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Abstract
Recent works have demonstrated the benefits of
capturing long-distance dependency in graphs
by deeper graph neural networks (GNNs). But
deeper GNNs suffer from the long-lasting scala-
bility challenge due to the neighborhood explo-
sion problem in large-scale graphs. In this work,
we propose to capture long-distance dependency
in graphs by shallower models instead of deeper
models, which leads to a much more efficient
model, LazyGNN, for graph representation learn-
ing. Moreover, we demonstrate that LazyGNN
is compatible with existing scalable approaches
(such as sampling methods) for further acceler-
ations through the development of mini-batch
LazyGNN. Comprehensive experiments demon-
strate its superior prediction performance and scal-
ability on large-scale benchmarks. The imple-
mentation of LazyGNN is available at https:
//github.com/RXPHD/Lazy_GNN.

1. Introduction
Graph neural networks (GNNs) have been widely used for
representation learning on graph-structured data (Hamil-
ton, 2020; Ma & Tang, 2021), and they achieve promising
state-of-the-art performance on various general graph learn-
ing tasks, such as node classification, link prediction, and
graph classification (Kipf & Welling, 2016; Gasteiger et al.,
2019; Veličković et al., 2017; Wu et al., 2019) as well as
a variety of important applications, such as recommenda-
tion systems, social network analysis, and transportation
prediction. In particular, recent research in deeper GNNs
has generally revealed the performance gains from cap-
turing long-distance relations in graphs by stacking more
graph convolution layers or unrolling various fixed point
iterations (Gasteiger et al., 2018; Gu et al., 2020; Liu et al.,
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2020; Chen et al., 2020a; Li et al., 2021; Ma et al., 2020; Pan
et al., 2020; Zhu et al., 2021; Chen et al., 2020b). However,
the recursive feature propagations in deeper GNNs lead to
the well-known neighborhood explosion problem since the
number of neighbors grows exponentially with the number
of feature propagation layers (Hamilton et al., 2017; Chen
et al., 2018a). This causes tremendous scalability challenges
for data sampling, computation, memory, parallelism, and
end-to-end training when employing GNNs on large-scale
graphs. It greatly limits GNNs’ broad applications in large-
scale industry-level applications due to limited computation
and memory resources (Ying et al., 2018; Shao et al., 2022).

A large body of existing research improves the scalability
and efficiency of large-scale GNNs using various innovative
designs, such as sampling methods, pre-computing or post-
computing methods, and distributed methods. Although
these approaches mitigate the neighborhood explosion prob-
lem, they still face various limitations when they are applied
to deeper GNNs. For instance, sampling approaches (Hamil-
ton et al., 2017; Chen et al., 2018a; Zeng et al., 2020; Zou
et al., 2019; Fey et al., 2021; Yu et al., 2022) usually incur
large approximation errors and suffer from performance
degradation as demonstrated in large-scale OGB bench-
marks or require large additional memory or storage space
to store activation values in hidden layers. Pre-computing
or post-computing methods (Wu et al., 2019; Rossi et al.,
2020; Sun et al., 2021; Zhang et al., 2022; Bojchevski et al.,
2020; Zhu, 2005; Huang et al., 2020) lose the benefits of
end-to-end training and usually suffer from performance
loss. Distributed methods (Chiang et al., 2019; Chai et al.,
2022; Shao et al., 2022) distribute large graphs to multi-
ple servers for parallel training, but they either neglect the
inter-server edges or suffer from expensive feature commu-
nication between servers.

In this work, we take a substantially different and novel per-
spective and propose to capture long-distance dependency
in graphs by shallower GNNs instead of deeper ones. The
key intuition comes from the fact that node information will
be propagated over the graph many times during the training
process so we may only need to propagate information lazily
by reusing the propagated information over the training iter-
ations. This intuition leads to the proposed LazyGNN that
solves the inherent neighborhood explosion problem by sig-
nificantly reducing the number of aggregation layers while
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still capturing long-distance dependency in graphs through
lazy propagation. Multiple technical challenges such as the
risk of over-smoothing, additional variation due to feature
dropout, and back-propagation through historical compu-
tation graphs are addressed through innovative designs in
LazyGNN. Moreover, since LazyGNN is a shallow model,
it naturally tackles the limitations that existing scalable ap-
proaches suffer from when handling large-scale and deeper
GNNs. Therefore, the contribution of LazyGNN is orthog-
onal and complementary to existing efforts, and various
scalable approaches can be used in LazyGNN for further
acceleration. We demonstrate this by developing a highly
scalable and efficient mini-batch LazyGNN based on sam-
pling methods. To the best of our knowledge, LazyGNN
is the first GNN model being versatilely friendly to data
sampling, computation, memory, parallelism, and end-to-
end training but still captures long-distance dependency in
graphs. Our contributions can be summarized as follows:

• We reveal a novel perspective to solve the neighbor-
hood explosion problem by exploiting the computation
redundancy in training GNNs;

• A novel shallow model, LazyGNN, is proposed to cap-
ture long-distance dependency in graphs for end-to-end
graph representation learning through lazy forward and
backward propagations;

• We demonstrate that existing scalable approaches can
be compatible with LazyGNN by introducing a highly
efficient and scalable mini-batch LazyGNN to handle
large-scale graphs based on sampling methods.

• Comprehensive experiments and studies demonstrate
that LazyGNN achieves superior prediction perfor-
mance and efficiency on large-scale graph datasets.

2. Preliminary
Notations. A graph is represented by G = (V, E)
where V = {v1, . . . , vN} is the set of nodes and E =
{e1, . . . , eM} is the set of edges. Suppose that each node
is associated with a d-dimensional feature vector, and the
original features for all nodes are denoted as Xfea ∈ RN×d.
The graph structure of G can be represented by an adjacency
matrix A ∈ RN×N , where Aij > 0 when there exists an
edge between node vi and vj , otherwise Ai,j = 0. The sym-
metrically normalized graph Laplacian matrix is defined
as L̃ = I − Ã with Ã = D−1/2AD−1/2 where D is the
degree matrix. Next, we briefly introduce the graph signal
denoising and fixed point iteration perspective of GNNs
that provide a better understanding of the computation tra-
jectory and long-distance dependency in graphs. Finally,
we provide a preliminary study to reveal the computation
redundancy in GNNs that motivates the development of
LazyGNN.

2.1. GNNs as Graph Signal Denoising

It is recently established that many popular GNNs can be
uniformly understood as solving graph signal denoising
problems with various diffusion properties and that the long-
distance dependency can be well captured by unrolling vari-
ous fixed point iterations (Ma et al., 2020; Pan et al., 2020;
Zhu et al., 2021; Chen et al., 2020b; Gu et al., 2020). For
instance, the message passing in GCN (Kipf & Welling,
2016), Xout = ÃXin, can be considered as one gradient
descent iteration for minimizing tr(X⊤(I − Ã)X) with
the initialization X0 = Xin. The message passing scheme
in APPNP (Klicpera et al., 2018) follows the aggregation
Xl+1 = (1 − α)ÃXl + αXin that iteratively minimizes
∥X −Xin∥2F + (1/α − 1) tr(X⊤(I − Ã)X) with the ini-
tialization X0 = Xin where l is the index of layers. Implicit
GNN (Gu et al., 2020) adopts projected gradient descent to
solve the fixed point problem X = ϕ(WXÃ+B). Please
refer to the reference (Ma et al., 2020; Pan et al., 2020; Zhu
et al., 2021; Chen et al., 2020b) for such understanding of
many other popular GNN models. Moreover, a large num-
ber of advanced GNN models have been inspired from this
perspective (Chen et al., 2022; Liu et al., 2021a;b; Yang
et al., 2021a;b; Jia & Benson, 2022; Jiang et al., 2022).

2.2. Computation Redundancy in Training GNNs

In the training process of GNNs, the model parameters are
updated following gradient descent style algorithms such as
Adam (Kingma & Ba, 2014). Therefore, the model as well
as hidden features in GNNs changes smoothly, especially
in the late stages when both the learning rate and gradient
norm diminish. This intuition motivates us to investigate
the computation redundancy in GNNs. Specifically, we
measure the relative changes of the hidden features in the
last layer (L-th layer) between epochs k + 1 and k, i.e.,
∥Xk+1

L − Xk
L∥F /∥Xk

L∥F , over the training iterations on
Cora and Pubmed dataset (Kipf & Welling, 2016) using
representative models such as GCN (Kipf & Welling, 2016)
and APPNP (Klicpera et al., 2018). We show two cases in
Figure 1 and Figure 2, depending on whether dropout layers
are used.

The relative changes of hidden features shown in Figure 1
and Figure 2 demonstrate the following: (1) when there is
no dropout, the hidden features barely change as the training
goes; (2) if dropout is used, it will incur additional variation
in the hidden features due to the randomness in dropout
layers. Both cases demonstrate that the activation values
in hidden layers of GNNs indeed change slowly, indicating
the existence of computation redundancy: the computa-
tion in successive training iterations is highly similar. This
observation not only validates the rationality of historical
embedding used in existing works such as VR-GNN (Chen
et al., 2017) and GNNAutoScale (Fey et al., 2021) but also
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motivates the lazy propagation in this work.

(a) Without dropout (b) With dropout

Figure 1. Feature changes ∥Xk+1 −Xk∥F /∥Xk∥F on Cora.

(a) Without dropout (b) With dropout

Figure 2. Feature changes ∥Xk+1 −Xk∥F /∥Xk∥F on Pubmed.

3. Lazy Graph Neural Networks
In this section, we propose a novel shallow LazyGNN that
uses a few aggregation layers to capture long-distance de-
pendency in graphs through lazy forward and backward
propagations. Then a mini-batch LazyGNN is introduced to
handle large-scale graphs with efficient data sampling, com-
putation, and memory usage. Complexity analyses are also
provided to illustrate the superior scalability of LazyGNN.

3.1. GNNs with Lazy Propagation

Existing research has demonstrated the benefits of capturing
long-distance relations in graphs by stacking more feature
aggregation layers or unrolling various fixed point iterations
as introduced in Section 1. However, these deeper GNNs
are not efficient due to the neighborhood explosion problem.
Our preliminary study in Section 2 reveals the computation
redundancy in GNNs over the training iterations: the hidden
features in GNNs evolve slowly such that the computation
of feature aggregations is highly correlated and redundant
over training iterations. This observation motivates us to de-
velop a novel shallow LazyGNN that captures long-distance
relations in graphs by propagating information lazily with
very few message-passing layers.

Without loss of generality, we illustrate the main idea of
lazy propagations using the most common and widely used
graph signal denoising problem (Zhou et al., 2003; Ma et al.,
2020; Yang et al., 2021a):

min
X

∥X−Xin∥2F + (1/α− 1) tr(X⊤(I− Ã)X), (1)

where the first term maintains the proximity with node hid-
den features Xin after feature transformation, and the second
Laplacian smoothing regularization encodes smoothness as-
sumption on graph representations. Note that we only take
this as an example to illustrate the main idea of lazy propa-
gation, but the idea can be applied to other GNNs inspired
by any denoising problems or fixed point iterations with dif-
ferent properties and design motivations. Next, we illustrate
the lazy forward and backward propagations in LazyGNN
as well as the innovative designs that solve the technical
challenges.

Forward Computation. From Eq. (1), we can derive the
high-order iterative graph diffusion as in APPNP (Klicpera
et al., 2018) with f being the feature transformation:

Xk
in = f(Xfea,Θ

k), (2)

Xk
0 = Xk

in, (3)

Xk
l+1 = (1− α)ÃXk

l + αXk
in, ∀l = 0, . . . , L− 1 (4)

where l and k denote the index of layers and training itera-
tions, respectively. The key insight of LazyGNN is that the
approximate solution of Eq. (1) (i.e., Xk

L) evolves smoothly
since Xk

in = f(Xfea,Θ
k) changes smoothly with model pa-

rameters Θk. Intuitively, the features have been propagated
over the graph many times in previous training iterations so
it suffices to propagate features lazily by reusing existing
computation.

Formally, we propose LazyGNN to leverage the computa-
tion redundancy between training iterations by mixing the
diffusion output in iteration k−1 (i.e., Xk−1

L ) into the initial
embedding of the diffusion process in training iteration k,
namely Xk

0 = (1 − β)Xk−1
L + βXk

in. This is because, in
practice, dropout is commonly used in deep learning to pre-
vent overfitting, which introduces additional variations in
the feature embedding as demonstrated in Figure 1 and Fig-
ure 2. Therefore, we introduce this momentum correction
to compensate for such disturbance by mixing current and
history features with hyperparameter β. In practice, small
β is favored if the dropout rate is small. To summarize, the
forward computation of LazyGNN works as follows:

Xk
in = f(Xfea,Θ

k), (5)

Xk
0 = (1− β)Xk−1

L + βXk
in, (6)

Xk
l+1 = (1− α)ÃXk

l + αXk
in, ∀l = 0, . . . , L− 1 (7)

By lingering the computation over training iterations as
shown in Figure 3, the feature aggregation layers in Eq. (7)
solve the denoising problem in Eq. (1) with an implicitly
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Figure 3. LazyGNN with Lazy forward (red) and backward (green) propagations.

large number of steps although there are only L layers in
each training iteration. Therefore, it only requires a few
feature aggregation layers (a small L) to approximate the
fixed point solution Xk

∗ of Eq. (1). Note that we find L = 1
and L = 2 work very well in our experiments in Section 4.
In the extreme case when the learning rate and dropout rate
are 0, the forward computation of LazyGNN is equivalent
to running forward propagations L×K times continuously
with K being the total number of training iterations.

Remark 1 (Long-distance dependency). Through lazy
propagation, LazyGNN is able to capture long-distance
dependency in graphs with a small number of feature aggre-
gation layers because LazyGNN accumulatively propagates
information to distant nodes in the graphs over many train-
ing iterations. In contrast, existing works try to capture
long-distance dependency in graphs by increasing the num-
ber of feature propagation layers, which is less efficient.

Remark 2 (Over-smoothing). In contrast to many GNN
models such as GCN or GAT that suffer from the over-
moothing issue when more layers are stacked, the accumu-
lation of feature aggregations over training iterations in
LazyGNN will not cause the over-smoothing issue because
the residual connection Xk

in in Eq. (7) determines the fixed
point and prevents the over-smoothed solution, as will be
verified in Section 4.3.

Backward Computation. While it is feasible to lever-
age the computation from previous training iterations in
the forward computation, it is highly non-trivial to com-
pute the gradient for the model update in the backward
computation since the computation graphs from previous
training iterations have been destroyed and released in
the memory. In other words, there is no way to directly
compute the backpropagation through the history variables
{Xk−1

L ,Xk−2
L , . . . } in current iterations k as being done in

sequential models such as RNN (Hochreiter & Schmidhuber,
1997) and Transformer (Vaswani et al., 2017). Therefore,

we choose to compute the gradient indirectly via the implicit
function theorem (Bai et al., 2019; Gu et al., 2020).

Theorem 1 (Implicit Gradient). Let X∗ be the fixed point so-
lution of function g(X∗,Xin), i.e., g(X∗,Xin) = 0. Given
the gradient of loss function L(X∗,Y) with respect to the
fixed point X∗, i.e., ∂L

∂X∗
, the gradient of loss L with respect

to feature Xin can be computed as:

∂L
∂Xin

= − ∂L
∂X∗

(J|X∗)
−1 ∂g(X∗,Xin)

∂Xin
(8)

where J|X∗ = ∂g(X∗,Xin)
∂X∗

is the Jacobian matrix of
g(X∗,Xin) evaluated at X∗.

Proof. Take the first-order derivative on both sides of the
fixed point equation g(X∗,Xin) = 0:

∂g(X∗,Xin)

∂Xin
+

∂g(X∗,Xin)

∂X∗

dX∗

dXin
= 0

dX∗

dXin
= −

(∂g(X∗,Xin)

∂X∗

)−1 ∂g(X∗,Xin)

∂Xin

Using ∂L
∂Xin

= ∂L
∂X∗

dX∗
dXin

, we obtain:

∂L
∂Xin

= − ∂L
∂X∗

(∂g(X∗,Xin)

∂X∗

)−1 ∂g(X∗,Xin)

∂Xin
.

Specifically, for the problem in Eq. (1), we have the fixed
point equation:

g(X∗,Xin) = X∗ −Xin + (
1

α
− 1)(I− Ã)X∗ = 0 (9)

which gives ∂g(X∗,Xin)
∂Xin

= −I and J|X∗ = 1
α (I−(1−α)Ã).
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Therefore, according to Theorem 1, the gradient of loss L
with respect to Xin can be computed as follows:

∂L
∂Xin

= α
∂L
∂X∗

(
I− (1− α)Ã

)−1

. (10)

However, it is still infeasible to compute the expensive ma-
trix inversion so we propose to approximate it by the itera-
tive backward gradient propagation:

GL =
∂L
∂XL

(
≈ ∂L

∂X∗

)
(11)

Gl = (1− α)ÃGl+1 + α
∂L
∂XL

∀l = L− 1, . . . , 0 (12)

where ∂L
∂X∗

is approximated by ∂L
∂XL

, and G0 provides an
approximation for gradient ∂L

∂Xin
. It is clear that the back-

ward computation requires gradient propagation over the
graph, which is symmetric to and as expensive as the vanilla
forward computation. Similarly, to reduce the number of
gradient propagation layers, we propose to propagate the
gradient lazily by leveraging the gradient ∂L

∂Xk−1
in

computed

in the previous training iteration k− 1 as shown in Figure 3:

Gk
L = (1− γ)

∂L
∂Xk−1

in

+ γ
∂L
∂Xk

L

(13)

Gk
l = (1− α)ÃGl+1 + α

∂L
∂Xk

L

∀l = L− 1, . . . , 0 (14)

where ∂L
∂Xk

∗
is approximated by ∂L

∂Xk
L

, and G0 provides an ap-

proximation for gradient ∂L
∂Xk

in
so that the gradient of model

parameters, i.e., ∂L
∂Θk , can be further computed by chain

rules. Similar to the forward computation, the momentum
correction in Eq. (13) compensates the gradient changes
over training iterations by mixing the current gradient ∂L

∂Xk
L

and history gradient ∂L
∂Xk−1

in
with hyperparameter γ.

Remark 3 (Computation and memory efficiency). Since
LazyGNN uses very few aggregation layers, it significantly
reduces the computation and memory cost. Moreover,
LazyGNN does not need to store intermediate hidden acti-
vation values in the aggregation layers because the compu-
tation of implicit gradient is agnostic to the forward propa-
gation trajectory, which further reduces memory cost.

Remark 4 (Communication efficiency). LazyGNN pro-
vides a fundamental algorithmic improvement to signifi-
cantly reduce the communication cost in cross-device fea-
ture aggregations for distributed GNN training because it
uses fewer propagations and communication rounds. This
is orthogonal and complementary to many existing system-
level strategies that mitigate the significant feature commu-
nication overhead in distributed GNN training (Tripathy
et al., 2020; Wan et al., 2022b;a; Zhang et al., 2023).

3.2. Mini-batch LazyGNN with Subgraph Sampling

As illustrated in Section 3.1, LazyGNN solves the inherent
neighborhood explosion problem so that when handling
large-scale graphs, the mini-batch sampling only needs to
sample neighboring nodes within a few hop distances. To
further demonstrate the superior scalability, we introduce
a mini-batch LazyGNN that enhances the computation and
memory efficiency with efficient data sampling as shown
in Figure 4. In each training iteration k, we sample a target
node set V k

1 and their L-hop neighbor set V k
2 , and we denote

the union of these two nodes as V k = V k
1 ∪V k

2 . An induced
subgraph ÃV k is constructed based on the node set V k.
Note that LazyGNN works well with small L ∈ {1, 2} so
that the data sampling is extremely efficient.

Figure 4. Mini-batch LazyGNN with Feature & Gradient Storage.

Forward Computation. The forward computation of mini-
batch LazyGNN works as follows:

(Xk
in)Vk

= f
(
(Xfea)V k ,Θk

)
, (15)

(X0)Vk
= (1− β)(Mfea)V k + β(Xk

in)Vk
(16)

(Xk
l+1)V k = (1− α)ÃV k(Xk

l )V k + α(Xk
in)V k ,∀l (17)

(Mfea)V k
1
= (Xk

L)V k
1

(18)

The node features (Xfea)V k for the node set V k are sampled
to form a mini-batch. The corresponding diffused node fea-
tures (Mfea)V k of the same node set are retrieved from the
feature storage Mfea and then combined with current node
features (Xk

in)Vk
in Eq. (16). The lazy forward propagation

runs on the subgraph ÃV k in Eq. (17). Finally, (Xk
L)V k

1

provides the prediction for target nodes V k
1 , which is further

maintained in the features storage Mfea. The embeddings
of neighbor nodes (Xk

L)V k
2

are not accurate and not stored.

Backward Computation. The backward computation of
mini-batch LazyGNN works as follows:

(Gk
L)V k = (1− γ)(Mgrad)V k + γ

∂L
∂(Xk

L)V k

(19)

(Gk
l )V k = (1− α)ÃV k(Gl+1)V k +

α ∂L
∂(Xk

L)V k

∀l (20)

(Mgrad)V k
1
= (Gk

0)V k
1

(21)
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In Eq. (19), (Mgrad)V k , the history gradient with respect
to node features (Xk−1

in )V k , is retrieved from the gradient
storage Mgrad and then combined with ∂L

∂(Xk
L)

V k
, the gradi-

ent with respect to current node features (Xk
L)V k . The lazy

backward propagation runs on the subgraph ÃV k in Eq. (20).
Finally, (Gk

0)V k
1

provides an estimation for ∂L
∂(Xk

in)V k
1

, which

is used to compute gradient of parameters Θk by chain rules
and then maintained in the gradient storage Mgrad. Likewise,
the gradients of neighbor nodes ∂L

∂(Xk
in)V k

2

are not accurate

and will not be stored in the gradient memory.

3.3. Complexity Analysis

As discussed in Section 3.1 and Section 3.2, LazyGNN is
scalable due to its efficiency in computation, memory, data
sampling, and communication. In this section, we provide
complexity analyses to further demonstrate its superior scal-
ability. Since the major efficiency difference lies in feature
aggregation layers, we focus on the complexity of feature
aggregations. Suppose L is the number of propagation lay-
ers, H is the size of hidden units, N is the number of nodes,
M is the number of edges. For simplicity, we assume that
H is the same for all hidden layers.

Computation complexity. Performing one feature aggrega-
tion requires a sparse-dense matrix multiplication that needs
O(MH) operations. Therefore, the computation complex-
ity for forward feature aggregations and backward gradient
aggregations is O(2LMH) per epoch. However, the num-
ber of layers L in LazyGNN is much smaller than existing
approaches, so it significantly reduces the computation cost.

Memory complexity. O(NH) memory space is required
for the storage of history feature Xk

L (i.e., Mfea) and history
gradient ∂L

∂Xk
in

(i.e., Mgrad) in LazyGNN. LazyGNN does not
store the intermediate state at each feature aggregation layer
because the backward gradient computation is agnostic to
the forward computation trajectory. Therefore, the total
memory complexity for LazyGNN is O(NH), which is in-
dependent of the number of aggregation layers. In contrast,
existing state-of-art history-embedding based models, such
as GNNAutoScale (Fey et al., 2021) and GraphFM (Yu et al.,
2022), require the storage of feature embeddings in each
layer, which leads to the memory complexity O(LNH).
Moreover, they also require the storage of all intermedi-
ate layers for gradient computation. Their memory cost
increases linearly with the number of layers, which is essen-
tial in capturing long-distance dependency in those models.
In fact, because of the large storage requirements, GAS
chooses to save the history embedding in CPU memory, but
the data movement between CPU and GPU can be domi-
nating compared with the movement in GPU as verified in
Section 4.2.

Sampling efficiency. Mini-batch LazyGNN further reduces
the computation and memory cost by data sampling, which
enjoys the same benefits as existing sampling-based meth-
ods. Compared to classic sampling-based models, such as
GraphSAGE and GraphSAINT, mini-batch LazyGNN only
needs to sample neighbors in one hop or two hops distance
so that the data sampling is efficient. This data sampling
efficiency might bring significant practical speedup for large-
scale problems where the data loading of node features and
subgraphs can be dominating (Ma et al., 2022).

Communication efficiency. Recent works (Tripathy et al.,
2020; Wan et al., 2022b;a; Zhang et al., 2023) clearly demon-
strate that the significant feature communication overhead
in propagation layers dominates the running time in the
parallel training of GNNs. Specifically, the communication
time divided by the total training time is over 80% for ogbn-
products as shown in the work (Wan et al., 2022b). There-
fore, existing works propose various system-level strategies
to mitigate this bottleneck. Although this work does not
focus on the distributed setting, it is worth emphasizing
that LazyGNN is promising for parallelism since it requires
fewer communication rounds due to lazy propagation.

Above analyses indicate that LazyGNN is highly efficient
in computation, memory, data sampling, and communica-
tion. The practical running time and memory cost will be
discussed in Section 4.2.

4. Experiments
In this section, we provide comprehensive experiments to
validate the superior prediction performance and scalability
of LazyGNN. Specifically, we try to answer the following
questions: (Q1) Can LazyGNN achieve strong prediction
accuracy on large-scale graph benchmarks? (Section 4.1)
(Q2) Can LazyGNN handle large graphs more efficiently
than existing approaches? (Section 4.2) (Q3) What are the
impacts of the hyperparameters in LazyGNN? (Section 4.3)

4.1. Prediction Performance

Experimental settings. We conduct experiments on mul-
tiple large-scale graph datasets including REDDIT, YELP,
FLICKR, ogbn-arxiv, and ogbn-products (Hu et al., 2020).
We evaluate the graph representation learning by node clas-
sification accuracy in the semi-supervised setting. We
provide a performance comparison with multiple base-
lines including GCN (Kipf & Welling, 2016), Graph-
Sage (Hamilton et al., 2017), FastGCN (Chen et al., 2018a),
LADIES (Zou et al., 2019), VR-GCN (Chen et al., 2017),
MVS-GNN (Cong et al., 2020), Cluster- GCN (Chiang et al.,
2019), GraphSAINT (Zeng et al., 2020), SGC (Wu et al.,
2019), SIGN (Rossi et al., 2020), GAS (Fey et al., 2021) and
VQ-GNN (Ding et al., 2021). The hyperparameter tuning of
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baselines closely follows the setting in GNNAutoScale (Fey
et al., 2021).

For LazyGNN, hyperparameters are tuned from the follow-
ing search space: (1) learning rate: {0.01, 0.001, 0.0001};
(2) weight decay: {0, 5e − 4, 5e − 5}; (3) dropout:
{0.1, 0.3, 0.5, 0.7}; (4) propagation layers : L ∈ {1, 2};
(5) MLP layers: {3, 4}; (6) MLP hidden units: {256, 512};
(7) α ∈ {0.01, 0.1, 0.2, 0.5, 0.8}; (8) β and γ are simply
set as 0.5 in most cases, but a further tuning can improve
the performance. While LazyGNN is compatible with any
sampling method, we adopt the subgraph sampling strategy
as in GNNAutoScale to ensure a fair comparison.

Performance analysis. From the accuracy as summarized
in Table 1, we can make the following observations:

• LazyGNN achieves state-of-art performance on almost
all datasets. In particular, LazyGNN achieves 73.2% and
82.3% accuracy on ogbn-arxiv and ogbn-products. The
only exceptions are that GraphSAINT slightly outper-
forms LazyGNN by 0.2% on REDDIT and that GCNII
outperforms LazyGNN by 1.1% on FLICKR. However,
LazyGNN is much more efficient than GraphSAINT and
GCNII in computation and memory cost. Note that GC-
NII achieves the reported performance with 10 transfor-
mation layers and 8 propagation layers while LazyGNN
only uses 4-layer MLP and 2-layer propagation. We be-
lieve a stronger performance can be achieved with a more
thorough architecture tuning on LazyGNN.

• Importantly, we observe that full-batch LazyGNN closely
matches mini-batch LazyGNN, which indidates that the
subgraph sampling in LazyGNN can significantly im-
prove the scalibility (as will be discussed in Section 4.2)
but do not heavily hurt the prediction performance. Some-
times, LazyGNN even improves the generalization per-
formance due to sampling (such as for REDDIT).

• LazyGNN also consistently outperforms APPNP with
10 propagation layers, which indicates the advantage of
capturing long-distance dependency in graphs by lazy
propagation. The reproduction of GAS+GCN on YELP
is much worse than reported in the work (Fey et al., 2021),
therefore we omit the result.

4.2. Efficiency Analysis

To verify the scalability of LazyGNN, we provide empiri-
cal efficient analysis compared with state-of-art end-to-end
trainable and scalable GNNs such as GNNAutoScale (GAS)
since it has been shown to be the most efficient algorithm
for training large-scale GNNs (Fey et al., 2021). Specifi-
cally, we measure the memory usage and running time for
the training on ogbn-products dataset using the same batch
size. We run GAS using the authors’ code which stores the

Table 1. Prediction accuracy (%) on large-scale graph datasets.
“full” and “mini” stand for full-batch and mini-batch respectively.
OOM stands for out-of-memory.

# nodes 230K 89K 717K 169K 2.4M
# edges 11.6M 450K 7.9M 1.2M 61.9M

Method REDDIT FLICKR YELP
ogbn- ogbn-
arxiv products

GraphSAGE 95.4 50.1 63.4 71.5 78.7
FastGCN 93.7 50.4 — — —
LADIES 92.8 — — — —
VR-GCN 94.5 — 61.5 — —
MVS-GNN 94.9 — 62.0 — —
Cluster-GCN 96.6 48.1 60.9 — 79.0
GraphSAINT 97.0 51.1 65.3 — 79.1
SGC 96.4 48.2 64.0 — —
SIGN 96.8 51.4 63.1 — 77.6
VQ-GNN 94.5 — — 70.6 —
GCN (full) 95.4 53.7 OOM 71.6 OOM
APPNP (full) 96.1 53.4 OOM 71.8 OOM
GCNII (full) 96.1 55.3 OOM 72.8 OOM
GCN (GAS) 95.4 54.0 — 71.7 76.7
APPNP (GAS) 96.0 52.4 63.8 71.9 76.2
GCNII (GAS) 96.7 55.3 65.1 72.5 77.2
LazyGNN (full) 96.2 54.2 OOM 73.2 OOM
LazyGNN (mini) 96.8 54.0 65.4 73.0 82.3

feature embedding for each layer in CPU memory by de-
fault since it requires large memory for embedding storage.
We also re-implement GAS by storing all memory on the
GPU for a better comparison. For LazyGNN, the memory
for storing two small tensors (i.e., feature and gradient) is
required. Furthermore, we measure the running time of all
models for two cases depending on whether the storage is
on CPU or GPU memory. Note that all methods use similar
number of training epochs as will be verified in Section 4.3,
so we compare them using the running time per epoch. For
GAS baselines, we use the architecture that can reach the
best performance. From the measurements summarized in
Table 2, we can make the following observations:

• LazyGNN (GPU) has a much shorter running time (7.7s)
per epoch compared with all baselines. All methods
become much slower if the memory needs to be moved
between GPU and CPU.

• LazyGNN only requires small memory space and only
878 MB of additional storage is required to store two
small tensors for feature and gradient regardless of the
number of layers. In contrast, GAS requires large mem-
ory storage due to the feature storage for each layer. This
verifies that LazyGNN is memory efficient.

• LazyGNN (GPU+CPU) is faster than APPNP (GAS) be-
cause APPNP requires more data movement for feature
propagation. This further verifies the computation and
memory efficiency of LazyGNN. An even better running
time of LazyGNN is expected if the data movement is
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optimized as the implementation in GAS using asyn-
chronous calls, but we leave it as a future work.

Table 2. Memory usage (MB) and running time (seconds per
epoch) on ogbn-products.

Method Setting GPU CPU RUNNING
MEMORY MEMORY TIME

GCN (GAS)

GPU+CPU

2512 4783 28.8
GCNII (GAS) 3035 4783 44.3
APPNP (GAS) 2142 3952 84.5
LazyGNN (mini) 2101 878 44.5
GraphSage

GPU Only

4781 — 33.7
GCN (GAS) 7296 — 11.7
GCNII (GAS) 7820 — 18.2
APPNP (GAS) 6097 — 10.5
LazyGNN (mini) 2981 — 7.7

4.3. Ablation Study

We provide detailed ablation studies on the impacts of hy-
perparameter settings in LazyGNN.

Oversmoothing. We measure the L2 distance between
connected nodes to show the smoothness of GCN, APPNP,
and LazyGNN on Cora. Table 3 shows that the smoothness
value of GCN becomes smaller and smaller as the number
of layers increases, which means the node features become
over-smoothed and indistinguishable. But for LazyGNN and
APPNP, when more layers are being stacked, the smoothness
values become stable so that the node features can still be
distinguished without suffering from over-smoothing. This
provides direct evidence that LazyGNN does not suffer from
the over-smoothing problem as discussed in Remark 2.

Table 3. L2 feature distance between connected nodes (smooth-
ness) with a varying number of propagation layers on Cora.

Layers GCN APPNP LAZYGNN

L = 1 336 353 302
L = 5 315 305 285
L = 10 297 296 290
L = 15 263 304 291
L = 20 225 302 292

Lazy Propagation. We conduct the ablation study to an-
alyze the impact of feature propagation layers and long-
distance dependency. Specifically, we use the same MLP
for LazyGNN and APPNP and change the number of prop-
agation layers L. The comparison in Table 4 shows that:

• The performance of APPNP (GAS) improves with the
use of more propagation layers (larger L). This trend
is pretty clear on ogbn-arxiv, which verifies the benefits
of capturing long-distance dependency on graphs. The
improvement on ogbn-products is relatively minor due

to the large staleness of feature memory caused by GAS
when a smaller batch size has to be used.

• LazyGNN archives great performance with even 1 propa-
gation layer (72.5% for ogbn-arxiv and 79.8% for ogbn-
products). It has already achieved state-of-the-art per-
formance (73.0% for ogbn-arxiv and 82.3% for ogbn-
products) with 2 propagation layers. These results con-
firm LazyGNN’s advantages and capability in capturing
long-distance dependency in graphs with very few feature
propagation layers.

Table 4. Prediction accuracy with a varying number of propagation
layers on ogbn-arxiv and ogbn-products.

Method OGBN-ARXIV (%) OGBN-PRODUCTS (%)

APPNP (GAS) (L=1) 70.6 75.2
APPNP (GAS) (L=2) 71.4 75.5
APPNP (GAS) (L=3) 71.5 75.7
APPNP (GAS) (L=4) 71.8 75.8
APPNP (GAS) (L=5) 72.2 76.0
APPNP (GAS) (L=8) 72.5 76.1
APPNP (GAS) (L=10) 72.7 76.2
LazyGNN (L=1) 72.5 79.8
LazyGNN (L=2) 73.0 82.3
LazyGNN (L=3) 73.0 OOM

Batch Size. We investigate the impact of the batch size on
data sampling. Note that we adopt a cluster-based subgraph
sampling so that the batch size is determined by the number
of clusters since one cluster is sampled in each batch. In
other words, more clusters result in a smaller batch size.
The comparison in Table 5 demonstrates that a larger batch
size (less clusters) brings better performance because the
sampling variance is reduced. Overall the performance is
quite stable using varying batch sizes (clusters).

Table 5. Prediction accuracy of mini-batch LazyGNN with differ-
ent batch sizes on ogbn-products.

Clusters 50 100 150 200

Accuracy(%) 82.3 81.8 81.5 80.6

Sensitivity Analysis. We provide a detailed sensitivity
analysis for the two additional hyperparameters β and
γ in LazyGNN. The results in Table 6 show that: (1)
{β = 0, γ = 0} produces the worst performance (71.0%)
because it fully trusts the history embedding that might be
outdated due to the additional variations caused by dropout
as demonstrated in Section 2.2; (2) {β = 1, γ = 1} per-
forms slightly better (71.7%) even without lazy propagation
because 2 propagation layers can provide a good approxi-
mate solution; (3) {β = 0.5, γ = 0.5} performs the best
(73.0%) because it achieves a good trade-off between histor-
ical information and current iteration. It compensates for the
staleness in the history storage as designed; (4) The perfor-
mance of LazyGNN is quite stable for a large range setting
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of β and γ. In fact, we fix β = γ = 0.5 for LazyGNN in
most experiments for simplicity. Therefore, it requires al-
most negligible effort for additional hyperparameter tuning.

Table 6. Prediction accuracy of mini-batch LazyGNN for different
hyperparameter settings on ogbn-arxiv.

Hyperparameter settings ACCURACY (%)

β = 0.0, γ = 0.0 71.0
β = 1.0, γ = 1.0 71.7

β = 0.5, γ = 0.1 72.5
β = 0.5, γ = 0.5 73.0
β = 0.5, γ = 0.9 72.8

β = 0.1, γ = 0.5 72.4
β = 0.5, γ = 0.5 73.0
β = 0.9, γ = 0.5 72.7

Convergence. We show the convergence of LazyGNN
during the training process using ogbn-arxiv dataset. The
convergence of validation accuracy in Figure 5 demonstrates
that LazyGNN has a comparable convergence speed with
GCN (GAS) and GCNII (GAS), and is slightly faster than
APPNP (GAS) in terms of the number of training epochs.

Figure 5. Validation performance versus training epochs.

5. Related Work
It has been generally demonstrated that it is beneficial to
capture long-distance relations in graphs by stacking more
feature aggregation layers or unrolling various fixed point
iterations in GNNs (Gasteiger et al., 2018; Gu et al., 2020;
Liu et al., 2020; Chen et al., 2020a; Li et al., 2021; Ma et al.,
2020; Pan et al., 2020; Zhu et al., 2021; Chen et al., 2020b).
But these works suffer from scalability concerns due to the
neighborhood explosion problem (Hamilton et al., 2017).

A large body of existing research focuses on improving the
efficiency and scalability of large-scale GNNs using various
novel designs, such as sampling methods, pre-computing
or post-computing methods, and distributed methods. Sam-
pling methods adopt mini-batch training strategies to reduce

computation and memory requirements by sampling nodes
and edges. They mitigate the neighbor explosion issue by
either removing neighbors (Hamilton et al., 2017; Chen
et al., 2018a; Zeng et al., 2020; Zou et al., 2019) or updating
with feature memory (Fey et al., 2021; Yu et al., 2022). Pre-
computing or post-computing methods separate the feature
aggregation and prediction models into two stages, such as
pre-computing the feature aggregation before training (Wu
et al., 2019; Rossi et al., 2020; Sun et al., 2021; Zhang
et al., 2022; Bojchevski et al., 2020) or post-processing
with label propagation after training (Zhu, 2005; Huang
et al., 2020). Distributed methods distribute large graphs
to multiple servers and parallelize GNNs training (Chiang
et al., 2019; Chai et al., 2022; Shao et al., 2022). In ret-
rospect, these existing approaches still suffer from various
limitations, such as high costs in computation, memory, and
communication as well as performance degradation due to
large approximation errors or multi-stage training.

Different from existing works, in this work, we propose
LazyGNN from a substantially different and novel perspec-
tive and propose to capture the long-distance dependency
in graphs by shallower models instead of deeper models.
This leads to a much more efficient LazyGNN for graph
representation learning. Moreover, existing approaches for
scalable GNNs can be used to further accelerate LazyGNN.
The proposed mini-batch LazyGNN is a promising example.

LazyGNN also draws insight from existing research on
graph signal processing and implicit modeling. The for-
ward construction of LazyGNN follows the optimization
perspective of GNNs (Ma et al., 2020), and it is can be easily
generalized to other fixed point iterations with various diffu-
sion properties. LazyGNN is related to recent works in im-
plicit modeling, such as Neural Ordinary Differential Equa-
tions (Chen et al., 2018b), Implict Deep Learning (El Ghaoui
et al., 2021), Deep Equilibrium Models (Bai et al., 2019),
and Implicit GNNs (Gu et al., 2020). LazyGNN focuses
on developing shallow models with highly scalable and ef-
ficient computation while these implicit models demand
significantly more computation resources.

6. Conclusions
We propose LazyGNN, a novel shallow model to solve the
neighborhood explosion problem in large-scale GNNs while
capturing long-distance dependency through lazy propaga-
tion. We also develop a highly scalable and efficient variant,
mini-batch LazyGNN, to handle large graphs. Comprehen-
sive experiments demonstrate its superior prediction perfor-
mance and efficiency on large-scale problems. The proposed
lazy propagation provides a promising algorithmic strategy
complementary to existing efforts. We plan to explore its
application on other types of GNN models and its further
acceleration using other scalable techniques in the future.
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