance −0.69 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.41 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.92 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.14 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

5 neutral

ambiance −0.77 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +1.25 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.63 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.28 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

6 neutral

ambiance −0.66 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food +0.62 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −0.90 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +2.14 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

CPMHI neutral

ambiance −0.61 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

food −0.88 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

noise −1.34 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

service +1.75 [CLS] the music was too loud , and the decorations were taste ##less , but they had friendly waiter ##s and delicious pasta [SEP]

Table 11. Visualizations of word importance scores using Integrated Gradient (IG), using the same methods as in Table 4 and Table 10.
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Figure 7. CEBaB scores measured in three different metrics on the test sets when explainers are trained with k-shots of approximated
counterfactual examples.
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