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Abstract

Current protein language models (PLMs) learn
protein representations mainly based on their se-
quences, thereby well capturing co-evolutionary
information, but they are unable to explicitly ac-
quire protein functions, which is the end goal
of protein representation learning. Fortunately,
for many proteins, their textual property descrip-
tions are available, where their various functions
are also described. Motivated by this fact, we
first build the ProtDescribe dataset to augment
protein sequences with text descriptions of their
functions and other important properties. Based
on this dataset, we propose the ProtST frame-
work to enhance Protein Sequence pre-training
and understanding by biomedical Texts. Dur-
ing pre-training, we design three types of tasks,
i.e., unimodal mask prediction, multimodal repre-
sentation alignment and multimodal mask pre-
diction, to enhance a PLM with protein prop-
erty information with different granularities and,
at the same time, preserve the PLM’s original
representation power. On downstream tasks,
ProtST enables both supervised learning and zero-
shot prediction. We verify the superiority of
ProtST-induced PLMs over previous ones on di-
verse representation learning benchmarks. Un-
der the zero-shot setting, we show the effective-
ness of ProtST on zero-shot protein classification,
and ProtST also enables functional protein re-
trieval from a large-scale database without any
function annotation. Source code and model
weights are available at https://github.
com/DeepGraphLearning/ProtST.
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1. Introduction
Proteins serve as the mainstay governing diverse biological
processes and life itself, inducing important applications in
drug discovery (Teague, 2003) and healthcare (Organization
& University, 2007). Recent studies have proven the great
promise of machine learning methods in predicting pro-
tein structures (Jumper et al., 2021; Baek et al., 2021) and
functionality (Meier et al., 2021; Gligorijević et al., 2021).
Among these methods, protein language models (PLMs) (El-
naggar et al., 2020; Rives et al., 2021; Lin et al., 2022)
pre-trained on large-scale protein sequence corpus succeed
in acquiring powerful protein representations, which boost
protein structure and function prediction (Xu et al., 2022b).

Most existing PLMs (Elnaggar et al., 2020; Lu et al., 2020;
Rives et al., 2021; Lin et al., 2022) learn protein representa-
tions based only on their sequences, which can well capture
co-evolutionary information but cannot explicitly acquire
protein functions and other important properties like their
subcellular locations. Acquiring such function and property
information is actually the end goal of protein representation
learning. Fortunately, for many proteins, we can get access
to their textual property descriptions in which their diverse
functions are also described. This fact motivates us to study
protein sequence representation learning enriched with di-
verse protein properties described by biomedical texts.

To our best knowledge, OntoProtein (Zhang et al., 2022a) is
the only existing PLM that explicitly captures protein prop-
erties. However, it learns a closed set of properties over a
fixed biological knowledge graph and thus can hardly gener-
alize to unknown properties of new proteins. In comparison,
by modeling textual protein property descriptions, we can
flexibly model the generalization from known properties to
unknown ones based on the semantic correlation of their
text descriptions, as shown by our zero-shot experiments
(Secs. 4.3 and 4.4).

To attain biomedical-text-enhanced protein sequence repre-
sentation learning, we first build the ProtDescribe dataset,
a paired dataset of protein sequences and textual property
descriptions. We resort to the Swiss-Prot database (Bairoch
& Apweiler, 2000) for high-quality protein annotations and
construct each protein’s property description with the se-
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lected annotations of it. ProtDescribe incorporates the in-
formation of protein names, protein functions, subcellular
locations and protein families, and these properties are de-
scribed by biomedical texts with rich expressions.

Based on this dataset, we propose the ProtST framework
to enhance protein sequence pre-training and understand-
ing by biomedical texts. During ProtST pre-training, to
preserve the beneficial representation power of a conven-
tional PLM on capturing co-evolutionary information, we
adopt the Unimodal Mask Prediction task for masked pro-
tein modeling. On such basis, two multimodal pre-training
tasks are designed to inject different granularities of perti-
nent protein property information into a PLM: Multimodal
Representation Alignment injects integrated and general
property information into the PLM, in which a biomedi-
cal language model is used to extract structured text rep-
resentations of different property descriptions, and protein
sequence representations are aligned to the corresponding
text representations; Multimodal Mask Prediction models
the fine-grained dependencies between residues in a pro-
tein sequence and property-descriptive words in its property
description, in which a fusion module is employed to de-
rive multimodal representations of residues and words, and,
based on these fused multimodal representations, masked
residues and words are predicted. For downstream applica-
tions, ProtST can conduct supervised learning with only the
PLM and can also perform zero-shot prediction based on
the aligned representation space of protein sequences and
text descriptions.

We investigate the PLMs trained under ProtST by represen-
tation learning and zero-shot prediction. For representation
learning, we verify their superior performance over previ-
ous masked language modeling and knowledge-enhanced
PLMs on 11 standard benchmarks for protein localization
prediction, fitness landscape prediction and protein function
annotation (Sec. 4.2). For zero-shot protein classification,
ProtST-induced zero-shot classifiers show better data effi-
ciency against various few-shot classifiers (Sec. 4.3.2), and
are proven to be able to enhance the performance of super-
vised learning models via ensemble (Sec. 4.3.3). For zero-
shot text-to-protein retrieval, we verify the effectiveness of
ProtST on retrieving functional proteins from a large-scale
database without any function annotation (Sec. 4.4).

2. Preliminaries
2.1. Problem Definition

In the pre-training phase, we study the problem of learning
informative protein sequence representations guided by the
proteins’ associated biomedical text descriptions. In this
problem, a protein P = (S, T ) is represented by an amino
acid sequence S = [s1, s2, · · · , sn] with n amino acids

(a.k.a., residues) and a text description T = [t1, t2, · · · , tm]
with m word tokens. Given a pre-training dataset with N
proteins P = {P1, P2, · · · , PN}, our goal is to extract effec-
tive protein representations by fully utilizing the information
from their sequences and descriptions. The extracted protein
representations are expected to boost various downstream
tasks by supervised learning or zero-shot prediction.

2.2. Protein Language Models

Protein language models (PLMs) (Elnaggar et al., 2020;
Rives et al., 2021; Meier et al., 2021; Lin et al., 2022) pre-
trained on large-scale protein sequence corpus have shown
impressive results on protein function (Meier et al., 2021)
and structure (Lin et al., 2022) prediction. PLMs are com-
monly trained by masked protein modeling, in which partial
residues are masked at input and predicted based on the
context. In this work, we select three state-of-the-art PLMs,
ProtBert (Elnaggar et al., 2020), ESM-1b (Rives et al., 2021)
and ESM-2 (Lin et al., 2022), as baselines and seek to en-
hance their representation power by modeling biomedical
texts at the same time as protein sequence modeling.

2.3. Biomedical Language Models

Compared to the texts from general domains like newswire
and Web, biomedical texts differ a lot in terms of vocabulary
and expressions. To tackle such differences, language mod-
els specific to the biomedical domain (Beltagy et al., 2019;
Lee et al., 2020; Gu et al., 2021) are actively studied. In this
work, we employ a performant biomedical language model,
PubMedBERT (Gu et al., 2021), to represent the biomedical
text descriptions of proteins.

3. Method
In this section, we first motivate the proposed ProtST frame-
work and present its general picture in Sec. 3.1, and then
elucidate the design of pre-training tasks in Sec. 3.2, fol-
lowed by discussing the connections with and advantages
over previous works in Sec. 3.3.

3.1. Motivation and Overview

Motivation: Existing PLMs (Elnaggar et al., 2020; Lu et al.,
2020; Rives et al., 2021; Lin et al., 2022) learn protein rep-
resentations primarily based on their sequences, which can
well capture co-evolutionary information but cannot explic-
itly acquire various protein properties like protein functions
and subcellular locations. By acquiring such property in-
formation, the effectiveness of a PLM can be further im-
proved, considering that the protein properties studied in
pre-training and downstream tasks can correlate with each
other (Bhardwaj & Lu, 2005).

2



ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts

PROTEIN NAME: [MASK] myristoylated 
protein 053R. PROTEIN FUNCTION: May 

play a critical role in virion [MASK]. 
Essential for virus replication in [MASK] …

MGAA[MASK]SINT[MASK]NITKAY
AKIMTTMVT[MASK]QDITADQSQV
F[MASK]IDHVKGDVVIKGDVFTQM
LVINLASLMKAIAT[MASK]SAQDQ…

Fusion
Module

Protein 
LM 

Biomedical 
LM

𝑳𝑴𝑴𝑷𝑺

𝑳𝑴𝑴𝑷𝑻
𝑳𝑮𝑪

𝑳𝑴𝑷𝑴

Protein = (AA sequence , Text description)

(a) Multimodal Pre-training

Protein 
LM

(b) Downstream Supervised Learning

Cell membrane

Cytoplasm

. . .

Extracellular

MFKKFTREDVHSRSKVKSSIQRTLKA
KLVKQYPKIEDVIDELIPKKSQIELIKC
EDKIQLYSVDGEVLFFQKFDELIPSLK
LVHKFPEAYPTVQVDRGAIKFVLSG…

(c) Zero-shot Protein Classification 

(d) Zero-shot Text-to-Protein Retrieval

𝒛𝑺 "𝒛𝟏𝑻 𝒛𝑺 "𝒛𝟐𝑻 𝒛𝑺 "𝒛𝑲𝑻𝒛𝑺

𝒛𝟏𝑻 𝒛𝟐𝑻 𝒛𝑲𝑻

A protein locating at Cytoplasm

. . . 

. . . 

𝒛𝑻 "𝒛𝟏𝑺 𝒛𝑻 "𝒛𝟐𝑺 𝒛𝑻 "𝒛𝑵𝑺𝒛𝑻

𝒛𝟏𝑺 𝒛𝟐𝑺 𝒛𝑵𝑺

. . . 

. . . 

Biomedical 
LM

Protein 
LM

A protein locating at Cell membrane
A protein locating at Cytoplasm

A protein locating at Extracellular

...

MFKKFTREDVHSRSKVKSSIQ
RTLKAKLVKQYPKIEDVIDELIP
KKSQIELIKCEDKIQLYSVDG…

Biomedical 
LM

Protein 
LM

FUNCTION: Binding to a heme,
a compound of iron complexed in
a porphyrin (tetrapyrrole) ring.

MAKQLQARRLDGIDYNPWV …
GHMFGSINLASSLSVDAPGL…

MAKKSNSKKSTPVSTPSKEK…

...

𝑺𝟐 𝑺𝟏 𝑺𝑵 . . . 

Retrieval ranks

Figure 1: Graphical illustration of ProtST framework. (a) A protein language model (PLM) is first pre-trained along with
a biomedical language model (BLM) and a fusion module to jointly model protein sequences and biomedical texts. (b) After
this multi-modal pre-training, the PLM can be used individually for supervised learning on downstream tasks. (c) The
couple of pre-trained PLM and BLM can perform zero-shot protein classification using only label descriptions. (d) The
paired PLM and BLM can also retrieve functional proteins from a large-scale database without any function annotation.

To gain such improvement, we curate the ProtDescribe
dataset that augments protein sequences with text descrip-
tions of their diverse properties (see Sec. 4.1 for details). By
injecting such property information into protein sequence
representations, we aim at (1) a PLM that is more effective
than previous ones on various downstream tasks under su-
pervised learning, and (2) it can further enable zero-shot
prediction through the generalization of text descriptions
between known protein properties and unknown ones.

ProtST Framework: To attain these goals, we first perform
multi-modal pre-training of sequences and texts and then
apply the pre-trained model to three types of downstream
applications (framework overview is shown in Fig. 1):

• Multimodal Pre-training: Given the ProtDescribe
dataset, we train a PLM together with a biomedical
language model (BLM) and a fusion module to model
the paired protein sequences and text descriptions. We
consider three kinds of pre-training tasks, i.e., unimodal
mask prediction, multimodal representation alignment
and multimodal mask prediction, to capture the protein
property information with different granularities and
also preserve the PLM’s original representation power.

• Downstream Supervised Learning: After such pre-
training, the PLM is enriched by the useful property
information within biomedical texts. For downstream
tasks with labeled proteins, we can employ the PLM
individually to solve the tasks by supervised learning.

• Zero-shot Protein Classification: When a protein clas-
sification task occurs without any labeled data, ProtST
enables zero-shot classification. Specifically, the classi-
fication result can be determined by the representation

similarity comparison between the query protein and
all labels, thanks to the aligned representation space of
protein sequences and label descriptions.

• Zero-shot Text-to-Protein Retrieval: Based on the
aligned representation space, ProtST also allows us to
retrieve functional proteins from a large-scale database
by using only the text descriptions of protein functions,
in which no function annotation is required.

3.2. Pre-training Tasks: Joint Modeling of Protein
Sequences and Biomedical Texts

During ProtST pre-training, we aim to learn informative pro-
tein sequence representations guided by biomedical texts.
To start this process with decent representations of protein
sequences and biomedical texts, we use pre-trained PLM
(i.e., ProtBert (Elnaggar et al., 2020), ESM-1b (Rives et al.,
2021) or ESM-2 (Lin et al., 2022)) and pre-trained BLM
(i.e., PubMedBERT (Gu et al., 2021)) for initialization. Dur-
ing training, we tune the parameters of PLM and freeze
those of BLM, since the pre-trained BLM is sufficient for
extracting semantically meaningful representations from
biomedical texts, and it is computationally expensive to
tune both PLM and BLM simultaneously. ProtST involves
the following pre-training tasks for representation learning.

Unimodal Mask Prediction: The PLM for initialization
is pre-trained by masked protein modeling (MPM), i.e.,
predicting masked residues based on the protein sequence
context. This task can capture co-evolutionary information
by modeling residue type dependency. To preserve such
unimodal information when injecting the cross-modality
information from biomedical texts, we keep an MPM loss
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function LMPM for ProtST pre-training. Specifically, for
each protein sequence, we randomly mask 15% residue
tokens and predict each masked token based on its contextu-
alized representation extracted by the PLM, where LMPM

is formulated as a cross-entropy loss to measure the cost.

Multimodal Representation Alignment: The biomedical
text representations learned by a pre-trained BLM can well
reflect the semantics of the texts (Jin et al., 2019; Gu et al.,
2021). Therefore, when given protein property descrip-
tions, the BLM can extract semantically meaningful text
representations of proteins. Thanks to this capability, by
aligning protein sequence representations to their associated
text representations, we can naturally inject protein property
information into sequence representations.

To realize such alignment, we perform contrastive learning
between protein sequences and their text descriptions. Given
a batch of M proteins {Pi = (Si, Ti)}Mi=1, we use the PLM
to extract protein sequence representations {zSi }Mi=1 and the
BLM to derive text description representations {zTi }Mi=1. A
standard InfoNCE loss (Oord et al., 2018) LGC is defined
to maximize the representation similarity between corre-
sponding sequences and texts and minimize the similarity
between negative pairs:

LGC = − 1

2M

M∑
i=1

(
log

exp(zSi · zTi /τ)∑M
j=1 exp(z

S
i · zTj /τ)

+ log
exp(zSi · zTi /τ)∑M
j=1 exp(z

S
j · zTi /τ)

)
,

(1)

where, under multi-GPU data parallelism, we gather whole-
batch samples separated on different GPUs to form negative
pairs and thus term the loss LGC as a global contrastive
(GC) loss following the convention (Singh et al., 2022), and
τ denotes a learnable temperature parameter.

Multimodal Mask Prediction: Although the general de-
pendency between the whole protein sequences and full
text descriptions can be well modeled by LGC, LGC alone
does not capture the dependency between the residues in
a protein sequence and the words in its text description.
Such fine-grained cross-modality interdependency is actu-
ally ubiquitous. For example, a soluble protein (descriptive
words) always co-occurs with charged and polar surface
residues (Capaldi & Vanderkooi, 1972); high thermostabil-
ity (descriptive words) and high amounts of hydrophobic
residues are correlated with each other (Kumar et al., 2000),
etc. To capture such interdependency, we propose a novel
pre-training task that encourages the model to recover the
corrupted protein sequence (or text description) based on
the information from both modalities.

Specifically, given a protein sequence S = [s1, s2, · · · , sn]
and its corresponding text description T = [t1, t2, · · · , tm],

we first randomly mask 15% residues in the protein se-
quence and 15% words in the text description. Upon the
corrupted inputs, we employ the PLM to extract residue
representations ZS = [zs1, z

s
2, · · · , zsn] and utilize the BLM

to extract word representations ZT = [zt1, z
t
2, · · · , ztm]. A

fusion module with both self- and cross-attention is then
used to model the interdependency between residues and
words, in which each residue and word updates its repre-
sentation by attending to all the tokens along both protein
sequence and text description (we state the detailed architec-
ture in Appendix A). The fusion module produces the fused
residue representations Z̃S = [z̃s1, z̃

s
2, · · · , z̃sn] and the fused

word representations Z̃T = [z̃t1, z̃
t
2, · · · , z̃tm], in which each

residue/word representation combines the information from
both modalities. Based on Z̃S and Z̃T , we perform multi-
modal mask prediction (MMP) to recover masked residues
and words, where a cross-entropy loss LS

MMP measures the
cost on protein sequence, and another cross-entropy loss
LT
MMP measures the cost on text description, inducing the

overall MMP loss LMMP = LS
MMP + LT

MMP.

Overall Pre-training Objective: During the pre-training
process, we seek to minimize the loss functions of all pre-
training tasks simultaneously:

min
θ

LMPM + LGC + LMMP, (2)

where θ denotes all learnable parameters including those of
the PLM, the fusion module and all projection/prediction
heads. We state the detailed architectures of these modules
in Appendix A.

3.3. Discussion

Now we discuss the connections of our method with previ-
ous works and emphasize its advantages.

Advantages over Self-Supervised PLMs: Previous self-
supervised PLMs (Elnaggar et al., 2020; Rives et al., 2021;
Lin et al., 2022) and the proposed ProtST-induced ones
can both capture co-evolutionary information hidden in pro-
tein sequences by masked protein modeling. On this basis,
ProtST-induced PLMs further utilize the supervision from
textual protein property descriptions, and they are guided
to acquire whole-protein properties by multimodal repre-
sentation alignment and acquire residue-level properties by
multimodal mask prediction.

Advantages over OntoProtein (Zhang et al., 2022a): Sim-
ilar to our approach, OntoProtein also seeks to enhance a
self-supervised PLM by involving protein property informa-
tion. In comparison, ProtST could be more effective mainly
in two aspects. (1) Diversity of considered properties:
OntoProtein retrieves Gene Ontology terms (Zhang et al.,
2022a) to cover protein functions and locations; besides
these two kinds of properties, ProtST additionally includes
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Table 1: Statistics of the ProtDescribe dataset.

Field Name Function Location Family

#Covered samples 553,052 460,936 350,929 512,276
Coverage 100% 83.3% 63.5% 92.6%

protein names and families which are useful to indicate
protein structural and functional similarity (Murzin et al.,
1995). (2) Property modeling manner: OntoProtein learns
a closed set of protein properties under the context of a
fixed biological knowledge graph, which limits its ability
to generalize to unknown properties of new proteins, while
ProtST can flexibly model such generalization based on the
semantic correlation of text descriptions between known and
unknown properties, leading to decent zero-shot prediction
capability (studied in Secs. 4.3 and 4.4).

4. Experiments
4.1. Pre-training Setups

Pre-training Dataset: To inject protein property informa-
tion into PLMs, we build the ProtDescribe dataset with
553,052 aligned pairs of protein sequence and property de-
scription. Specifically, we employ the Swiss-Prot (Bairoch
& Apweiler, 2000) database to provide annotations of var-
ious protein properties, in which we select four property
fields: (1) “Protein Name” gives the full protein name rec-
ommended by the UniProt consortium (Consortium, 2019);
(2) “Function” depicts diverse functions owned by a protein;
(3) “Subcellular Location” describes the location and topol-
ogy of a mature protein in the cell; (4) “Similarity” provides
information about the protein families that a protein belongs
to. A complete property description is formed by concate-
nating these four fields in order, where missing fields are
skipped (see Appendix B.1 for the detailed concatenation
scheme and examples). Tab. 1 presents the statistics of how
each field covers the whole dataset.

Protein Language Models: We seek to enhance three
performant PLMs, i.e., ProtBert (Elnaggar et al., 2020),
ESM-1b (Rives et al., 2021) and ESM-2 (Lin et al., 2022),
by tuning their weights through the proposed ProtST pre-
training. We name the PLMs after this pre-training phase as
ProtST-ProtBert, ProtST-ESM-1b and ProtST-ESM-2.
For ProtBert, we employ the ProtBert-BFD version which is
trained on the BFD database (Steinegger & Söding, 2018).
For ESM-2, we adopt the ESM-2-650M model so as to fairly
compare with ESM-1b under the same model size.

Biomedical Language Models: By default, we utilize the
PubMedBERT-abs (Gu et al., 2021) trained on PubMed ab-
stracts to extract representations of protein property descrip-
tions. We study another model version, PubMedBERT-full
trained with additional full-text articles, in Appendix E.2.

Training Configurations: An Adam optimizer (Kingma

& Ba, 2014) (learning rate: 1.0 × 10−5, weight decay: 0)
is used to train the whole model for 20 epochs on 4 Tesla
V100 GPUs. More settings are introduced in Appendix B.1.

4.2. Representation Learning

4.2.1. EXPERIMENTAL SETUPS

Downstream Benchmark Tasks. We adopt 11 benchmark
tasks within three task types (the “Abbr.” below denotes the
abbreviated task name in Tab. 2 and 3):

• Protein Localization Prediction seeks to predict the
subcellular locations of proteins. We consider two such
problems from DeepLoc (Almagro Armenteros et al.,
2017), the subcellular localization prediction (Abbr.,
Sub) with 10 location categories and the binary localiza-
tion prediction (Abbr., Bin) with 2 location categories.
We follow the official dataset splits.

• Fitness Landscape Prediction aims to predict the effect
of residue mutations on protein fitness. We employ the β-
lactamase (Abbr., β-lac) landscape from PEER (Xu et al.,
2022b), the AAV and Thermostability (Abbr., Thermo)
landscapes from FLIP (Dallago et al., 2021), and the
Fluorescence (Abbr., Flu) and Stability (Abbr., Sta) land-
scapes from TAPE (Rao et al., 2019). For AAV, we use
the “two vs many” dataset splits; for Thermostability,
we adopt the “human cell” splits; we follow the only de-
fault splits on all other tasks. In Appendix C, we further
show the results on ProteinGym (Notin et al., 2022).

• Protein Function Annotation seeks to annotate a pro-
tein with multiple functional labels. We employ two
standard benchmarks proposed by DeepFRI (Gligori-
jević et al., 2021), i.e., Enzyme Commission (EC) num-
ber prediction and Gene Ontology (GO) term prediction.
The GO benchmark is split into three branches to predict
molecular function (Abbr., GO-MF), biological process
(Abbr., GO-BP) and cellular component (Abbr., GO-CC).
Following Zhang et al. (2022b), we use the dataset splits
under 95% sequence identity cutoff for both EC and GO.

Baselines: We adopt four protein sequence encoders trained
from scratch, i.e., CNN (Shanehsazzadeh et al., 2020),
ResNet (Rao et al., 2019), LSTM (Rao et al., 2019) and
Transformer (Rao et al., 2019), as naive baselines. We focus
on comparing with four performant PLMs, i.e., ProtBert (El-
naggar et al., 2020), OntoProtein (Zhang et al., 2022a),
ESM-1b (Rives et al., 2021) and ESM-2 (Lin et al., 2022).

Training and Evaluation: We train with an Adam opti-
mizer for 100 epochs on localization and fitness predic-
tion tasks and for 50 epochs on function annotation tasks.
For localization and fitness prediction, all PLMs are evalu-
ated under both fix-encoder learning and full-model tuning
settings, and only full-model tuning is used for PLMs on
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Table 2: Benchmark results on protein localization and
fitness landscape prediction. We use three color scales of
blue to denote the first, second and third best performance.
Abbr., Loc.: Localization; pred.: prediction; Acc: accuracy.

Model Loc. pred. (Acc%) Fitness pred. (Spearman’s ρ)

Bin Sub β-lac AAV Thermo Flu Sta Mean ρ

Protein sequence encoders trained from scratch

CNN 82.67 58.73 0.781 0.746 0.494 0.682 0.637 0.668
ResNet 78.99 52.30 0.152 0.739 0.528 0.636 0.126 0.436
LSTM 88.11 62.98 0.139 0.125 0.564 0.494 0.533 0.371
Transformer 75.74 56.02 0.261 0.681 0.545 0.643 0.649 0.556

PLMs w/ fix-encoder learning

ProtBert 81.54 59.44 0.616 0.209 0.562 0.339 0.697 0.485
OntoProtein 84.87 68.34 0.471 0.217 0.605 0.432 0.688 0.483
ESM-1b 91.61 79.82 0.528 0.454 0.674 0.430 0.750 0.567
ESM-2 91.32 80.84 0.559 0.374 0.677 0.456 0.746 0.562
ProtST-ProtBert 92.29 78.49 0.569 0.219 0.621 0.376 0.719 0.501
ProtST-ESM-1b 92.87 82.00 0.578 0.460 0.680 0.523 0.766 0.601
ProtST-ESM-2 92.52 83.39 0.565 0.398 0.681 0.499 0.776 0.584

PLMs w/ full-model tuning

ProtBert 91.32 76.53 0.731 0.794 0.660 0.679 0.771 0.727
OntoProtein 92.47 77.59 0.757 0.791 0.662 0.630 0.731 0.714
ESM-1b 92.40 78.13 0.839 0.821 0.669 0.679 0.694 0.740
ESM-2 91.72 78.67 0.867 0.817 0.672 0.677 0.718 0.750
ProtST-ProtBert 91.78 78.71 0.863 0.804 0.673 0.679 0.745 0.753
ProtST-ESM-1b 92.35 78.73 0.895 0.850 0.681 0.682 0.751 0.772
ProtST-ESM-2 92.52 80.22 0.879 0.825 0.682 0.682 0.738 0.761

function annotation, since it is hard to solve the multiple
binary classification problems on EC and GO with fixed
protein representations. More training details are stated in
Appendix B.2.

For all models on all tasks, we select the checkpoint for
evaluation based on the validation set performance, and all
results are reported on the seed 0. We measure the classifica-
tion accuracy for localization prediction and the Spearman’s
ρ for fitness prediction. Following Gligorijević et al. (2021),
function annotation tasks are measured by AUPR and Fmax

whose detailed definitions are in Appendix B.2.

4.2.2. EXPERIMENTAL RESULTS

We report the benchmark results on localization and fitness
prediction in Tab. 2 and report function annotation results
in Tab. 3. Based on the benchmark results, we have the
following observations:

ProtST-induced PLMs clearly outperform the vanilla
PLMs. It is observed that: (1) ProtST-ProtBert outperforms
the vanilla ProtBert on 21 out of 24 benchmark metrics
(including both fix-encoder learning and full-model tuning
ones); (2) ProtST-ESM-1b surpasses the vanilla ESM-1b
on 22 out of 24 benchmark metrics; (3) ProtST-ESM-2
outperforms the vanilla ESM-2 on all 24 benchmark met-
rics. These results demonstrate that ProtST pre-training is
generally beneficial to different PLMs, which boosts their
performance on diverse downstream tasks.

ProtST-ProtBert performs consistently better than On-
toProtein under fair comparison. ProtST-ProtBert and
OntoProtein can be fairly compared with each other, since
they both adopt ProtBert as the initial PLM. ProtST-ProtBert

Table 3: Benchmark results on protein function annotation.
We use three color scales of blue to denote the first, second
and third best performance.

Model EC GO-BP GO-MF GO-CC

AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fmax

Protein sequence encoders trained from scratch

CNN 0.540 0.545 0.165 0.244 0.380 0.354 0.261 0.387
ResNet 0.137 0.187 0.166 0.280 0.281 0.267 0.266 0.403
LSTM 0.032 0.082 0.130 0.248 0.100 0.166 0.150 0.320
Transformer 0.187 0.219 0.135 0.257 0.172 0.240 0.170 0.380

PLMs w/ full-model tuning

ProtBert 0.859 0.838 0.188 0.279 0.464 0.456 0.234 0.408
OntoProtein 0.854 0.841 0.284 0.436 0.603 0.631 0.300 0.441
ESM-1b 0.884 0.869 0.332 0.452 0.630 0.659 0.324 0.477
ESM-2 0.888 0.874 0.340 0.472 0.643 0.662 0.350 0.472
ProtST-ProtBert 0.876 0.856 0.286 0.440 0.615 0.648 0.314 0.449
ProtST-ESM-1b 0.894 0.878 0.328 0.480 0.644 0.661 0.364 0.488
ProtST-ESM-2 0.898 0.878 0.342 0.482 0.647 0.668 0.364 0.487

surpasses OntoProtein on 22 out of 24 benchmark metrics,
which verifies the superiority of the proposed pre-training
dataset and pre-training tasks.

ProtST-ESM-1b performs best on fitness prediction, and
ProtST-ESM-2 performs best on localization prediction
and function annotation. We can observe that: (1) ProtST-
ESM-1b achieves the best performance on 4 out of 6 bench-
mark metrics for fitness prediction; (2) ProtST-ESM-2 ob-
tains the highest localization prediction accuracy on average,
and it performs best on 7 out of 8 benchmark metrics for
function annotation. We therefore recommend these two
PLMs as new state-of-the-arts.

4.3. Zero-shot Protein Classification

4.3.1. EXPERIMENTAL SETUPS

Zero-shot Protein Classification based on Aligned Repre-
sentation Space: A ProtST-induced PLM naturally allows
zero-shot protein classification, thanks to its aligned repre-
sentation space of protein sequences and text descriptions.
In specific, given the sequence S of a query protein and the
label descriptions {Ti}Ki=1 of all K classes, we employ the
PLM to extract protein representation zS and use the jointly
learned BLM to extract label representations {zTi }Ki=1. We
then derive classification logits {yi}Ki=1 by comparing the
dot product similarity between protein and label represen-
tations: yi = zS · zTi /τ (i = 1, · · · ,K), which follows the
formula of InfoNCE loss in Eq. (1). Softmax is performed
upon these logits to derive classification probabilities.

Benchmark Tasks: In this part of experiments, we adopt
two protein classification tasks as benchmarks: (1) the sub-
cellular localization prediction task which is same as the
one introduced in Sec. 4.2.1; (2) the reaction classification
task proposed by Hermosilla et al. (2020) which reformu-
lates the EC number prediction task introduced in Sec. 4.2.1
as a classification task with 384 reaction classes. We follow
the official dataset splits for both tasks.
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(a) Subcellular localization prediction (b) Reaction classification

Figure 2: Zero-shot ProtST-ESM-1b outperforms few-
shot classifiers. The horizontal line with a red star denotes
the zero-shot performance of ProtST-ESM-1b. All few-shot
results are averaged over seeds 0, 1, 2, 3 and 4, and gray
intervals denote standard deviations.

Prompt Engineering: To extract discriminative label rep-
resentations, we have tried three types of prompt templates
to describe protein function/location labels. (1) Name only:
a label is described only by the name of a function or loca-
tion (e.g., “Cytoplasm”); (2) Natural language: the name
is embedded into a natural language template (e.g., “A pro-
tein locating at Cytoplasm”); (3) Pre-training template: the
name is embedded into the template used during ProtST
pre-training (e.g., “SUBCELLULAR LOCATION: Cyto-
plasm”). The pre-training template is empirically verified
to be more effective than other two templates, and thus it is
used across all experiments of this section. The comparisons
among these templates are provided in Appendix B.3.

4.3.2. DATA EFFICIENCY OF ZERO-SHOT CLASSIFIER

Baselines: We study the data efficiency of zero-shot ProtST-
ESM-1b by comparing it with n-shot classifiers (n ⩾ 1)
which employ n training samples per class for prediction.
We adopt four baselines: (1) the ProtST-ESM-1b with su-
pervised fine-tuning, (2) the ESM-1b with supervised fine-
tuning, (3) the nonparametric ProtST-ESM-1b classifier, and
(4) the nonparametric ESM-1b classifier. We follow Khan-
delwal et al. (2019) to design the nonparametric classifiers
which predict based on the relations between test sample and
training samples, and they well fit the few-shot prediction
setting. We elucidate such classifiers in Appendix B.3.

Results: For subcellular localization prediction (Fig. 2(a)),
the zero-shot ProtST-ESM-1b matches the performance of
3-shot supervised ProtST-ESM-1b and the performance of
5-shot supervised ESM-1b, and the zero-shot classifier out-
performs two 7-shot nonparametric classifiers. For reaction
classification (Fig. 2(b)), the zero-shot ProtST-ESM-1b sur-
passes the 1-shot performance of supervised and nonpara-
metric ProtST-ESM-1b, and it aligns the 2-shot performance
of supervised and nonparametric ESM-1b. These results
demonstrate the data efficiency of ProtST-induced zero-shot
classifiers. In particular, they can be helpful in the down-
stream tasks with limited or even no labeled proteins by
making educated predictions using only label descriptions.

(a) Subcellular localization prediction (b) Reaction classification

Figure 3: Zero-shot ProtST-ESM-1b enhances few-shot
classifiers’ performance via ensemble. The horizontal line
with a red star denotes the zero-shot performance of ProtST-
ESM-1b. All few-shot results are averaged over seeds 0, 1,
2, 3 and 4, and gray intervals denote standard deviations.

Table 4: Zero-shot ProtST-ESM-1b enhances full-shot
classifiers’ performance via ensemble. Abbr., loc.: local-
ization; Acc: accuracy.

Model Subcellular loc. (Acc%) Reaction (Acc%)

ProtST-ESM-1b 82.00 86.73
[Ensemble] ProtST-ESM-1b 82.37 87.14

ESM-1b 79.82 80.54
[Ensemble] ESM-1b 80.20 83.03

4.3.3. ENHANCING SUPERVISED LEARNING WITH
ZERO-SHOT CLASSIFIER

Ensemble of Supervised Learning Model and Zero-shot
Classifier: We study how zero-shot ProtST-ESM-1b can
boost supervised learning models via ensemble. Specifically,
we combine the classification logits produced by a super-
vised learning model and the zero-shot classification logits
as below: {yk = ysupk + αyzerok }Kk=1 (K is the number of
classes), where α controls the contribution of the zero-shot
classifier. Empirically, we set α as the ratio of the zero-shot
classifier’s validation set performance over the validation
performance of the supervised learning model.

Baselines: We employ ProtST-ESM-1b and ESM-1b with
supervised fine-tuning on downstream tasks as baselines.
We consider fine-tuning under both the few-shot setting and
the full-shot setting (i.e., trained with all training samples).
Based on these supervised models, we seek to utilize zero-
shot ProtST-ESM-1b to enhance their performance.

Results: According to Fig. 3 and Tab. 4, we can observe that
zero-shot ProtST-ESM-1b succeeds in enhancing the perfor-
mance of all few-shot and full-shot baselines on both bench-
marks. These results verify that ProtST-induced zero-shot
classifiers are useful tools to enhance supervised learning
models, which is realized by refining decision boundaries.

4.4. Zero-shot Text-to-Protein Retrieval

Zero-shot Text-to-Protein Retriever: Based on the protein-
text aligned representation space, ProtST enables us to re-
trieve functional proteins from a large-scale database with-
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Prompt - FUNCTION: Binding to a heme, a compound composed of iron complexed in a porphyrin (tetrapyrrole) ring.

(1st) 2N91-A: 
• Affinity: -7.3 (kcal/mol)
• GO-MF label: Bind  

(2nd) 1YHU-A: 
• Affinity: -7.9 (kcal/mol)
• GO-MF label: Bind  

(3rd) 5B3I-A: 
• Affinity: -8.1 (kcal/mol)
• GO-MF label: Bind  

(4th) 5VPR-A: 
• Affinity: -7.4 (kcal/mol)
• GO-MF label: Non-bind

Figure 4: Zero-shot text-to-protein retrieval of heme binders based on ProtST-ESM-1b.

Table 5: Swiss-Prot v.s. TrEMBL on protein property coverage.

Dataset Name Function Location Family

Swiss-Prot 100% 83.3% 63.5% 92.6%
TrEMBL 100% 24.0% 51.5% 78.0%

Table 6: Swiss-Prot v.s. TrEMBL as pre-training data source,
compared on downstream representation learning tasks. Abbr.,
Loc.: localization prediction; Fit.: fitness prediction; Fix-enc.:
fix-encoder learning; Full-m.: full-model tuning.

Dataset
Loc. (mean Acc%) Fit. (mean ρ)

Fix-enc. Full-m. Fix-enc. Full-m.

Swiss-Prot 87.44 85.54 0.601 0.772
TrEMBL 86.68 85.13 0.597 0.762

out any function annotation. To be specific, the PLM is
first employed to extract the representations {zSi }Ni=1 of all
proteins in the database. During the retrieval process, given
the text description (i.e., prompt) T of a protein function,
the BLM is used to extract its representation zT , and all pro-
teins are then ranked based on their representation similarity
{ϵi = zSi · zT }Ni=1 with the prompt.

Experimental Setups: We use ProtST-ESM-1b to retrieve
the Gene Ontology (GO) dataset introduced in Sec. 4.2.1.
We build each prompt by adding the “FUNCTION:” prefix
before the molecular function definition from GO.

Results: In Fig. 4, we visualize the top-4 retrieved candi-
dates of heme binders. We present the text prompt, the dock-
ing result of each candidate binding with heme (AutoDock
Vina (Trott & Olson, 2010) is used for docking), the binding
affinity predicted by AutoDock Vina (the lower the better),
and the GO molecular function labels of heme binding. We
can observe that the top-3 candidates are annotated as heme
binders by GO, and the 4th candidate owns decent bind-
ing affinity though annotated as non-binding (only 0.54%
proteins are annotated as heme binders in the GO dataset).
These results verify the effectiveness of ProtST-ESM-1b on
retrieving heme binders. We provide more case studies in
Appendix D. Other visualization results are in Appendix F.

Table 7: Ablation study of pre-training losses on ProtST-ESM-1b.
Abbr., Loc.: localization prediction; Fit.: fitness prediction; Func.:
function annotation; Fix-enc.: fix-encoder learning; Full-m.: full-
model tuning. Blue denotes the largest decay.

Config
Loc. (mean Acc%) Fit. (mean ρ)

Func. (mean Fmax)
Fix-enc. Full-m. Fix-enc. Full-m.

Full loss 87.44 85.54 0.601 0.772 0.627

w/o LMPM 87.40(↓0.05%) 85.12(↓0.49%) 0.593(↓1.33%) 0.766(↓0.78%) 0.625(↓0.32%)

w/o LGC 86.34(↓1.26%) 85.21(↓0.39%) 0.579(↓3.66%) 0.758(↓1.81%) 0.613(↓2.23%)

w/o LMMP 87.41(↓0.03%) 84.97(↓0.67%) 0.588(↓2.16%) 0.751(↓2.72%) 0.615(↓1.91%)

4.5. Ablation Study

Effect of Pre-training Data Source: In this project, be-
sides Swiss-Prot, we also tried to use TrEMBL (Bairoch
& Apweiler, 2000) as the data source to construct ProtDe-
scribe. Compared to Swiss-Prot with high-quality human
annotations for around 500K proteins, TrEMBL contains
a larger number of over 200M annotated proteins, while
the TrEMBL annotations are given by computational tools
and are thus less accurate and have lower protein property
coverage (as shown in Tab. 5).

The results in Tab. 6 show that the ProtST-ESM-1b pre-
trained on the smaller while higher-quality Swiss-Prot-based
dataset performs better. Therefore, for the multimodal pre-
training of protein sequences and biomedical texts, data
quality could be more important than data quantity.

Effect of Pre-training Losses: Tab. 7 reports the averaged
performance of ProtST-ESM-1b by using full or partial
pre-training losses (per-task results are in Appendix E.1).
By removing any of three pre-training losses, performance
decay occurs on all three types of tasks. Such phenomenon
verifies the necessity of each ProtST pre-training loss, where
LGC and LMMP inject different granularities of protein
property information into a PLM, and LMPM preserves the
PLM’s original representation power.

Effect of PLM: According to the results in Tabs. 2 and 3,
we can observe that the strength of a ProtST-induced PLM
correlates with the strength of its initial PLM. To be specific,
the better performance of ESM-1b and ESM-2 over ProtBert
is inherited by their ProtST-induced variants.
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5. Related Work
Protein Representation Learning: Learning effective pro-
tein representations is of great importance for machine learn-
ing guided protein understanding. Existing works learn
protein representations in two ways: (1) Sequence-based
methods model protein sequences on evolutionary scale (El-
naggar et al., 2020; Rives et al., 2021; Lin et al., 2022) or on
individual protein families (Bileschi et al., 2019; Meier et al.,
2021; Biswas et al., 2021); (2) Structure-based methods seek
to represent different levels of protein structures including
residue-level structures (Gligorijević et al., 2021; Zhang
et al., 2022b; Xu et al., 2022a), all-atom structures (Jing
et al., 2020; Zhang et al., 2023) and protein surfaces (Gainza
et al., 2020; Sverrisson et al., 2021). Our work aims to en-
hance protein sequence representation learning by using
textual protein property descriptions.

Multimodal Representation Learning: It has been broadly
studied how to learn better image (Radford et al., 2021;
Singh et al., 2022), video (Luo et al., 2020; Xu et al.,
2021), speech (Chung et al., 2020; Qian et al., 2021) and
molecule (Edwards et al., 2021; Liu et al., 2022) representa-
tions by incorporating text supervision, while such study is
lacked for proteins. OntoProtein (Zhang et al., 2022a) learns
protein representations under the context of a knowledge
graph; ProGen (Madani et al., 2020) incorporates protein
function labels to generate functional proteins. However,
these two works investigate less the effect of biomedical
texts. Our work takes the initiative of enhancing protein
sequence representation learning by biomedical texts.

6. Conclusions and Future Work
In this work, we propose the ProtST framework to study
how textual protein property descriptions can boost protein
sequence pre-training and understanding. We build the Prot-
Describe dataset that aligns protein sequences with their
diverse property descriptions. ProtST pre-training injects
the property information with different granularities into a
protein language model (PLM). The ProtST-induced PLMs
are verified to be generally effective on various downstream
applications including supervised learning, zero-shot pro-
tein classification and zero-shot text-to-protein retrieval.

The current ProtDescribe dataset is limited in the cover-
age of protein sequences and textual property descriptions,
which motivates us to resort to massive biomedical arti-
cles in PubMed (Canese & Weis, 2013) for information
extraction. In addition, we plan to extend the ProtDe-
scribe dataset by incorporating protein structures and study
biomedical text enhanced protein structure representation
learning. Also, we will go beyond text-to-protein retrieval
towards text-guided controllable protein design.
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A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589,
2021.

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L.,
and Lewis, M. Generalization through memorization:
Nearest neighbor language models. arXiv preprint
arXiv:1911.00172, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kumar, S., Tsai, C.-J., and Nussinov, R. Factors enhancing
protein thermostability. Protein engineering, 13(3):179–
191, 2000.

Laine, E., Karami, Y., and Carbone, A. Gemme: a sim-
ple and fast global epistatic model predicting mutational
effects. Molecular biology and evolution, 36(11):2604–
2619, 2019.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H.,
and Kang, J. Biobert: a pre-trained biomedical language
representation model for biomedical text mining. Bioin-
formatics, 36(4):1234–1240, 2020.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., dos
Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido,
S., et al. Language models of protein sequences at the
scale of evolution enable accurate structure prediction.
bioRxiv, 2022.

Liu, S., Nie, W., Wang, C., Lu, J., Qiao, Z., Liu, L., Tang,
J., Xiao, C., and Anandkumar, A. Multi-modal molecule
structure-text model for text-based retrieval and editing.
arXiv preprint arXiv:2212.10789, 2022.

Lu, A. X., Zhang, H., Ghassemi, M., and Moses, A. M. Self-
supervised contrastive learning of protein representations
by mutual information maximization. BioRxiv, 2020.

Luo, H., Ji, L., Shi, B., Huang, H., Duan, N., Li, T., Li, J.,
Bharti, T., and Zhou, M. Univl: A unified video and lan-
guage pre-training model for multimodal understanding
and generation. arXiv preprint arXiv:2002.06353, 2020.

Madani, A., McCann, B., Naik, N., Keskar, N. S., Anand,
N., Eguchi, R. R., Huang, P.-S., and Socher, R. Progen:
Language modeling for protein generation. arXiv preprint
arXiv:2004.03497, 2020.

Marquet, C., Heinzinger, M., Olenyi, T., Dallago, C., Erck-
ert, K., Bernhofer, M., Nechaev, D., and Rost, B. Embed-
dings from protein language models predict conservation
and variant effects. Human genetics, 141(10):1629–1647,
2022.

Meier, J., Rao, R., Verkuil, R., Liu, J., Sercu, T., and Rives,
A. Language models enable zero-shot prediction of the
effects of mutations on protein function. bioRxiv, 2021.

Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C.
Scop: a structural classification of proteins database for
the investigation of sequences and structures. Journal of
molecular biology, 247(4):536–540, 1995.

Nijkamp, E., Ruffolo, J., Weinstein, E. N., Naik, N., and
Madani, A. Progen2: exploring the boundaries of pro-
tein language models. arXiv preprint arXiv:2206.13517,
2022.

Notin, P., Dias, M., Frazer, J., Hurtado, J. M., Gomez, A. N.,
Marks, D., and Gal, Y. Tranception: protein fitness predic-
tion with autoregressive transformers and inference-time
retrieval. In International Conference on Machine Learn-
ing, pp. 16990–17017. PMLR, 2022.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Organization, W. H. and University, U. N. Protein and
amino acid requirements in human nutrition, volume 935.
World Health Organization, 2007.

Qian, Y., Bianv, X., Shi, Y., Kanda, N., Shen, L., Xiao,
Z., and Zeng, M. Speech-language pre-training for
end-to-end spoken language understanding. In ICASSP
2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7458–7462.
IEEE, 2021.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on
Machine Learning, pp. 8748–8763. PMLR, 2021.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, P.,
Canny, J., Abbeel, P., and Song, Y. Evaluating protein
transfer learning with tape. Advances in neural informa-
tion processing systems, 32, 2019.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J.,
Guo, D., Ott, M., Zitnick, C. L., Ma, J., et al. Biological
structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings
of the National Academy of Sciences, 118(15), 2021.

11



ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts

Shanehsazzadeh, A., Belanger, D., and Dohan, D. Is trans-
fer learning necessary for protein landscape prediction?
arXiv preprint arXiv:2011.03443, 2020.

Singh, A., Hu, R., Goswami, V., Couairon, G., Galuba,
W., Rohrbach, M., and Kiela, D. Flava: A foundational
language and vision alignment model. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15638–15650, 2022.
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A. Model Architecture for Pre-training
Fusion Module: The fusion module extracts multimodal
representations from the unimodal representations of protein
sequence and text description. As shown in Fig. 5, each fu-
sion layer of this module receives a sequence of residue rep-
resentations ZS = [zs1, z

s
2, · · · , zsn] ∈ Rn×d and a sequence

of word representations ZT = [zt1, z
t
2, · · · , ztm] ∈ Rm×d

(d denotes the hidden dimension), and the layer updates
each residue/word representation by attending to all residues
and all words. Specifically, two sets of projection matrices
(WS

q ,WS
k ,WS

v ) and (WT
q ,WT

k ,WT
v ) are respectively used

to derive the queries, keys and values for protein sequence
and text description as below (each projection matrix is in
Rd×d):

QS = ZSWS
q , KS = ZSWS

k , V S = ZSWS
v , (3)

QT = ZTWT
q , KT = ZTWT

k , V T = ZTWT
v , (4)

where QS ,KS , V S ∈ Rn×d are the queries, keys and val-
ues for protein sequence, and QT ,KT , V T ∈ Rm×d are the
queries, keys and values for text description. Multi-head
self- and cross-attention are then applied to update each
residue and word representation as below:

Z̃S =
1

2

(
MHA(QS ,KS , V S) +MHA(QS ,KT , V T )

)
, (5)

Z̃T =
1

2

(
MHA(QT ,KT , V T ) +MHA(QT ,KS , V S)

)
, (6)

where Z̃S ∈ Rn×d and Z̃T ∈ Rm×d are the updated
residue and word representations, and MHA(·, ·, ·) denotes
the multi-head attention operation (Vaswani et al., 2017).

In our implementation, each fusion layer contains 8 attention
heads, and we equip the fusion module with a single fusion
layer so as to restrict the capacity of fusion module and
facilitate the representation power of PLM. Upon the fused
residue and word representations produced by the fusion
module, multimodal mask prediction is performed.

Projection Head for Multimodal Representation Align-
ment: Following SimCLR (Chen et al., 2020), we use a
two-layer MLP (with ReLU nonlinearity in between) to
project the protein sequence representation extracted by the
PLM, and another two-layer nonlinear MLP is employed to
project the text description representation extracted by the
BLM. The projected sequence and text representations are
then used to compute the global contrastive loss defined in
Eq. (1).

Prediction Head for Masked Protein Modeling (MPM):
Based on the residue representations extracted by the PLM,
we utilize a two-layer MLP (with ReLU nonlinearity in
between) to predict the type of each residue token masked
at input.

Figure 5: Architecture of the fusion layer. This layer fuses
the protein representation and the text representation by
querying over them with self-attention and cross-attention.

Prediction Head for Multimodal Mask Prediction
(MMP): Upon the fused residue representations output from
the fusion module, a two-layer MLP (with ReLU nonlinear-
ity in between) is used to predict the type of each residue
token masked at input protein sequence. Upon the fused
word representations produced by the fusion module, an-
other two-layer nonlinear MLP is employed to predict each
word token masked at input text description.

B. More Experimental Setups
B.1. More Pre-training Setups

Pre-training Data Curation: We add prefixes to denote
annotations from different fields, i.e., “PROTEIN NAME”
for the protein name field, “FUNCTION” for the protein
function field, “SUBCELLULAR LOCATION” for the sub-
cellular location field, and “SIMILARITY” for the protein
family field. The complete protein property description is
formed by concatenating all annotations of the protein in the
order of (1) protein name, (2) protein function, (3) subcel-
lular location, and (4) protein family. In Tab. 8, we present
several property descriptions coupled with the Swiss-Prot
entry names of their corresponding proteins.

Training Configurations: We list the training configura-
tions of three ProtST-induced PLMs in Tab. 9. In general, an
Adam optimizer with the constant learning rate of 1.0×10−5

is used to train the model for 20 epochs on 4 Tesla V100
GPUs, where ProtST-ProtBert adopts the batch size of 16 (4
proteins per GPU), and ProtST-ESM-1b and ProtST-ESM-2
adopt the batch size of 12 (3 proteins per GPU). Since the
PLM is pre-trained, we set its learning rate as 1.0× 10−6,
i.e., one tenth of other modules. The weights of PubMed-
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Table 8: Examples of property descriptions in the ProtDescribe dataset. We index each description with the Swiss-Prot entry
name of its corresponding protein.

Entry name Description

14336 ORYSJ PROTEIN NAME: 14-3-3-like protein GF14-F. FUNCTION: Is associated with a DNA binding complex
that binds to the G box, a well-characterized cis-acting DNA regulatory element found in plant genes.
SUBCELLULAR LOCATION: Cytoplasm. Nucleus. SIMILARITY: Belongs to the 14-3-3 family.

053R FRG3G PROTEIN NAME: Putative myristoylated protein 053R. FUNCTION: May play a critical role in virion
formation. Essential for virus replication in vitro. SUBCELLULAR LOCATION: Host membrane; Multi-pass
membrane protein.

1A16 ORYSJ PROTEIN NAME: 1-aminocyclopropane-1-carboxylate synthase 6. FUNCTION: Catalyzes the formation of
1-aminocyclopropane-1-carboxylate, a direct precursor of ethylene in higher plants (By similarity). Required
for the regulation of starch grain size in endosperm. SUBCELLULAR LOCATION: Plastid, amyloplast
membrane. Note=Localizes to the amyloplast membrane surrounding starch grains in endosperm, pollen, and
pericarp. SIMILARITY: Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family.

17KD RICPR PROTEIN NAME: 17 kDa surface antigen. SUBCELLULAR LOCATION: Cell outer membrane; Lipid-
anchor. SIMILARITY: Belongs to the rickettsiale 17 kDa surface antigen family.

1A1D CYBSA PROTEIN NAME: 1-aminocyclopropane-1-carboxylate deaminase. FUNCTION: Catalyzes a cyclopropane
ring-opening reaction, the irreversible conversion of 1-aminocyclopropane-1-carboxylate (ACC) to ammonia
and alpha-ketobutyrate. SIMILARITY: Belongs to the ACC deaminase/D-cysteine desulfhydrase family.

1AP1 BRAOT PROTEIN NAME: Floral homeotic protein APETALA 1-1. FUNCTION: Transcription factor that promotes
early floral meristem identity in synergy with LEAFY. Displays a redundant function with CAULIFLOWER
in the up-regulation of LEAFY. Required subsequently for the transition of an inflorescence meristem into a
floral meristem, and for the normal development of sepals and petals in flowers. Regulates positively B class
homeotic proteins (By similarity). SUBCELLULAR LOCATION: Nucleus.

Table 9: ProtST pre-training configurations. Abbr., lr.: learn-
ing rate; bs.: batch size.

Model optimizer lr. bs. #epochs train time

ProtST-ProtBert Adam 1.0× 10−5 16 20 117h 10min
ProtST-ESM-1b Adam 1.0× 10−5 12 20 205h 36min
ProtST-ESM-2 Adam 1.0× 10−5 12 20 206h 12min

BERT are frozen along the whole process. To reduce the
memory cost, we truncate the protein sequences that have
more than 450 residues to the length of 450, where the
truncation starts from a random residue before the last 450
ones. Following MoCo (He et al., 2020), we initialize the
temperature parameter τ in Eq. (1) as 0.07 and optimize it
along the training process.

B.2. More Representation Learning Setups

Architecture of Prediction Heads: Following the default
settings in TorchDrug (Zhu et al., 2022), the prediction of
each task is performed by a two-layer MLP with ReLU
nonlinearity in between. To be specific, given the protein
representation, the MLP head is used to predict classification
logits for localization prediction, regression score for fitness
prediction and per-function classification logits for function
annotation.

Table 10: Configurations of fix-encoder learning and full-
model tuning on three task types. Abbr., lr.: learning rate;
bs.: batch size; MSE: mean squared error; CE: cross en-
tropy; BCE: binary cross entropy.

Task optimizer lr. bs. #epochs loss

fix-encoder learning

Localization Adam 5.0× 10−5 128 100 CE
Fitness Adam 5.0× 10−5 128 100 MSE

full-model tuning

Localization Adam 2.0× 10−4 12 100 CE
Fitness Adam 2.0× 10−4 24 100 MSE
Annotation Adam 1.0× 10−4 8 50 BCE

Training Configurations: In Tab. 10, we present the de-
tailed configurations of fix-encoder learning and full-model
tuning on three task types, which mainly follows the config-
urations used in PEER benchmark (Xu et al., 2022b). For
full-model tuning, the learning rate of the PLM is set as one
tenth of the value in Tab. 10. The protein sequence encoders
trained from scratch do not use smaller learning rates. All
experiments are conducted on 4 Tesla V100 GPUs.

Evaluation Metrics: The protein function annotation tasks
are measured by AUPR and Fmax. We clarify their defini-
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Table 11: Zero-shot protein classification performance under dif-
ferent prompt templates. Abbr., Acc: accuracy; loc.: localization.

Prompt template Label Subcellular loc. (Acc%) Reaction (Acc%)

Name only Name 25.68 25.27
Natural language Name 36.24 26.93
Pre-training template Name 43.49 29.85
Pre-training template Description 29.90 21.91

tions as below:

(1) AUPR denotes the pair-centric area under precision-
recall curve. It computes the average precision scores for all
protein-function pairs, which is exactly the micro-average
precision score for the multiple binary classification prob-
lem.

(2) Fmax denotes the protein-centric maximum F-score.
Given a decision threshold t ∈ [0, 1], it first calculates the
precision and recall for each protein:

precisioni(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Pi(t)]
, (7)

recalli(t) =

∑
f 1[f ∈ Pi(t) ∩ Ti]∑

f 1[f ∈ Ti]
, (8)

where f denotes a functional term of EC or GO, Ti is the
set collecting all experimentally determined functions for
protein i, Pi(t) denotes the predicted functions for protein i
whose scores are at least t, and 1[·] represents the indicator
function. The precision and recall are then averaged over all
proteins:

precision(t) =
1

M(t)

∑
i

precisioni(t), (9)

recall(t) =
1

N

∑
i

recalli(t), (10)

where N is the total number of proteins, and M(t) denotes
the number of proteins that contain at least one prediction
larger than t, i.e., |Pi(t)| > 0.

Finally, the Fmax score is computed as the maximum value
of F-measure over all thresholds:

Fmax = max
t

{
2 · precision(t) · recall(t)
precision(t) + recall(t)

}
. (11)

B.3. More Zero-shot Protein Classification Setups

Prompt Engineering for Subcellular Localization Predic-
tion: Based on the information provided by DeepLoc (Alma-
gro Armenteros et al., 2017), we consider two label formats,
the name of each subcellular location (i.e., the “Location”
field in the Tab. 1 of DeepLoc paper) and the description
of each location (i.e., the “Sublocations” field in the Tab. 1

of DeepLoc paper). We further embed the labels into three
prompt templates: (1) Name only: only the label itself is
used; (2) Natural language: the label is embedded into the
template “A protein locating at {label}.”; (3) Pre-training
template: the label is embedded into the template “SUB-
CELLULAR LOCATION: {label}”.

According to the results in Tab. 11, we can observe that
the pre-training template clearly outperforms other two tem-
plates on the subcellular localization prediction task, which
mainly owes to the alignment of text format across pre-
training and zero-shot prediction. It is shown that represent-
ing the labels with location names leads to better perfor-
mance than using location descriptions, since the location
names better fit the biomedical text distribution that the
BLM is trained on. Based on these results, we represent the
labels with the location names coupled with the pre-training
prompt template on this task.

Prompt Engineering for Reaction Classification: Same as
subcellular localization prediction, we also use two sets of
label notations for reaction classification, i.e., the name and
the description. (1) The name refers to the composition of
the enzyme class name and its alternative names, allowing
unambiguous identification of each enzyme class. (2) The
description further adds the scientific comments that discuss
each class of enzymes in depth, which are extracted from
scientific articles published by the International Union of
Biochemistry and Molecular Biology (IUBMB). We retrieve
all the information from Chang et al. (2021).

We embed such label information into three prompt tem-
plates: (1) Name only: the concatenation of the name
and alternative names of an enzyme class, i.e., “{Name}
{AlterNames}”; (2) Natural Language: the label is incor-
porated into a natural-language-like template “A {Name}
enzyme. This enzyme is also known as {AlterNames}.”;
(3) Pre-training template: the label is merged into the tem-
plate used for pre-training, i.e., “FUNCTION: {Name}
{AlterNames}” (scientific comments “{Comments}”
are appended after the names if the description is used).

According to Tab. 11, the pre-training template performs the
best on the reaction classification task, mainly thanks to the
consistent format of text descriptions between pre-training
and zero-shot prediction. Injecting detailed scientific com-
ments does not bring further benefits to the zero-shot per-
formance. Therefore, we represent each enzyme class with
its name and alternative names along with the pre-training
prompt template for this task.

Nonparametric Few-shot Classifier: We adopt the non-
parametric classifier proposed by Khandelwal et al. (2019)
as baseline. Specifically, given n-shot K-class training sam-
ples {{(Sk

i , y
k
i = k)}ni=1}Kk=1 composed of pairs of protein

sequence and label, we employ the PLM to extract the rep-
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Table 12: Performance comparison of PLMs on ProteinGym
Substitution benchmark. Abbr., retr.: retrieval.

Model ProtST-ESM-1b ESM-1b ESM-1v Tranception L (w/o retr.) Progen2 XL

Model Type PLM PLM PLM PLM PLM

UniProt-level Mean ρ 0.412 0.358 0.372 0.401 0.402

Table 13: ProtST-ESM-1b v.s. alignment-based methods on
ProteinGym Substitution benchmark.

Model ProtST-ESM-1b EVE GEMME ProtST-ESM-1b + GEMME

Model Type PLM Align Align Hybrid

UniProt-level Mean ρ 0.412 0.443 0.459 0.464

resentations {{zki }ni=1}Kk=1 of all protein sequences. When
a test protein S′ comes, the nonparametric classifier first
extracts its representation z′ via the PLM and then derives
its classification logits {y′k}Kk=1 by computing its represen-
tation similarity with each training protein:

y′k =

n∑
i=1

exp
(
−||z′ − zki ||22

)
, k = 1, · · · ,K. (12)

Softmax is performed upon these logits to derive classifi-
cation probabilities. Such a classifier predicts based on the
relations between test sample and training samples, which
well fits the few-shot setting. In our experiments, the non-
parametric classifier based on ESM-1b and the one based
on ProtST-ESM-1b serve as two baselines for zero-shot
classifiers.

C. Experimental Results on ProteinGym
C.1. Comparisons of Protein Language Models (PLMs)

Baselines. We compare the proposed ProtST-ESM-1b
with four performant PLMs, i.e., ESM-1b (Rives et al.,
2021), ESM-1v (Meier et al., 2021), Tranception L (w/o re-
trieval) (Notin et al., 2022) and Progen2 XL (Nijkamp et al.,
2022). Note that, for fair comparison, we do not include the
PLMs with model ensemble (e.g., VESPA (Marquet et al.,
2022)) and the PLMs with inference-time retrieval (e.g.,
Tranception L w/ retrieval (Notin et al., 2022)). We report
the UniProt-level Mean Spearman’s ρ.

Results. Under such a fair comparison, in Tab. 12, ProtST-
ESM-1b achieves the best performance. In particular, com-
pared with ESM-1b (i.e., the initial PLM that ProtST-ESM-
1b is based on), ProtST-ESM-1b obtains a significant perfor-
mance gain with 15.1% relative improvement. This result
demonstrates the effectiveness of the proposed multimodal
training, which injects protein property knowledge into the
ESM-1b and enhances its downstream fitness prediction
performance.

Table 14: Ablation study of pre-training losses on localization
and fitness prediction. Abbr., Loc.: Localization; pred.: prediction;
Acc: accuracy. Gray denotes the performance decay.

Model Loc. pred. (Acc%) Fitness pred. (Spearman’s ρ)

Bin Sub β-lac AAV Thermo Flu Sta Mean ρ

Fix-encoder learning

ProtST-ESM-1b 92.87 82.00 0.578 0.460 0.680 0.523 0.766 0.601

ProtST-ESM-1b (w/o LMPM) 92.52 82.28 0.558 0.475 0.680 0.522 0.730 0.593
ProtST-ESM-1b (w/o LGC) 92.12 80.55 0.560 0.448 0.684 0.467 0.738 0.579
ProtST-ESM-1b (w/o LMMP) 92.81 82.00 0.544 0.479 0.681 0.504 0.731 0.588

Full-model tuning

ProtST-ESM-1b 92.35 78.73 0.895 0.850 0.681 0.682 0.751 0.772

ProtST-ESM-1b (w/o LMPM) 92.64 77.59 0.894 0.842 0.681 0.685 0.726 0.766
ProtST-ESM-1b (w/o LGC) 91.67 78.75 0.891 0.798 0.674 0.686 0.741 0.758
ProtST-ESM-1b (w/o LMMP) 91.90 78.03 0.902 0.804 0.677 0.678 0.696 0.751

Table 15: Ablation study of pre-training losses on function anno-
tation. Gray denotes the performance decay.

Model EC GO-BP GO-MF GO-CC

AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fmax

Full-model tuning

ProtST-ESM-1b 0.894 0.878 0.328 0.480 0.644 0.661 0.364 0.488

ProtST-ESM-1b (w/o LMPM) 0.898 0.873 0.324 0.483 0.642 0.660 0.350 0.482
ProtST-ESM-1b (w/o LGC) 0.894 0.870 0.322 0.463 0.638 0.656 0.327 0.462
ProtST-ESM-1b (w/o LMMP) 0.890 0.871 0.328 0.456 0.635 0.659 0.340 0.473

C.2. Comparisons with Alignment-based Methods

Baselines. In this experiment, we involve two alignment-
based methods, i.e., EVE (Frazer et al., 2021) and
GEMME (Laine et al., 2019), for comparison. We further
investigate the ensemble of ProtST-ESM-1b and GEMME.
We report the UniProt-level Mean Spearman’s ρ.

Results. In Tab. 13, it is observed that the alignment-based
methods are superior over ProtST-ESM-1b, since they addi-
tionally utilize the homologous information within sequence
alignments, which is not utilized by ProtST-ESM-1b. How-
ever, by combining the normalized predictions of ProtST-
ESM-1b and GEMME, the ensemble model “ProtST-ESM-
1b + GEMME” outperforms these two SOTA alignment-
based methods. This result verifies the complementary
knowledge hidden in ProtST-ESM-1b and an alignment-
based model in terms of fitness prediction. Therefore, it will
be a promising direction to study the combination of these
two lines of methods. We leave this as our future work.

D. More Zero-shot Text-to-Protein Retrieval
Results

In Fig. 10, we study four more sets of text-to-protein re-
trieval of ligand binders based on ProtST-ESM-1b. For each
study, we visualize the text prompt and the top-4 retrieved
candidates. For each candidate, we present the docking
result of it binding with the ligand, the binding affinity
and its GO molecular function label of binding with the
ligand, where AutoDock Vina (Trott & Olson, 2010) is
used to estimate docking pose and binding affinity. It is
observed that, among the top-4 candidates, ProtST-ESM-1b
succeeds in retrieving 3 GO-annotated ATP binders (only
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Table 16: Ablation study of BLM on localization and fitness
prediction. ProtST-ESM-1b serves as the base model. Abbr., Loc.:
Localization; pred.: prediction; Acc: accuracy.

BLM Loc. pred. (Acc%) Fitness pred. (Spearman’s ρ)

Bin Sub β-lac AAV Thermo Flu Sta Mean ρ

Fix-encoder learning

PubMedBERT-abs 92.87 82.00 0.578 0.460 0.680 0.523 0.766 0.601
PubMedBERT-full 93.04 82.28 0.548 0.458 0.682 0.507 0.744 0.588

Full-model tuning

PubMedBERT-abs 92.35 78.73 0.895 0.850 0.681 0.682 0.751 0.772
PubMedBERT-full 92.87 78.77 0.899 0.785 0.672 0.680 0.722 0.752

Table 17: Ablation study of BLM on function annotation. ProtST-
ESM-1b serves as the base model.

BLM EC GO-BP GO-MF GO-CC

AUPR Fmax AUPR Fmax AUPR Fmax AUPR Fmax

Full-model tuning

PubMedBERT-abs 0.894 0.878 0.328 0.480 0.644 0.661 0.364 0.488
PubMedBERT-full 0.905 0.878 0.323 0.475 0.630 0.652 0.374 0.485

3.99% proteins are annotated as ATP binders in GO), 3 GO-
annotated GTP binders (only 1.18% proteins are annotated
as GTP binders in GO), 2 GO-annotated P5P binders (only
0.17% proteins are annotated as P5P binders in GO), and
2 GO-annotated NAD+ binders (only 0.05% proteins are
annotated as NAD+ binders in GO). The rest candidates
annotated as non-binding also own decent binding affinity,
e.g., the better binding affinity of protein 2AKA-B (with-
out ATP binder annotation) against protein 6EAC-A (with
ATP binder annotation), the better binding affinity of protein
5DHG-A (without NAD+ binder annotation) against protein
3GFB-A (with NAD+ binder annotation), etc. These results
demonstrate the general effectiveness of ProtST-ESM-1b on
retrieving the binders of diverse ligands. In the future work,
we will study how ProtST enables zero-shot text-to-protein
retrieval of other types of functional proteins, e.g., antigen
binders, toxic substance binders, transcription factors, etc.

E. More Ablation Study
E.1. Ablation Study of Pre-training Losses

In Tabs. 14 and 15, we report the performance of ProtST-
ESM-1b on all benchmark tasks by using full or partial
pre-training losses. It can be observed that: (1) removing
the loss LMPM leads to performance decay on 16 out of
24 benchmark metrics; (2) removing the loss LGC leads to
decay on 20 out of 24 benchmark metrics; (3) removing the
loss LMMP diminishes model performance on 19 out of 24
benchmark metrics. Therefore, all pre-training losses are
necessary to maximize the effectiveness of a ProtST-induced
PLM, where LGC and LMMP inject different granularities
of protein property information into a PLM, and LMPM

preserves the PLM’s original representation power.
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Figure 6: Amino acid representations learned by the linear layer
for unimodal mask prediction (ProtST-ESM-1b is used).
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Figure 7: Amino acid representations learned by the linear layer
for multimodal mask prediction (ProtST-ESM-1b is used).

E.2. Ablation Study of Biomedical Language Model

PubMedBERT owns two versions: (1) the PubMedBERT-
abs trained by using only PubMed abstracts, and (2) the
PubMedBERT-full trained by using additional PubMed Cen-
tral full-text articles. In this experiment, we compare the
effectiveness of these two models by respectively using
them as the BLM of ProtST-ESM-1b.

Tabs. 16 and 17 report the performance comparison of these
two models on all benchmark tasks. We can observe that:
(1) PubMedBERT-full outperforms PubMedBERT-abs on
all four benchmark metrics of localization prediction; (2)
PubMedBERT-abs performs better than PubMedBERT-full
on 10 out of 12 benchmark metrics of fitness prediction;
(3) PubMedBERT-abs outperforms PubMedBERT-full on 5
out of 8 benchmark metrics of function annotation. There-
fore, PubMedBERT-full does not show superiority over
PubMedBERT-abs in ProtST pre-training, which owes to
the fact that the protein property descriptions in the ProtDe-
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Membrane-bound Soluble

Figure 8: Visualization of protein representations on the binary
localization prediction dataset (ProtST-ESM-1b is used).
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Figure 9: Visualization of protein representations on the subcellu-
lar localization prediction dataset (ProtST-ESM-1b is used).

scribe dataset are more like abstracts than full-text articles.

F. More Visualization
Well-trained PLMs should have the capacity to extract struc-
tural, functional, and even evolutionary features of proteins.
As a result, the learned representations in PLMs are ex-
pected to have certain intrinsic organization patterns in the
embedding space to capture these protein characteristics. To
demonstrate the effectiveness of ProtST-ESM-1b, we use
t-SNE (Van der Maaten & Hinton, 2008) to visualize such
information at different scales from amino acid decomposi-
tions to protein functional properties.

Biophysical Properties of Amino Acids: It is known that
the biophysical properties of amino acids, such as hydropho-
bicity, aromaticity and charge, highly influence the bio-
logical structures of proteins and therefore their biological
functions as well. To investigate if ProtST-ESM-1b captures

such intrinsic features, we apply t-SNE to the two linear
layers used for unimodal mask prediction and multimodal
mask prediction. As shown in Figs. 6 and 7, hydrophobic
and polar residues exhibit clear distinct clusterings, even to
the level of aliphatic v.s. aromatic. The clustering is also
coherent in terms of the charge and size of the amino acids.

Biological and Biochemical Properties of Proteins: As
introduced in Sec. 4.1, our proposed ProtDescribe dataset
provides ProtST-ESM-1b with direct access to knowledge
like protein subcellular localizations, which refers to a spe-
cific region within a cell where the proteins can be found.
For a protein, such locations can influence its activity and
interaction with other molecules, thus helping the PLMs to
better capture the biological and biomedical protein func-
tions. To validate this assumption, we adopt the datasets
used in two protein localization prediction tasks, i.e., the
subcellular localization prediction and the binary localiza-
tion prediction. With t-SNE, we project protein representa-
tions to the 2-dimensional space for these two benchmark
datasets. In Figs. 8 and 9, certain clustering patterns of
different cellular locations are observed.
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(1st) 6C6B-A: 
• Affinity: -8.7 (kcal/mol)
• GO-MF label: Bind  

(2nd) 6EAC-A: 
• Affinity: -8.2 (kcal/mol)
• GO-MF label: Bind  

(3rd) 2AKA-B: 
• Affinity: -8.4 (kcal/mol)
• GO-MF label: Non-bind

(4th) 1YID-B: 
• Affinity: -7.8 (kcal/mol)
• GO-MF label: Bind  

(a) Prompt - FUNCTION: Binding to ATP, adenosine 5'-triphosphate, a universally important coenzyme and enzyme regulator.

(b) Prompt - FUNCTION: Binding to GTP, guanosine triphosphate.

(1st) 5C1S-A: 
• Affinity: -7.5 (kcal/mol)
• GO-MF label: Bind  

(2nd) 2CVH-A: 
• Affinity: -7.5 (kcal/mol)
• GO-MF label: Non-bind

(3rd) 4DHE-A: 
• Affinity: -6.8 (kcal/mol)
• GO-MF label: Bind

(4th) 5HXB-X: 
• Affinity: -6.4 (kcal/mol)
• GO-MF label: Bind  

(c) Prompt - FUNCTION: Binding to pyridoxal 5' phosphate, the biologically active form of vitamin B6.

(1st) 4ILS-A: 
• Affinity: -5.8 (kcal/mol)
• GO-MF label: Bind  

(2nd) 5LL2-A: 
• Affinity: -5.3 (kcal/mol)
• GO-MF label: Bind  

(3rd) 1EHI-A: 
• Affinity: -5.6 (kcal/mol)
• GO-MF label: Non-bind

(4th) 3AG6-A: 
• Affinity: -5.8 (kcal/mol)
• GO-MF label: Non-bind

(d) Prompt - FUNCTION: Binding to the oxidized form, NAD, of nicotinamide adenine dinucleotide,
a coenzyme involved in many redox and biosynthetic reactions.

(1st) 5DHG-A: 
• Affinity: -8.6 (kcal/mol)
• GO-MF label: Non-bind

(2nd) 3GFB-A: 
• Affinity: -7.9 (kcal/mol)
• GO-MF label: Bind  

(3rd) 5OXU-A: 
• Affinity: -9.7 (kcal/mol)
• GO-MF label: Non-bind

(4th) 3GGO-A: 
• Affinity: -7.2 (kcal/mol)
• GO-MF label: Bind  

Figure 10: Zero-shot text-to-protein retrieval of (a) ATP binders, (b) GTP binders, (c) P5P binders, and (d) NAD+ binders
based on ProtST-ESM-1b.
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