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Abstract
We develop a general theory to optimize the fre-
quentist regret for sequential learning problems,
where efficient bandit and reinforcement learning
algorithms can be derived from unified Bayesian
principles. We propose a novel optimization ap-
proach to create “algorithmic beliefs” at each
round, and use Bayesian posteriors to make deci-
sions. This is the first approach to make Bayesian-
type algorithms prior-free and applicable to adver-
sarial settings, in a generic and optimal manner.
Moreover, the algorithms are simple and often ef-
ficient to implement. As a major application, we
present a novel algorithm for multi-armed bandits
that achieves the “best-of-all-worlds” empirical
performance in the stochastic, adversarial, and
non-stationary environments. And we illustrate
how these principles can be used in linear bandits,
convex bandits, and reinforcement learning.

1. Introduction
1.1. Background

We address a broad class of sequential learning problems in
the presence of partial feedback, which arise in numerous
application areas including personalized recommendation
(Li et al., 2010), game playing (Silver et al., 2016) and
control (Mnih et al., 2015). An agent sequentially chooses
among a set of possible decisions to maximize the cumu-
lative reward. By “partial feedback” we mean the agent is
only able to observe the feedback of her chosen decision,
but does not generally observe what the feedback would
be if she had chosen a different decision. For example, in
multi-armed bandits (MAB), the agent can only observe the
reward of her chosen action, but does not observe the re-
wards of other actions. In reinforcement learning (RL), the
agent is only able to observe her state insofar as the chosen
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action is concerned, while other possible outcomes are not
observed and the underlying state transition dynamics are
unknown. In this paper, we present a unified approach that
applies to bandit problems, RL, and beyond.

The central challenge for sequential learning with partial
feedback is to determine the optimal trade-off between ex-
ploration and exploitation. That is, the agent needs to try
different decisions to learn the environment; at the same
time, she wants to focus on “good” decisions that maximize
her payoff. There are two basic approaches to study such
exploration-exploitation trade-off: frequentist and Bayesian.
One of the most celebrated examples of the frequentist ap-
proach is the family of Upper Confidence Bound (UCB)
algorithms (Lai et al., 1985; Auer et al., 2002a). Here,
the agent typically uses sample average or regression to
estimate the mean rewards; and she optimizes the upper
confidence bounds of the mean rewards to make decisions.
Another widely used frequentist algorithm is EXP3 (Auer
et al., 2002b) which was designed for adversarial bandits;
it uses inverse probability weighting (IPW) to estimate the
rewards, and then applies exponential weighting to con-
struct decisions. One of the most celebrated examples of
the Bayesian approach is Thompson Sampling (TS) with
a pre-specifed, fixed prior (Thompson, 1933). Here, the
agent updates the Bayesian posterior at each round to learn
the environment, and she uses draws from that posterior to
optimize decisions.

The advantage of the frequentist approach is that it does
not require a priori knowledge of the environment. How-
ever, it heavily depends on a case-by-case analysis exploit-
ing special structure of a particular problem. For example,
regression-based approaches can not be easily extended to
adversarial problems; and IPW-type estimators are only
known for simple rewards such as discrete and linear. The
advantage of Bayesian approach is that Bayesian posterior
is a generic and often optimal estimator if the prior is known.
However, the Bayesian approach requires knowing the prior
at the inception, which may not be accessible in complex or
adversarial environments. Moreover, maintaining posteriors
is computationally expensive for most priors.

In essence, frequentist approach requires less information,
but is less principled, or more bottom-up. On the other hand,
the Bayesian approach is more principled, or top-down, but
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requires stronger assumptions. In this paper we focus on the
following research:

Can we design principled Bayesian-type algorithms, that are
prior-free, computationally efficient, and work well in both
stochastic and adversarial/non-stationary environments?

1.2. Contributions

In this paper, we synergize frequentist and Bayesian ap-
proaches to successfully answer the above question, through
a novel idea that creates “algorithmic beliefs” that are gen-
erated sequentially in each round, and uses Bayesian poste-
riors to make decisions. Our contributions encompass over
theoretical discoveries, novel methodology, and applications
thereby. We summarize the main contributions as follows.

Making Bayesian-type algorithms prior-free and appli-
cable to adversarial settings. To the best of our knowledge,
we provide the first approach that allows Bayesian-type
algorithms to operate without prior assumptions and be ap-
plicable in adversarial settings, in a generic, optimal, and
often computationally efficient manner. The regret bounds
of our algorithms are no worse than the best theoretical
guarantees known in the literature. It is worth noting that
the main ideas underlying our methodology and proofs are
quite insightful and can be explained in a succinct manner.

General theory of “Algorithmic Information Ratio”
(AIR). We introduce an objective function that depends
on an “algorithmic belief” and round-dependent informa-
tion, which we refer to as “Algorithmic Information Ratio”
(AIR). Our approach always selects algorithmic beliefs by
(approximately) maximizing AIR, and the regret of our algo-
rithms can always be bounded by the cumulative sum of the
values of AIR at each round. We then show that AIR can be
upper bounded by previously known complexity measures
such as information ratio (IR) (Russo & Van Roy, 2016) and
decision-estimation coefficient (DEC) (Foster et al., 2021).
As an immediate consequence, our machinery converts ex-
isting non-constructive results using information ratio and
DEC, into concrete frequentist algorithms. And we provide
methods and guarantees to approximately maximize AIR.

“Best of all worlds” empirical performance for MAB
As a major illustration, we propose a novel algorithm for
Bernoulli multi-armed bandits (MAB) that achieves the
“best-of-all-worlds” empirical performance in stochastic, ad-
versarial, and non-stationary environments. This algorithm
is quite different from and performs much better than the tra-
ditional EXP3 algorithm, which has been the default choice
for adversarial MAB for decades. At the same time, the al-
gorithm outperforms UCB and is comparable to Thompson
Sampling in the stochastic environment. Moreover, it out-
performs traditional Thompson Sampling and “clairvoyant”
restarted algorithms in non-stationary environments.

Applications to linear bandits, convex bandits, and RL.
For adversarial linear bandits, we derive a modified version
of EXP2 based on our framework, which establishes a novel
connection between inverse propensity weighting (IPW)
and Bayesian posteriors. For bandit convex optimization,
we propose the first algorithm that attains the best-known
Õ(d2.5

√
T ) regret with a finite poly(ed · T ) running time.

Lastly, we provide a generic closed-form algorithm that is
near-optimal for a broad class of reinforcement learning
problems in the stochastic setting. We will briefly overview
these applications in Section 6 and leave most of the details
into Appendix due to space considerations.

Combining estimation and decision-making. Our ap-
proach is the first efficient approach to jointly optimize the
belief of an environment and probability of decision. Most
existing algorithms including UCB, EXP3, Estimation-to-
Decision (E2D) (Foster et al., 2021), TS, and Information-
Directed Sampling (IDS) (Russo & Van Roy, 2018) maintain
a different viewpoint that separates algorithm design into a
black-box estimation method (sample average, linear regres-
sion, IPW, Bayesian posterior...) and a decision-making rule
that makes the estimate as input to an optimization problem.
In contrast, by optimizing AIR to generate new beliefs, our
algorithm simultaneously deals with estimation and opti-
mization. This viewpoint is quite powerful and broadens
the general scope of bandit algorithms.

1.3. Related literature

(Russo & Van Roy, 2016; 2018) propose the concept of
“information ratio” to analyze and design Bayesian bandit al-
gorithms. Their work studies Bayesian regret with a known
prior rather than the frequentist regret. (Lattimore & Gy-
orgy, 2021) proposes an algorithm called “Exploration by
Optimization (EBO),” which is the first general frequen-
tist algorithm that optimally bounds the frequentist regret
of bandit problems using information ratio. However, the
EBO algorithm is more of a conceptual construct as it re-
quires intractable optimization over the complete class of
“functional estimators,” and hence is not implementable in
most settings of interest. Our algorithms are inspired by
EBO, but are simpler in structure and run in decision and
model spaces (rather than intractable functional spaces). In
particular, our approach advances EBO by employing ex-
plicit construction and randomization of estimators, offering
flexibility in selecting updating rules, and providing compu-
tation guidelines that come with provable guarantees. The
recent work (Foster et al., 2021) proposes the concept of
“decision-estimation coefficient” (DEC) as a general com-
plexity measure for bandit and reinforcement learning prob-
lems. Algorithms in this work typically separate black-box
estimation method and decision-making rule, and for this
reason the proposed E2D algorithm do not generally achieve
optimal regret for bandit problems. The subsequent work
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(Foster et al., 2022b) extends the theory of DEC to adversar-
ial environments. However, the algorithm is an adaptation
of EBO in (Lattimore & Gyorgy, 2021), which, as discussed,
may present computational challenges.

2. Preliminaries and Definition of AIR
2.1. Problem formulation

To state our results in the broadest manner, we adopt the
general formulation of Adversarial Decision Making with
Structured Observation (Adversarial DMSO) (Foster et al.,
2022b), which covers broad problems including bandit prob-
lems, reinforcement learning, and partial monitoring. For
a locally compact metric space we denote by ∆(·) the set
of Borel probability measures on that space. Let Π be a
compact decision space. Let M be a compact model class
where each model M : Π → O is a mapping from the
decision space to a locally compact observation space O. A
problem instance in this protocol can be described by the
decision space Π and the model class M. We define the
mean reward function associated with model M by fM .

Consider a T−round game played by a randomized player
in an adversarial environment. At each round t = 1, . . . , T ,
the agent determines a probability pt over the decisions, and
the environment selects a model Mt ∈ M. Then the deci-
sion πt ∼ pt is sampled and an observation ot ∼ Mt(πt)
is revealed to the agent. An admissible algorithm ALG can
be described by a sequence of mappings where the t−th
mapping maps the past decision and observation sequence
{πi, oi}t−1

i=1 to a probability pt over decisions. The frequen-
tist regret of the algorithm ALG against the usual target of
single best decision in hindsight is defined as

RT = sup
π∗∈Π

E

[
T∑

t=1

fMt
(π∗)−

T∑
t=1

fMt
(πt)

]
,

where the expectation is taken with respect to the random-
ness in decisions and observations. There is a large literature
that focuses on the so-called stochastic environment, where
Mt =M∗ ∈ M for all rounds, and the single best decision
π∗ ∈ argmin fM∗(π) is the natural oracle. Regret bounds
for adversarial sequential learning problems naturally apply
to stochastic problems. We illustrate how the general formu-
lation covers bandit problems, and leave the discussion of
reinforcement learning to Section C.

Example 2.1 (Bernoulli multi-armed bandits (MAB)). We
illustrate how the general formulation reduces to the basic
MAB problem with Bernoulli reward. Let Π = [K] =
{1, · · · ,K} be a finite set of K actions, and F be the set of
all possible mappings from [K] to [0, 1]. Take M = {Mf :
f ∈ F} as the induced model class, where each Mf maps
π into the Bernoulli distribution Bern(f(π)). The mean
reward function for model Mf is f itself. At each round t,

the environment selects a mean reward function ft, and the
observation ot is the incurred reward rt ∼ Bern(ft(πt)).
Example 2.2 (Structured bandits). We consider bandit prob-
lems with general structure of the mean reward function.
Let Π be a d−dimensional action set, and F ⊆ {f : Π →
[0, 1]} be a function class that encodes the structure of the
mean reward function. Take M = {Mf : f ∈ F} as the in-
duced model class, where each Mf maps π to the Bernoulli
distribution Bern(f(π)). The mean reward function for
model Mf is f itself. For example, in d−dimensional lin-
ear bandits, the mean reward function f is parametrized by
some θ ∈ Θ ⊆ Rd such that f(π) = θTπ,∀π ∈ Π. And in
bandit convex optimization, the mean reward (or loss) func-
tion class F is the set of all concave (or convex) mappings
from Π to [0, 1].

2.2. Algorithmic Information Ratio

Let ν be a probability measure of the joint random vari-
able (M,π∗) ∈ M×Π, and p be a distribution of another
independent random variable π ∈ Π. Given a probability
measure ν, let

νπ∗(·) =
∫
M
ν(M, ·)dM

be the marginal distribution of π∗ ∈ Π. Viewing ν as a
prior belief over (M,π∗), drawing decision π independently
and observation o ∼ M(π), we define νπ∗|π,o(·) as the
marginal posterior belief of π∗ conditioned on decision π
and observation o. Denote KL(P,Q) =

∫
log dP

dQdP as the
KL divergence between two probability measures.

Now we introduce a central definition in this paper—
Algorithmic Information Ratio.
Definition 2.3 (Algorithmic Information Ratio). Given a
reference probability q ∈ int(∆(Π)) and learning rate η >
0, we define the “Algorithmic Information Ratio” (AIR) for
decision p and distribution ν as

AIRq,η(p, ν) = Ep,ν

[
fM (π∗)− fM (π)− 1

η
KL(νπ∗|π,o, q)

]
,

where the expectation is taken with π ∼ p, (M, π∗) ∼ ν.

A key aspect of AIR is the reference probability distribution
q in its definition. Note that AIR is linear with respect to
p and concave with respect to ν, as conditional entropy is
always concave with respect to the joint probability measure
(see Lemma H.1). It will be illustrative to write AIR as the
sum of three items:

AIRq,η(p, ν) = Ep,ν [fM (π∗)− fM (π)]︸ ︷︷ ︸
expected regret

−1

η
Ep,ν

[
KL(νπ∗|π,o, νπ∗)

]︸ ︷︷ ︸
information gain

−1

η
KL(νπ∗ , q)︸ ︷︷ ︸

regularization by q

,
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where: the “expected regret” measures the difficulty of ex-
ploitation; “information gain” is the amount of information
gained about π∗ by observing π and o, and this in fact mea-
sures the degree of exploration; and the last “regularization”
term forces the marginal distribution of π∗ to be “close”
to the reference probability distribution q. By maximizing
AIR, we generate an “algorithmic belief” that simulates the
worst-case environment. This algorithmic belief will auto-
matically balance exploration and exploitation, as well as
being close to the chosen reference belief (e.g., a standard
reference is the posterior from previous round, as used in
traditional Thompson Sampling).

2.3. Relation to IR and DEC.

We present here the traditional definition of Bayesian infor-
mation ratio (IR) (Russo & Van Roy, 2016).

Definition 2.4 (Information ratio). Given belief ν of
(M,π∗) and decision probability p of π, the information
ratio is defined as

IR(ν, p) =
(Eν,p [fM (π∗)− fM (π)])2

Eν,p

[
KL(νπ∗|π,o, νπ∗)

] . (1)

Note that the traditional information ratio (1) does not in-
volve any reference probability distribution q (unlike AIR).
By completing the square, it is easy to show that AIR can
always be bounded by IR as follows.

Lemma 2.5 (Bounding AIR by IR). For any q ∈ int(∆(Π)),
p ∈ ∆(Π), belief ν ∈ ∆(M×Π), and η > 0, we have

AIRq,η(p, ν) ≤
η

4
· IR(ν, p).

The recent paper (Foster et al., 2021) introduced DEC as a
novel complexity measure, aiming to unify bandits and vari-
ous reinforcement learning problems. We demonstrate that
AIR can be bounded by DEC in a manner, see Appendix A
for detailed arguments and discussion. Notably, our frame-
work allows for the utilization of nearly all existing upper
bounds for IR and DEC in practical applications, enabling
the derivation of the sharpest regret bounds known, along
with the development of constructive algorithms.

3. Algorithms
3.1. A generic regret bound leveraging AIR

Given an arbitrary admissible algorithm ALG (defined in
Section 2.1), we can generate a sequence of algorithmic
beliefs {νt}Tt=1 and a corresponding sequence of reference
probabilities {qt}Tt=1 in a sequential manner as shown in Al-
gorithm 1. Maximizing AIR to create algorithmic beliefs is
an alternative approach to traditional estimation procedures,
as the resulting algorithmic beliefs will simulate the true or

Algorithm 1 Maximizing AIR to create algorithmic beliefs
Input algorithm ALG and learning rate η > 0.
Initialize q1 to be the uniform distribution over
Π.

1: for round t = 1, 2, · · · , T do
2: Obtain pt from ALG. Find a distribution νt of

(M,π∗) that solves

sup
ν∈∆(M×Π)

AIRqt,η(pt, ν).

3: The algorithm ALG samples decision πt ∼ pt and
observes the feedback ot ∼Mt(πt).

4: Update qt+1 = (νt)π∗|πt,ot
.

5: end for

worst-case environment. In particular, this approach only
stores a single distribution (νt)π∗|πt,ot at round t, which is
the Bayesian posterior obtained from belief νt and observa-
tions πt, ot, and it is made to forget all the rest information
from the past.

Based on these algorithmic beliefs, we can provide regret
bound for an arbitrary algorithm. Here we assume Π to be
finite (but potentially large) for simplicity; this assumption
can be relaxed using standard discretization and covering
arguments.
Theorem 3.1 (Generic regret bound for arbitrary learning al-
gorithm). Given a finite decision space Π, a compact model
class M, the regret of an arbitrary learning algorithm ALG
is bounded as follows, for all T ∈ N+,

RT ≤ log |Π|
η

+

T∑
t=1

AIRqt,η(pt, νt). (2)

Note that Theorem 3.1 provides a powerful tool to study
the regret of an arbitrary algorithm using the concept of
AIR. More importantly, it suggests that the algorithm should
choose decision with probability pt+1 according to the
posterior ((νt)π∗|πt,ot

. Building on this principle to gen-
erate algorithmic beliefs, we provide two concrete algo-
rithms: “Adaptive Posterior Sampling” (APS) and “Adap-
tive Minimax Sampling” (AMS). Surprisingly, their regret
bounds are as sharp as the best known regret bounds of
existing Bayesian algorithms that require knowledge of a
well-specified prior.

3.2. Adaptive Posterior Sampling (APS)

When the agent always selects pt+1 to be equal to the pos-
terior qt+1 = (νt)π∗|πt,ot

, and optimizes for algorithmic
beliefs as in Algorithm 1, we call the resulting algorithm
“Adaptive Posterior Sampling” (APS).

At round t, APS inputs pt to the objective AIRpt,η(pt, ν)
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Algorithm 2 Adaptive Posterior Sampling (APS)
Input learning rate η > 0.
Initialize p1 = Unif(Π).

1: for round t = 1, 2, · · · , T do
2: Find a distribution νt of (M,π∗) that solves

sup
ν∈∆(M×Π)

AIRpt,η(pt, ν).

3: Sample decision πt ∼ pt and observe ot ∼Mt(πt).
4: Update pt+1 = (νt)π∗|πt,ot

.
5: end for

to optimize for the algorithmic belief νt; and it sets pt+1

to be the Bayesian posterior obtained from belief νt and
observations πt, ot. Unlike traditional TS, APS does not
require knowing the prior or stochastic environment; instead,
APS creates algorithmic beliefs “on the fly” to simulate
the worst-case environment. We can prove the following
theorem using the regret bound (2) in Theorem 3.1 and the
relationship between AIR and IR established in Lemma 2.5.

Theorem 3.2 (Regret of APS). Assume that fM (π) ∈ [0, 1]
for all M ∈ M and π ∈ Π. The regret of Algorithm 2
with η =

√
2 log |Π|/(IRH(TS) · T + 4T ) is bounded as

follows, for all T ≥ 2 log |Π|IRH(TS) + 4,

RT ≤
√
log |Π| (IRH(TS)/2 + 2)T ,

where IRH(TS) := supν IRH(ν, νπ∗)1 is the maximal value
of information ratio for Thompson Sampling.

For K−armed bandits, APS achieves the near-optimal
regret O(

√
KT logK) because IRH(TS) ≤ K; for

d−dimensional linear bandits, APS recovers the optimal
regret O(

√
d2T ) because IRH(TS) ≤ d.

The main messages about APS and Theorem 3.2 are: 1) the
regret bound of APS is no worse than the standard regret
bound of TS (Russo & Van Roy, 2016), but in contrast
to the latter, does not rely on any knowledge needed to
specify a prior! 2) Because APS only keeps the marginal
beliefs of π∗ but forgets beliefs of the models, it is robust
to adversarial and non-stationary environments. And 3)
Experimental results in Section 4 show that APS achieves
“best-of-all-worlds” empirical performance for Bernoulli
MAB in different environments.

To the best of our knowledge, Theorem 3.2 is the first
generic result to make TS prior-free and applicable to adver-
sarial environment. To that end, we note that Corollary 19
in (Lattimore & Gyorgy, 2021) only applies to K−armed
bandits because of their truncation procedure.

1For technical reason we use the Hellinger distance to define
IRH (instead of KL as in IR), but there is no distinction between
IRH and IR in all known applications within their current bounds.

3.3. Adaptive Minimax Sampling (AMS)

When the agent selects decision pt by solving the minimax
problem

inf
pt

sup
ν
AIRqt,η(p, ν),

and optimizes for algorithmic beliefs as in Algorithm 1, we
call the resulting algorithm “Adaptive Minimax Sampling”
(AMS). By the regret bound (2) in Theorem 3.1 and the

Algorithm 3 Adaptive Minimax Sampling (AMS)
Input learning rate η > 0.
Initialize q1 = Unif(Π).

1: for round t = 1, 2, · · · , T do
2: Find a distribution p of π and a distribution νt of

(M,π∗) that solves the saddle point of

inf
p∈∆(Π)

sup
ν∈∆(M×Π)

AIRqt,η(p, ν).

3: Sample decision πt ∼ pt and observe ot ∼Mt(πt).
4: Update qt+1 = (νt)π∗|πt,ot

.
5: end for

relationship between between AIR and IR established in
Lemma 2.5, it is straightforward to prove the following.

Theorem 3.3 (Regret of AMS). For a finite decision space
Π and a compact model class M, the regret of Algorithm 3
with η = 2

√
log |Π|/(IR(IDS) · T ) is always bounded by

RT ≤ 1

2

√
log |Π| · IR(IDS) · T ,

where IR(IDS) := supν infp IR(ν, p) is the maximal infor-
mation ratio of Information-Directed Sampling.

Theorem 3.3 shows that the regret bound of AMS is al-
ways no worse than that of IDS (Russo & Van Roy, 2018).
By showing implicit equivalence and making clean-ups,
Algorithm 3 can also be explained as a much simplified
implementation of the key ideas in the EBO algorithm from
(Lattimore & Gyorgy, 2021), but AMS runs in computa-
tionally tractable spaces (rather than intractable functional
spaces) and does not require unnecessary truncation.

3.4. Using approximate maximizers

In Algorithm 1, we ask for the algorithmic beliefs to maxi-
mize AIR. In order to give computationally efficient algo-
rithms in practical applications (MAB, linear bandits, RL,
...), we will require the algorithmic beliefs to approximately
maximize AIR. This argument is made rigorous in the fol-
lowing theorem, which uses the first-order optimization
error of AIR to represent the regret bound.
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Theorem 3.4 (Generic regret bound using approximate
maximizers). Given a finite Π, a compact M, an arbi-
trary algorithm ALG that produces decision probability
p1, . . . , pT , and a sequence of beliefs ν1, . . . , νT where
qt = (νt−1)π∗|π,o ∈ int(∆(Π)) for all rounds, we have

RT ≤ log |Π|
η

+

T∑
t=1

(
AIRqt,η(pt, νt)

+ sup
ν∗

(
∂AIRqt,η(pt, ν)

∂ν

∣∣∣∣
ν=νt

)⊤

(ν∗ − νt)

)
.

Thus we give a concrete approach towards computationally
efficient algorithms with rigorous guarantees—making the
gradient of AIR small to approximately maximize AIR.

4. Application to Bernoulli MAB
Our Bayesian design principles give rise to a novel algorithm
for the Bernoulli multi-armed bandits (MAB) problem. It
is well-known that every bounded-reward MAB problem
can equivalently be reduced to the Bernoulli MAB problem,
so our algorithm and experimental results actually apply to
all bounded-reward MAB problems. The reduction is very
simple: assuming the rewards are always bounded in [a, b],
then after receiving rt at each round, the agent re-samples a
binary reward r̃t ∼ Bern((rt−a)/b−a) so that r̃t ∈ {0, 1}.

4.1. Simplified APS for Bernoulli MAB

In Example 2.1, Π = [K] = {1, · · · ,K} is a set of K
actions, and each model M is a mapping from actions to
Bernoulli distributions. Given belief ν ∈ ∆(M× [K]), we
introduce the following parameterization: ∀i, j ∈ [K],

θi(j) := E [r(j)|π∗ = i] , (conditional mean reward)
α(i) := νπ∗(i), (marginal belief)
βi(j) := α(i) · θi(j). (guarantees concavity)

Then we have a concave parameterization of AIR by the
K(K + 1)−dimensional vector (α,β) = (α, β1, · · · , βK):

AIRq,η(p, ν) =
∑
i∈[K]

βi(i)−
∑

i,j∈[K]

p(j)βi(j)

−1

η

∑
i,j∈[K]

p(j)α(i)kl

βi(j)
α(j)

,
∑
i∈[K]

βi(j)

− 1

η
KL(α, q),

where kl(x, y) := x log x
y + (1− x) log 1−x

1−y for all x, y ∈
(0, 1). By setting the gradients of AIR with respect to all
K2 coordinates in β to be exactly zero, and choosing α = p
(which results in the gradient of AIR with respect to α
being suitbly bounded), we are able to write down a simpli-
fied APS algorithm in closed form (see Algorithm 4). We

apply Theorem 3.4 to show that the algorithm achieves near-
optimal O(

√
KT logK) regret in the general adversarial

setting. We leave the detailed derivation and analysis of the
Algorithm 4 to Appendix F.2.

Algorithm 4 Simplified APS for Bernoulli MAB
Input learning rate η > 0.
Initialize p1 = Unif(Π).

1: for round t = 1, 2, · · · , T do
2: Sample action πt ∼ pt and receives rt.
3: Update pt+1 by

pt+1(πt) =

{
1−exp(−η)

1−exp(−η/pt(πt))
, if rt = 1

1−exp(η)
1−exp(η/pt(πt))

, if rt = 0
, and

pt+1(π) = pt(π) ·
1− pt+1(πt)

1− pt(πt)
, ∀π ̸= πt.

4: end for

At each round, Algorithm 4 increases the weight of the
selected action πt if rt = 1, and decreases the weight if
rt = 0. The algorithm also maintains the “relative weight”
between all unchosen actions π ̸= πt, allocating probabil-
ities to these actions proportionally to pt. Algorithm 4 is
clearly very different from the well-known EXP3 algorithm,
which instead updates pt+1 by the formula

pt+1(π) = pt(π) exp

(
η · rt1{π = πt}

pt(πt)

)
, ∀π ∈ Π.

In Section B.2 we recover a modified version of EXP3 by
Bayesian principle assuming Gaussian reward. We conclude
that Algorithm 2 uses a precise posterior for Bernoulli re-
ward, while EXP3 estimates worst-case Gaussian reward.
This may explain why Algorithm 4 performs much better in
all of our experiments.

4.2. Numerical experiments

We implement Algorithm 4 (with the legend “APS” in the
figures) in the stochastic, adversarial and non-stationary en-
vironments. We plot expected regret (average of 100 runs)
for different choices of η, and set γ = 0.001 in all experi-
ments. We find APS 1) outperforms UCB and matches TS
in the stochastic environment; 2) outperforms EXP3 in the
adversarial environment; and 3) outperforms EXP3 and is
comparable to the “clairvoyant” benchmarks (that have prior
knowledge of the changes) in the non-stationary environ-
ment. For this reason we say Algorithm 4 (APS) achieves
the “best-of-all-worlds” performance. We note that the opti-
mized choice of η in APS differ instance by instance, but by
an initial tuning we typically see good results, whether we
tune η optimally or not optimally.

6
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Figure 1. Sensitivity analysis in a stochastic bandit problem.

4.2.1. STOCHASTIC BERNOULLI MAB

In Figure 1 we report the expected regret for APS with
different choices of η, TS with different Beta priors, and
the UCB 1 algorithm, in a stochastic 16-armed Bernoulli
bandit problem. We refer to this as “sensitivity analysis”
because the red, semi-transparent, area reports the regret
of APS when learning rates η are chosen across a range
of values drawn from the interval [0.05, 0.5] (the interval
is specified by an initial tuning); and the priors of TS are
chosen from Beta(c, 1) where c ∈ [0.5, 5]. In particular, the
bottom curve of the red (or blue) area is the regret curve of
APS (or TS) using optimally tuned η (respectively, prior).
The conclusion is that APS outperforms UCB 1, and is
comparable to TS in this stochastic environment.

4.2.2. ADVERSARIAL BERNOULLI MAB

Figure 2. Sensitivity analysis in an adversarial bandit problem.

We equidistantly take 16 horizontal lines from an abstract
art piece by Jackson Pollock to simulate the rewards (pre-
specified) in an adversarial environment, and study this via
a 16-armed bandit problem. Figure 2 shows the sensitivity
analysis for APS and EXP3 when both the learning rates
are chosen from [0.1, 5] (the interval is specified by an ini-
tial tuning). In particular, the red and green lower curves
compare the optimally tuned versions of APS and EXP3.
The conclusion is that APS outperforms EXP3 whether η is
tuned optimally or not.

4.2.3. NON-STATIONARY BERNOULLI MAB (WITH
CHANGE POINTS)

Figure 3. Sensitivity analysis in a “change points” environment.

We study a 16-armed Bernoulli bandit problem in a non-
stationary environment. We generate 4 batches of i.i.d. se-
quences, where the changes in the environment occur after
round 1000, round 2000, and round 3000. We consider a
stronger notion of regret known as the dynamic regret (Bes-
bes et al., 2014), which compares the cumulative reward
of an algorithm to the cumulative reward of the best non-
stationary policy (rather than a single arm) in hindsight. In
this particular setting, the benchmark is to select the best
arm in all the 4 batches. In Figure 3 we perform sensitivity
analysis for APS and EXP3, where the learning rates are
chosen across [0, 05, 5]. Since the agent will not know when
and how the adversarial environment changes in general,
it is most reasonable to compare APS with EXP3 without
any knowledge of the environment as in Figure 3. We ob-
serve that APS dramatically improves the dynamic regret
by several times.
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Figure 4. Comparing APS to “clairvoyant” restarted algorithms.

In Figure 4, we compare APS to three “clairvoyant”
restarted algorithms, which require knowing that the en-
vironment consists of 4 batches of i.i.d. sequences, as well
as knowing the exact change points. We tune the parameters
in these algorithms optimally. Without knowledge of the
environment, APS performs better than restarted EXP3 and
restarted UCB 1, and is comparable to restarted TS. (It is
important to emphasize again that the latter algorithms are
restarted based on foreknowldge of the change points.)
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4.2.4. NON-STATIONARY BERNOULLI MAB (WITH
“SINE CURVE” REWARD SEQUENCES)

Figure 5. “Sine curve” rewards. Figure 6. Regrets.

We generate a 4-armed bandit problem with the mean-
reward structure shown in Figure 5. The four sine curves
(with different colors) in Figure 5 represent the mean re-
ward sequences of the 4 arms. We tune the parameters in
all the algorithms to optimal and report their regret curves
in Figure 6. As shown in Figure 6, APS achieves the best
performance, while TS fails in this non-stationary environ-
ment. This experiment shows the vulnerability of TS if
the environment is not stationary, such as the sine curve
structure shown here. To better illustrate the smartness of

Figure 7. Selected arms of APS. Figure 8. Selected arms of TS.

APS compared with TS in the non-stationary environment,
we track the selected arms and the best arms throughout
the process. In Figure 7 and Figure 8, the horizontal line
represents the 4000 rounds, and the vertical lines represent
the 4 arms (indexed as 1, 2, 3, and 4). In Figure 7, the
red points show the selected arms of APS, and the black
points represent the best arms at each round in this “sine
curve” non-stationary environment. In Figure 8, the blue
points show the selected arms of TS. The more consistent
the selected arms are with the best arms (black points), the
better choices an algorithm makes. Comparing Figure 7
and Figure 8, we can see that APS is highly responsive to
changes in the best arm, whereas TS is relatively sluggish
in this regard. The implication of this experiment is that
creating a new algorithmic belief at each round has the po-
tential to significantly improve performance and be a game
changer in many problem settings.

These experiments provide some numerical evidence indi-
cating that APS achieves the “best-of-all-worlds” across

stochastic, adversarial, and non-stationary environments.

5. Key Intuitions of the Proof
It is worth noting that the proof of Theorem 3.1 is quite
insightful and parsimonious. The two major steps in the
proof may be interesting on its own. The first step is a
succinct analysis to bound the cumulative regret by sum of
AIR (see Section 5.1); and the second step is to extend the
classical minimax theory of “exchanging values” into a con-
structive approach to design minimax decisions (estimators,
algorithms, etc.), which will be presented in Section 5.2.

5.1. Bounding regret by sum of AIR

For every π̄ ∈ Π, we have

T∑
t=1

[
log

qt+1(π̄)

qt(π̄)

]
= log

qT (π̄)

q1(π̄)
≤ log |Π|. (3)

Taking qt+1 = (νt)π∗|πt,ot
as in Algorithm 1, and taking

expectation on the left hand side of (3), we have

T∑
t=1

Eπt,ot

[
log

(νt)π∗(π̄|πt, ot)
qt(π̄)

]
≤ log |Π|. (4)

By substracting the addition elements in the left hand side
of (4) (divided by η) from per-round regret, we have

RT − 1

η
·

T∑
t=1

Eπt,ot

[
log

(νt)π∗(π̄|πt, ot)
qt(π̄)

]

=

T∑
t=1

E

[
fMt(π̄)− fMt(πt)−

1

η
log

(νt)π∗|πt,ot
(π̄)

qt(π̄)

]

≤
T∑

t=1

sup
M,π̄

E

[
fM (π̄)− fM (πt)−

1

η
log

(νt)π∗|πt,ot
(π̄)

qt(π∗)

]
(∗)
=

T∑
t=1

AIRqt,η(pt, νt) (5)

where the inequality is by taking supremum at each rounds;
and the last equality (5) is by Lemma 5.2, an important
identity to be explained in Section 5.2, which is derived from
the fact that the pair of maximizer νt and posterior functional
is a Nash equilibrium of a convex-concave function.

5.2. Mimimax theory: from value to construction

Consider a decision space X , a space Y of the adversary’s
outcome, and a convex-concave function ψ(x, y) defined in
X × Y . The classical minimax theorem (Sion, 1958) says
that, under regularity conditions, the minimax and maximin

8
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values of ψ(x, y) are equal:

min
X

max
Y

ψ(x, y) = max
Y

min
X

ψ(x, y).

We refer to argminX maxY ψ(x, y) as the set of “minimax
decisions,” as they are optimal in the worst-case scenario.
And we say x̃ ∈ argminX ψ(x, ȳ) is “maximin decision”
if ȳ ∈ argmaxY minX ψ(x, y) is “maximin adversary’s
outcome.” One natural and important question is, when will
the “maximin decision” x̃ also be a “minimax decision?”
The study to this question may provide a constructive way to
design frequentist estimators and algorithms through worst-
case Bayesian posteriors and regularization. Making use of
strong convexity, we extends the classical minimax theorem
for values into the following minimax theorem for decisions:

Lemma 5.1 (Constructing minimax decisions). Let X and
Y be convex and compact sets, and ψ : X × Y → R a
function which for all y is strongly convex and continuous in
x and for all x is concave and continuous in y. For each y ∈
Y , let xy = minx∈X ψ(x, y) be the corresponding unique
minimizer. Then by maximizing the concave objective

ȳ ∈ max
y∈Y

ψ(xy, y),

the pair (xȳ, ȳ) will be a Nash equilibrium that solves the
minimax optimization problem minX maxY ψ(x, y).

Applying Lemma 5.1 to our framework, we can show: 1)
Bayesian posterior νπ∗|π,o is the optimal functional to make
decision under belief ν; and 2) by choosing worst-case belief
ν̄, we construct a Nash equilibrium. As a result, we can
prove the following per-round identity which is the last step
in proving Theorem 3.1 (the key identity (∗) in (5)).

Lemma 5.2 (Identity by Nash equilibrium). Given q ∈
int(∆(Π)), η > 0 and p ∈ ∆(Π), denote ν̄ ∈
argmaxAIRq,η(p, ν). Then we have

sup
M,π̄

E
[
fM (π̄)− fM (π)− 1

η
log

ν̄π∗|π,o(π̄)

q(π̄)

]
= AIRq,η(p, ν̄).

6. Extensions
Our design principles can be applied in many sequential
learning and decision making environments. In order to
maximize AIR in practical applications, we parameterize
the belief ν, and make the gradient of AIR with respect to
such parameter small. Going beyond multi-amred bandits
(MAB), we often need to constrain the search of algorithmic
belief within a tractable subspace; and we study useful con-
cave relaxations of AIR towards efficient algorithm design.
We provide a high-level overview of the applications in lin-
ear bandits, bandit convex optimization, and reinforcement
learning (RL) to showcase the broad applicability of our
approach. Detailed results and explanations can be found in
Appendix B and C.

Application to linear bandits. An established algorithm
for tackling adversarial linear bandits (described in Exam-
ple 2.2) is the EXP2 algorithm (Dani et al., 2007). It em-
ploys the inverse probability weighting (IPW) technique as
a black-box estimation method for linear rewards, combined
with an exponential weight updating rule. By the principle
of optimizing AIR, we derive a modified version of EXP2
within our framework by assuming Gaussian distributions
for the rewards. The resulting algorithm is computationally
efficient and achieves the optimal O(

√
d2T ) regret bound

for all adversarial linear bandits with sub-Gaussian rewards.
This outcome reveals an intriguing connection between IPW
and Bayesian posteriors involving Gaussian rewards.

Application to bandit convex optimization. Bandit con-
vex optimization, as described in Example 2.2, poses a well-
known and challenging problem that has received significant
attention in terms of understanding its minimax regret and
designing algorithms. The current best-known result, de-
rived through non-constructive information-ratio analysis in
(Lattimore, 2020), achieves a regret bound of approximately
Õ(d2.5

√
T ). In Corollary of Theorem 3.3, we demonstrate

that Adaptive Minimax Sampling (AMS) achieves this same
regret bound with a constructive algorithm that can be com-
puted in polynomial time, specifically poly(ed · T ). To the
best of our knowledge, this is the first algorithm with a finite
running time that achieves the optimal Õ(d2.5

√
T ) regret

bound. While the EBO algorithm in (Lattimore & Gyorgy,
2021) also achieves the same regret bound, it operates in
an abstract functional space, making the computation less
straightforward.

Application to RL. In the stochastic environment, where
Mt = M∗ ∈ M for all rounds, we want to find the opti-
mal decision πM∗ that minimizes the mean reward function
fM∗(π). Unlike the adversarial setting, where algorithmic
beliefs are formed over pairs of models and optimal deci-
sions, in the stochastic setting, we only need to search for
algorithmic beliefs regarding the underlying model. This
distinction allows us to develop a strengthened version of
AIR, which we call “Model-index AIR” (MAIR), particu-
larly suited for studying reinforcement learning problems.

Crucially, we can construct a generic and closed-form se-
quence of algorithmic beliefs that approximate the max-
imization of MAIR at each round. By leveraging these
beliefs, we develop a model-based APS algorithm that
achieves the sharpest known bounds for RL problems within
the bilinear class (Du et al., 2021; Foster et al., 2021). Our
algorithm features a generic and closed-form updating rule,
making it potentially well-suited for efficient implemen-
tation through efficient sampling oracles. As a point of
comparison, it is worth noting that the E2D algorithm in-
troduced in (Foster et al., 2021) is not expressed in closed
form and requires minimax optimization.
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Part I

Applications to structured bandits and RL
A. Relation between AIR and DEC
We present here the definition of DEC (Foster et al., 2021).

Definition A.1 (Decision-estimation coefficient). Given a model class M, a nominal model M̄ and η > 0, we define the
decision-estimation coefficient by

DECη

(
M, M̄

)
= inf

p∈∆(Π)
sup

M∈M
Eν,p

[
fM (πM )− fM (π)− 1

η
D2

H

(
M(π), M̄(π)

) ]
,

where D2
H(P,Q) =

∫
(
√
dP−

√
dQ)2 is the squared Hellinger distance between two probability measures.

DEC provides a tighter complexity measure compared to several existing measures in the literature, such as the bilinear
dimension (Du et al., 2021) and the Eluder Bellman dimension (Jin et al., 2021), for reinforcement learning (RL) problems.
Moreover, a slightly strengthened version of DEC, defined through the KL divergence instead of the Hellinger divergence,
can be bounded by the traditional information ratio. This result follows from Proposition 9.1 in (Foster et al., 2021).

We establish that the worst-case value of AIR under a “maximin” strategy for selecting p is bounded by the worst-case value
of the decision-estimation coefficient (DEC) for the convex hull of the model class in the following lemma.

Lemma A.2 (Bounding AIR by DEC). Given model class M and η > 0, we have

sup
q∈int(∆(Π))

sup
ν

inf
p

AIRq,η(p, ν) ≤ sup
M̄∈conv(M)

DECη(∆(M), M̄). (6)

To prove Lemma A.2, we can start by noting that the left-hand side of (6) is equivalent to the “parametric information ratio,”
defined as

max
ν

min
p

Eν,p

[
fM (π∗)− fM (π)− 1

η
KL(νπ|π,o, νπ∗)

]
, (7)

which was introduced in (Foster et al., 2022b). This equivalence can be shown by using the concavity of AIR to exchange
sup over q and min over p. Furthermore, the inequality between (7) and the right-hand side of (6) has been established by
Theorem 3.1 in (Foster et al., 2022b). Therefore, we obtain a proof of Lemma A.2.

We highlight that AIR is the tightest complexity measure in the adversarial setting. However, for reinforcement learning
problems in the stochastic setting, it is often desirable to remove the convex hull in the right-hand side of (6). To this end,
we introduce a tighter version of AIR, called “Model-index AIR” (MAIR), which allows us to apply most existing regret
upper bounds using DEC to our framework. In Section C, we discuss our theory about MAIR and its application to RL in
the stochastic setting.

B. Applications to Infinite-armed Bandits
Our design principles can be applied in many sequential learning and decision making environments. In order to maximize
AIR in practical applications, we parameterize the belief ν, and make the gradient of AIR with respect to such parameter
small. Going beyond multi-armed bandits (MAB), we often need to constrain the search of algorithmic belief within a
tractable subspace; and we study useful concave relaxations of AIR towards efficient algorithm design. We will present our
results for linear bandits and bandit convex optimization in this section and present our results for reinforcement learning in
Section C. We give a high-level overview of the applications to linear bandits and bandit convex optimization here.

Application to linear bandits. A classical algorithm for adversarial linear bandits (described in Example 2.2) is the
EXP2 algorithm (Dani et al., 2007), which uses IPW for linear loss as a black-box estimation method, and combines it
with continuous exponential weight. We derive a modified version of EXP2 from our framework, establishing interesting
connection between IPW and Bayesian posteriors.
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Application to bandit convex optimization. Bandit convex optimization (described in Example 2.2) is a notoriously
challenging problem, and much effort has been put to understanding its minimax regret and algorithm design. The best
known result, which is of order Õ(d2.5

√
T ), is derived through the non-constructive information-ratio analysis in (Lattimore,

2020). As a corollary of Theorem 3.3, Adaptive Minimax Sampling (AMS) recovers the best known regret bound with
a constructive algorithm, which can be computed in poly(ed · T ) time. To the best of our knowledge, this is the first
finite-running-time algorithm that attains the best known Õ(d2.5

√
T ) regret.

B.1. Maximization of AIR for structured bandits

Consider the structured bandit problems described in Example 2.2. We consider the computation complexity of the
optimization problem

sup
ν∈∆(M×Π)

AIRq,η(p, ν). (8)

The computational complexity of (8) may be O(poly(exp(exp(d)))) in the worst case as the size of M× Π. However,
when the mean reward function class F is a convex function class, the computational complexity will be O(poly(|Π|))
which is efficient for K−armed bandits and is no more than O(poly(ed)) in general (by standard discretization and covering
arguments, we may assume Π ⊂ Rd to have finite cardinality O(ed) for the simplicity of theoretical analysis). Moreover,
we also give efficient algorithm for linear bandits with exponential-many actions. We refer to Appendix F.1 for the detailed
discussion on the parameterization method and computational complexity.

B.2. Application to Gaussian linear bandits

We consider the adversarial linear bandit problem with Gaussian reward. In such a MAB problem, Π = A ⊆ Rd is an
action set with dimension d. The model class M can be parameterized by a d−dimensional vector θ ∈ Rd that satisfies
θ⊤a ∈ [0, 1] for all a ∈ A. The reward r(a) for each action a ∈ A is independently drawn from a Gaussian distribution that
has mean θ⊤a and variance σ2, and we assume that σ ≤ 1. Here we use the notations A (as action set), a (as action) and a∗

(as optimal action) to follow the tradition of literature about linear bandits.

As discussed in Section B.1, we restrict our attention to sparse ν where for each π∗ ∈ Π there is only one model M , which
corresponds to the Gaussian distribution r(π) ∼ N(θπ∗(π), 1). We parameterize the prior ν by vectors {β∗

a}a∗∈A and
α ∈ ∆(Π), where α = Pν(a

∗) and βa∗ = α(a∗) · θa∗ . As discussed in (25) in Appendix F.3, we propose to define a
surrogate version of AIR by

AIRq,η(p, ν) =

∫
A
β⊤
a∗a∗da∗ −

∫
A

∫
A
p(a)β⊤

a∗ada∗da

− 1

2η

∫
A

∫
A
p(a)α(a∗)

(
β⊤
a∗a

α(a∗)
−
∫
A
β⊤
a∗ada∗

)2

da− 1

η
KL(α, q). (9)

As discussed in Section B.1, It can be shown that approximate maximizers of this surrogate lead to rigorous regret bounds.
Note that the surrogate defined in (9) can be bounded by the classical information ratio bounds defined by square loss (see,
e.g., (Russo & Van Roy, 2016; Lattimore, 2020)).

By making all the gradients of (9) with respect to {βa∗}a∗∈A to be exactly zero, and taking α = p, we obtain an approximate
maximizer of AIR in (9). We calculate the Bayesian posterior, and find that the resulting algorithm is an exponential weight
algorithm with a modified IPW estimator: at each round t, the agent update pt+1 by

p̃t+1(a) ∝ pt(a) exp (ηr̂t(a)) ,

where r̂t is the modified IPW estimator for linear loss,

r̂t(a) = a⊤(Ea∼pt [aa
⊤])−1atrt(at)−

η

2
(a⊤(Ea∼pt [aa

⊤])−1at)
2. (10)

Note that in order to avoid boundary conditions in our derivation, we require forced exploration to ensure
λmin(Ea∼p[aa

⊤]) ≥ η. This can be done with the help of the volumetric spanners constructed in (Hazan & Karnin,
2016). The use of volumetric spanner makes our final proposed algorithm (Algorithm 5) to be slightly more involved, but
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Algorithm 5 Simplified APS for Gaussian linear bandits
Input learning rate η > 0, forced exploration rate γ, and action set A.
Initialize p1 = Unif(Π).

1: for round t = 1, 2, · · · , T do
2: Let S′

t be a (pt, exp(−(4
√
d+ log(2T ))))−exp-volumetic spanner of A,

Let S′′
t be a 2

√
d−ratio-volumetric spanner of A.

Set St as the union of S′
t and S′′

t .
3: Sample action at ∼ pt and receives rt.
4: Calculate p̃t+1 by

p̃t+1(a) ∝ pt(a) exp (ηr̂t(a)) ,

where r̂t is the modified IPW estimator for linear loss,

r̂t(a) = a⊤(Ea∼pt [aa
⊤])−1atrt(at)−

η

2
(a⊤(Ea∼pt

[aa⊤])−1at)
2.

5: Update pt+1 by pt+1(a) = (1− γ)p̃t(a) +
γ

|St|1{a ∈ St}
6: end for

we only use the volumetric spanner in a “black-box” manner. We highlight that the algorithm is computationally efficient
as the reward estimator (10) is concave, so one can apply log-concave sampling when executing exponential weighting.
The additional term in (10) is ignorable from a regret analysis perspective, so the standard analysis for exponential weight
algorithms applies to Algorithm 5 to establish the optimal O(

√
d2T regret bound. One may also analyze Algorithm 5 within

our algorithmic belief framework through Theorem 3.4, as we did for Algorithm 4 in Section F.2; we omit the analysis
here. Finally, we note that the algorithm reduces to a modified version of EXP3 for finite armed bandits, a connection we
mentioned at the end of Section 4.1.

B.3. Application to bandit convex optimization

We consider the bandit convex optimization problem described in Example 2.2. In bandit convex optimization, Π ⊆ Rd is a
d−dimensional action set whose diameter is bounded by diam(Π), and the mean reward (or loss) function is required to be
concave (respectively, convex) with respect to actions:

F = {f : Π → [0, 1] : f is concave w.r.t. π ∈ Π}.

The problem is often formed with finite (but exponentially large) action set by standard discretization arguments (Lattimore,
2020). Bandit convex optimization is a notoriously challenging problem, and much effort has been put to understanding its
minimax regret and algorithm design. The best known result, which is of order Õ(d2.5

√
T ), is derived through the non-

constructive information-ratio analysis in (Lattimore, 2020). By the information ratio upper bound for the non-constructive
Bayesian IDS algorithm in (Lattimore, 2020), Lemma 2.5 that bounds AIR by IR, and Theorem 3.3 (regret of AMS), we
immediately have that Algorithm 3 (AMS) with optimally tuned η achieves

RT ≤ O
(
d2.5

√
T · polylog(d, diam(A), T )

)

As a result, AMS recovers the best known Õ(d2.5
√
T ) regret with a constructive algorithm. By our discussion on the

computational complexity in Appendix F.1, AMS solves convex optimization in a poly(|Π|)-dimensional space, so it can be
computed in poly(ed ·T ) time for bandit convex optimization. To the best of our knowledge, this is the first algorithm with a
finite running time that attains the best known Õ(d2.5

√
T ) regret. We note that the EBO algorithm in (Lattimore & Gyorgy,

2021) has given a constructive algorithm that achieves the same Õ(d2.5
√
T ) regret derived by Bayesian non-constructive

analysis. However, EBO operates in an abstract functional space, so it is less clear how to execute the computation.
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C. Model-index AIR and Application to RL
In the stochastic environment, where Mt = M∗ ∈ M for all rounds, we want to find the optimal decision πM∗ that
minimizes the mean reward function fM∗(π). Unlike the adversarial setting, where algorithmic beliefs are formed over
pairs of models and optimal decisions, in the stochastic setting, we only need to search for algorithmic beliefs regarding the
underlying model. This distinction allows us to develop a strengthened version of AIR, which we call ”Model-index AIR”
(MAIR), particularly suited for studying reinforcement learning problems.

Crucially, we can construct a generic and closed-form sequence of algorithmic beliefs that approximate the maximization
of MAIR at each round. By leveraging these beliefs, we develop a model-based APS algorithm that achieves the sharpest
known bounds for RL problems within the bilinear class (Du et al., 2021; Foster et al., 2021). Our algorithm features a
generic and closed-form updating rule, making it potentially well-suited for efficient implementation through efficient
sampling oracles.

C.1. Model-index Algorithmic Information Ratio

We denote decision πM ∈ argminΠfM (π) be the induced optimal decision of model M . We introduce the following
definition of Model-index AIR (MAIR).

Definition C.1 (Model-index AIR). Denote ρ ∈ int(∆(M)) be a reference distribution of models, and µ ∈ int(∆(M)) be
a prior belief of models, we define the “Model-index Algorithmic Information Ratio” as

MAIRρ,η(p, µ) = Eµ,p

[
fM (πM )− fM (π)− 1

η
KL(µ(·|π, o), ρ)

]
,

where µ(·|π, o) is the Bayesian posterior belief of models induced by the prior belief µ.

It can be seen from the definition that KL divergence between two model distributions will be no smaller than KL divergence
between the two induced decision distributions. Thus we have the following Lemma.

Lemma C.2 (MAIR smaller than AIR). When q is the decision distribution of πM induced by the model distribution ρ, and
ν is the distribution of (M,πM ) induced by the model distribution µ, we have

MAIRρ,η(p, µ) ≤ AIRq,η(p, ν).

Lemma A.2 has shown that the worst-case value of AIR under the “maximin” strategy is smaller than DEC of the convex hull
of M. Now we demonstrate that the worst-case value of MAIR under a “maximin” strategy is smaller than the worst-case
value of DEC, which does not uses the convex hull of model class in its first argument.

Lemma C.3 (Bounding MAIR by DEC). Given model class M and η > 0, we have

sup
ρ∈int(∆(M))

sup
µ

inf
p

MAIRρ,η(p, ν) ≤ sup
M̄∈conv(M)

DECη(M, M̄).

Moreover, when the reference distribution ρ is centered at M∗ and has “small” variance, we may completely removes the
convex hull in the expression of DEC (unlike Lemma C.3 still leaving a convex hull restriction in the subscribe). This enable
us to match the tightest possible version of DEC, and is discussed in Section C.3.

Comparing AIR and MAIR. We have seen that 1) Maximin AIR can be bounded by DEC of the convex hull ∆(M);
2) Maximin MAIR can be bounded by DEC of the original class M; and 3) MAIR is “smaller” than AIR as illustrated in
Lemma C.2. However, as we will later show in Theorem 3.1 and Theorem C.4, the regret bound using AIR will scale with
a log |Π| factor (estimation complexity of decision space), while the regret bound using MAIR will scale with a bigger
log |M| factor (estimation complexity of model class). We explain their difference as follows.

When to use AIR versus MAIR? First, AIR is useful for both stochastic and adversarial bandit learning problems, while
MAIR may only be useful for stochastic environments. Second, using AIR will result in a log |Π| factor along with
information ratio (or DEC), while MAIR will result in a bigger log |M| factor, so AIR is often the tighter option for bandit
problems. For example, AIR provides optimal regret for K-armed bandits and

√
T−type regret bound for the challenging

problem bandit convex optimization, while MAIR may not. On the other hand, MAIR can achieve optimal regret for
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stochastic linear bandits and stochastic model-based contextual bandits (Foster & Rakhlin, 2020), and it is more useful than
AIR for reinforcement learning problems where taking convex hull to the model class may greatly increase the richness of
model class. For example, the model class (especially the state transition dynamic) in reinforcement learning problems
may not satisfy convexity. In general, AIR is more useful for “infinite divisible” problems where taking convex hull does
not greatly increase the complexity of model class; while MAIR is more useful for stochastic model-based bandit and
reinforcement learning problems where one wants to avoid taking convex hull.

C.2. Near-optimal algorithmic beliefs in closed form

For any fixed decision probability p, it is illustrative to write MAIR as

MAIRρ,η(p, µ) = E
[
fM (πM )− fM (π)− 1

η
KL(µ(M |π, o), ρ)

]
= E

[
fM (πM )− fM (π)− 1

η
KL(µ(M |π, o), µ)− 1

η
KL(µ, ρ)

]
= E

[
fM (πM )− fM (π)− 1

η
KL(M(π), µo|π)−

1

η
KL(µ, ρ)

]
, (11)

where µo|π = EM∼µ[M(π)] is the induced distribution of o conditioned on π, and the third equality is by property of
mutual information. We would like to give a sequence of algorithmic beliefs that approximately maximize MAIR at each
rounds, as well as have closed-form expression.

We consider the following algorithmic priors at each round:

µt(M) ∝ ρt(M) · exp(η(fM (πM )− Ept [fM (π)])),

and use their corresponding posteriors to update the sequence of reference probabilities:

µt+1 = µt(M |πt, ot) ∝ µt(M)[M(πt)](ot).

This results in the following update of ρ:

ρt+1(M) = exp

 t∑
s=1

log[M(πs)](os)︸ ︷︷ ︸
log likelihood

+ η (fM (πM )− Eps
[fM (π)])︸ ︷︷ ︸

adaptive algorithmic belief


 . (12)

Our algorithm (12) updates both the log likelihood term and an adaptive algorithmic belief term at each iteration, whereas

Algorithm 6 Model-index AIR generation
Input algorithm ALG and learning rate η > 0.
Initialize ρ1 to be the uniform distribution over M.

1: for round t = 1, 2, · · · , T do
2: Obtain pt from ALG. The algorithm ALG samples πt ∼ pt and observe the feedback ot ∼Mt(πt).
3: Update

ρt+1(M) ∝ exp

(
t∑

s=1

(log[M(πs)](os) + η (fM (πM )− Eps
[fM (π)]))

)
.

4: end for

traditional (fixed-prior) Thompson Sampling only updates the log likelihood term and relies on a fixed prior term.

In Lemma C.3, we demonstrate how an upper bound on DEC can automatically translate into an upper bound on the
maximin value of MAIR. However, the variable M̄ in DEC is maximized within the convex hull ∆(M) rather than M.
Therefore, to directly apply the upper bounds on DEC proved in (Foster et al., 2021), we need to establish a stronger regret
bound that completely eliminates convex hull from the expression of DEC. To achieve this, we prove that when the prior

16



Bayesian Design Principles for Frequentist Sequential Learning

distribution µ is sufficiently “centered,” we can bound MAIR using a DEC-type quantity that does not involve taking convex
hull at all. Specifically, M̄ takes values from M instead of ∆(M). We are motivated to prove this result by the fact that the
update (12) will converge to M∗ over time.

Theorem C.4 (Generic regret bound in the stochastic setting). Given a finite model class M where the underlying true
model is M∗ ∈ M, and fM (π) ∈ [0, 1] for every M ∈ M and π ∈ Π. For an arbitrary algorithm ALG, the regret of
algorithm ALG is bounded by

RT ≤ log(|M|T ) + 1

η
+ 2 +

T∑
t=1

Eµt,pt

[
5 (fM (πM )− fM (π))− 1

η
D2

H(M(π),M∗(π))− 1

η
KL(µt, ρt)

]
,

where µt(M) ∝ exp
(∑t

s=1 (log[M(πs)](os) + η (fM (πM )− Eps [fM (π)]))
)
.

C.3. Model-index APS

In our applications, we often use a simple posterior sampling strategy for which we always induce the distribution of optimal
decisions from the posterior distribution of models. We refer to the resulting algorithm, Algorithm 7, as “Model-index
Adaptive Posterior Sampling.”

Algorithm 7 Model-index Adaptive Posterior Sampling
Input learning rate η and forced exploration rate γ.
Initialize ρ1 to be the uniform distribution over M.

1: for round t = 1, 2, · · · , T do
2: Sample πt ∼ pt where pt(π) =

∑
π=πM

ρt(M), and observe the feedback ot ∼Mt(πt).
3: Update

ρt+1(M) ∝ exp

(
t∑

s=1

(log[M(πs)](os) + η (fM (πM )− Eps
[fM (π)]))

)
.

4: end for

Algorithm 7 is inspired by and closely related to the optimistic posterior sampling algorithm proposed in (Agarwal & Zhang,
2022) (also termed as feel-good Thompson sampling in (Zhang, 2021)). Our analysis of sequential estimation (see Appendix
G.2) is built on the analysis in (Agarwal & Zhang, 2022; Zhang, 2021). However, our approach has adaptive terms in our
algorithmic beliefs rather than using a pre-specified optimistic prior. Moreover, our regret bounds can be applied to both
on-policy bilinear class as well as the general bilinear class (as we will explain shortly in Theorem C.5 and Section C.4),
while the theoretical results of optimistic posterior sampling in (Agarwal & Zhang, 2022) are only proved for on-policy
bilinear class.

For model class M, a nominal model M̄ , and the posterior sampling strategy p(π) = µ({M : πM = π}), we can define the
Bayesian decision-estimation coefficient of Thompson Sampling by

DECTS
η (M, M̄) = sup

µ∈∆(M)

Eν,p

[
fM (πM )− fM (π)− 1

η
D2

H

(
M(π), M̄(π)

) ]
. (13)

This value is bigger than the minimax DEC in Definition A.1, but often easier to use in model-based RL problems.

Theorem C.5 (Regret of Model-index Adaptive Posterior Sampling). Given a finite model class M where fM (π) ∈ [0, 1]
for every M ∈ M and π ∈ Π. The regret of Algorithm 7 with η ≤ 1/10 is bounded by

RT ≤ log(|M|T ) + 1

η
+ 5 · sup

M̄∈M
DECTS

2η(M, M̄) · T + 2.

C.4. Application to reinforcement learning

By using Algorithm 6 and Algorithm 7, we are able to recover several results in (Foster et al., 2021) that bound the regret of
RL by DEC and the estimation complexity log |M| of the model class. Note that we are able to prove such results for the
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Model-index APS (Algorithm 2), which has the potential to be efficiently implemented through efficient sampling oracles.
In contrast, the E2D algorithm in (Foster et al., 2021) is not in closed form and requires minimax optimization, and the
sharp regret bounds are proved through the non-constructive Bayesian Thompson Sampling. The paper also presents regret
bounds for a constructive algorithm using the so-called “inverse gap weighting” updating rules, but that algorithm has worse
regret bounds than those proved through the non-constructive approach (by a factor of the bilinear dimension). As a result,
Algorithm 7 makes an improvement because its simplicity and achieving the sharpest regret bound proved in (Foster et al.,
2021) for RL problems in the bilinear class.

We discuss how our general problem formulation in Section 2.1 covers RL problems as follows.
Example C.6 (Reinforcement learning). An episodic finite-horizon reinforcement learning problems is defined as follows.
Let H be the horizon and A be a finite action set. Each model M ∈ M specifies a non-stationary Markov decision process
(MDP) {{S(h)}Hh=1,A, {P

(h)
M }Hh=1, {R

(h)
M }Hh=1, µ}, where µ is the initial distribution over states; and for each layer h, S(h)

is a finite state space, P (h)
M : S(h) ×A → (S(h+1)) is the probability transition kernel, and R(h)

M : S(h) ×A → ∆([0, 1])
is the reward distribution. We allow the transition kernel and loss distribution to be different for different M ∈ M but
assume µ to be fixed for simplicity. Let ΠNS be the space of all deterministic non-stationary policies π = (u(1), . . . , u(H)),
where u(h) : S(h) → A. Given an MDP M and policy π, the MDP evolves as follows: beginning from s(1) ∼ µ, at each
layer h = 1, . . . ,H , the action a(h) is sampled from u(h)(s(h)), the loss r(h)(a(h)) is sampled from RM (s(h), a(h)) and
the state s(h+1) is sampled from PM (·|s(h), a(h)). Define fM (π) = E[ΣH

h=1r
(h)(a(h))] to be the expected reward under

MDP M and policy π. The general framework covers episodic reinforcement learning problems by taking the observation
ot to be the trajectory (s

(1)
t , a

(1)
t , r

(1)
t ), . . . , (s

(H)
t , a

(H)
t , r

(H)
t ) and Π be a subspace of ΠNS. While our framework and

complexity measures allow for agnostic policy classes, recovering existing results often requires us to make realizability-type
assumptions.

We now focus on a broad class of structured reinforcement learning problems called “bilinear class” (Du et al., 2021; Foster
et al., 2021). The following definition of the bilinear class is from (Foster et al., 2021).
Definition C.7 (Bilinear class). A model class M is said to be bilinear relative to reference model M̄ if:

1. There exist functions Wh(·; M̄) : M → Rd, Xh(·; M̄) : M× Rd such that for all M ∈ M and h ∈ [H],

|EM̄,πM [QM,∗
h (sh, ah)− rh − VM,∗

h (sh+1)]| ≤ |⟨Wh(M ; M̄), Xh(M ; M̄)⟩|.

We assume that Wh(M : M̄) = 0.

2. Let zh = (sh, ah, rh, sh+1). There exists a collection of estimation policies {πest
M}M∈M and estimation functions

{ℓest
M (·; ·)}M∈M such that for all M,M ′ ∈ M and h ∈ [H],

⟨Xh(M ; M̄),Wh(M
′ : M̄)⟩ = EM̄,πM◦hπest

M [ℓest
M (M ′; zh)].

If πest
M = πM , we say that estimation is on-policy.

If M is bilinear relative to all M̄ ∈ M, we say that M is a bilinear class. We let dbi(M, M̄) denote the minimal
dimension d for which the bilinear class property holds relative to M̄ , and define dbi(M) = supM̄∈M dbi(M, M̄). We let
Lbi(M; M̄) ≥ 1 denote any almost sure upper bound on |ℓest

M (M ′; zh)| under M̄ , and let Lbi(M) = supM̄∈M Lbi(M; M̄).

For γ ∈ [0, 1], let πγ
M be the randomized policy that—for each h—plays πM,h with probability 1− γ/H and πest

M,h with
probability γ/H . As an application of Theorem 7.1 in (Foster et al., 2021), we have upper bounds for DECTS

η as follows.

Proposition C.8 (Upper bounds for bilinear class reinforcement learning). Let M be a bilinear class and let M̄ ∈ M. Let
µ ∈ ∆(M) be given, and consider the modified Bayesian posterior sampling strategy that samples M ∼ µ and plays πα

M ,
where α ∈ [0, 1] is a parameter.

1. If πest
M = πM (i.e., estimation is on-policy), this strategy with α = 0 certifies that

DECTS
η (M, M̄) ≤ 4ηH2L2

bi(M)dbi(M; M̄)

for all η > 0.

2. For general estimation policies, this strategy with γ =
(
8ηH3L2

bi(M)dbi(M, M̄)
)1/2

certifies that

DECTSγ
η (M, M̄) ≤

(
32ηH3L2

bi(M)dbi(M; M̄)
)1/2

.
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whenever γ ≥ 32H3L2
bi(M)dbi(M, M̄).

By applying the upper bounds on DECTSη from Proposition C.8 to Theorem C.5, we can immediately obtain regret
guarantees for RL problems in the bilinear class. In the on-policy case, Algorithm 7 with optimally tuned η achieves regret

RT ≤ O
(
H2Lbi2dbi(M) · T · log |M|

)
.

In the general case, Algorithm 7 with forced exploration rate γ =
(
8ηH3L2

bi(M)dbi(M, M̄)
)1/2

and optimally tuned η
achieves regret

RT ≤ O
((
H3L2

bidbi(M) log |M|
)1/3 · T 2/3

)
.

As a closed-form algorithm that may be computed through sampling techniques, Algorithm 7 matches the sharp results
for the non-constructive Bayesian Posterior Sampling algorithm proved in (Foster et al., 2021), and it achieves better
regret bounds than the closed-form “inverse gap weighting” algorithm provided in the same paper. Its regret bound for RL
problems in the bilinear class also match the E2D algorithms in (Foster et al., 2021; 2022a) that are not in closed-form and
require more challenging minimax optimization.

Our results in this section apply to reinforcement learning problems where the DEC is easy to upper bound, but bounding
the information ratio may be more challenging, particularly for complex RL problems where the model class M may not be
convex and the average of two MDPs may not belong to the model class. Specifically, we propose MAIR and provide a
generic algorithm that uses DEC and the estimation complexity of the model class (log |M|) to bound the regret. Another
promising research direction is to extend our general results for AIR and the tools from Section B.2 to reinforcement
learning problems with suitably bounded information ratios, such as tabular MDPs and linear MDPs, as suggested in (Hao &
Lattimore, 2022). We anticipate that our tools can pave the way for developing constructive algorithms that provide regret
bounds scaling solely with the estimation complexity of the value function class, which is typically smaller than that of the
model class.

D. Conclusion and Future Directions
In this work, we propose a novel approach to solve sequential learning problems by generating “algorithmic beliefs.” We
optimize the Algorithmic Information Ratio (AIR) to generate these beliefs. Surprisingly, our algorithms achieve regret
bounds that are as good as those assuming prior knowledge, even in the absence of such knowledge, which is often the case
in adversarial or complex environments. Our approach results in simple and often efficient algorithms for various problems,
such as multi-armed bandits, linear and convex bandits, and reinforcement learning.

Our work provides a new perspective on designing and analyzing bandit and reinforcement learning algorithms. Our theory
applies to any algorithm through the notions of AIR and algorithmic beliefs, and it provides a simple and constructive
understanding of the duality between frequentist regret and Bayesian regret in sequential learning. Optimizing AIR is a key
principle to design effective and efficient bandit and RL algorithms. We demonstrate the effectiveness of our framework
empirically via experiments on Bernoulli MAB and show that our derived algorithm achieves “best-of-all-worlds” empirical
performance. Specifically, our algorithm outperforms UCB and is comparable to TS in stochastic bandits, outperforms
EXP3 in adversarial bandits, and outperforms TS as well as clairvoyant restarted algorithms in non-stationary bandits.

Our study suggests several future research directions. First, we aim to provide computational guidelines for optimizing
algorithmic beliefs, including techniques for selecting belief subspaces, parameterization, and surrogate objective functions.
Second, we plan to develop efficient algorithm designs for infinite-armed bandit and reinforcement learning problems. As a
first step, we aim to explore the Bayesian interpretation of frequentist approaches, such as gaining a deeper understanding
of the inverse probability weighting (IPW) estimators and existing computationally-efficient algorithms for infinite-armed
bandits (such as SCRiBLe (Abernethy et al., 2008)). Third, we aim to simulate average-case or non-stationary environments
through constraint optimization for algorithmic beliefs. Fourth, we plan to investigate the essential features of the offset and
constraint formulations in the algorithmic belief approach and explore possible connections with localized complexity in
statistical learning theory (Xu & Zeevi, 2020) (offset formulation of DEC has been recently studied in (Foster et al., 2023)).
Lastly, we aim to study instance-dependent bounds by leveraging AIR and algorithmic beliefs, which, to the best of our
knowledge, is currently lacking in the context of information ratio.
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Part II

Proofs and details
E. Extensions and Proofs for AIR
E.1. Extensions of AIR

Extension to general Bregman divergence We can generaliza AIR from using KL divergence to using general Bregman
divergence. And all the results in Section 3 can be extended as well. This generalization is inspired by (Lattimore & Gyorgy,
2021), which defines information ratio and studies algorithm design using general Bregman divergence.

Let Ψ : ∆(Π) → R ∪∞ be a convex, Legendre, and second-order differentiable function. Denote DΨ to be the Bregman
divergence of Ψ, and diam(Ψ) to be the diameter of Ψ (see Appendix H.3) for the background). Given a reference probability
q ∈ int(∆(Π)) in the interior of the simplex and learning rate η > 0, we define the generalized Algorithmic Information
Ratio with potential function Ψ for decision p and distribution ν by

AIRΨ
q,η(p, ν) = E

[
fM (π∗)− fM (π)− 1

η
DΨ(νπ∗|π,o, νπ∗)− 1

η
DΨ(νπ∗ , q)

]
. (14)

We generalize Theorem 3.1 and Theorem 3.4 to second-order differentiable Bregman divergence for general convex Legendre
function, with the log |Π|

η term in the regret bound be replaced by diam(Ψ)
η . Using the extension, we can generalize Theorem

3.2 (regret of APS) and Theorem 3.3 (regret of AMS) to generalized Bregman divergence as well, where the definition
of information ratio will also use the corresponding Bregman divergence as in (Lattimore & Gyorgy, 2021). We state the
extension of Theorem 3.4 here.

Theorem E.1 (Using general Bregman divergence). Assume Ψ : ∆(Π) → R ∪ ∞ is convex, Legendre, second-order
differentiable, and has bounded diameter. Given a compact M, an arbitrary algorithm ALG that produces decision
probability p1, . . . , pT , and a sequence of beliefs ν1, . . . , νT where (νt)π∗|π,o ∈ int(∆(Π)) for all rounds, we have

RT ≤ diam(Ψ)

η
+

T∑
t=1

(
AIRΨ

qt,η(pt, νt)

+ sup
ν∗

(
∂AIRΨ

qt,η(pt, ν)

∂ν

∣∣∣∣∣
ν=νt

)⊤

(ν∗ − νt)

)
.

Extension to high probability bound We conjecture that the results in Section 3 may be able to be extended to high
probability bounds, with some modification in our algorithm and complexity measure. We refer to (Foster et al., 2022b) for
a possible approach to achieve this goal.

E.2. Proof of Theorem 3.1:

By the discussion in Section 5.1 and 5.2, we only need to prove Lemma 5.2 in order to prove Theorem 3.1.

Proof of Lemma 5.2: let Q the space of all mappings from Π×O to ∆(Π). For a mapping Q ∈ Q, denote Q[πt, ot] ∈
∆(Π) as the image of (π, o). Define B : ∆(M×Π)×Q → R by

B(ν,Q) = E
[
fM (π∗)− fM (π)− 1

η
log

Q[π, o](π∗)

q(π∗)

]
. (15)

B(ν,Q) is linear with respect to ν, convex with respect to Q. In order to apply minimax theorem to the concave-convex
objective function B, we need to verify that the sets Q and ∆(M×Π) are convex and compact sets, and B is continuous
with respect to both Q ∈ Q and ν ∈ ∆(M×Π). This verification step assumes a basic understanding of general topology,
as it involves infinite sets (compactness and continuity for finite sets are trivial); and eager readers may choose to skip this
step. For this reason we put the verification step to the end of the proof. By applying Sion’s minimax theorem (Lemma H.2),
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we have

sup
v

inf
Q
B(ν,Q) = inf

Q
sup
ν
B(ν,Q). (16)

From the definition of AIR and first-order optimality condition, we have

AIRq,η(p, ν)

=E
[
fM (π∗)− fM (π)− 1

η
KL(Pν(π

∗|π, o), q)
]

= inf
Q∈Q

B(ν,Q),

so ν̄ is the maximizer of supν infQB(ν,Q). Define Qν̄ as the mapping that maps each (π, o) to the conditional probability
Pν̄(π

∗|π, o), then Qν̄ is the unique minimizer of B(ν̄, Q). Denote Q̄ to be the minimizer of infQ supν B(ν,Q). From the
equality (16), (ν̄, Q̄) must be a Nash equilibrium of B, i.e.

AIRq,η(p, ν̄) = sup
ν

inf
Q
B(ν,Q) = B(ν̄, Q̄) = inf

Q
sup
ν
B(ν,Q).

Then Q̄ is a minimizer of B(ν,Q), which implies Qν̄ = Q̄ as the minimizer is unique. As a result, we have

AIRq,η(p, ν̄)

= sup
ν
B(ν,Qν̄)

= sup
M,π∗

E
[
fM (π∗)− fM (π)− 1

η
log

Pν̄(π
∗|π, o)

q(π∗)

]
.

Verification of the conditions of Sion’s minimax theorem: It is straightforward to see convexity of the sets Q and
∆(M×Π). As a collection of mappings, Q is compact with respect to the product topology by Tychonoff’s theorem, and
B is continuous with respect to Q by the definition of product topology. Because the probability measure on the compact set
is compact with respect to the weak*-topology, ∆(M×Π) is a compact set. We refer to the book (Bogachev & Ruas, 2007)
for the basic background of general topology. Finally, B is continuous with respect to ν because B is linear in ν. □

E.3. Proof of Theorem 3.3

Combining Theorem 3.1 and Lemma 2.5, we prove Theorem 3.3.

E.4. Proof of Theorem 3.2

We prove the following lemma that upper bounds AIRqt,η(qt, νt) by DEC and information ratio for Thompson Sampling.
Theorem 3.2 will be a straightforward consequence of the regret bound (2) in Theorem 3.1 and this lemma.

Lemma E.2 (Bounding AIR by DEC and IR for TS). Assume that fM (π) is bounded in [0, 1] for all M,π. Then for
η ∈ (0, 1/2] and all q ∈ int(∆(Π)), we have

AIRq,η(q, ν) ≤ sup
M∈∆(M)

DEC2η(∆(M),M) + 2η ≤ η

2
· IRTS + 2η.

Proof of Lemma E.2: Given a probability measure ν, Denote νo|π∗,π = EM∼νM|π∗ [M(π)] to be the posterior belief of
observation o conditioned on π∗ and π, and νo|π = E(M,π∗)∼ν [M(π)] to be posterior belief of o conditioned solely on π.

Denote the |Π|−dimensional vector X,Y by

X(π) = E(M,π∗)∼ν [fM (π∗)− fM (π)] ,

Y (π) = E(M,π∗)∼ν

[
D2

H(νo|π∗,π, νo|π)
]
.
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Note that the Algorithmic Information Ratio can always be written as

AIRq,η(p, ν) = Eν,p

[
fM (π∗)− fM (π)− 1

η
KL(νπ∗|π,o, q)

]
= Eν,p

[
fM (π∗)− fM (π)− 1

η
KL(νπ∗|π,o, ν

∗
π)−

1

η
KL(νπ∗ , q)

]
= Eν,p

[
fM (π∗)− fM (π)− 1

η
KL(νo|π∗,π, νo|π)−

1

η
KL(νπ∗ , q)

]
, (17)

where the first equality is the definition of AIR; the second equality is because the expectation of posterior is equal to prior;
and the third equality is due to the symmetry property of mutual information. By (17) we have that

AIRq,η(q, ν)

≤Eν,q

[
fM (πM )− fM (π)− 1

η
D2

H(νo|π∗,π, νo|π)

]
− 1

η
KL(ν∗π, ρt)

= ⟨q,X⟩ − 1

2η
KL(νπ∗ , q)− 1

η
⟨q, Y ⟩ − 1

2η
KL(νπ∗ , q)

≤⟨νπ∗ , X⟩+ 2η − 1

η
⟨q, Y ⟩ − 1

2η
KL(νπ∗ , q)

≤⟨νπ∗ , X⟩+ 2η − 1

η
⟨q, Y ⟩ − 1

2η
D2

H(νπ∗ , q)

≤⟨νπ∗ , X⟩ − (1− η)

(1 + η)η
⟨νπ∗ , Y ⟩+ 2η

≤Eν,νπ∗

[
fM (πM )− fM (π)− 1

2η
D2

H(νo|π∗,π, νo|π)

]
+ 2η, (18)

where the first inequality is by Lemma H.6; the second inequality is by Lemma H.8 and the fact fM (π) ∈ [0, 1] for all
M ∈ M and π ∈ Π; the third inequality is by Lemma H.6; the fourth inequality is a consequence of Lemma H.7 and the
AM-GM inequality; and the last inequality uses the condition η ≤ 1

2 .

Finally, by combining (18) and Lemma 2.5, we have that

AIRq,η(q, ν) ≤ sup
M∈∆(M)

DEC2η(∆(M),M) + 2η ≤ η

2
· IR+ 2η.

□

E.5. Proof of Theorem 3.4 and Theorem E.1

In this section we prove Theorem E.1, which is a more general extension to Theorem 3.4 (Theorem E.1 applies to general
Bregman divergence with second-order differentiable Ψ while Theorem 3.4 is stated with the KL divergence). Theorem 3.4
and E.1 are consequences of the following “envelop theorem,” which shows that gradients of AIR with respect to ν is equal
to the gradient of the adversary when one uses the posterior mapping as the decision rule.

Lemma E.3 (Envelop theorem). Let X and Y be convex sets, and ϕ : X × Y → R a function such that for all y ∈ Y ,
ϕ(·, y) is a Legendre function in x; and for all x ∈ X , −ϕ(x, ·) is a Legendre function in y. For each y ∈ Y , let xy be the a
minimizer of the convex optimization problem

min
x∈X

ϕ(x, y),

and assume that xy is differentiable with respect to y. Then for all y ∈ int(dom(ψ)), we have

∂ϕ(xy, y)

∂y
=
∂ϕ(x, y)

∂y

∣∣∣∣
x=xy

.
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We consider generalized AIR, where Ψ is a Legendre and second-order differentiable function. Recall in (14) we define

AIRΨ
q,η(p, ν) = E

[
fM (π∗)− fM (π)− 1

η
DΨ(νπ∗|π,o, νπ∗)− 1

η
DΨ(νπ∗ , q)

]
.

And similar to (15), for all ν ∈ ∆(M×Π) such that Pν(π
∗) ∈ int(∆(Π)) and R : Π×O → R|Π|, we define

B(ν,R) = E
[
fM (π∗)− fM (π) +

1

η
⟨∇Ψ(q)−R[π, o]),1(π∗)− q⟩+ 1

η
DΨ∗(R[π, o],∇Ψ(q))

]
,

where 1(π∗) is the vector whose π∗−coordinate is 1 but all other coordinates are 0. Note that B(ν,R) is a convex function
with respect to R. By Lemma H.4 and the property (b) in Lemma H.3, we know that

AIRΨ
q,η(p, ν) = B(ν,∇Ψ(νπ∗|·,·)) = inf

R
B(ν,R),

where the last equality is by the first-order optimal condition. By Lemma E.3, when Ψ is second-order differentiable, we
further have

∂AIRΨ
q,η(p, ν)

∂ν
=
∂B(ν,R)

∂ν

∣∣∣∣
R=∇Ψ(νπ∗|·,·)

.

By the above identity and the linearity of B(ν,Q) with respect to ν, we have

B(ν∗, νπ∗|·,·) = AIRΨ
q,η(p, ν) +

〈
∂AIRΨ

q,η(p, ν)

∂ν
, ν∗ − ν

〉
, ∀ν∗.

Following the same steps in proving Theorem 3.1, we prove Theorem E.1 (and consequently Theorem 3.4).

F. Details and Proofs for Bandit Problems
F.1. Concave parameterization with Bernoulli reward

We consider Bernoulli structured bandit with an action set Π ⊂ Rd and a mean reward function class F ⊂ (Π :7→ [0, 1]) that
is convex. (As discussed in the beginning of Section 4, every bounded-reward bandit problem can equivalently be reduced to
a Bernoulli bandit problem. For simplicity we make the standard assumption that Π is finite, which can be removed using
standard descretization and covering argument. The goal here is to make the computation complexity to be independent
of the size of model class M, but only depends on |Π|. The general principle to achieve this goal is as follows. For each
possible value of π∗, we assign an “effective model” Mπ∗ to π∗ so that the optimization problem (8) reduces to selecting
those |Π| “effective models,” as well as the probability distribution over them.

We introduce the following parametrization: ∀a, a∗ ∈ Π (we use notation a∗, a as the index sometimes to avoid repetition of
notation π∗, π),

θa∗(a) = E [r(a)|π∗ = a∗] ,

α(a∗) = νa∗|π,o(a
∗),

βa∗(a) = α(a∗) · θa∗(a).

Then we have represent AIR by (α, βπ∗π∗∈Π):

AIRq,η(p, ν) =
∑
π∗∈Π

βπ∗(π∗)−
∑

π∗,π∈[K]

p(π)βπ∗(π)

−1

η

∑
π∗,π∈[K]

p(π)α(π∗)kl

(
βπ∗(π)

α(π)
,
∑
π∗∈Π

βπ∗(π)

)
− 1

η
KL(α, q), (19)

and the constraint of (α, βπ∗π∗∈Π) is that the functions parameterized by θa∗ belong to the mean reward function class F .
We know the constraint set of (α, βπ∗π∗∈Π) to be convex because the convexity of perspective function.
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Now we want to prove that the AIR objective in the maximization problem (8) is concave. We have

B(ν,Q) = Ep,ν

[
fM (π∗)− fM (π) +

1

η

∫
O
Pν(π, o, π

∗) log
q(π∗)

Q[π, o](π∗)
do

]
=
∑
π∗

βπ∗(π∗)−
∑
π,π∗

p(π)βπ∗(π) +
1

η

∑
π,π∗

p(π)βπ∗(π) log
q(π∗)

Q[π, 1](π∗)

+
1

η

∑
π,π∗

p(π)(α(π∗)− βπ∗(π∗)) log
q(π∗)

Q[π, 0](π∗)
. (20)

This means that after parameterizing ν with α and {βπ∗}π∗∈Π, B(ν,Q) will be a linear function of (α, {βπ∗}π∗∈Π). As a
result,

AIRq,η(p, ν) = inf
Q
B(ν,Q)

will be a concave function of (α, {βπ∗}π∗∈Π). So the optimization problem to maximize AIR is a convex optimization
problem, whose computational complexity will be poly-logarithmic to the cardinality of (α, {βπ∗}π∗∈Π). As a result,
the computational complexity to maximize AIR is polynomial in |Π| and does not depends on cardinality of the model
class. This discussion shows that we give finite-running-time algorithm with computational complexity poly(ed) even when
the cardinality of model class is double-exponential. Still, the computation is only efficient for simple problems such as
K−armed bandits, but we also give efficient algorithm for linear bandits in Appendix B.2.

F.2. Simplified APS for Bernoulli MAB

For Bernolli K−armed bandits discussed in in Section 4.1, we give the details about how to use first-order optimality
conditions to derive Algorithm 4.

We denote νπ∗(i|j, 1) as the shorthand for νπ∗(i|π = j, o = 1), the conditional probability P(π∗ = i|π = j, o = 1) when
the underlying probability measure is ν.

By (20) and Lemma E.3 (using the envelop theorem and the bivariate function (20) to calculate the derivatives is easier than
directly calculating the derivatives of the AIR parameterization (19)), we have for each i ∈ [K],

∂AIRq,η(p, ν)

∂βi(i)
= (1− p(i))− 1

η
p(i) (log νπ∗(i|i, 1)− log νπ∗(i|i, 0)) . (21)

And for every i ̸= j ∈ [K],

∂AIRq,η(p, ν)

∂βi(j)
= −p(j)− 1

η
p(j) (log νπ∗(i|j, 1)− log νπ∗(i|j, 0)) . (22)

Lastly, for each i ∈ [K],

∂AIRq,η(p, ν)

∂α(i)
=

1

η

∑
j∈[K]

p(j) (log q(i)− log νπ∗(i|j, 0)) . (23)

We let the derivatives in (21) and (22) be zero, which means that the derivatives with respect to all coordinates of β are zero.
We have for all i ̸= j ∈ [K]

log
νπ∗(j|j, 1)
νπ∗(j|j, 0)

=
η

p(j)
− η,

log
1− νπ∗(i|j, 1)
1− νπ∗(i|j, 0)

= −η, i ̸= j.
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Solving the above two equation we obtain

νπ∗(j|j, 1) = 1− exp(−η)
1− exp(−η/p(j))

, ∀j ∈ [K],

νπ∗(i|j, 1) = exp(−η)− exp(−η/p(j))
1− exp(−η/p(j))

· α(i)

1− α(j)
, ∀i ̸= j ∈ [K],

νπ∗(j|j, 0) = exp(η)− 1

exp(η/p(j))− 1
, ∀j ∈ [K],

νπ∗(i|j, 0) = exp(η/p(j))− exp(η)

exp(η/p(j))− 1
· α(i)

1− α(j)
, ∀i ̸= j ∈ [K]. (24)

Now we set α = p = q so that the posterior updates (24) all have closed forms. Now we want to prove that (23) (the
derivatives with respect to coordinates of α) are bounded by constants. As can be seen from (24), when the observed reward
at the chosen action j is rt = 0, the posterior νπ∗(j|j, 0) for the chosen action will be smaller than its prior belief q(j); and
the posteriors νπ∗(i|j, 0) will be larger than the prior beliefs q(i) for all unchosen actions i ̸= j. As a result, we have for
every i ∈ [K],

∂AIRq,η(p, ν)

∂α(i)
=
1

η

∑
j∈[K]

p(j) log
q(i)

νπ∗(i|j, 0)

≤1

η
p(i) log

q(i)

νπ∗(i|i, 0)

=
1

η
p(i) log

p(i)(exp(η/p(i))− 1)

exp(η)− 1

≤1,

where the first equality is by (23); the first inquality is because q(i) < νπ∗(i|j, 0) for all j ̸= i; the second equality because
of (23) and p = q; and the last inequality is a consequence of the following application of Jensen’s inequality:

1

1 + p(i)
exp(η) +

p(i)

1 + p(i)
exp

(
− η

p(i)

)
≥ 1.

Now we have shown that the derivatives of AIR with respect to all {βi(j)}i,j∈[K] are zeros, and the derivatives of AIR with
respect to all {α(i)}i∈[K]. We note that AIR is 1

η−strongly convex with respect to α when the gradient with respect to
{βi(j)}i,j∈[K] are all zeros. Then by Theorem 3.4 and Theorem 3.2 we can prove that
Theorem F.1 (Regret of Simplified APS for Bernoulli MAB). The regret of Algorithm 4 with η = γ =√

2 logK/(KT + 4T ) is bounded as follows, for all T ≥ 2K logK + 4,

RT ≤
√
(5K + 4)T logK.

F.3. Surrogate concave objective with Gaussian reward

For structured bandit with Gaussian reward structure, we can formulate the optimization problem as a surrogate optimization
problem, where all classical upper bounds about information ratio in practical applications apply (e.g., see the square-loss
formulation of IR in (Russo & Van Roy, 2016; Lattimore, 2020)). For the simplicity of presentation, we restrict our attention
to Gaussian reward with mean bounded in [0, 1] and variance σ2 ≤ 1.

Denote α = Pν(π
∗) and βπ∗ = Pν(π

∗) · θπ∗ . Define a variant of AIR as

AIR = E
[
fM (π∗)− fM (π)− 1

η
KL(N(θπ∗(π), 1), N(θavg(π), 1))−

1

η
KL(α, q)

]
, (25)

where we denote

θavg =
∑
π∗∈Π

α(π∗)θπ∗ .
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And we define

B(ν, ω) = E(M,π∗)∼ν,π∼p

[
fM (π∗)− fM (π)− 1

2ησ2

(
(θωπ∗(π)− o)2 − (θωavg(π)− o)2

)
− 1

η
log

αω(π∗)

q(π∗)

]
= E

[
fM (π∗)− fM (π)− 1

2ησ2

(
θωπ∗(π)2 − θωavg(π)

2
)
− 1

η
log

αω(π∗)

q(π∗)

]
+

1

ησ2
E
[
o(θπ∗ − θωavg)

]
. (26)

Then we have

AIRq,η(p, ν) = inf
ω
B(ν, ω).

This means that AIRq,η(p, ν) will be a concave function of (α, {βπ∗}π∗∈Π). And we can develop a parallel theory for
approximately optimizing AIR as we have done for AIR in Section 3.4. In particular, we need to verify that B(ν, ω) is
always a upper bound of B(ν,Pω(π

∗|·, ·)) in order to derive regret bounds. This is true if we assume the variance σ2 ≤ 1 as
the normal probability density function is locally concave round its mean.

F.4. Simplified APS for Gaussian linear bandits, relationship with IPW

In this subsection we derive Algorithm 5 for adversarial linear bandits with Gaussian reward. As the decision space is an
d−dimensional action set Π = A ⊆ Rd, we will use the notations A (as action set), a (as action) and a∗ (as optimal action)
to follow the tradition of literature about linear bandits.

By (26) and Lemma E.3, we have for each a∗ ∈ A,

∂AIRq,η(p, ν)

∂βa∗
= a∗ − Ea∼p[a]−

1

η
Ea∼p[aa

⊤] (θa∗ − θavg) . (27)

And for each a∗ ∈ A,

∂AIRq,η(p, ν)

∂α(a∗)
= − 1

2η

∫
A
p(a)

(
θ⊤a∗a− θ⊤avga

)2
da− 1

η
log

α(a∗)

q(a∗)
. (28)

Let the derivatives in (27) be zero. If the matrix Ea∼p[aa
⊤] have full rank, then we have

θa∗ − θavg = η(Ea∼p[aa
⊤])−1(a∗ − Ea∼p[a]), ∀a∗ ∈ A,

α = p.

Taking the above relationship into (28), we have

∂AIRq,η(p, ν)

∂α(a∗)
= −η

2
(a∗ − Ea∼p[a])(Ea∼p[aa

⊤])−1(a∗ − Ea∼p[a])−
1

η
log

α(a∗)

q(a∗)
.

Assume the minimal eigenvalue of Ea∼p[aa
⊤] satisfies λmin(Ea∼p[aa

⊤]) ≥ η, then one can verify that the following
solution is approximately optimal to the problem (8) (with controllable precision):

α = p,

θa∗ = η(E[aa⊤])−1a∗, ∀a∗ ∈ A. (29)

Note that this solution satisfies θi ∈ [0, 1]K for all i ∈ [K].

By Bayes’ rule and (29), the posterior update Pν(π
∗|π, r(π)) can be expressed as follows. Given a∗ ∈ A, we have

Pν(a
∗ = ā|a, r(a)) =

α(ā) exp(− 1
2 (r(a)− θ⊤ā a)

2)∫
A p(a

∗) exp(− 1
2 (r(a)− θa∗(a))2)da∗

=
α(ā) exp

(
r(a)θ⊤ā a− 1

2 (θ
⊤
ā a)

2
)∫

A α(a
∗) exp

(
r(a)θ⊤a∗a− 1

2 (θ
⊤
a∗a)2

)
da∗

.
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The resulting algorithm is an exponential weight algorithm with a modified importance weight estimator

r̂t(a) = a⊤(Ea∼p[aa
⊤])−1atrt(at)−

η

2
(a⊤(Ea∼p[aa

⊤])−1at)
2.

The forced exploration to ensure λmin(Ea∼p[aa
⊤]) ≥ η can be done with the help of the volumetric spanners constructed in

(Hazan & Karnin, 2016).

G. Proofs for MAIR
G.1. Proof of Lemma C.3

By Definition C.1 we have

sup
ρ∈int(∆(M)))

sup
µ∈∆(M)

inf
p∈∆(Π)

MAIRρt,η(p, µ)

= sup
ρ∈int(∆(M)))

sup
µ∈∆(M)

inf
p∈∆(Π)

E
[
fM (πM )− fM (π)− 1

η
KL(M(π), µo|π)−

1

η
KL(µ, ρ)

]
= sup

µ∈∆(M)

inf
p∈∆(Π)

E
[
fM (πM )− fM (π)− 1

η
KL(M(π), µo|π)

]
≤ sup

M̄∈conv(M)

DECKL
η (M, M̄),

where the second equality is by (11) and the inequality is because Hellinger distance is bounded by KL divergence (Lemma
H.6). □

G.2. Analysis of sequential estimation

Consider the optimistic Bayesian posterior update

ρt+1(M) ∝ exp

(
t∑

s=1

(log[M(πs)](os) + ηWs(M))

)
, (30)

where {Ws}Ts=1 is a series of non-negative weights in [0, 1]M . When all Ws(M) = 0 for all M and s, the update reduces to
the update of Bayesian posterior. We want to upper bound the cumulative estimation error of updating rule (30). We present
the following theorem, whose proof is inspired by (Agarwal & Zhang, 2022; Zhang, 2021).
Theorem G.1. Applying the updating rule (30) with Ws(M) ∈ [0, 1] for all M ∈ M and s = 1, . . . , T , we have

T∑
t=1

Eµt,pt
[D2

H(M(π),M∗(π))] ≤ 2η + 1 + 2 log(|M|T ) + 4

T∑
t=1

Eµt,pt
[Wt(M)] .

Proof of Theorem G.1: denote Et[·] be the conditional expectation conditioned on the filtration from round 1 to round t.
Denote

Zt(M) =

T∑
s=1

(log[M(πs)](os)) + ηWs(M).

We have

log

( ∑
M∈M

Et−1 [Zt(M)]

)
− log

( ∑
M∈M

Zt−1(M)

)

= log

( ∑
M∈M

Zt−1(M)∑
M∈M Zt−1(M)

Et−1 [exp (log[M(πt)](ot) +Wt(M))]

)

= log

( ∑
M∈M

µt(M) · Et−1 [[M(πt)](ot)] · exp (Wt(M))

)
.
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By the above equality, we have

log

( ∑
M∈M

Et−1 [Zt(M)]

)
− log

( ∑
M∈M

Zt−1(M)

)
≤
∑

M∈M
µt(M) · Et−1 [[M(πt)](ot)] · exp (Wt(M))− 1

=
∑

M∈M
µt(M) · (Et−1 [[M(πt)](ot)]− 1) · exp (Wt(M))

+
∑

M∈M
µt(M) · exp (Wt(M))− 1

≤Eµt,pt

[∫
O
[M∗(π)](o)[M(π)](o)do− 1

]
+ 2Wt(M)

≤Eµt,pt

[∫
O

√
[M∗(π)](o)[M(π)](o)do− 1

]
+ 2Wt(M)

=− 1

2
Eµt,pt

[
D2

H(M(π),M∗(π))
]
+ 2Wt(M),

where the first inequality is because log(1 + z) ≤ z for all z ∈ R; the second inequality is because ez ≤ 1 + 2z for
all z ≤ [0, 1] and Wt(M) ∈ [0, 1]; and the third inequality is because [M∗(π)](o) ∈ [0, 1] by the the fact M∗(π) is a
probability distribution over O.

Rearrange the above inequality, we conclude that

Eµt,pt

[
D2

H(M(π),M∗(π))
]

≤2 log

( ∑
M∈M

Zt−1(M)

)
− 2 log

( ∑
M∈M

Et−1 [Zt(M)]

)
+ 4Wt(M). (31)

By lemma H.5, for any δ ∈ (0, 1), with probability at least 1− δ,

T∑
t=1

(
log

( ∑
M∈M

Zt−1(M)

)
− log

( ∑
M∈M

Et−1 [Zt(M)]

))

≤
T∑

t=1

(
log

( ∑
M∈M

Zt−1(M)

)
− log

( ∑
M∈M

Zt(M)

))
+ log

1

δ

= log

( ∑
M∈M

Z0(M)

)
− log

( ∑
M∈M

ZT (M)

)
+ log

1

δ

≤η + log |M|+ log
1

δ
. (32)

Taking δ = 1/T in (32) and applying (31), we can show that

T∑
t=1

Eµt,pt

[
D2

H(M(π),M∗(π))
]

≤max{1, 2η + 2 log(|M|T ) + 4

T∑
t=1

Eµt,pt [Wt(M)]}

≤2η + 1 + 2 log(|M|T ) + 4

T∑
t=1

Eµt,pt
[Wt(M)] .

□
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G.3. Proof for Theorem C.4

Calculating the optimization error. Similar to Theorem 3.4, we can prove

RT ≤ log |M|
η

+

T∑
t=1

(
MAIRρt,η(pt, µt) +

〈
∂MAIRρt,η(pt, µ)

∂µ

∣∣∣∣
µ=µt

,1(M∗)− µt

〉)
, (33)

where 1(M∗) is the vector whose M∗− coordinate is 1 but all other coordinates are 0.

By Lemma E.3 we have

∂MAIRρ,η(p, µ)

∂µ(M)
= fM (πM )− Eπ∼p [fM (π)] +

1

η
Eπ∼p,o∼M(π)

[
log

ρ(M)

µ(M |π, o)

]
= fM (πM )− Eπ∼p [fM (π)]− 1

η
log

µ(M)

ρ(M)
− 1

η
Eπ∼p,ō∼M(π)

[
log

[M(π)](ō)

µo(ō|π)

]
.

By using the updating rule in (12), we have

∂MAIRρ,η(p, µ)

∂µ(M)
= −1

η
Eπ∼p,ō∼M(π)

[
log

[M(π)](o)

µo(ō|π)

]
= −1

η
Ep∼π

[
KL(M(π), µo|π)

]
,

which implies 〈
∂MAIRρt,η(pt, µ)

∂µ

∣∣∣∣
µ=µt

,1(M∗)− µt

〉

=
1

η
Eµt,pt

[
KL(M(π), (µt)o|π)

]
− 1

η
Eπ∼p

[
KL(M∗(π), (µt)o|π)

]
. (34)

Taking (34) into (33), we have

RT

≤ log |M|
η

+

T∑
t=1

Eµt,pt

[
fM (πM )− fM (π)− 1

η
KL
(
M∗(π), (µt)o|π

)
− 1

η
KL(µt, ρt)

]
.

So we have

RT ≤ log |M|
η

+

T∑
t=1

Eµt,pt

[
fM (πM )− fM (π)− 1

η
KL(µt, ρt)

]
. (35)

Refined analysis of Algorithm 6. At the same time, we have

Eµt,pt

[
fM (πM )− fM (π)− 1

η
KL(µt, ρt)

]
=Eµt,pt

[
fM (πM )− fM (π)− 1

η
D2

H (M∗(π),M(π))

]
− 1

η
KL(µt, ρt) +

1

η
Eπ∼pt,M∼µt,

[
D2

H(M(π),M∗(π))
]
. (36)

Applying Theorem G.1 with

Ws(M) = η (fM (πM )− Eps [fM (π)]) ,

we have that

1

η

T∑
t=1

Eµt,pt

[
D2

H(M(π),M∗(π))
]
≤ 2 +

2 log(|M|T ) + 1

η
+ 4

T∑
t=1

Eµt,pt
[fM (πM )− fM (π)] . (37)
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Combining (35), (36) and (37), we have

RT

≤ log |M|
η

+

T∑
t=1

Eµt,pt

[
fM (πM )− fM (π)− 1

η
KL(µt, ρt)

]

≤
T∑

t=1

Eµt,pt

[
5 (fM (πM )− fM (π))− 1

η
D2

H(M(π),M∗(π))− 1

η
KL(µt, ρt)

]
+ 2 +

2 log(|M|T ) + 1

η
.

Therefore, we prove Theorem C.4. □

G.4. Proof of Theorem C.5

Consider the Bayesian posterior sampling strategy induced by µ ∈ ∆(M), which samples M ∼ µ and plays πM . Denote
the induced decision probability as

µπM
(π) =

∑
M∈M,πM=π

µ(M).

For arbitrary µ ∈ ∆(M), denote the |Π|−dimensional vectors X,Y by

X(π) = Eµ [fM (πM )− fM (π)] ,

Y (π) = Eµ

[
D2

H(P(o|M,π),Pµ(o|π))
]
.

Then

Eµ,π∼ρπM

[
5 (fM (πM )− fM (π))− 1

η
D2

H(M
∗(π),M(π))

]
− 1

η
KL(µ, ρ)

≤⟨ρπM
, 5X⟩ − 1

η
⟨ρπM

, Y ⟩ − 1

η
KL(µπM

, ρπM
)

≤⟨µπM
, 5X⟩+ 10η − 1

η
⟨ρπM

, Y ⟩ − 1

2η
KL(µπM

, ρπM
)

≤⟨µπM
, 5X⟩+ 10η − 1

η
⟨ρπM

, Y ⟩ − 1

2η
D2

H(µπM
, ρπM

)

≤⟨µπM
, 5X⟩ − (1− η)

(1 + η)η
⟨µπM

, Y ⟩+ 10η

≤5Eµ,π∼µπM

[
fM (πM )− fM (π)− 1

2η
D2

H(M
∗(π),M(π))

]
+ 2η,

where the first inequality is because KL divergence between induced decision distributions of two model distributions will
be no larger than KL divergence between the two model distributions; the second inequality is by Lemma H.8 and the fact
fM (π) ∈ [0, 1] for all M and π; the third inequality is by Lemma H.6; the fourth inequality is a consequence of Lemma H.7
and the AM-GM inequality; and the last inequality uses the condition η ≤ 1

10 .

Combining the above inequality with Theorem C.4, we prove Theorem C.5.

□

H. Technical Backgrounds
H.1. Conditional entropy

In the discussion after Definition 2.3, we utilize the following important result stating that conditional entropy is concave.
The reference provides a succinct proof to this result.
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Lemma H.1 (Conditional entropy of a probability measure is concave, (Song, 2019)). Let P be a probability measure on
locally compact space X , and let E,F be countable partitions of the space. Define the entropy with respect to the partition
E as

H(P,E) = −
∑
E∈E

P(E) logP(E),

and the conditional entropy as

H(P,E|F) =
∑
F∈F

P(F )H(P(·|F ),E).

Then the conditional entropy H(P,E|F) is a concave function with respect to P.

H.2. Minimax theorem

We introduce the classical minimax theorem for convex-concave game.

Lemma H.2 (Sion’s minimax theorem for values, (Sion, 1958)). Let X and Y be convex and compact sets, and ψ : X ×Y →
R a function which for all y ∈ Y is convex and continuous in x and for all x ∈ X is concave and continuous in y. Then

min
x∈X

max
y∈Y

ψ(x, y) = max
y∈Y

min
x∈X

ψ(x, y).

H.3. Convex analysis

Let W be a d−dimensional convex decision set. Let the potential function Ψ : Rd → R ∪∞ be a proper convex function
that is Legendre [Rockafellar, 2015, §26]. We assume W ⊂ dom(Ψ) := {u ∈ Rd : Ψ(u) <∞} and bounded diameter of
potential, e.g.,

diam(W) := sup
u,v∈W

Ψ(u)−Ψ(v) <∞.

Define the Fenchel-Legendre dual of Ψ as

Ψ∗(a) = sup
u∈Rd

⟨a, u⟩ −Ψ(u), ∀a ∈ Rd.

Define the Bregman divergences with respect to Ψ and Ψ∗ as

DΨ(u, v) = Ψ(u)−Ψ(v)− ⟨∇Ψ(v), u− v⟩,
DΨ∗(a, b) = Ψ∗(a)−Ψ∗(b)− ⟨∇Ψ∗(b), a− b⟩.

Lemma H.3 (Properties of Legendre function, (Lattimore & Szepesvári, 2020)). If Ψ is a Legendre function, then

(a) ∇Ψ is a bijection between int(dom(Ψ)) and int(dom(Ψ∗)) with the inverse (∇Ψ)−1 = ∇Ψ∗. That is, for u ∈
int(dom(Ψ)), if a = ∇Ψ(u), then a ∈ int(dom(Ψ∗)) and ∇Ψ∗(a) = u;

(b) DΨ(u, v) = DΨ∗(∇Ψ(v),∇Ψ(u)) for all u, v ∈ int(dom(Ψ)); and

(c) the Fenchel conjugate Ψ∗ is Legendre.

Note that the property (a) in Lemma H.3 is a foundational results in convex optimization—in order to optimize a convex
function, one only needs to optimize its Fenchel dual function (in the sense of making gradient small). For example, mirror
descent, dual averaging and follow the regularized leader are procedures based on this principle. This property is a special
case of Lemma E.3, the “envelop theorem.”

We also introduce a property of Bregman divergence.

Lemma H.4 (Generalized Pythagorean theorem). For a convex function Ψ : W → R ∪∞ and u, v, w ∈ W , we have

DΨ(u, v)−DΨ(v, w)−DΨ(w, u) = ⟨u− w,∇Ψ(w)−∇Ψ(v)⟩.
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H.4. Concentration inequality

We introduce a one-sided martingale concentration inequality from [Foster et al., 2021, Lemma A.4] for a sequence of
random variables.

Lemma H.5 (Martingale concentration inequality). For any sequence of real-valued random variables {Xt}Tt=1 adapted to
a filtration {Ft}Tt=1, it holds that for any δ ∈ (0, 1), with probability at least 1− δ, for all T ′ ≤ T ,

T ′∑
t=1

Xt ≤
T ′∑
t=1

log (Et−1[exp(Xt)]) + log
1

δ
.

H.5. Information theory

We have the following result stating that the Hellinger distance between two probability measures are smaller than the KL
divergence between those two probability measures.

Lemma H.6 (Hellinger distance smaller than KL divergence). For probability measures P and Q, the following inequalities
hold:

D2
H(P,Q) ≤ KL(P,Q).

We introduce a localized version of Pinsker-type inequality using Hellinger distance (which will be stronger than using the
KL divergence).

Lemma H.7 (Multiplicative Pinsker-type inequality for Hellinger distance, (Foster et al., 2021)). Let P and Q be probability
measures on compact space X . For all h : X → R with 0 ≤ h(X) ≤ R almost surely under P and Q, we have

|EP[h(X)]− EQ[h(X)]| ≤
√

2R(EP[h(X)] + EQ[h(X)]) ·D2
H(P,Q).

We introduce a standard one-sided bound using KL divergence. Compared with Lemma H.7, the upper bound in Lemma
H.8 only depends on the probability measure q, while the bound is one-sided and it does not take the square-root from as in
Lemma H.7.

Lemma H.8 (Drifted error bound using KL divergence). For any p, q ∈ ∆(Π), η > 0, and any vector y ∈ RΠ where
y(π) ≤ 1/η for all π ∈ Π, we have

⟨y, p− q⟩ − 1

η
KL(p, q) ≤ η

∑
π∈Π

q(π)y(π)2.

Proof of Lemma H.8: consider the KL divergence ψq,η(p) =
1
ηKL(p||q), it is known that the convex conjugate duality of

ψq is the log partition function

ψ∗
q,η(y) := sup

p∈∆(Π)

{
⟨y, p⟩ − 1

η
KL(p||q)

}

=
1

η
log

(∑
π∈Π

q(π) exp(ηy(π))

)
. (38)
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We have

⟨y, p⟩ − 1

η
KL(p||q)

≤ 1

η
log

(∑
π∈Π

q exp(ηy(π))

)

≤ 1

η
log

(∑
π

q(π)(1 + ηy(π) + η2y(π)2)

)

=
1

η
log

(
1 + η⟨y, q⟩+ η2

∑
π∈Π

q(π)y(π)2

)
≤ ⟨y, q⟩+ η

∑
π∈Π

q(π)y(π)2, (39)

where the first equation is because of (38); the second inequality is because ez ≤ 1 + z + z2 for all z ≤ 1 and the last
inequality is due to log(1 + z) ≤ z for all z ∈ R. Therefore we have

⟨y, p− q⟩ − 1

η
KL(p||q) ≤ η

∑
π∈Π

q(π)y(π)2

for all y ∈ R|Π| where y(π) ≤ 1/η for all π. □
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