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Abstract

Graph Neural Networks (GNNs) have become
important machine learning tools for graph anal-
ysis, and its explainability is crucial for safety,
fairness, and robustness. Layer-wise relevance
propagation for GNNs (GNN-LRP) evaluates the
relevance of walks to reveal important informa-
tion flows in the network, and provides higher-
order explanations, which have been shown to
be superior to the lower-order, i.e., node-/edge-
level, explanations. However, identifying relevant
walks by GNN-LRP requires exponential compu-
tational complexity with respect to the network
depth, which we will remedy in this paper. Specif-
ically, we propose polynomial-time algorithms for
finding top-K relevant walks, which drastically
reduces the computation and thus increases the ap-
plicability of GNN-LRP to large-scale problems.
Our proposed algorithms are based on the max-
product algorithm—a common tool for finding
the maximum likelihood configurations in proba-
bilistic graphical models—and can find the most
relevant walks exactly at the neuron level and ap-
proximately at the node level. Our experiments
demonstrate the performance of our algorithms at
scale and their utility across application domains,
i.e., on epidemiology, molecular, and natural lan-
guage benchmarks. We provide our codes under
github.com/xiong-ping/rel walk gnnlrp.
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1. Introduction
Graph Neural Networks (GNNs) are powerful machine
learning tools to solve tasks on graph datasets, such as social
networks (Yanardag & Vishwanathan, 2015) and molecules
(Kazius et al., 2005; Schütt et al., 2018). Various GNN
models have been proposed (Wu et al., 2021a), while the
rationale of prediction—for example, which node features
or which parts of the input graph are (jointly) contribut-
ing to the prediction—cannot be directly extracted from
the model. The GNN therefore acts as a black box and its
prediction is hard to comprehend without further investiga-
tion. To address this challenge, many explainability methods
emerged in recent years (Schnake et al., 2022; Ying et al.,
2019), which can be generally categorized into model-level
and instance-level methods (Yuan et al., 2020b): model-
level methods generate representative graphs for different
predictions, while instance-level methods focus on single
predictions and find relevant features in the corresponding
input graphs.

This paper focuses on the instance-level explanation, for
which most of the existing methods, e.g., GNNExplainer
(Ying et al., 2019), PGExplainer (Luo et al., 2020) and
methods in Pope et al. (2019), only consider lower-order
features, i.e., nodes and edges, ignoring higher-order interac-
tions. Recently, Schnake et al. (2022) proposed layer-wise
relevance propagation for GNNs (GNN-LRP) as a decom-
position of the model into contributions of input features
that jointly give rise to the prediction. In particular, this
leads us to a higher-order explanation method that measures
the relevance of walks on the input graph. GNN-LRP can
be used in two ways: (1) identifying relevant walks that
reveal important information flows in the network, and (2)
aggregating walk relevances within subgraphs or substruc-
tures in the input graph to attribute them. In either way,
GNN-LRP captures interactions between features across the
network layers, and has shown its superior performance to
the lower-order methods.

Despite its ability to enable higher-order explanation, the
GNN-LRP algorithm faces computational issues: both its
relevant walk identification and the subgraph attribution re-
quire exponentially many walks to be evaluated. Therefore
naive implementations can cope only with small-scale prob-
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Figure 1. We aim to find the most important information flows for a GNN prediction in terms of walk relevance. Naively one can apply a
brute force search, where the relevances of all possible walks are evaluated and the most relevant ones are chosen. Our proposed methods
are based on the max-product algorithm to find the most relevant walks by local message passing, which reduces the computational
complexity drastically from exponential to linear with respect to the network depth.

lems in terms of the network depth and the graph size. The
latter issue, namely exponential complexity for subgraph
attribution, was solved by Xiong et al. (2022). They pointed
out that the relevance of a walk has the same decompos-
ability to the joint distribution of a Markov chain process,
and applied the sum-product message passing algorithm for
computing the subgraph relevance, which reduces the com-
putational cost from exponential to polynomial. They also
showed that the general LRP computation for feed-forward
neural networks can be seen as marginalization of walk
relevances by the sum-product message passing algorithm.

In this paper, we tackle the other issue: exponential com-
plexity for relevant walk identification. First of all, we
would like to propose that the decomposability argument
in Xiong et al. (2022) could also invoke the applicability
of the max-product message passing algorithm. This idea
could allow us the usage of a popular workhorse for find-
ing the maximum likelihood configuration of probabilistic
graphical models (Viterbi, 1967; Bishop, 2006). Our pro-
posal indeed relies on the max-product decomposability of
the objective, and thus allows deriving local message pass-
ing for relevance maximization (see Fig.1). However, two
difficulties stand in our way by obstructing max-product
decompositions: (1) negative values that relevance factors
can take, and (2) sum operations involved in the node-level
walk search.1 We resolve those difficulties by finding mul-
tiple absolute relevant walks with search space splitting
(Nilsson, 1998) and approximation with neuron averaging,
and propose two algorithms in this paper: an exact max-

1The neuron- and node-level walks (defined in Xiong et al.
(2022)) will be explained in Section 2.3, and illustrated in Fig.2.

product search for neuron-level walks (EMP-neu), and an
approximate max-product search by averaging (AMP-ave)
for node-level walks.

The computational complexities of EMP-neu and AMP-ave
are polynomial, so that we obtain an explanation method that
has the same higher-order feature resolution as GNN-LRP
but without exponential computational costs. In addition we
provide a variety of qualitative and quantitative experiments
that demonstrate the usefulness of our approach. We show
as well that the accuracy of AMP-ave is high in our experi-
ments, so that the potential approximation error is negligible
throughout the domains. This leads us to a new explanation
method, with only an insignificant approximation error, that
is fast computable and exhibits superior higher-order feature
resolution.

2. Background and Related Works
2.1. Graph Neural Networks

Graph Neural Networks (GNNs) (Scarselli et al., 2009; Wu
et al., 2021b) take a graph as an input, and make the cor-
responding prediction by using the topological structure of
the graph. In our setting we consider the message passing
neural networks (MPNNs) (Gilmer et al., 2017), which learn
node embeddings in multiple interaction blocks, and each
block typically consists of aggregate and combine steps:

Aggregate: Z(l) = M(l)(H(l−1),Λ), (1)

Combine: H(l) = C(l)
(
Z(l)

)
. (2)
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Here H(l) ∈ RM×N(l)

is the feature (activation) matrix
of the l-th layer, which consists of the N (l)-dimensional
feature embeddings for all M nodes. In the aggregate step,
the (forward) message Z(l) ∈ RM×N(l−1)

is computed by
the aggregation function M(l) that aggregates the features
H(l−1) from the last layer using a modified (e.g., normal-
ized with self-loops) adjacency matrix Λ ∈ RM×M . In the
combine step, the (typically non-linear) combine function
C(l) transforms Z(l) into the new node features H(l) for
this layer.

A common choice for the aggregation and the combine
functions in Eqs.(1) and (2), respectively, is the linear ag-
gregation and a one-layer perceptron, as in a simple GCN
(Kipf & Welling, 2017):

M(l)(H(l−1),Λ) = ΛH(l−1), (3)

C(l)(Z(l)) = σ(Z(l)W (l)), (4)

where W (l) ∈ RN(l−1)×N(l)

is a trainable weight matrix
and σ(·) is a non-linear (entry-wise) activation. After the
final node features are computed, a readout function will
be applied to make the final model predictions, e.g., sum
over all nodes followed by a softmax function to produce
graph-level classification probabilities.

2.2. Explaining GNNs

Many explanation methods for GNNs have emerged recently.
These include general explanation methods, e.g., sensitive
analysis (SA), guided backpropagation (GBP), class activa-
tion mapping (CAM) and excitation backpropagation (EB)
(Baldassarre & Azizpour, 2019; Pope et al., 2019), adapted
to the GNN structure, and novel methods specialized for
GNNs, e.g., GNNExplainer (Ying et al., 2019) and PGEx-
plainer (Luo et al., 2020). GNNExplainer finds soft masks
(for node or edge features) such that the mutual information
between the predictions of the original graph and the masked
graph is maximized, and uses the masks as the relevance
scores. PGExplainer learns approximate discrete masks by
training a parametric predictor, and masks out unimportant
edges according to the learned masks. PGM-Explainer (Vu
& Thai, 2020) trains an explainable probabilistic graphical
model as a surrogate of the GNN, and use its explanation
as a substitution. GraphMask (Schlichtkrull et al., 2021)
trains a one layered perceptron network to predict whether
each edge in each layer can be removed without changing
the model output significantly. XGNN (Yuan et al., 2020a)
and GNNInterpreter (Wang & Shen, 2022) explain a GNN
on the model-level, and generates representative graphs for
possible model predictions by using reinforcement learn-
ing or probabilistic generative models. GNES (Gao et al.,
2021) is a general framework that can make the explanation
more reasonable and stable by training GNN and optimizing
its explanation simultaneously with specific regularization.

Tage (Xie et al., 2022) is a framework for efficiently explan-
ing GNN with multiple downstream tasks, which trains a
parametric explainer in a self-supervision manner.

There are also higher-order methods that consider interac-
tions between more than two nodes. SubgraphX (Yuan et al.,
2021) searches the most relevant subgraph using Monte-
Carlo Tree Search (MCTS) with Shapley value (Lundberg
& Lee, 2017), and applied approximation methods in com-
puting Shapley values, which is otherwise too computation-
intensive. GNN-LRP (Schnake et al., 2022) is an LRP-based
method, which scores bag-of-edges by decomposing and
backpropagating the output to the input layer. GNN-LRP
considers a walk as the basic unit for attribution, which is
detailed below.

2.3. Relevance of Walks

A walk is defined as an ordered sequence of nodes connected
from layer to layer (Schnake et al., 2022). Assume that the
whole graph G consists of M nodes. Then, a walk can be
denoted by m ∈ M with M = {1, . . . ,M}L+1, meaning
that the walk starts from the m0-th node at the input layer,
goes through the ml-th node at the l-th layer, and reaches
the mL-th node in the last layer. We also denote a partial
walk by ml:l′ for 0 ≤ l ≤ l′ ≤ L.

The GNN-LRP rule for the MPNNs, Eqs.(1) and (2), with
the aggregation and combine functions, Eqs.(3) and (4), and
the ReLU activation is given as

r̆(l,ml) = T l,ml,ml+1 r̆(l+1,ml+1), (5)

where r̆(l,ml) ∈ RN(l)

is the propagated relevance at the
node ml in the l-th layer, and T l,m,m′

∈ RN(l)×N(l+1)

is
the propagation matrix whose entries are given as

T l,m,m′

n,n′ =
Λm,m′H(l)

m,nW
↑(l+1)

n,n′∑
m′′,n′′ Λm′′,m′H

(l)

m′′,n′′W
↑(l+1)

n′′,n′
. (6)

Here W ↑ is a modified weight parameter depending on
the choice of LRP rules (Bach et al., 2015; Montavon
et al., 2019; Samek et al., 2021; Eberle et al., 2022), e.g.,
W ↑ := W +γ ·max(0,W ) for the LRP-γ rule with γ ≥ 0,
where the max operator applies entry-wise. Note that we
mostly use subscripts to specify the entry of a matrix or
vector, while superscripts for distinguishing different matri-
ces or vectors. For general MPNNs, (1) and (2), relevance
propagation rules (5) can be similarly defined with appropri-
ate propagation matrices {T l,ml,ml+1} (see an exemplary
study in Schnake et al. (2022)). We stress that our theory
and algorithms can be applied to any GNN (possibly be-
yond MPNNs) as long as the propagation rule in the form
of Eq.(5) is defined.

Considering the unfolded GNN as a feed-forward neural
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neuron-level walk node-level walk

Figure 2. Illustration of neuron-level and node-level walks. The
node-level path of the top neuron-level walk may differ from the
top node-level walk, because many weakly relevant neuron-level
walks may sum up to a strongly relevant node-level walk.

network (FFNN), Xiong et al. (2022) defined the neuron-
level walk (see Fig. 2):

Rm,n =
(∏L−1

l=0 T
l,ml,ml+1
nl,nl+1

)
rL,mL
nL

, (7)

and pointed out that it has the same decomposability as the
joint distribution of a Markov chain process. Here n ∈ N ≡
{1, . . . , N (0)}×· · ·×{1, . . . , N (L)} specifies the trajectory
of relevance through neurons, and rL,mL ∈ RN(L)

denotes
the neuron-level relevance at the L-th layer. Based on this
observation, it was shown that the propagation rule (5) for
computing the (node-level) walk relevance by GNN-LRP,
i.e.,

Rm =
(∏L−1

l=0 T l,ml,ml+1

)
rL,mL

=
∑

n∈N

(∏L−1
l=0 T

l,ml,ml+1
nl,nl+1

)
rL,mL
nL

, (8)

(as well as the one for the standard LRP for general FFNN
with any propagation matrices T ) can be interpreted as the
sum-product message passing algorithm—a common tool
to compute marginal probabilities of tree-structured proba-
bilisitic graphical models (Pearl, 1982; Bishop, 2006)—for
marginalizing over the neurons within the node-level walk
m. Xiong et al. (2022) applied the same argument for the
subgraph relevance, proposed in Schnake et al. (2022), and
drastically accelerated the exponential computation of the
original GNN-LRP to a polynomial one.

3. Message Passing for Relevant Walk Search
This paper aims to provide a family of efficient algorithms
for finding most relevant walks; see Section 4 for applica-
tions. We reiterate from Section 1 that the same decom-
posability of the walk relevance as a Markov chain process
(see Xiong et al. (2022)) allows us now to propose the ap-
plication of the max-product algorithm for maximization
(Viterbi, 1967; Bishop, 2006), instead of the sum-product
algorithm for marginalization. Specifically, we can now

suggest two novel algorithms, namely, for neuron-level and
node-level search of the most relevant walks.

3.1. Exact Neuron-level Search

Unlike the sum-product decomposition, the max-product
decomposition holds only when each factor is non-negative.
Therefore, we first maximize the absolute relevance:

R̆m,n =
(∏L−1

l=0 |T l,ml,ml+1
nl,nl+1 |

)
|rL,mL

nL
|. (9)

Thanks to the decomposability of the objective, the maxi-
mization (9) can be performed by the following max-product
message passing for l = L, . . . , 0:

m̂l, n̂l = argmaxml,nl
|T l−1,ml−1,ml

nl−1,nl | µ̂l,ml
nl

, (10)

µ̂l−1,ml−1
nl−1

= |T l−1,ml−1,m̂l

nl−1,n̂l
| µ̂l,m̂l

n̂l
, (11)

where µ̂l,ml ∈ RN(l)

is a (backpropagating) message at the
l-th layer, and initialized as µ̂L,mL

nL
= |rL,mL

nL
|. (m̂l, n̂l) ∈

{1, . . . ,M}×{1, . . . , N (l)} are also messages, and actually
functions of (ml−1, nl−1)—we abbreviated them as m̂l =
m̂l(ml−1, nl−1) and n̂l = n̂l(ml−1, nl−1) in Eqs.(10) and
(11) to avoid from cluttering. (m̂l, n̂l) together specify the
most relevant backward neuron-level step for any possible
next step choice for the (l−1)-th layer. The derivation of the
message passing, (10) and (11), and the detailed algorithm
are given in Appendix B.

The max-product message passing above finds the neuron-
level walk that has the highest absolute relevance in
O(M2N

2
L) time, where N = maxl N

(l). However, the
solution can be not the maximizer but the minimizer of the
original walk relevance (7) if it is negative. Furthermore, we
expect that only focusing on the single most relevant walk
is not always informative enough for GNN explanation. To
remedy both issues, we propose a procedure to find the top-
K̃ absolute relevant walks, following the strategy proposed
in Nilsson (1998).

After finding the neuron-level walk m̂
1
, n̂1 with the highest

absolute relevance, we split the rest of the search space
(M×N)\(m̂1

, n̂1) into L+1 disjoint subsets {Ai}, where

A0 = {(m,n) : (m0, n0) ̸= (m̂1
0, n̂

1
0)},

Ai = {(m,n) : (m0:i−1, n0:i−1) = (m̂1
0:i−1, n̂

1
0:i−1),

(mi, ni) ̸= (m̂1
i , n̂

1
i )} for i = 1, . . . , L. (12)

Namely, the subset Ai consists of all walks that have the
same partial walk as the first solution until the (i − 1)-th
layer, and differ at the i-th layer. No restriction is imposed
for the subsequent layers, l = i+ 1, . . . , L. Then we apply
the max-product message passing to each subset, taking the
corresponding constraint into account. Among the (L+ 1)
solutions from the subsets, the walk that gives the highest
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absolute relevance is the second best solution m̂
2
, n̂2. The

third best solution can be similarly obtained by further split-
ting Aî \ (m̂

2
, n̂2), where Aî is the set from which the

second solution was found, into disjoint subsets, and we can
iterate this procedure until the top-K̃ walks are collected
(see Appendix B for detailed procedure). The number of
disjoint subsets increases up to K̃L + 1 in the worst case.
Note that this procedure can be terminated at any K̃, e.g.,
when we are satisfied with the collection, and therefore it is
not necessary to fix K̃ beforehand.

We call the algorithm described above—top-K relevant
neuron-level walk search by max-product message pass-
ing, (10) and (11), and the search space splitting (12)—
exact max-product search for neuron-level walks (EMP-
neu), for which the following theorem holds (for proof see
Appendix B):

Theorem 3.1. Assume that the top-K̃ walks with the high-
est absolute relevance contain K walks with positive rel-
evance. Then, EMP-neu finds the top-K neuron-level
walks that maximize Eq.(7) with the computational com-
plexity O(LM2N

2
+ K̃L2MN) and the memory cost

O(LM2N
2
).

This theorem guarantees that EMP-neu can perform exact
search in polynomial-time. Notably, the complexity for
K̃ ≥ 2 can be much smaller than a naive application of the
whole message passing to each subset, which would cost
O(K̃L2M2N

2
) (note that the graph size M and the feature

dimension N are typically much larger than the network
depth L in large-scale problems). This is because most of
the messages required to find the k-th solution candidate
in each subset have been already computed after the top-
(k − 1) solutions were found, and can be reused. How large
K̃ is required for a target K is affected by how many and
large negative entries the propagation matrices contain. We
empirically found (see Appendix D.1) that the proportion
of positive walks among the top-K̃ absolute walks are more
than half for LRP-γ with γ ≥ 0.2, and therefore typically
K̃ < 2K.

3.2. Approximate Node-level Search

Let us move our focus on the node-level walk relevance
(8), which has shown to be useful for GNN explanation
(Schnake et al., 2022; Xiong et al., 2022). Unfortunately, the
max-product algorithm is not directly applicable to the node-
level relevance because the marginalization over the neurons
prevents max-product decompositions. As a remedy, we
propose an approximation method.

Let us have a close look into the maximization problem of

the node-level relevance

max
m∈M

Rm = maxm∈M
∑

n∈N

(∏L−1
l=0 T

l,ml,ml+1
nl,nl+1

)
rL,mL
nL

= maxm∈M
∑

n0,n1
T 0,m0,m1
n0,n1

· · ·
∑

nl
T

l−1,ml−1,ml
nl−1,nl∑

nl+1
T

l,ml,ml+1
nl,nl+1 · · ·

∑
nL

T
L−1,mL−1,mL
nL−1,nL rL,mL

nL
. (13)

In the last equation, the summation operators are distributed
according to the sum-product decomposition, while the max-
imization operator cannot be distributed. This is because the
maximization for ml involves multiple terms that depend on
the propagation matrices {T l′,ml′ ,ml′+1} for l′ < l through
the dependence on the neurons.

Now assume that the propagation matrices {T l−1,ml−1,ml}
at the (l − 1)-th layer has similar columns, and can be
approximated as T l−1,ml−1,ml ≈ T

l−1,ml−1,ml , where
T

l−1,ml−1,ml ∈ RN(l−1)×N(l)

consists of the same
columns equal to the average column of T l−1,ml−1,ml ,
i.e., T

l−1,ml−1,ml

nl−1,nl
= 1

N(l)

∑N(l)

n′
l=1 T

l−1,ml−1,ml

nl−1,n′
l

,∀nl =

1, . . . , N (l). With this approximation, we see that the max
operator can be distributed as

max
m∈M

Rm ≈ max
m0,...,ml

∑
n0,n1

T 0,m0,m1
n0,n1

· · ·T l−1,ml−1,ml

nl−1,nl

max
ml+1,...,mL

∑
nl,nl+1

T l,ml,ml+1
nl,nl+1

· · ·
∑
nL

TL−1,mL−1,mL
nL−1,nL

rL,mL
nL

.

Inspired by this observation, we propose an approximate
max-product search by averaging (AMP-ave), which iterates
the following message passing for l = L, . . . , 0:

m̂l = argmaxml

∑
nl−1,nl

T
l−1,ml−1,ml
nl−1,nl µ̂l,ml

nl
, (14)

µ̂l−1,ml−1
nl−1

=
∑

nl
T

l−1,ml−1,m̂l
nl−1,nl µ̂l,m̂l

nl
. (15)

To find the top-K walks, we can apply the same search space
splitting procedure (12) as in the neuron-level walk search.
Algorithm details of AMP-ave are given in Appendix C.

Below we give a few notes on AMP-ave:

• Approximation error occurs in the maximization step
(14), where the marginalization over nl−1 is already
performed, ignoring the dependence of the propaga-
tion matrix T

l−2,ml−2,ml−1
nl−2,nl−1 at the (l − 2)-th layer

on nl−1. This is justified when (T l−2,ml−2,ml−1 −
T

l−2,ml−2,ml−1
) is not so large that it changes the

choice m̂l of node—which we refer to the column-
similarity assumption in the subsequent sections. We
will investigate the approximation accuracy and its de-
pendence on the LRP parameters in Section 4.

• The relevance message (15) treats the dependence on
nl−1 correctly, and therefore, the approximation error
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does not acumulate as long as the approximate maxi-
mization step (14) gives the correct choice.

• We do not apply the absolute value operation to the
propagation matrices {T l,ml,ml+1} in the message
passing. This is because marginalizing over the ab-
solute values tends to significantly differ from the
marginalizing over the original values, and the ob-
jective in Eq.(14) tends to be non-negative after the
neuron marginalization (see Appendix D.2 for empiri-
cal investigation). When negative values are involved
in the maximization step, a few of the top-K̃ walks
found by AMP-ave can have negative relevance. In
such cases, we increment K̃(≥ K) until K walks with
positive relevance are found, similarly to EMP-neu.

• AMP-ave has the same computational complexity as
EMP-neu, i.e., O(LM2N

2
+ K̃L2MN).

• A naive implementation that directly works with the
propagation matrices requires O(LM2N

2
) memory

cost, which can be too huge for large scale prob-
lems. Although this is inevitable for the neuron-level
walk search, AMP-ave can work on the activation
matrices {H(l)} and the modified weight matrices
{W ↑(l)} (see Sections 2.1 and 2.3 for the definitions),
which reduces the memory costs to O(Lmax(M,N)2)
and makes the node-level walk search feasible for
larger scale problems (see Appendix C.1). For one
layer in the GIN used in our experiment on Infec-
tion dataset, the memory cost reduced from 10002 ×
322 ≈ 109 to only 10002 + 1000 ∗ 32 + 322 ≈ 106

Tensor.floats.

4. Experiments
Here, we will empirically study our proposed approach. Af-
ter introducing the datasets used in our experiments, we
first evaluate the approximation accuracy of AMP-ave, i.e.,
how accurately AMP-ave can find the true top-K walks, by
comparing with the ground-truth most relevant walks found
by exhaustive search. Then, we show qualitative results
demonstrating the utility of our approach, followed by quan-
titative evaluations supporting the exquisite performance of
our walk search approach. Lastly, we report its computation
cost, showing dramatic improvement over previous GNN-
LRP implementation from Schnake et al. (2022). Empirical
evaluation of EMP-neu in terms of accuracy (or correctness)
and computation time can be found in Appendix D.3.

4.1. Datasets

We use common benchmark datasets including BA-2motif,
MUTAG, Mutagenicity, and Graph-SST2 (see Ap-
pendix F for details on data and employed GNNs). We

demonstrate the scalability of our framework, using the
Infection dataset, for which exhaustive evaluation of all
walks is infeasible. This dataset was originally generated by
simulating a dissemination process based on the susceptible-
infected (SI) model—a common process in epidemiology
studies (Bai et al., 2017; Oettershagen et al., 2020; Isella
et al., 2011). We first generate a random directed graph
with size M that expresses interactions between humans,
by using the code provided by Faber et al. (2021). Then
we randomly choose 2% of the population (nodes) to be
the initial infected people or carriers. We simulate L-time
steps of the infection process: each carrier infects its neigh-
bors with probability λ, and never cures itself. We record
the infection chains from one of the initial carriers to each
carrier at time L, which are used as the ground truth for
quantitative evaluation. We assume that the investigator,
who has no information on the data generating process,
trains a GNN to predict whether each person will be in-
fected after L steps. We generated 100 samples (scenarios)
with M = 1000, L = 4, λ = 0.6, and trained a L-layered
GCN with 80 samples and tested on the other 20 samples.
The model reached 82.51% accuracy, which is close to the
prediction accuracy 83.1% by the oracle.2

4.2. Approximation Accuracy of AMP-ave

We first validated the accuracy of AMP-ave. By using BA-
2motif, MUTAG, Mutagenicity, and Graph-SST2 datasets
with the corresponding trained GNN models, we performed
an exhaustive search to identify the ground-truth top-K∗

walks. Then, we performed approximate top-K walk search
by AMP-ave for different K, and evaluated its performance
in terms of precision TP/K and recall TP/K∗, where
TP = |{Approx. top-K walks} ∩ {True top-K∗ walks}|,
on randomly chosen samples among the correctly classi-
fied test samples from each dataset.3 Figure 3 shows the
precision-recall curves on BA-2motif and Mutagenicity
for different K∗ and different γ of LRP-γ rules. Here,
γ = [3, · · · , 0] indicates the recommended setting by
Schnake et al. (2022), i.e., γ is set from 3 to 0, linearly
decreasing as γ = 3(1 − l

L−1 ) for the l-th layer. We ob-
serve that the approximation accuracy by AMP-ave is gen-
erally good for LRP-γ with γ ≥ 0.2. Similar results were
obtained on MUTAG and Graph-SST2 (see Appendix E).
Note that the accuracy of AMP-ave is low for LRP-0, which
however is rarely used for GNN explanation because of its

2As the oracle, we estimate the infection probability of each per-
son, as well as the possible infection chains with their probabilities,
by using the complete information of the data generation process
including the parameter setting (see Appendix G for detailed com-
putation). They are used as the ground truth or as the best possible
predictor/detector in qualitative and quantitative evaluations.

3Due to the exponential complexity of exhaustive search, we
chose 10 samples from each dataset and excluded the Infection
dataset.
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Figure 3. Precision-recall curves of AMP-ave in top-K∗ node-level
walk search on BA-2motif (top) and Mutagenicity (bottom).

Figure 4. The histograms of the cosine similarity (16) between the
column vectors and their average of the propagation matrices for
γ = [3, . . . , 0]. Each panel corresponds to each dataset.

poor performance in general (Schnake et al., 2022). In the
subsequent experiments, we focus on the recommended set-
ting γ = [3, · · · , 0].
Column-similarity Assumption: Here, we investigate to

what extent the assumption required for high accuracy of
AMP-ave holds. Specifically, we measure the cosine simi-
larity between the column vectors {tl,ml,ml+1

nl }N(l)

nl=1 of the

propagation matrix T l,ml,ml+1 with their average tl,ml,ml+1

(the corresponding column vectors of T
l,ml,ml+1) for each

edge (ml,ml+1) in each layer l:
(
t
l,ml,ml+1
nl

)⊤
t
l,ml,ml+1
nl∣∣∣tl,ml,ml+1

nl

∣∣∣ ∣∣∣tl,ml,ml+1
nl

∣∣∣ for nl = 1, . . . , N (l). (16)

Figure 4 shows the histograms of the cosine similarity over
all nl,ml,ml+1, l and all positive class data samples classi-
fied correctly. The zero column vectors are excluded. The
average cosine similarity is above 0.8 for all four datasets,
which explains the good accuracy of AMP-ave. Further anal-
ysis is necessary to guarantee the approximation accuracy,
and fully understand its relation to the column similarity.

4.3. Visualization with Top-K Walks

Now we demonstrate that AMP-ave provides better expla-
nations than the lower-order methods on the large-scale

Infection dataset, for which a naive implementation for
GNN-LRP cannot be applied. We also demonstrate on
smaller-scale Mutagenicity and Graph-SST2 datasets that
the top-K walks, efficiently found by AMP-ave, already
capture the most important information that GNN-LRP can
get by evaluating all walks.
Infection: Figure 5 compares explanations by our AMP-

ave to Node-IG and Edge-IG (Sundararajan et al., 2017) on
the Infection dataset with M = 1000, L = 4. Note that
Edge-IG showed state-of-the-art performance on a similar
infection chain detection task (Faber et al., 2021), outper-
forming the other existing methods including Grad-CAM
(Baldassarre & Azizpour, 2019), GNNExplainer (Ying et al.,
2019) and PGMExplainer (Vu & Thai, 2020). In the figure,
each method explains why the GNN predicts that Node 1,
depicted as a star at the top, will be infected after L time
steps. The initial carriers that can infect the target node are
depicted as squares at the bottom, and the nodes on the pos-
sible infection chains, identified by the oracle, are depicted
with thick circles. In this example, there are only 3 possible
infection chains, which were identified by AMP-ave as the
top-3 relevant walks. On the contrary, Node-IG and Edge-
IG do not identify those nodes as the most relevant nodes
or the nodes connected to the most relevant edges. We also
observe another advantage of AMP-ave that users can easily
identify the whole infection chains, unlike the node-/edge-
level explanations that only provide partial information.
Chemistry: Figure 6 shows example explanations
for the mutagenicity prediction by a GNN on 1,4-
Naphthalenediamine (top) and Naphthalene (bottom) from
Mutagenicity dataset. The former is known as mutagenic,
while the latter as non-mutagenic. The figure compares
our AMP-ave with K = 10, to Node-IG, Edge-IG, as well
as to GNN-LRP that depicts all ML+1 walks. The red
and blue colors indicate evidence for mutagenicity and non-
mutagenicity, respectively. We observe that the top-10 walks
found by AMP-ave already capture the functional group—
—the NH2 combined with an aromatic carbon ring—that
are known to cause mutagenicity. AMP-ave also found the
non-fused carbon rings, which indicates non-mutagenicity.
GNN-LRP also provides negative evidence to the (non-
)mutagenicity of the molecules, which is also useful: in
the upper molecule the right carbons are indicators for non-
mutagenicity, and in the bottom molecule the middle C-C
points to a fused carbon ring could in principle be an in-
dicator for mutagenicity in some molecules. However, we
emphasize that our AMP-ave, which captures the most im-
portant positive evidence with only polynomial complexity,
is a useful alternative to the full GNN-LRP, which requires
exponential complexity. Other examples are shown in Ap-
pendix I.
Language: We furthermore compared AMP-ave with the
baseline methods on Graph-SST2 dataset, and observed sim-
ilar trends as shown for infection and chemistry above (see
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(a) AMP-ave (top-3 walks). (b) Node-IG (top 10 nodes). (c) Edge-IG (top 10 edges).

Figure 5. Visual explanation by AMP-ave (ours), Edge-IG, and Node-IG on Infection dataset. The deeper the red color is, the higher the
relevance is. The star node at the top is the target node for which the prediction is explained, while the square nodes at the bottom are
initial carriers. For clarity, we only plot the nodes within 4-hops from the target node, and the nodes involved in the 3 possible infection
chains are depicted as thick circles. The top-1 walk by AMP-ave, shown as solid arrows, is exactly the ground truth infection chain, with
the top-2 and top-3 walks being two other possible infection chains.

AMP-ave GNN-LRP Node-IG Edge-IG

Figure 6. Explanation for 1,4-Naphthalenediamine (top; muta-
genic), and Naphthalene (bottom; non-mutagenic) from Mutagenic-
ity. The red and blue colors indicate evidence of mutagenicity and
non-mutagenicity, respectively. Top-10 walks by our AMP-ave can
already capture the most relevant functional groups for molecules’
(non-)mutagenicity with polynomial complexity.

Appendix I).

4.4. Quantitative Evaluation

We conducted a quantitative evaluation on Infection data by
using the ground truth infection chain, which well-trained
GNNs are expected to use as an important information flow.
We used AMP-ave as an infection chain detector, and evalu-
ated its performance with different K. As shown in Figure 7,
top-5 walks already include the ground-truth walk with
94.22% recall, and the performance is close to the oracle
detector (see Appendix G). Since no existing polynomial-
time method provides walk-level explanation, we compare
our method with two heuristic methods, Edge-IG sum and
Edge-IG prod, based on Edge-IG (Sundararajan et al., 2017),
where top K walks are constructed from the most relevant
edges (see Appendix H for details). Figure 7 shows that the
two heuristics are clearly outperformed by our AMP-ave.
We also used the BA-2motif dataset, which provides the
ground truth subgraphs as motifs, and evaluated how accu-
rately explanation methods can detect the motifs. Specif-
ically, we labeled all edges included in the motif as posi-
tive samples, and compared edge detection performance of

Figure 7. Recall of infection chain detection on Infection dataset.

Figure 8. Recall of motif’s edge detection on BA-2motif dataset.
Positive samples and negative samples are plotted separately.

AMP-ave to popular edge-level explanability baseline meth-
ods with comparable computational complexity,4 including
Edge-IG, GNNExplainer, edge-level GNN-LRP (relevance
propagated to edges in the input layer) and simple Gradient-
based heatmap for edges. Here the edge scoring by AMP-
ave is simply the highest relevance of the walk that contains
the corresponding edge. Figure 8 shows the recall. We see
that AMP-ave reaches 100% recall faster than all baselines,
indicating that it can detect the motif more precisely.

4.5. Computational Efficiency

Table 1 shows computation time (on an M1Pro CPU) of ex-
planation methods on the BA-2motif and Infection datasets.
AMP-ave is orders of magnitude faster than GNN-LRP,

4We excluded in our evaluation recently proposed methods,
e.g., GraphMask (Schlichtkrull et al., 2021) and Tage (Xie et al.,
2022), that are by several orders of magnitude slower than ours.
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Table 1. Computation time (in seconds). B and I denote BA-2motif
(small graph) and Infection (large graph) datasets, respectively.

TIME (B) TIME (I)

AMP-AVE K = 1 0.003 0.137
AMP-AVE K = 25 0.123 1.217
AMP-AVE K = 1000 2.574 86.006
EDGE-IG (EDGE-LEVEL) 0.124 0.514
GNNEXPLAINER (EDGE-LEVEL) 0.371 60.621
GNN-LRP (EXHAUSTIVE) 15.879 > 1011

(a) Network depth dependence (b) Graph size dependence

Figure 9. Computation time dependence on the network depth L
(left) and on the graph size M (right). Note the different vertical
scales in the top and bottom parts, and that y-axis in (a) is in
log-scale. For the depth larger than L > 4, the computation time
of exhaustive search is estimated from partial computation, since
the whole computation is infeasible. (a) Top-1 walk search with
GIN-L for L = 2, . . . , 7 on BA-2motif. (b) Top-1 walk search
with GIN-3 for Ms among all samples in Mutagenicity dataset.

where all walks are evaluated, and can be applied even to the
large Infection dataset. The computation time of Edge-IG
and GNNExplaner is measured in the task of relevant edge
detection. Figure 9 plots the computation time of AMP-ave
and exhaustive search as functions of the network depth L
(left) and the graph size M (right). The huge computational
gain by our approach becomes evident.

5. Conclusion
Many practical applications such as chemistry, infection
biology, NLP etc., embody complex correlations that are
higher-order in nature. While deep learning models can
exploit such structure for improving prediction, it has so
far been a challenge to practically extract such higher-order
information from a learned model.
The notion of walk relevance, based on layer-wise rele-
vance propagation for graph neural networks (GNN-LRP)
(Schnake et al., 2022), was introduced for higher-order at-
tribution; notably it has also provided a new perspective of
LRP computation as a byproduct—the decomposability of
relevance. Previous work used this property and developed
efficient marginalization algorithms, called subgraph GNN-
LRP, for subgraph attribution by using the sum-product mes-
sage passing (Xiong et al., 2022), while in this paper we pro-

pose a family of novel relevant walk search algorithms based
on max-product message passing. Specifically, our proposed
EMP-neu performs exact search for the top-K most relevant
walks at neuron-level, and AMP-ave performs approximate
search at node-level, both in polynomial-time instead of
previous exponential time approaches (see Schnake et al.
(2022)). Our novel methods provide robust and fast explana-
tion with their performance validated competitively in our
experiments on several synthetic and real-world datasets.
In future studies we will aim to apply our novel efficient
higher-order explanation methods broadly to the sciences
and engineering, e.g., epidemic studies (Oettershagen et al.,
2020; Isella et al., 2011) and software vulnerability detection
(Yamaguchi et al., 2014), ultimately hoping to contribute to
furthering the transparency, security, robustness, and fair-
ness of machine learning methods.
Finally, we would like to stress that our novel max-product
approach can be applied to any feed-forward neural network:
EMP-neu is for finding neuron-level walks, while AMP-ave
is for finding block-level walks, where marginalization over
the neurons in blocks is involved. An immediate application
would be to obtain neuron-/block-level decompositions sim-
ilar to Achtibat et al. (2022) for discovering concept-based
decompositions of even finer granularity.

Limitations

Our node-level walk search method—AMP-ave—is an ap-
proximation method, of which the accuracy has not been
theoretically guaranteed but only supported by empirical
evaluation. Further investigation on the relation between the
accuracy of AMP-ave and properties of propagation matri-
ces is necessary to understand for what propagation rules
AMP-ave is reliable. A compromising approach is also pos-
sible and worth pursuing: one can cluster the neurons based
on the propagation vectors so that the column-similarity
assumption better holds at the expense of the computational
cost proportional to NL, where N is the number of clusters.
Another limitation is that our approach can be applied only
to the models for which the relevance propagation can be
defined as in Eq.(5). This might exclude some of the gen-
eral GNNs beyond MPNNs. Efforts should be made for
developing appropriate propagation rules for different archi-
tectures, in order to explain general large scale GNNs with
our efficient algorithms.
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Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-
F., and Van den Broeck, W. What’s in a crowd?
analysis of face-to-face behavioral networks. Journal
of Theoretical Biology, 271(1):166–180, 2011. ISSN
0022-5193. doi: https://doi.org/10.1016/j.jtbi.2010.11.
033. URL https://www.sciencedirect.com/
science/article/pii/S0022519310006284.

Kazius, J., McGuire, R., and Bursi, R. Derivation and
validation of toxicophores for mutagenicity prediction.
Journal of Medicinal Chemistry, 48(1):312–320, 2005.
doi: 10.1021/jm040835a. PMID: 15634026.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

Lundberg, S. M. and Lee, S.-I. A unified approach to inter-
preting model predictions. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30, pp. 4768–4777. Curran
Associates, Inc., 2017.

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H.,
and Zhang, X. Parameterized explainer for graph neural
network. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neural In-
formation Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Montavon, G., Binder, A., Lapuschkin, S., Samek, W.,
and Müller, K. Layer-wise relevance propagation: An
overview. In Explainable AI, volume 11700 of Lecture
Notes in Computer Science, pp. 193–209. Springer, 2019.

Nilsson, D. An efficient algorithm for finding the m most
probable configurationsin probabilistic expert systems.
Statistics and computing, 8(2):159–173, 1998.

Oettershagen, L., Kriege, N. M., Morris, C., and Mutzel,
P. Temporal graph kernels for classifying dissemination
processes. In Demeniconi, C. and Chawla, N. V. (eds.),
Proceedings of the 2020 SIAM International Conference
on Data Mining, SDM 2020, Cincinnati, Ohio, USA, May
7-9, 2020, pp. 496–504. SIAM, 2020. doi: 10.1137/
1.9781611976236.56. URL https://doi.org/10.
1137/1.9781611976236.56.

10

http://arxiv.org/abs/1905.13686
http://arxiv.org/abs/1905.13686
https://doi.org/10.1145/3447548.3467283
https://doi.org/10.1145/3447548.3467283
https://www.sciencedirect.com/science/article/pii/S0022519310006284
https://www.sciencedirect.com/science/article/pii/S0022519310006284
https://doi.org/10.1137/1.9781611976236.56
https://doi.org/10.1137/1.9781611976236.56


Relevant Walk Search for Explaining Graph Neural Networks

Pearl, J. Reverend Bayes on inference engines: A distributed
hierarchical approach. In Waltz, D. L. (ed.), Proceed-
ings of the National Conference on Artificial Intelligence,
Pittsburgh, PA, USA, August 18-20, 1982, pp. 133–136.
AAAI Press, 1982.

Pope, P. E., Kolouri, S., Rostami, M., Martin, C. E., and
Hoffmann, H. Explainability methods for graph convolu-
tional neural networks. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pp. 10772–10781. Computer
Vision Foundation / IEEE, 2019.

Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J.,
and Müller, K.-R. Explaining deep neural networks and
beyond: A review of methods and applications. Proc.
IEEE, 109(3):247–278, 2021.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Trans. Neural Networks, 20(1):61–80, 2009.

Schlichtkrull, M. S., Cao, N. D., and Titov, I. Interpret-
ing graph neural networks for NLP with differentiable
edge masking. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=WznmQa42ZAx.

Schnake, T., Eberle, O., Lederer, J., Nakajima, S., Schütt,
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A. Notation Table
Table 2 summarizes the notation used in this paper.

Table 2. Notation.
h,h,H , Hm,m′ scalar, vector, matrix, matrix entry

ml:l′ partial vector with indices (l, . . . , l′)
G and S graph and subgraph
m and n sequence of nodes and neurons
m, ml integers for node identifications
n, nl integers for neuron identifications
R, r relevance
r̆ propagated relevance, message, or belief
T propagation matrix

R̂, m̂, n̂ optimum relevance, optimum walk, etc.

B. Details of Exact Max-product Message Passing Algorithm for Neuron-level Search (EMP-neu)
B.1. EMP-neu-Basic: Derivation of Message Passing Equations (10) and (11)

Applying the max-product decompositions to the objective (9) gives

R̂ ≡ max
m,n

R̆m,n = max
m,n

|T 0,m0,m1
n0,n1

||T 1,m1,m2
n1,n2

| · · · |TL−1,mL−1,mL
nL−1,nL

||rL,mL
nL

|

= max
m0,n0

max
m1,n1

|T 0,m0,m1
n0,n1

| max
m2,n2

|T 1,m1,m2
n1,n2

| · · · max
mL,nL

|TL−1,mL−1,mL
nL−1,nL

| |rL,mL
nL

|︸ ︷︷ ︸
=µ̂

L,mL
nL︸ ︷︷ ︸

=µ̂
L−1,mL−1
nL−1︸ ︷︷ ︸

=µ̂
1,m1
n1︸ ︷︷ ︸

=µ̂
0,m0
n0

,

where {µ̂l,ml
nl

} are the messages that can be computed by Eqs.(10) and (11) sequentially for l = L, . . . , 0. Thus, we get
R̂ = maxm0,n0 µ̂

0,m0
n0

. Backtracing the mappings (ml−1, nl−1) → (ml, nl), computed by Eq.(10), for l = 1, . . . , L gives
the walk maximizing the absolute relevance. The algorithm, which we call EMP-neu-Basic, for finding the highest absolute
relevant neuron-level walk is summarized in Algorithm 1.

Algorithm 1 Find the highest absolute relevant neuron-level walk (EMP-neu-Basic)

Input: # of nodes: M , # of neurons at l-th layer: N (l), LRP transition matrices {T l,ml,ml+1}, initial messages {µ̂L,mL}
such that µ̂L,mL

nL
= |rL,mL

nL
|.

for l = L to 1 do
for ml−1 = 1 to M do

for nl−1 = 1 to N (l−1) do
Find ml, nl by solving:
argmaxml,nl

|T l−1,ml−1,ml
nl−1,nl |µ̂l,ml

nl

Store the result in a maximum step mapping (ml−1, nl−1) → (ml, nl).
Compute the relevance along the corresponding maximum walk step for ml−1, nl−1:
µ̂
l−1,ml−1
nl−1 = |T l−1,ml−1,ml

nl−1,nl |µ̂l,ml
nl

end for
end for

end for
Select (m∗

0, n
∗
0) by argmaxm0,n0

µ̂0,m0
n0

.
Read from the maximum step mappings the full walk (m∗,n∗) = (m∗

0, n
∗
0) → (m∗

1, n
∗
1) → · · · → (m∗

L, n
∗
L).

return (m∗,n∗).
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Algorithm 2 Search space splitting for finding the top-K̃ most relevant neuron-level walks
Input: top-1 most relevant walk (m1,n1), maximum step mappings (ml−1, nl−1) → (ml, nl).
Initialize SearchSpace = {}
Initialize TopKWalks = {(m1,n1)}
for l = 0 to L do
subset = {(m,n) : (mj , nj) = (m1

j , n
1
j ) ∀j < l, (ml, nl) ̸= (m1

l , n
1
l )}.

Set the beginning of (m∗,n∗) such that (m∗
j , n

∗
j ) = (m1

j , n
1
j ) ∀j < l.

Read from the maximum step mappings the following steps (m∗
l , n

∗
l ) → · · · → (m∗

L, n
∗
L).

Add (subset : (m∗,n∗)) to SearchSpace.
end for
for k = 2 to K̃ do
MaxRelevance = −∞
for {subset : (m∗,n∗)} in SearchSpace do

if R(m∗,n∗) > MaxRelevance then
MaxRelevance = R(m∗,n∗).
(mk,nk) = (m∗,n∗)
MaxSubset = subset

end if
end for
Add (mk,nk) to TopKWalks.
Split MaxSubset according to (18), read out each subspace’ most relevant walk, and add them to SearchSpace.
Remove MaxSubset from SearchSpace.

end for
return TopKWalks.

B.2. Complexity of Finding the Most Relevant Walk by EMP-neu-Basic

From Algorithm 1 we can find that the computational complexity of finding the highest absolute relevant neuron-level walk
is O(LM2N

2
+MN + L) = O(LM2N

2
). The memory cost including the storage for the transition matrices and the

maximum step mappings is O(LM2N
2
).

B.3. Search Space Splitting for Finding Top-K̃ Walks

Let us denote by (m̂
1
, n̂1) the best solution found by EMP-neu-Basic. Then, the second solution can be found by splitting

the rest of the search space (M× N) \ (m̂1
, n̂1) into L+ 1 disjoint subsets {Ai}, where

A0 = {(m,n) : (m0, n0) ̸= (m̂1
0, n̂

1
0)},

Ai = {(m,n) : (m0:i−1, n0:i−1) = (m̂1
0:i−1, n̂

1
0:i−1), (mi, ni) ̸= (m̂1

i , n̂
1
i )} for i = 1, . . . , L. (17)

Note that the subset Ai consists of all walks that have the same partial walk as the first solution until the (i− 1)-th layer, and
differ at the i-th layer. No restriction is imposed for the subsequent layers, l = i+ 1, . . . , L. Then we apply EMP-neu-Basic
to each subset, taking the corresponding constraint into account. Among the (L+ 1) solutions from the subsets, the walk
that gives the highest absolute relevance is the second best solution (m̂

2
, n̂2).

Assume that the second solution was found from Aî, which means that

(m̂1
0:i−1, n̂

1
0:i−1) = (m̂2

0:i−1, n̂
2
0:i−1).

To obtain the third best solution, we split Aî \ (m̂
2
, n̂2) into (L− î+ 1) disjoint subsets {Aî,j}, where

Aî,0 = {(m,n) ∈ Aî : (mî, nî) /∈ {(m̂1
î
, n̂1

î
), (m̂2

î
, n̂2

î
)}},

Aî,j = {(m,n) ∈ Aî : (mî:̂i+j−1, nî:̂i+j−1) = (m2
î:̂i+j−1

, n2
î:̂i+j−1

), (mî+j , nî+j) ̸= (m̂2
î+j

, n̂2
î+j

)}

for j = 1, . . . , L− î, (18)

14



Relevant Walk Search for Explaining Graph Neural Networks

Algorithm 3 Find the most relevant node-level walk approximately by averaging (AMP-ave-Basic)

Input: # of nodes: M , LRP transition matrices {T l,ml,ml+1}, initial messages {µ̂L,mL} such that µ̂L,mL
nL

= |rL,mL
nL

|
for l = L to 1 do

for ml−1 = 1 to M do
Find ml by solving:
argmaxml

∑
nl−1

∑
nl

T
l−1,ml−1,ml
nl−1,nl µ̂l,ml

nl

Store the result in a maximum step mapping ml−1 → ml.
Compute the relevance along the corresponding maximum walk step for ml−1:
µ̂
l−1,ml−1
nl−1 =

∑
nl

T
l−1,ml−1,ml
nl−1,nl µ̂l,ml

nl

end for
end for
Select m∗

0 by argmaxm0

∑
n0

µ̂0,m0
n0

.
Read from the maximum step mappings the full walk m∗ = m∗

0 → m∗
1 → · · · → m∗

L.
return m∗.

and apply EMP-neu-Basic to each subset. Now, we have (2L − î + 1) disjoint subsets that covers the remaining search
space, i.e.,

(∪i̸=îAi) ∪ (∪L−î
j=0Aî,j) = (M× N) \ {(m̂1

, n̂1) ∪ (m̂
2
, n̂2)},

with the maximizer from each subset. The third best solution is the best one among those maximizer.

Similarly, the k-th solution can be found by splitting the subset from which the (k − 1)-th solution was found into disjoint
subsets, and applying EMP-neu-Basic to each new subset. We continue this process until top-K̃ solutions are found.
Algorithm 2 summarizes this procedure.

B.4. Upper Bound of Number of Subsets

Formally, the search space splitting procedure, described in Appendix B.3, generates (K̃L+ 1) subsets in the worst case.
None of those subsets is empty if K̃ ≤ MN , where N = minN (l), while some can be empty otherwise. Therefore, the
number of subsets is upper-bounded by K̃L+ 1.

B.5. Proof of Theorem 3.1: Complexity of Top-K̃ Neuron-level Walk Search

Appendix B.1 and Appendix B.3 already explained how EMP-neu finds the top-K̃ neuron-level walks with the highest
absolute relevances, and the top-K walks with the highest positive relevances can be found from those solutions by
assumption. Below we consider the computational complexity.

According to Appendix B.2, finding the walk with the highest absolute relevance by EMP-neu-Basic requires O(LM2N
2
)

time. For finding the second to the K̃-th solution, the search space splitting generates no more than (K̃L + 1) subsets
(see Appendix B.4), for each of which EMP-neu-Basic needs to be applied. However, in finding the k-th solution,
maximization in each subset is operated effectively only at one layer with the messages m̂l(ml−1, nl−1) and n̂l(ml−1, nl−1)
already computed when the top-(k − 1) solutions were searched. Therefore, by reusing those messages, the computation
complexity to find the maximizer from each subset for the k(≥ 2)-th solution search is only O(LMN). Therefore, the
total computational cost of EMP-neu is O(LM2N

2
+ K̃L(LMN)). The memory cost is dominated by the storage for the

transition matrices (see Appendix B.2) and thus O(LM2N
2
).

C. Details of Approximate Max-product Message Passing Algorithm with Averaging for
Node-level Walks (AMP-ave)

Algorithm 3 describes the detailed steps of AMP-ave-Basic that approximately finds the most relevant node-level walk,
while Algorithm 4 describes the steps of search space splitting for the top-K̃ node level search.

Similarly to EMP-neu-Basic, AMP-neu-Basic (Algorithm 3) requires O(LM2N2) time, and the search space splitting
(Algorithm 4) requires O(KL2MN), and thus the total computational complexity is O(LM2N2 +KL2MN).
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Algorithm 4 Search space splitting for approximately finding the top-K̃ most relevant node-level walks
Input: top-1 most relevant node-level walk m1, maximum step mappings ml−1 → ml.
Initialize SearchSpace = {}
Initialize TopKWalks = {m1}
for l = 0 to L do
subset = {m : mj = m1

j ∀j < l,ml ̸= m1
l )}.

Set the beginning of m∗ such that m∗
j = m1

j ∀j < l.
Read from the maximum step mappings the following steps m∗

l → · · · → m∗
L.

Add (subset : m∗) to SearchSpace.
end for
for k = 2 to K̃ do
MaxRelevance = −∞
for {subset : m∗} in SearchSpace do

if Rm∗
> MaxRelevance then

MaxRelevance = Rm∗
.

mk = m∗.
MaxSubset = subset.

end if
end for
Add mk to TopKWalks.
Split MaxSubset similar to (18), read out each subspace’ most relevant walk, and add them to SearchSpace.
Remove MaxSubset from SearchSpace.

end for
return TopKWalks.

A naive implementation requires the same memory cost O(LM2N2) as EMP-neu to store the transition matrices. However,
there is a way to reduce the memory cost to O(M2 + LN(M +N)) = O(Lmax(M,N)2), as explained below.

C.1. Low-Memory Computation for Top-K Node-level Walk Algorithm

Substituting the explicit expression (6) of the propagation matrices for GCN into the objective in the message passing (14)
gives

∑
nl−1

∑
nl

T
l−1,ml−1,ml
nl−1,nl µ̂l,ml

nl
=

∑
nl−1

∑
nl

Λml−1,ml
H(l−1)

ml−1,nl−1
W↑(l−1)

nl−1,nl∑
m′′,n′′ Λm′′,ml

H
(l−1)

m′′,n′′W
↑(l−1)

n′′,nl

µ̂l,ml
nl

= Λml−1,ml

∑
nl

H(l−1)
ml−1

W ↑(l−1)
nl∑

m′′ Λm′′,ml
H

(l−1)

m′′ W
↑(l−1)
nl

µ̂l,ml
nl

,

(19)

where Λ ∈ RM×M ,H(l) ∈ RM×N(l)

,W ↑(l) ∈ RN(l−1)×N(l)

are the adjacency matrix, the activation matrix, and the
modified weight matrix, respectively (see Sections 2.1 and 2.3). The expression (19) implies that the maximization (14), as
well as the relevance message passing (15), can be performed by using Λ, {H(l),W ↑(l)}, which requires O(M2+LMN +

LN
2
) memory, without storing the transition matrices {T (l),ml,ml+1}, which requires O(M2N

2
) memory. The memory

cost of this implementation is thus O(Lmax(M,N)2).

D. Empirical Investigation of Algorithm Behavior

D.1. Proportion of Positive Relevant Walks in Top-K̃ Absolute Relevant Walks

We randomly chose 10 correctly classified graph samples from MUTAG and found the top-K̃ absolute relevant neuron-level
walks by EMP-neu. Figure 10 plots the proportion K

K̃
of the number K of positive relevant walks in the top-K̃ absolute

relevant walks. We observe that higher γ leads to a larger proportion of positive walks, and that more than half walks are
positive for γ ≥ 0.2.
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Figure 10. The proportion K

K̃
of positive relevant neuron-level walks in the top-K̃ absolute relevant walks.

Dataset γ + − 0

BA-2motif 0 3.70% 4.12% 92.10%
0.2 6.38% 2.78% 90.84%
[3, . . . , 0] 5.34% 2.66% 92.01%
+∞ 6.70% 2.67% 90.63%

MUTAG 0 11.82% 2.48% 85.70%
0.2 12.39% 2.23% 85.38%
[3, . . . , 0] 12.86% 1.95% 85.19%
+∞ 14.28% 1.12% 84.60%

Graph-SST2 0 39.17% 3.30% 57.53%
0.2 41.45% 2.41% 56.14%
[3, . . . , 0] 42.06% 1.76% 56.18%
+∞ 40.48% 3.30% 56.22%

Table 3. Frequency of the sign of the objective in AMP-ave message passing (14).

D.2. Sign of Maximization Objective in Eq.(14)

Table 3 shows how often the objective of the maximization objective in the AMP-ave message passing (14) is positive,
negative, or zero on randomly chosen 10 correctly classified samples from BA-2motif, MUTAG, and Graph-SST2 with
different γ. We see that the objective tends to be positive or zero for γ ≥ 0.2, although it can be negative with significant
frequency, compared to the positive frequency, in BA-2motif.

D.3. Empirical results from EMP-neu

Here we verify the correctness of the top neuron-level walks found by EMP-neu. For one graph each from the positive
(Table 4) and the negative (Table 5) classes in BA-2motif, we list the top 100 most absolute relevant walks (before omitting
the negative-relevant walks) found by EMP-neu. The first and the second columns, respectively, show the estimated ranking
by EMP-neu and the true ranking found by the exhaustive search. We observe that the true ranking is in non-decreasing order,
proving the correctness of EMP-neu. Notably, our method took only 3.4 seconds to find the top 100 most absolute relevant
walks, while the exhaustive search took over 3 hours, because the number of possible neuron-level walks is O((MN)L).

E. Additional Precision Evaluation on MUTAG and Graph-SST2
Figure 11 shows the precision-recall curves of AMP-ave on MUTAG and Graph-SST2.

F. Datasets and GNN Models for Experiments
The datasets (summarized in Table 6) and models are mainly downloaded and trained according to the instructions provided
in Xiong et al. (2022).
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Est.
#

True
# Most absolute relevant walks Relevance Est.

#
True

# Most absolute relevant walks Relevance

1 1 ((21, 0), (22, 9), (23, 11), (24, 0)) 0.12953492 51 10 ((23, 0), (23, 9), (22, 11), (22, 0)) 0.12953489
2 1 ((22, 0), (22, 9), (23, 11), (24, 0)) 0.12953492 52 10 ((23, 0), (23, 9), (22, 11), (23, 0)) 0.12953489
3 1 ((23, 0), (22, 9), (23, 11), (24, 0)) 0.12953492 53 10 ((20, 0), (21, 9), (22, 11), (22, 0)) 0.12953489
4 1 ((24, 0), (23, 9), (23, 11), (24, 0)) 0.12953492 54 10 ((20, 0), (21, 9), (22, 11), (23, 0)) 0.12953489
5 1 ((22, 0), (23, 9), (23, 11), (24, 0)) 0.12953492 55 55 ((0, 0), (13, 9), (15, 11), (13, 0)) 0.10064131
6 1 ((23, 0), (23, 9), (23, 11), (24, 0)) 0.12953492 56 55 ((13, 0), (13, 9), (15, 11), (13, 0)) 0.10064131
7 7 ((20, 0), (24, 9), (23, 11), (24, 0)) 0.12953490 57 55 ((15, 0), (13, 9), (15, 11), (13, 0)) 0.10064131
8 7 ((23, 0), (24, 9), (23, 11), (24, 0)) 0.12953490 58 55 ((19, 0), (15, 9), (15, 11), (13, 0)) 0.10064131
9 7 ((24, 0), (24, 9), (23, 11), (24, 0)) 0.12953490 59 55 ((0, 0), (13, 9), (15, 11), (15, 0)) 0.10064131

10 10 ((21, 0), (21, 9), (22, 11), (21, 0)) 0.12953489 60 55 ((0, 0), (13, 9), (15, 11), (19, 0)) 0.10064131
11 10 ((21, 0), (22, 9), (22, 11), (21, 0)) 0.12953489 61 55 ((13, 0), (15, 9), (15, 11), (13, 0)) 0.10064131
12 10 ((21, 0), (22, 9), (23, 11), (22, 0)) 0.12953489 62 55 ((13, 0), (13, 9), (15, 11), (15, 0)) 0.10064131
13 10 ((21, 0), (22, 9), (23, 11), (23, 0)) 0.12953489 63 55 ((13, 0), (13, 9), (15, 11), (19, 0)) 0.10064131
14 10 ((22, 0), (21, 9), (22, 11), (21, 0)) 0.12953489 64 55 ((15, 0), (15, 9), (15, 11), (13, 0)) 0.10064131
15 10 ((22, 0), (22, 9), (22, 11), (21, 0)) 0.12953489 65 55 ((15, 0), (13, 9), (15, 11), (15, 0)) 0.10064131
16 10 ((22, 0), (22, 9), (23, 11), (22, 0)) 0.12953489 66 55 ((15, 0), (13, 9), (15, 11), (19, 0)) 0.10064131
17 10 ((22, 0), (22, 9), (23, 11), (23, 0)) 0.12953489 67 55 ((19, 0), (15, 9), (15, 11), (15, 0)) 0.10064131
18 10 ((23, 0), (22, 9), (22, 11), (21, 0)) 0.12953489 68 55 ((19, 0), (15, 9), (15, 11), (19, 0)) 0.10064131
19 10 ((23, 0), (22, 9), (23, 11), (22, 0)) 0.12953489 69 55 ((13, 0), (15, 9), (15, 11), (15, 0)) 0.10064131
20 10 ((23, 0), (22, 9), (23, 11), (23, 0)) 0.12953489 70 55 ((13, 0), (15, 9), (15, 11), (19, 0)) 0.10064131
21 10 ((24, 0), (23, 9), (22, 11), (21, 0)) 0.12953489 71 55 ((15, 0), (15, 9), (15, 11), (15, 0)) 0.10064131
22 10 ((24, 0), (23, 9), (23, 11), (22, 0)) 0.12953489 72 55 ((15, 0), (15, 9), (15, 11), (19, 0)) 0.10064131
23 10 ((24, 0), (23, 9), (23, 11), (23, 0)) 0.12953489 73 73 ((21, 0), (20, 9), (24, 11), (24, 0)) 0.07078890
24 10 ((22, 0), (23, 9), (22, 11), (21, 0)) 0.12953489 74 73 ((24, 0), (20, 9), (24, 11), (24, 0)) 0.07078890
25 10 ((22, 0), (23, 9), (23, 11), (22, 0)) 0.12953489 75 73 ((20, 0), (20, 9), (24, 11), (24, 0)) 0.07078890
26 10 ((22, 0), (23, 9), (23, 11), (23, 0)) 0.12953489 76 73 ((0, 0), (20, 9), (24, 11), (24, 0)) 0.07078890
27 10 ((23, 0), (23, 9), (22, 11), (21, 0)) 0.12953489 77 77 ((21, 0), (20, 9), (21, 11), (21, 0)) 0.07078888
28 10 ((23, 0), (23, 9), (23, 11), (22, 0)) 0.12953489 78 77 ((21, 0), (20, 9), (24, 11), (23, 0)) 0.07078888
29 10 ((23, 0), (23, 9), (23, 11), (23, 0)) 0.12953489 79 77 ((24, 0), (20, 9), (21, 11), (21, 0)) 0.07078888
30 10 ((20, 0), (21, 9), (22, 11), (21, 0)) 0.12953489 80 77 ((24, 0), (20, 9), (24, 11), (23, 0)) 0.07078888
31 10 ((20, 0), (24, 9), (23, 11), (22, 0)) 0.12953489 81 77 ((20, 0), (20, 9), (21, 11), (21, 0)) 0.07078888
32 10 ((20, 0), (24, 9), (23, 11), (23, 0)) 0.12953489 82 77 ((20, 0), (20, 9), (24, 11), (23, 0)) 0.07078888
33 10 ((23, 0), (24, 9), (23, 11), (22, 0)) 0.12953489 83 77 ((0, 0), (20, 9), (21, 11), (21, 0)) 0.07078888
34 10 ((23, 0), (24, 9), (23, 11), (23, 0)) 0.12953489 84 77 ((0, 0), (20, 9), (24, 11), (23, 0)) 0.07078888
35 10 ((24, 0), (24, 9), (23, 11), (22, 0)) 0.12953489 85 85 ((21, 0), (20, 9), (21, 11), (22, 0)) 0.07078888
36 10 ((24, 0), (24, 9), (23, 11), (23, 0)) 0.12953489 86 85 ((24, 0), (20, 9), (21, 11), (22, 0)) 0.07078888
37 10 ((21, 0), (21, 9), (22, 11), (22, 0)) 0.12953489 87 85 ((20, 0), (20, 9), (21, 11), (22, 0)) 0.07078888
38 10 ((21, 0), (21, 9), (22, 11), (23, 0)) 0.12953489 88 85 ((0, 0), (20, 9), (21, 11), (22, 0)) 0.07078888
39 10 ((21, 0), (22, 9), (22, 11), (22, 0)) 0.12953489 89 89 ((21, 0), (20, 9), (24, 11), (20, 0)) 0.07078885
40 10 ((21, 0), (22, 9), (22, 11), (23, 0)) 0.12953489 90 89 ((24, 0), (20, 9), (24, 11), (20, 0)) 0.07078885
41 10 ((22, 0), (21, 9), (22, 11), (22, 0)) 0.12953489 91 89 ((20, 0), (20, 9), (24, 11), (20, 0)) 0.07078885
42 10 ((22, 0), (21, 9), (22, 11), (23, 0)) 0.12953489 92 89 ((0, 0), (20, 9), (24, 11), (20, 0)) 0.07078885
43 10 ((22, 0), (22, 9), (22, 11), (22, 0)) 0.12953489 93 93 ((21, 0), (20, 9), (21, 11), (20, 0)) 0.07078885
44 10 ((22, 0), (22, 9), (22, 11), (23, 0)) 0.12953489 94 93 ((24, 0), (20, 9), (21, 11), (20, 0)) 0.07078885
45 10 ((23, 0), (22, 9), (22, 11), (22, 0)) 0.12953489 95 93 ((20, 0), (20, 9), (21, 11), (20, 0)) 0.07078885
46 10 ((23, 0), (22, 9), (22, 11), (23, 0)) 0.12953489 96 93 ((0, 0), (20, 9), (21, 11), (20, 0)) 0.07078885
47 10 ((24, 0), (23, 9), (22, 11), (22, 0)) 0.12953489 97 97 ((1, 0), (2, 9), (10, 11), (2, 0)) 0.06455576
48 10 ((24, 0), (23, 9), (22, 11), (23, 0)) 0.12953489 98 97 ((2, 0), (2, 9), (10, 11), (2, 0)) 0.06455576
49 10 ((22, 0), (23, 9), (22, 11), (22, 0)) 0.12953489 99 97 ((10, 0), (2, 9), (10, 11), (2, 0)) 0.06455576
50 10 ((22, 0), (23, 9), (22, 11), (23, 0)) 0.12953489 100 97 ((1, 0), (2, 9), (10, 11), (10, 0)) 0.06455576

Table 4. The top 100 most absolute relevant node-level walks (found by EMP-neu). The columns show the estimated ranking by EMP-neu,
the true ranking found by the exhaustive search, the neuron-level walk, and its relevance. The walk is expressed as L+ 1 = 4 steps of
node-neuron pairs (m,n), denoting the n-th neuron of the m-th node. The graph is from the positive class of BA-2motif dataset. Note
that the walks with the same relevance share the same ranking.
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Est.
#

True
# Most absolute relevant walks Relevance Est.

#
True

# Most absolute relevant walks Relevance

1 1 ((20, 0), (21, 9), (22, 11), (23, 1)) -0.062610321 51 49 ((13, 0), (7, 9), (7, 11), (7, 1)) -0.039949972
2 1 ((21, 0), (21, 9), (22, 11), (23, 1)) -0.062610321 52 49 ((15, 0), (7, 9), (7, 11), (7, 1)) -0.039949972
3 1 ((22, 0), (21, 9), (22, 11), (23, 1)) -0.062610321 53 53 ((5, 0), (7, 9), (7, 11), (5, 1)) -0.039949801
4 1 ((24, 0), (21, 9), (22, 11), (23, 1)) -0.062610321 54 53 ((5, 0), (7, 9), (7, 11), (13, 1)) -0.039949801
5 5 ((20, 0), (21, 9), (22, 11), (21, 1)) -0.062610313 55 53 ((5, 0), (7, 9), (7, 11), (15, 1)) -0.039949801
6 5 ((20, 0), (21, 9), (22, 11), (22, 1)) -0.062610313 56 53 ((7, 0), (7, 9), (7, 11), (5, 1)) -0.039949801
7 5 ((21, 0), (21, 9), (22, 11), (21, 1)) -0.062610313 57 53 ((7, 0), (7, 9), (7, 11), (13, 1)) -0.039949801
8 5 ((21, 0), (21, 9), (22, 11), (22, 1)) -0.062610313 58 53 ((7, 0), (7, 9), (7, 11), (15, 1)) -0.039949801
9 5 ((22, 0), (21, 9), (22, 11), (21, 1)) -0.062610313 59 53 ((13, 0), (7, 9), (7, 11), (5, 1)) -0.039949801

10 5 ((22, 0), (21, 9), (22, 11), (22, 1)) -0.062610313 60 53 ((13, 0), (7, 9), (7, 11), (13, 1)) -0.039949801
11 5 ((24, 0), (21, 9), (22, 11), (21, 1)) -0.062610313 61 53 ((13, 0), (7, 9), (7, 11), (15, 1)) -0.039949801
12 5 ((24, 0), (21, 9), (22, 11), (22, 1)) -0.062610313 62 53 ((15, 0), (7, 9), (7, 11), (5, 1)) -0.039949801
13 13 ((2, 0), (9, 9), (16, 11), (16, 1)) -0.057097323 63 53 ((15, 0), (7, 9), (7, 11), (13, 1)) -0.039949801
14 13 ((4, 0), (8, 9), (12, 11), (8, 1)) -0.057097323 64 53 ((15, 0), (7, 9), (7, 11), (15, 1)) -0.039949801
15 13 ((8, 0), (8, 9), (12, 11), (8, 1)) -0.057097323 65 65 ((0, 0), (1, 9), (2, 5), (2, 1)) 0.037394594
16 13 ((9, 0), (9, 9), (16, 11), (16, 1)) -0.057097323 66 65 ((1, 0), (1, 9), (2, 5), (2, 1)) 0.037394594
17 13 ((12, 0), (8, 9), (12, 11), (8, 1)) -0.057097323 67 65 ((3, 0), (1, 9), (2, 5), (2, 1)) 0.037394594
18 13 ((14, 0), (14, 9), (19, 11), (14, 1)) -0.057097323 68 65 ((18, 0), (1, 9), (2, 5), (2, 1)) 0.037394594
19 13 ((16, 0), (9, 9), (16, 11), (16, 1)) -0.057097323 69 65 ((20, 0), (20, 9), (21, 5), (20, 1)) 0.037394594
20 13 ((19, 0), (14, 9), (19, 11), (14, 1)) -0.057097323 70 65 ((21, 0), (20, 9), (21, 5), (20, 1)) 0.037394594
21 13 ((4, 0), (14, 9), (19, 11), (14, 1)) -0.057097323 71 65 ((24, 0), (20, 9), (21, 5), (20, 1)) 0.037394594
22 13 ((4, 0), (8, 9), (12, 11), (12, 1)) -0.057097323 72 65 ((2, 0), (1, 9), (2, 5), (2, 1)) 0.037394594
23 13 ((8, 0), (8, 9), (12, 11), (12, 1)) -0.057097323 73 65 ((23, 0), (20, 9), (21, 5), (20, 1)) 0.037394594
24 13 ((12, 0), (8, 9), (12, 11), (12, 1)) -0.057097323 74 65 ((0, 0), (20, 9), (21, 5), (20, 1)) 0.037394594
25 13 ((14, 0), (14, 9), (19, 11), (19, 1)) -0.057097323 75 65 ((0, 0), (1, 9), (2, 5), (9, 1)) 0.037394594
26 13 ((19, 0), (14, 9), (19, 11), (19, 1)) -0.057097323 76 65 ((1, 0), (1, 9), (2, 5), (9, 1)) 0.037394594
27 13 ((4, 0), (14, 9), (19, 11), (19, 1)) -0.057097323 77 65 ((3, 0), (1, 9), (2, 5), (9, 1)) 0.037394594
28 28 ((2, 0), (9, 9), (16, 11), (9, 1)) -0.057097316 78 65 ((18, 0), (1, 9), (2, 5), (9, 1)) 0.037394594
29 28 ((9, 0), (9, 9), (16, 11), (9, 1)) -0.057097316 79 65 ((20, 0), (20, 9), (21, 5), (24, 1)) 0.037394594
30 28 ((16, 0), (9, 9), (16, 11), (9, 1)) -0.057097316 80 65 ((21, 0), (20, 9), (21, 5), (24, 1)) 0.037394594
31 31 ((23, 0), (22, 9), (22, 11), (23, 1)) -0.045452297 81 65 ((24, 0), (20, 9), (21, 5), (24, 1)) 0.037394594
32 31 ((20, 0), (23, 9), (22, 11), (23, 1)) -0.045452297 82 65 ((2, 0), (1, 9), (2, 5), (9, 1)) 0.037394594
33 31 ((21, 0), (22, 9), (22, 11), (23, 1)) -0.045452297 83 65 ((23, 0), (20, 9), (21, 5), (24, 1)) 0.037394594
34 31 ((22, 0), (22, 9), (22, 11), (23, 1)) -0.045452297 84 65 ((0, 0), (20, 9), (21, 5), (24, 1)) 0.037394594
35 31 ((22, 0), (23, 9), (22, 11), (23, 1)) -0.045452297 85 85 ((0, 0), (1, 9), (2, 5), (1, 1)) 0.037394591
36 31 ((23, 0), (23, 9), (22, 11), (23, 1)) -0.045452297 86 85 ((0, 0), (1, 9), (2, 5), (5, 1)) 0.037394591
37 37 ((23, 0), (22, 9), (22, 11), (21, 1)) -0.045452293 87 85 ((1, 0), (1, 9), (2, 5), (1, 1)) 0.037394591
38 37 ((23, 0), (22, 9), (22, 11), (22, 1)) -0.045452293 88 85 ((1, 0), (1, 9), (2, 5), (5, 1)) 0.037394591
39 37 ((20, 0), (23, 9), (22, 11), (21, 1)) -0.045452293 89 85 ((3, 0), (1, 9), (2, 5), (1, 1)) 0.037394591
40 37 ((20, 0), (23, 9), (22, 11), (22, 1)) -0.045452293 90 85 ((3, 0), (1, 9), (2, 5), (5, 1)) 0.037394591
41 37 ((21, 0), (22, 9), (22, 11), (21, 1)) -0.045452293 91 85 ((18, 0), (1, 9), (2, 5), (1, 1)) 0.037394591
42 37 ((21, 0), (22, 9), (22, 11), (22, 1)) -0.045452293 92 85 ((18, 0), (1, 9), (2, 5), (5, 1)) 0.037394591
43 37 ((22, 0), (22, 9), (22, 11), (21, 1)) -0.045452293 93 85 ((20, 0), (20, 9), (21, 5), (21, 1)) 0.037394591
44 37 ((22, 0), (22, 9), (22, 11), (22, 1)) -0.045452293 94 85 ((20, 0), (20, 9), (21, 5), (22, 1)) 0.037394591
45 37 ((22, 0), (23, 9), (22, 11), (21, 1)) -0.045452293 95 85 ((21, 0), (20, 9), (21, 5), (21, 1)) 0.037394591
46 37 ((22, 0), (23, 9), (22, 11), (22, 1)) -0.045452293 96 85 ((21, 0), (20, 9), (21, 5), (22, 1)) 0.037394591
47 37 ((23, 0), (23, 9), (22, 11), (21, 1)) -0.045452293 97 85 ((24, 0), (20, 9), (21, 5), (21, 1)) 0.037394591
48 37 ((23, 0), (23, 9), (22, 11), (22, 1)) -0.045452293 98 85 ((24, 0), (20, 9), (21, 5), (22, 1)) 0.037394591
49 49 ((5, 0), (7, 9), (7, 11), (7, 1)) -0.039949972 99 85 ((2, 0), (1, 9), (2, 5), (1, 1)) 0.037394591
50 49 ((7, 0), (7, 9), (7, 11), (7, 1)) -0.039949972 100 85 ((2, 0), (1, 9), (2, 5), (5, 1)) 0.037394591

Table 5. The top 100 most absolute relevant node-level walks (found by EMP-neu). The columns show the estimated ranking by EMP-neu,
the true ranking found by the exhaustive search, the neuron-level walk, and its relevance. The walk is expressed as L+ 1 = 4 steps of
node-neuron pairs (m,n), denoting the n-th neuron of the m-th node. The graph is from the negative class of BA-2motif dataset. Note
that the walks with the same relevance share the same ranking.
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Table 6. Statistics of the datasets.
BA-2MOTIF MUTAG MUTAGENICITY GRAPH-SST2 INFECTION

# OF EDGES (AVG) 25.48 19.79 17.79 19.40 3991.30
# OF NODES (AVG) 25.00 17.93 16.90 10.20 1000
# OF GRAPHS 1000 188 4337 70042 100

F.1. BA-2motif

BA-2motif (Luo et al., 2020) is a synthetic dataset of graphs that are built by attaching one of two different motifs (either a
house or a circle shape) to a random graph, which is generated by the Barabási-Albert (BA) model. The prediction task is to
classify the graphs according to the motif type.

We trained a GIN model with 3 layers, with a 2-layer multi-layer perceptron as the combine function in every GIN block.
The activation function we use throughout the model is ReLU. The nodes’ initial embedding is single value 1 (N (0) = 1),
and the first 2 GIN blocks transforms the features into 20-dimensional and the last block transforms the feature into 2
dimensions. In the last layer we do a sum pooling across all node features to get a vector that represents the whole graph,
and transform it to class probabilities by a softmax function. We trained the model with the SGD optimizer with a decreasing
learning rate γ = 0.00001/(1.0 + (epoch/epochs) for 5000 epochs. The dataset consists of 1000 samples (500 for each
class). We train the model with a set of 400 positive and 400 negative samples, and use the rest as test set. The test accuracy
is 100%.

F.2. MUTAG

MUTAG (Debnath et al., 1991) is a molecule dataset. The molecules are represented as graphs of atoms being nodes and
chemical bonds being edges. The initial node features are one-hot vectors of atom types. The samples are labelled as
mutagenic and non-mutagenic.

For this dataset we apply a 3-layered GIN model, with 2-layer MLP as the combine function in each GIN block. The input
node feature dimension is 7, and the output dimension of first 2 GIN blocks is 128, and the final block transforms the feature
into 2 dimensions. The readout function is sum over all nodes followed by a softmax function. The train set consists of 108
samples with half positive and half negative, and we use the rest samples as the test set. We trained the model with SGD
optimizer for 1500 epochs, and the learning rate γ = 0.0005/(1.0 + (epoch/epochs). The test accuracy is 85.00%.

F.3. Mutagenicity

Mutagenicity (Kazius et al., 2005) is another bigger dataset for mutagenic and non-mutagenic molecules, and contains larger
variety of types of mutagenic groups.

The model’s input feature size is 13, and the rest settings are the same as used in MUTAG model. The train set has 3096

Figure 11. Precision-recall curves of AMP-ave for the top-K∗ node-level walks on MUTAG (top) and Graph-SST2 (bottom).
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samples with half positive and half negative, and the rest are used as test set. We trained the model with Adam optimizer for
25 epochs, and the initial learning rate γ = 0.00005. The test accuracy is 83.16%.

F.4. Graph-SST2

Graph-SST2 (Yuan et al., 2020b) is a dataset of texts in the parse tree form, which is also represented as graphs. The node
features are 768-dimensional word embedding vectors, which are pretrained and provided by the authors.

The model is built with a node feature embedding part and a following 3-layer GCN. The input feature dimension is 768,
and in the middle layer of GCN the output dimension is 20. We downloaded the dataset from Yuan et al. (2020b) and used
their dataset split. We trained the model with Adam optimizer for 50 epochs, and the initial learning rate γ = 0.0001. The
test accuracy is 89.40%.

G. Oracle Predictors for Infection Dataset
We call oracle who has the complete information about data generation process, and therefore provides predictions with best
possible accuracy. Since the analytic expressions of the predictive probabilities for the SI model are intractable, we estimate
the probabilities by Monte Carlo sampling.

Assume that we fixed the parameters of the SI model, and drew a graph and initial carriers, for which we will compute the
oracle predictors. We simulate the infection process Q = 1000 times and record the results. We use a counter x(m) to
record how many times the node m was infected after L time steps. We also use a counter y(c(m)) to record how many
times a particular infection chain c(m) ∈ C(m) occurred. Here C(m) denotes the set of possible infection chains from one of
the initial carriers to the target node m. With those records, we can estimate the following probabilities:

P(Node m will be infected) ≈ x(m)

Q
, (20)

P(Infection chain c(m) will occur) ≈ y(c(m))

Q
. (21)

The estimators above converge to the true probabilities as Q → ∞. The oracle infection predictor based on Eq.(20) gives an
accuracy upper-bound for any machine learning predictor, while the oracle infection chain predictor based on Eq.(21) gives
an upper-bound of the possible infection chain detection accuracy. We can also obtain the set of possible infection chains by
collecting chains such that Eq.(21) is positive.

H. Heuristics to Find the Most Relevant Walks based on Edge-IG
We rely on a natural assumption—the edges of which the most relevant walks consist should be relevant—and build the
following heuristics. We first sort the edges in descending order of the relevance scores given by Edge-IG. Then, we take
the top-K̃ edges (m,m′)k, k = 1, · · · , K̃ with their relevance scores R(m,m′), find all possible walks they can form, and
assign each walk a relevance score. Note that a walk can have any length no larger than L+ 1. For a walk [m1, · · · ,ma],
we assign a relevance score in two way:

sum: R[m1,··· ,ma] =

a−1∑
i=1

R(mi,mi+1),

prod: R[m1,··· ,ma] =

a−1∏
i=1

R(mi,mi+1),

which respectively correspond to Edge-IG sum and Edge-IG prod with K̃ = 25 in the main text. Note that these heuristics
are compatible with all edge-level explanability methods, including GNNExplainer and PGExplainer, which however are
incomparably slow.
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I. More Samples for Qualitative Visualization
I.1. Explaining model predictions on Mutagenicity

In Figure 12, we give 4 further examples of molecule explanations, with two of them mutagenic and two non-mutagenic.

In the first mutagenic molecule, our method successfully finds the mutagenic NO2 group within the top-10 walks, while
Node-IG and Edge-IG only highlight partially the NO2 and wrongly give the carbon or C-N bond a negative relevance.
GNN-LRP with all walks gives information of some non-mutagenic structures, but they are not as important as the mutagenic
group that our method finds much faster.

In the second mutagenic molecule, our method identifies the OH substituent of the aromatic ring, while Edge-IG wrongly
identifies the C-O bond as non-mutagenic. Node-IG is successful in identifying the real mutagenic structure, but wrongly
identifies the nitrogen atom as mutagenic.

In the first non-mutagenic molecule, our method finds the C-N bonds, which are chemically stable and therefore indicate
non-mutagenicity. Node-IG highlights all atoms, which is not wrong, but gives no specific information.

In the second non-mutagenic molecule, our method identifies the C subsituents of the aromatic rings, which lead to a
chemically stable structure. However, Edge-IG highlights all edges and it’s not clear if aromatic bond or the aromatic C
structure is the evidence of non-mutagenicity.

AMP-ave top-10 GNN-LRP all Node-IG Edge-IG

+

+

—

—

Figure 12. Heatmaps of different explanation methods of 4 molecules from the Mutagenicity dataset (+: mutagenic, -: non-mutagenic).
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I.2. Explaining model predictions on Graph-SST2

In Figure 13, we provide four further examples for parse tree explainations. Two of them with positive and two with negative
sentiment.

In the first positive sentiment sample, our method finds the most relevant part “the value and respect”, which is in this
sentence most evident for the positive sentiment of the movie-review. When reading the sentence it is noticable that the last
words “epic cinema” also give rise to a positive prediction, yet overall less than “the value and respect“. In the heatmap we
see that our method decides for the most relevant subsentence and, with only 10 most relevant walks, leaves the less relevant
parts out of scope. Yet, we want to highlight that this is not a limitation of our method. Since, when we increase the number
of top-K walks, we would obtain other less relevant features in the parse-trees as well and finally converge with K → ∞ to
the heatmap of GNN-LRP. We see that the baseline methods also provide a clear idea of what is relevant in the input graph,
yet they are not able to distinguish comparably clear what is most relevant.

In the second positive sentiment sample, we can say by reading the sentence that all words except “and” are relevant. From
the heatmaps we see that our method identifies all of them with focus on “arrive” and “stay late”. Notably, one of the
top-10 walks goes through the four relevant words, showing our higher-order method’s superiority in capturing the node
interactions. On the opposite side, Node-IG wrongly identifies “stay” and Edge-IG wrongly identifies “arrive”-“stay” as
evidence for negative sentiment.

In the first negative sentiment sample, our method finds the most relevant part “altogether too slight”, which is what we
expect to be evident for a negative sentiment. Node-IG highlights “slight“ and “called“ to be most evident, which is
partly useful, but does not give sufficient intuition for this sentence. Edge-IG also highlights the edges between the words
”altogether”, ”slight”, ”too” and ”called”, which seems reasonable for the prediction task. Yet, the connection between
”called” and ”kind” also seems quite relevant, which is more confusing here than enlightening. For the GNN-LRP result we
can see that visualization all words can make it harder to tell which part of the sentence is more or less relevant, by just
looking at the heatmaps.

In the second negative sentiment sample, our method identifies the words “because” and “acts goofy”, which are strong
evidence for negative sentiment. If we plot all walks, the most highlighted part becomes “goofy” and “time”, which is less
intuitive for human. Node-IG and Edge-IG focus on the wrong parts, leaving the word “goofy” with only small relevance
scores.
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AMP-ave top-10 GNN-LRP all Node-IG Edge-IG

+

+

—

—

the value and respect 
for the term epic cinema

arrive early and stay late

altogether too slight to be
called any kind of masterpiece

because he acts so 
goofy all the time

Figure 13. Explanations of parse trees from Graph-SST2 (+: positive sentiment, -: negative sentiment).
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