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Abstract
Local graph clustering methods aim to detect
small clusters in very large graphs without the
need to process the whole graph. They are funda-
mental and scalable tools for a wide range of tasks
such as local community detection, node ranking
and node embedding. While prior work on local
graph clustering mainly focuses on graphs without
node attributes, modern real-world graph datasets
typically come with node attributes that provide
valuable additional information. We present a
simple local graph clustering algorithm for graphs
with node attributes, based on the idea of diffus-
ing mass locally in the graph while accounting for
both structural and attribute proximities. Using
high-dimensional concentration results, we pro-
vide statistical guarantees on the performance of
the algorithm for the recovery of a target cluster
with a single seed node. We give conditions un-
der which a target cluster generated from a fairly
general contextual random graph model, which
includes both the stochastic block model and the
planted cluster model as special cases, can be
fully recovered with bounded false positives. Em-
pirically, we validate all theoretical claims using
synthetic data, and we show that incorporating
node attributes leads to superior local clustering
performances using real-world graph datasets.

1. Introduction
Given a graph G and a seed node in that graph, a local graph
clustering algorithm finds a good small cluster that contains
the seed node without looking at the whole graph (Andersen
et al., 2006; Spielman & Teng, 2013). Because the graphs
arising from modern applications are massive in size and
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yet are rich in small-scale local structures (Leskovec et al.,
2009; Jeub et al., 2015), local graph clustering has become
an important scalable tool for probing large-scale graph
datasets with a wide range of applications in machine learn-
ing and data analytics (Gleich, 2015; Fountoulakis et al.,
2020; Macgregor & Sun, 2021).

Traditional local graph clustering algorithms primarily focus
on the structural properties of a graph dataset, i.e. nodes and
edges, and consequently the analyses of these algorithms
are often concerned with the combinatorial properties of the
output cluster. For example, in most previous studies one is
interested in the conductance of a cluster and defines a good
cluster as one that has low conductance (Andersen et al.,
2006; Reid & Yuval, 2009; Spielman & Teng, 2013; Allen-
Zhu et al., 2013; Andersen et al., 2016; Shi et al., 2017;
Wang et al., 2017; Fountoulakis et al., 2020; Liu & Gleich,
2020). In this case, the objective of local graph clustering
is thus detecting a low conductance cluster around the seed.
With the increasing availability of multi-modal datasets, it is
now very common for a graph dataset to contain additional
sources of information such as node attributes, which may
prove to be crucial for correctly identifying clusters with
rather noisy edge connections. However, nearly all existing
local graph clustering algorithms do not work with attributed
graphs. Moreover, in the presence of node attributes, the
objective and analysis of a local graph clustering algorithm
should also adjust to take into account both sources of in-
formation (i.e. graph structure and attributes) as opposed to
focusing solely on the combinatorial notion of conductance.

1.1. Our contributions

We propose a simple local graph clustering algorithm which
simultaneously considers both graph structural and node
attribute information. We analyze the performance of the
proposed algorithm from a statistical perspective where we
assume that the target cluster and the node attributes have
been generated from a random data model. We provide
conditions under which the algorithm is guaranteed to fully
recover the target cluster with bounded false positives.

Our local graph clustering algorithm uses the recently pro-
posed flow diffusion model on graphs (Fountoulakis et al.,
2020; Chen et al., 2022). The original flow diffusion was

1



Weighted Flow Diffusion for Local Graph Clustering with Node Attributes

proposed to solve the local graph clustering problem on
graphs without node attributes. In this work we consider
flow diffusion on graphs whose edges are reweighted to re-
flect the proximity between node attributes. For simplicity,
we focus on the widely used radial basis function kernel
(i.e. the Gaussian kernel) for measuring the similarity be-
tween node attributes, while our algorithm and analysis may
be easily extended to other metrics such as the Laplacian
kernel, polynomial kernel and cosine similarity. A distinct
characteristic of the proposed algorithm is its simplicity and
flexibility. On one hand, the algorithm has few hyperparam-
eters and thus it does not require much tuning; while on the
other hand, it allows flexible initialization of source mass
and sink capacities, which enables us to obtain different
types of recovery guarantees.

Our main contribution is the analysis of the algorithm for
the recovery of a target cluster with a single seed node. We
provide high probability guarantees on the performance of
the algorithm under a certain type of contextual random
graph model. The data model we consider is fairly general.
On the structural side, it only concerns the connectivity of
nodes within the target cluster and their adjacent nodes, and
hence it encompasses the stochastic block model (SBM)
and the planted cluster model as special cases; on the node
attribute side, it allows an attribute to be modelled by a
sub-Gaussian random variable, and this includes Gaussian,
uniform, Bernoulli, and any discrete or continuous random
variables over a finite domain. Depending on a signal-to-
noise ratio of the node attributes, we present two recovery
results. Informally, if we have very good node attributes,
then with overwhelming probability the algorithm fully re-
covers the target cluster with nearly zero false positives,
irrespective of the interval connectivity of the target clus-
ter (as long as it is connected); on the other hand, if we
have good, but not too good, node attributes, then with over-
whelming probability the algorithm fully recovers the target
cluster, with the size of the false positives jointly controlled
by both the combinatorial conductance of the target cluster
and the signal-to-noise ratio of the node attributes.

Finally, we carry out experiments on synthetic data to verify
all theoretical claims and on real-world data to demonstrate
the advantage of incorporating node attributes.

1.2. Previous work

The local graph clustering problem is first introduced by
Spielman & Teng (2013) and the authors proposed a random-
walk based algorithm with early termination. Later Ander-
sen et al. (2006) studied the same problem using approxi-
mate personalized PageRank vectors. There is a long line
of work on local graph clustering where the analysis of
the algorithm concerns the conductance of the output clus-
ter (Andersen et al., 2006; Reid & Yuval, 2009; Spielman &

Teng, 2013; Allen-Zhu et al., 2013; Andersen et al., 2016;
Shi et al., 2017; Wang et al., 2017; Fountoulakis et al., 2020;
Liu & Gleich, 2020). The first statistical analysis of lo-
cal graph clustering is considered by Ha et al. (2021) and
the authors analyzed the average-case performance of the
ℓ1-regularized PageRank (Fountoulakis et al., 2017) over
a random data model. None of these works study local
clustering in attributed graphs.

The idea to utilize both structural and node attribute informa-
tion has been applied in the context of community detection,
where the goal is to identify all clusters in a graph (Yang
et al., 2013; Jia et al., 2017; Zhe et al., 2019; Sun et al.,
2020). These methods require processing the whole graph
and hence are not suitable for local graph clustering.

Recently, contextual random graph models are been used
in the literature for analyzing the performance of certain
algorithms for attributed graphs. Deshpande et al. (2018);
Yan & Sarkar (2021); Braun et al. (2022); Abbe et al. (2022)
studied algorithms for community detection in the contex-
tual stochastic block model (CSBM). Baranwal et al. (2021);
Fountoulakis et al. (2023); Baranwal et al. (2023a) analyzed
the separability of nodes in the CSBM by functions that are
representable by graph neural networks. Wu et al. (2023)
characterized the effect of applying multiple graph convolu-
tions on data generated from the CSBM. Wei et al. (2022);
Baranwal et al. (2023b) studied optimal node classifiers of
the CSBM from Bayesian inference perspectives. The ran-
dom model we consider in this work is more general and
we are the first to consider statistical performance of a local
graph clustering algorithm in contextual random models.

Finally, the problem of local graph clustering in attributed
graphs is related to the statistical problem of anomaly detec-
tion (Arias-Castro et al., 2008; 2011; Sharpnack et al., 2013;
Qian & Saligrama, 2014) and estimation (Chitra et al., 2021).
Anomaly detection aims to decide whether or not there ex-
ists an anomalous cluster of nodes whose associated random
variables follow a different distribution than those of the rest
of the graph. It does not identify the anomalous cluster and
hence it does not apply to local graph clustering. Anomaly
estimation aims to locate the anomalous cluster and is more
related to our setting. However, existing analyses for both
anomaly detection and anomaly estimation are restricted to
scalar-valued random variables, and the methods rely on
computing test statistics or estimators which require pro-
cessing the whole graph (Qian & Saligrama, 2014; Chitra
et al., 2021).

2. Weighted flow diffusion and local graph
clustering with node attributes

In this section, we start by providing an overview of flow
diffusion on graphs, describing its physical interpretation
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as spreading mass in a graph along edges, and discussing
some important algorithmic properties. Then, we present an
algorithm that uses edge-weighted flow diffusion for local
graph clustering with node attributes.

2.1. Notations and basic properties of flow diffusion

We consider undirected, connected and weighted graph G =
(V,E,w), where V = {1, 2, . . . , n} is a set of nodes, E ⊆
V ×V is a set of edges, and w : E → R+ assigns each edge
(i, j) ∈ E with a positive weight. For simplicity we focus on
undirected graphs in our discussion, although our algorithm
and results extend to the strongly connected directed case in
a straightforward manner. With a slight abuse of notation,
for an edge (i, j) ∈ E we write wij = wji = w((i, j)),
and therefore w is treated equivalently as a vector w ∈ Rm
where m = |E|. Let W ∈ Rm×m be a diagonal matrix of
edge weights, i.e., its diagonal entry which corresponds to
an edge (i, j) is given by W(i,j),(i,j) = wij . For example,
if W = I then G reduces to an unweighted graph. We
write i ∼ j if (i, j) ∈ E and denote A ∈ {0, 1}n×n as the
combinatorial adjacency matrix, i.e., Aij = 1 if i ∼ j and 0
otherwise. The combinatorial degree degG(i) of a node i ∈
V is the number of edges incident to it. For a subset C ⊆ V ,
the volume of C is given by volG(C) =

∑
i∈C degG(i).

We use subscripts to indicate the graph we are working with,
and we omit them when the graph is clear from context. We
denote B ∈ Rm×n as the combinatorial signed incidence
matrix under an arbitrary orientation of the graph, where
the row that corresponds to the oriented edge (i, j) has two
nonzero entries, with −1 at column i and 1 at column j.
The support of a vector x is supp(x) = {i : xi ̸= 0}. We
use standard notations On,Ωn,Θn, on, ωn for asymptotic
behaviors of a function with respect to n, and we omit the
subscript when it is clear from the context.

Given a source vector ∆ ∈ Rn and a sink capacity vector
T ∈ Rn, a flow diffusion in G can be formulated as the
following optimization problem:

min
f

1

2
fTWf s.t. ∆+BTWf ≤ T, (1)

where W is restricted to be the identity matrix in the original
formulation (Fountoulakis et al., 2020). The flow variables
f ∈ Rm determine the amount of mass that moves between
nodes i and j for every edge (i, j) ∈ E. More precisely,
wijfij specifies the amount of mass that travels along (i, j).
We abuse the notation and use fij = −fji for an edge (i, j),
so wijfij is the amount of mass that moves from node i
to node j. In a flow diffusion, we assign ∆i source mass
to node i and enforce a constraint that node i can hold up
to Ti mass. Because one may always scale ∆ and T by
the same constant, we assume without loss of generality
that Ti ≥ 1 for all i. If Ti > ∆i at some node i, then we
need to spread the source mass along edges in the graph

Algorithm 1 Flow diffusion (algorithmic form)

Input: graph G, source ∆ and sink T
1. Initialize xi = 0 and mi = ∆i for all i ∈ V .
2. For t = 1, 2, . . . do

(a) Pick i ∈ {j : mj > Tj} uniformly at random.
(b) Apply push(i).

3. Return x.
push(i):
Make the following updates:
1. xi ← xi + (mi − Ti)/wi where wi =

∑
j∼i wij .

2. mi ← Ti.
3. For each node j ∼ i: mj ← mj + (mi − Ti)wij/wi.

to satisfy the capacity constraint. The vector ∆+BTWf
measures the final mass at each node if we spread the mass
according to f . Therefore, the goal of the flow diffusion
problem (1) is to find a feasible way to spread the mass
while minimizing the cost of flow fTWf . In this work we
allow different edge weights as long as they are positive, i.e.,
W consists of positive diagonal entries. In the context of
flow diffusion, edge weights define the efficiencies at which
mass can spread over edges. To see this, simply note that
wijfij determines the amount of mass that moves along the
edge (i, j), and thus for fixed fij , the higher wij is the more
mass we can move along (i, j).

For local graph clustering, it is usually more convenient to
consider the dual problem of (1):

min
x≥0

1

2
xTLx+ xT (T −∆) (2)

where L = BTWB is the weighted Laplacian matrix of
G. Throughout this work we use f∗ and x∗ to denote the
optimal solutions of (1) and (2), respectively. The solution
x∗ ∈ Rn+ embeds the nodes on the nonnegative real line. For
local graph clustering without node attributes, Fountoulakis
et al. (2020) applied a sweep-cut rounding procedure to
x∗ and derived a combinatorial guarantee in terms of the
conductance of a cluster. In this work, with the presence
of node attributes which may come from some unknown
distributions, we take a natural statistical perspective and
show how supp(x∗) recovers a target cluster generated from
a contextual random graph model.

In order to compute the solution to (2) one may extend the it-
erative coordinate method used by Fountoulakis et al. (2020)
to work with weighted edges. We layout the algorithmic
steps in Algorithm 1, where we describe each coordinate-
wise gradient update (i.e., push(i)) using its combinatorial
interpretation as spreading mass from a node to its neighbors.
In Algorithm 1, mi represents the current mass at node i.
At every iteration, we pick a node i whose current mass mi

exceeds its capacity Ti, and we remove the excess amount
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mi−Ti by sending it to the neighbors. Algorithm 1 may be
viewed as an equivalent algorithmic form of flow diffusion
since the iterates converge to x∗ (Fountoulakis et al., 2020).
An important property of Algorithm 1 is that it updates xi
only if x∗

i > 0, and it updates mj only if j ∼ i for some i
such that x∗

i > 0. This means that the algorithm will not
explore the whole graph if x∗ is sparse, which is usually the
case in applications such local clustering and node ranking.
We state this locality property in Proposition 2.1 and provide
a running time bound in Proposition 2.2. Both propositions
can be proved by simply including edge weights in the orig-
inal arguments of Fountoulakis et al. (2020) and using our
assumption that Ti ≥ 1 for all i.

Proposition 2.1 ((Fountoulakis et al., 2020)). Let xt for t ≥
1 be iterates generated by Algorithm 1, then supp(xt) ⊆
supp(x∗). Moreover, |supp(x∗)| ≤ ∥∆∥1.

Proposition 2.2 ((Fountoulakis et al., 2020)). Assuming
|supp(x∗)| < n, then after τ = O(∥∆∥1 αβ log 1

ϵ ) iterations,
where α = maxi∈supp(x∗) wi, wi =

∑
j∼i wij , and β ≥

min(i,j)∈supp(Bx∗) wij , one has E[F (xτ )] − F (x∗) ≤ ϵ,
where F denotes the objective function of (2).

Let d̄ denote the maximum degree of a node in supp(x∗).
Since each iteration of Algorithm 1 only touches a node
i ∈ supp(x∗) and its neighbors, Proposition 2.1 implies that
the total number of nodes (except their neighbors j such that
x∗
j = 0) that Algorithm 1 will ever look at is upper bounded

by the total amount of source mass ∥∆∥1. Therefore, if the
source mass is small and d̄ does not scale linearly with n,
then Algorithm 1 would only explore locally in the graph,
and the size of the subgraph which Algorithm 1 explores is
controlled by ∥∆∥1. Proposition 2.2 implies that the total
running time of Algorithm 1 for computing an ϵ-accurate
solution is O(d̄∥∆∥1 αβ log 1

ϵ ). Therefore, if d̄, ∥∆∥1, αβ are
all sublinear in n, then Algorithm 1 takes sublinear time.

2.2. Local clustering with node attributes

In local graph clustering, we are given a seed node s ∈
V and the goal is to identify a good cluster that contains
the seed. Existing methods mostly focus on the setting
where one only has access to the structural information, i.e.
nodes and edges of the graph, and they do not take into
account node attributes. However, it is reasonable to expect
that informative node attributes should help improve the
performance of a local clustering algorithm. For example,
the original flow diffusion solves the local graph clustering
problem by spreading source mass from the seed node to
nearby nodes, and an output cluster is obtained based on
where in the graph the mass diffuse to (Fountoulakis et al.,
2020). In this case, node attributes may be used to guide
the spread of mass so that more mass are trapped inside the
ground-truth target cluster, and consequently, improve the
accuracy of the algorithm.

Algorithm 2 Local graph clustering with node attributes

Input: graph G = (V,E,w), node attributes Xi for all
i ∈ V , seed node s ∈ V , hyperparameter γ ≥ 0.

Output: a cluster C ⊆ V
1. Define reweighted graph G′ = (V,E,w′) whose edge

weights are given by w′
ij = wij exp(−γ∥Xi −Xj∥22).

2. Set source mass ∆s > 0 and ∆i = 0 for i ̸= s. Set sink
capacity Ti.

3. Run flow diffusion (Algorithm 1) with input G′,∆, T
and obtain output xτ .

4. Return supp(xτ )

The idea to guide the diffusion by using node attributes can
be easily realized by relating edge weights to node attributes.
Given a graph G = (V,E,w) with a set of node attributes
Xi ∈ Rd for i ∈ V , and given a seed node s from an
unknown target cluster K, the goal is to recover K. To do
so, we construct a new graph G′ = (V,E,w′) having the
same structure but new edge weights w′

ij = wijρ(Xi, Xj)
where ρ(Xi, Xj) measures the proximity between Xi and
Xj . In this case, for a flow diffusion in G′, if two adjacent
nodes i and j have similar attributes, then it is easier to send
a lot of mass along the edge (i, j). In particular, when one
removes the excess mass from a node i by sending it to the
neighbors, the amount of mass that a neighbor j receives is
proportional to w′

ij (cf. Step 3 of push(i) in Algorithm 1),
and hence more mass will be sent to a neighbor whose
attributes also bear close proximity. Therefore, if nodes
within the target cluster K share similar attributes, then a
flow diffusion in G′, which starts from a seed node s ∈ K,
would naturally force more mass to spread within K than a
flow diffusion in the original graph G.

In this work, we use the Gaussian kernel to measure the
similarity between node attributes, that is, we consider
ρ(Xi, Xj) = exp(−γ∥Xi−Xj∥22) where γ ≥ 0 is a hyper-
parameter. The Gaussian kernel is one of the most widely
used metrics of similarity and has proved useful in many ap-
plications such as spectral clustering. In the next section we
provide rigorous statistical guarantees on the performance
of local graph clustering with node attributes by using the
optimal solution of weighted flow diffusion (2), where edge
weights are defined by the Gaussian kernel for an appro-
priately chosen γ > 0. We focus on the Gaussian kernel
for its simplicity. Both the algorithm in this section and the
analysis in the next section can be easily extended to work
with other metrics such as the Laplacian kernel, polynomial
kernel and cosine similarity.

We summarize the local clustering procedure in Algorithm 2.
As we show in the next section, suitable choices for the
sink capacities T include Ti = 1 or Ti = degG(i) for
all i, and one may correspondingly set the source mass
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∆s = α
∑
i∈K Ti for α > 1 where K is the target cluster.

In practice, one does not need to know the exact value of∑
i∈K Ti. As we demonstrate in Section 4, a rough estimate

of the size of K (e.g. |K| or volG(K)) within a constant
multiplicative factor would already lead to a good local clus-
tering performance. Finally, note that Algorithm 2 can be
implemented to maintain the locality nature of flow diffu-
sion: Starting from the seed node, executing Algorithm 2
requires the access to a new node, its sink capacity and
attributes only if they become necessary for subsequent
computations. For example, one should never compute an
edge weight if that edge is not needed to diffuse mass.

3. Statistical guarantees under contextual
random graph model

We assume that the node attributes and a target cluster are
generated from the following random model. For simplicity
in discussion we will assume that the random model gen-
erates unweighted graphs, although one may easily obtain
identical results for weighted graphs whose edges weights
do not scale with the number of nodes n.
Definition 3.1 (Contextual local random model). Given a
set of nodes V , let K ⊆ V be a target cluster with cardinality
|K| = k. For every pair of nodes i and j, if i, j ∈ K then
we draw an edge (i, j) with probability p; if i ∈ K and
j /∈ K then we draw an edge (i, j) with probability q;
otherwise, we allow any (deterministic or random) model
to draw an edge. The node attributes Xi for a node i are
given as Xi = µi + Zi, where µi ∈ Rd is a fixed signal
vector and Zi ∈ Rd is a random noise vector whose ℓth

coordinate Ziℓ follows independent mean zero sub-Gaussian
distribution with variance proxy σℓ, i.e., for any t ≥ 0 we
have P(|Ziℓ| ≥ t) ≤ 2 exp(− t2

2σ2
ℓ
). Though not necessary,

to simplify the discussion we require µi = µj for i, j ∈ K .

This random model is fairly general. For example, if the
edges that connect nodes in V \K have been generated from
the SBM, µi = µj for every i, j that belong to the same
block, and all Zi’s follow the same isotropic Gaussian dis-
tribution, then we obtain the CSBM which has been ex-
tensively used in the analyses of algorithms for attributed
graphs (Deshpande et al., 2018; Baranwal et al., 2021; Yan
& Sarkar, 2021). On the other hand, if the edges that connect
nodes in V \K have been generated from the Erdős-Renyi
model with probability q, µi = µj ̸= 0 for i, j ∈ K and
µi = 0 for i ̸∈ K, and all Zi’s follow the same isotropic
Gaussian distribution, then we obtain a natural coupling of
the planted densest subgraph problem and the submatrix
localization problem (Chen & Xu, 2016). In terms of mod-
elling the noise of node attributes, sub-Gaussian distribu-
tions include Gaussian, Bernoulli, and any other continuous
or discrete distribution over finite domains. Therefore the
random model allows different types of coordinate-wise

noise (and varying levels of noise controlled by σℓ) which
could depend on the nature of the specific attribute. For
example, the noise of a continuous attribute may be Gaus-
sian or uniform, whereas the noise of a binary-encoded
categorical attribute may be Bernoulli.

In order for node attributes to provide useful information,
nodes inside K should have distinguishable attributes com-
pared to nodes not in K. Denote

µ̂ := min
i∈K,j ̸∈K

∥µi − µj∥2, σ̂ := max
1≤ℓ≤d

σℓ.

We make Assumption 3.2 which states that the relative sig-
nal µ̂ dominates the maximum coordinate-wise noise σ̂, and
that the sum of normalized noises does not grow faster than
log n. The latter assumption is easily satisfied, e.g., when
the dimension d of node attributes does not scale with the
number of nodes n. In practice, when the set of available
or measurable attributes are fixed a priori, one always has
d = On(1). This is particularly relevant in the context of
local clustering where it is desirable to have sublinear al-
gorithms, since if d = Ω(n) then even computing a single
edge weight wij would take time at least linear in n.

Assumption 3.2. µ̂ = ω(σ̂
√
λ log n) for some λ = Ωn(1);∑d

ℓ=1 σ
2
ℓ/σ̂

2 = O(log n).

Before we move on to discuss how exactly node attributes
help to recover K, we need to talk about the signal and noise
from the graph structure. For a node i ∈ K, the expected
number of neighbors in K is p(k − 1), and the expected
number of neighbors not in K is q(n−k). Since mass spread
along edges, if there are too many edges connecting K to
V \K, it may become difficult to prevent a lot of mass from
spreading out of K. The consequence of having too much
mass which start in K to leak out of K is that supp(x∗) may
have little overlap with K, and consequently Algorithm 2
would have poor performance.

Fortunately, node attributes may be very helpful when the
structural information is not strong enough, e.g., when
q(n − k) > p(k − 1). As discussed earlier, informative
node attributes should be able to guide the spread of mass
in the graph. In a flow diffusion, where the mass get spread
to from the source node depends on the edge weights. The
higher weight an edge has, the easier to send mass along that
edge. Therefore, in order to keep as much mass as possible
inside the target cluster K, an ideal situation would be that
edges inside K have significantly more weights than an edge
that connects K to V \K. It turns out that this is exactly
the case when we have good node attributes. By applying
concentration results on the sum of squares of sub-Gaussian
random variables, Lemma 3.3 says that, with overwhelm-
ing probability, one obtains a desirable separation of edge
weights as a consequence of node attributes having more
signal than noise (i.e. when Assumption 3.2 holds).
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Lemma 3.3. Under Assumption 3.2, one may pick γ such
that γσ̂2 = o(log−1 n) and γµ̂2 = ωn(λ). Consequently,
with probability at least 1− on(1), the edge weight wij =
exp(−γ∥Xi − Xj∥22) satisfies wij ≥ 1 − on(1) for all
i, j ∈ K, and wij ≤ exp(−ωn(λ)) for all i ∈ K, j ̸∈ K.

Not surprisingly, Lemma 3.3 implies that the gap between
edge weights is controlled by λ which, according to As-
sumption 3.2, measures how strong the attribute signal is. If
λ is sufficiently large, then naturally one would expect an
algorithm that uses the node attributes to nearly perfectly re-
cover K, irrespective of how noisy the graph is. Otherwise,
the performance to recover K would depend on a combi-
nation of both structural and attribute information. In what
follows we present two recovery results which precisely
correspond to these two scenarios. In all probability bounds,
we keep explicit dependence on the cluster size k because,
for local graph clustering, k may be a large constant and
does not necessarily scale with n.

Theorem 3.4 (Recovery with very good node attributes).
Under Assumption 3.2, for any γ satisfying γσ̂2 =
o(log−1 n) and γµ̂2 = ωn(λ), with source mass ∆s =
(1 + β)

∑
i∈K Ti for any β > 0,

1. if K is connected and λ = Ωn(log k + log(1/β) +
log(q(n − k))), then with probability at least 1 −
on(1) − k−1/3, for every seed node s ∈ K we have
K ⊆ supp(x∗) and

∑
i∈supp(x∗)\K Ti ≤ β

∑
i∈K Ti;

2. if p ≥ (4+ϵ)
δ2

log k
k−1 for some 0 < δ < 1 and ϵ > 0, and

λ = Ωn(log k + log(1/β) + log( q(n−k)p(k−1) ) + log( 1
1−δ )),

then with probability at least 1−on(1)−k−1/3−ek−ϵ/2,
for every seed node s ∈ K we have K ⊆ supp(x∗) and∑
i∈supp(x∗)\K Ti ≤ β

∑
i∈K Ti.

In particular, we obtain the following bounds on false posi-
tives: if Ti = 1 for all i then |supp(x∗)\K| ≤ βk; if Ti =
degG(i) for all i then volG(supp(x

∗)\K) ≤ βvolG(K).

Some discussions are in order. The first part of Theorem 3.4
does not assume anything about the internal connectivity of
K. It applies as long as K is connected, and this includes
the extreme case when the induced subgraph on K is a tree
but each node in K is also connected to many other nodes
not in K. The second part of Theorem 3.4 requires a weaker
condition on the strength of attribute signal µ̂. The additive
term log(q(n− k)) from part 1 is weakened to log( q(n−k)p(k−1) )

due to the improved connectivity of K, under the additional
assumption that p ≥ Ω(log k/k). We consider two specific
choices of T . The first choice gives the exact bound on the
number of false positives, and the second choice bounds the
size of false positives in terms of volume (Ha et al., 2021).
Note that even in the case where the node attributes alone
provide sufficient signal, the graph structure still plays a very
important role as it allows the possibility that an algorithm

would return a good output without having to explore all data
points. For example, during the execution of Algorithm 2,
one only needs to query the attributes of a node whenever
they are required for subsequent computations.

Let us introduce one more notion before presenting the
recovery guarantee with good, but not too good, node at-
tributes. Given the contextual random model described
in Definition 3.1, consider a “population” graph Ḡ =
(V, Ē, w̄) where (i, j) ∈ Ē for every pair i, j such that i ̸= j,
and the edge weight w̄ij satisfies w̄ij = p exp(−γ∥E[Xi]−
E[Xj ]∥22) = p if i, j ∈ K, w̄ij = q exp(−γ∥E[Xi] −
E[Xj ]∥22) ≤ qe−γµ̂

2

if i ∈ K, j /∈ K. A frequently used
measure of cluster quality is conductance which quanti-
fies the ratio between external and internal connectivity.
For a set of nodes C in Ḡ, its conductance is defined as∑
i∈C,j /∈C w̄ij/

∑
i∈C

∑
j∼i w̄ij . For 0 ≤ c ≤ 1 denote

η(c) =
p(k − 1)

p(k − 1) + q(n− k)e−cγµ̂2 .

One may easily verify that the conductance of K in Ḡ is
upper bounded by 1− η(1). Therefore, the higher η(1) is
the lower conductance K may have in Ḡ. On the other hand,
in the absence of node attributes, or if all nodes share iden-
tical attributes, then the conductance of K in Ḡ is exactly
1 − η(0). Note that 1 − η(c) ≥ 1 − η(0) for any c ≥ 0.
Intuitively, a low conductance cluster is better connected
internally than externally, and thus it should be easier to
detect. Therefore, the advantage of having node attributes is
that they help reduce the conductance of the target cluster,
making it easier to recover from the population graph. While
in practice one never works with the population graph, our
next theorem indicates that, with overwhelming probability,
the recoverability of K in the population graph transfers to
an realization of the random model in Definition 3.1. More
specifically, Theorem 3.5 says that when the node attributes
are good, i.e. Assumption 3.2 holds, but not too good, i.e.
conditions required in Theorem 3.4 may not hold, then Al-
gorithm 2 still fully recovers K as long as there is sufficient
internal connection. Moreover, the relative size of false
positives (compared to the size of K) is upper bounded by
O(1/η(c)2)− 1 for any c < 1. Denote

m(δ1, δ2) =
(1 + 3δ1 +

1
p(k−1) )

2

(1− δ1)(1− δ2)
, Tmax = max

i∈K
Ti.

Theorem 3.5 (Recovery with good node attributes). Under
Assumption 3.2, if p ≥ max( (3+ϵ1)

δ21

log k
k−1 ,

(2+ϵ2)

δ2
√
1−δ1

√
log k√
k−1

)

where 0 < δ1, δ2 ≤ 1 and ϵ1, ϵ2 > 0, then with probability
at least 1− on(1)− 4k−ϵ1/3 − k−2ϵ2 , for every seed node
s ∈ K with initial seed mass

∆s = c1Tmax
m(δ1, δ2)k

η(c2)2
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for any constants c1 > 1 and c2 < 1, we have
that K ⊆ supp(x∗). Moreover, if Ti = 1 for all
i then |supp(x∗)\K| ≤ (c1m(δ1, δ2)/η(c2)

2 − 1)k; if
Ti = degG(i) for all i then volG(supp(x

∗)\K) ≤
(c1m(δ1, δ2)

(1+δ1)
(1−δ1)/η(c2)

2 − 1)volG(K).

In the special case where there is no node attribute, we may
simply take µ̂ = 0 and Theorem 3.5 still holds. For this
specific setting we obtain a nearly identical recovery guar-
antee (i.e. same assumption and same result) that has been
previously obtained for local graph clustering using PageR-
ank vectors without node attributes (Ha et al., 2021), where
the relative size of false positives is O(1/η(0)2 − 1). This
comparison quantifies the advantage of having good node at-
tributes as they reduce the bound to O(1/η(c)2− 1) for any
c < 1, which can be substantially smaller. Note that the ex-
pression 1/η(c)2 is jointly controlled by the combinatorial
conductance of K and the attribute signal µ̂.

4. Experiments
We evaluate the performance of Algorithm 2 for local graph
clustering with node attributes.1 First, we investigate empir-
ically our theoretical results over synthetic data generated
from a specification of the random model described in Defi-
nition 3.1. We use the synthetic experiments to demonstrate
(i) the distinction between having weak and strong graph
structural information, and (ii) the distinction between hav-
ing very good and moderately good node attributes. In
addition, the synthetic experiment indicates the necessity
of Assumption 3.2 in order for Algorithm 2 to have notable
performance improvement against method that does not use
node attributes. Second, we carry out experiments using
real-world data. We show that incorporating node attributes
improves the F1 scores by an average of 4.3% over 20 clus-
ters from two academic co-authorship networks.

For additional experiments on synthetic, semi-synthetic and
real-world data and comparisons with global methods, we
refer the interested readers to Appendix D for more empiri-
cal results.

4.1. Simulated data and results

The generative model. We generate random graphs using
the stochastic block model with block size k = 500 and the
total number of clusters r = 20. The total number of nodes
is n = kr = 10, 000. Two nodes within the same cluster are
connected with probability p, and two nodes from different
clusters are connected with probability q. We fix q = 0.002
and vary p to control the strength of the structural signal.
We randomly pick one of the clusters as the target cluster
K. The dimension of the node attributes is set to d = 100.

1Code is available at https://github.com/s-h-yang/WFD.

For node attributes Xi = µi + Zi, we sample Zi from
Gaussian distribution with mean 0 and identity covariance.
Therefore σℓ = 1 for all ℓ = 1, 2, . . . , d, and hence σ̂ = 1.
We set µiℓ = aσ̂

√
log n/2

√
d for all ℓ if i ∈ K, and µiℓ =

−aσ̂
√
log n/2

√
d for all ℓ if i ̸∈ K. In this way, we get that

µ̂ = maxi∈K,j ̸∈K ∥µi − µj∥2 = aσ̂
√
log n. We vary a to

control the strength of node attribute signal.

Setup and evaluation metric. We set the sink capacity
Ti = 1 for all i. We set the source mass ∆s = αk and
we allow α to vary. We set γ = (log−3/2 n)/4σ̂2 so that
γσ̂2 = o(log−1 n) as required by Theorem 3.4 and The-
orem 3.5. To measure the quality of an output cluster
C := supp(xτ ), we use precision and recall which are de-
fined as |C∩K|/|C| and |C∩K|/|K|, respectively. The F1
score is the harmonic mean of precision and recall given by
2/(Precision−1 + Recall−1). For comparison we also con-
sider the performance of unweighted flow diffusion which
does not use node attributes. There are other methods for
local graph clustering without node attributes, such as the
ℓ1-regularized PageRank (Andersen et al., 2006; Ha et al.,
2021). We did not consider other methods because the un-
weighted flow diffusion is shown to achieve state-of-the-art
performance (Fountoulakis et al., 2020). Moreover, the com-
parison between weighted and unweighted flow diffusions,
which either use or does not use node attributes, allows us
to obtain a fair estimate on the benefits of node attributes.

Results. Figure 1 shows detailed views of the performance
of Algorithm 2 as we vary α between [0.1, 5] with 0.1 in-
crements. It is used to demonstrate the two claims of The-
orem 3.4. In Figure 1a, we set p = 0.01 < log k/k, so
the target cluster K is very sparse. On average, each node
i ∈ K only has 5 neighbors inside K while it has 19 neigh-
bors outside of K. This means that the graph structural
information alone is not very helpful for recovering K. On
the other hand, we set a = 3

√
log n so µ̂ = 3σ̂ log n. This

means that the node attributes contain very strong signal. In
this case, observe that as soon as α becomes strictly larger
than 1, the output cluster C fully recovers K, i.e. Recall = 1.
This demonstrates the first claim of Theorem 3.4. As a com-
parison, the unweighted flow diffusion which does not use
node attributes has very poor performance for every choice
of α. This is expected because edge connectivity reveals
very little clustering information. In Figure 1b, we keep the
same graph structure but slightly weaken the node attributes
to µ̂ = 5

2 σ̂ log n by reducing a. This stops the output cluster
C from fully recovering K for small α larger than 1. The
algorithm still has a good performance if one chooses α
properly. This scenario is covered by Theorem 3.5 and we
will discuss more about it later. In Figure 1c, we keep the
same node attributes as in Figure 1b but increase p from
0.01 to 0.03 which is slightly larger than 2 log k/k. In this
case, the output cluster C again fully recovers K as soon as
α is strictly larger than 1. The distinction between Figure 1b
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2
σ̂ logn

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

(c) p = 0.03, q = 0.002, µ̂ = 5
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Figure 1. Demonstration of Theorem 3.4. The lines show average performance over 100 trails. In each trial we randomly pick a seed node
s from the target cluster K. The error bars show standard deviation. Figure 1a and Figure 1c show full recovery of K as soon as α > 1
(i.e. as soon as β > 0, see first part of Theorem 3.4). The distinction between Figure 1b and Figure 1c demonstrate that the required
threshold for µ̂ depends on p (cf. second part of Theorem 3.4). With very good node attributes, the performance of flow diffusion that
uses node attributes is significantly better than the performance of flow diffusion that does not use node attributes.

0 1 2 3 4 5 6 7 8
Strength of node attributes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

Best performance
Perf. for min conductance
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Figure 2. Performance of Algorithm 2 as µ̂ increases. µ̂ needs to be
larger than σ̂

√
logn in order for node attributes to be useful. The

x-axis shows the value of a where µ̂ = aσ̂
√
logn. We average

over 100 trials, each trial uses a randomly selected seed node.

and Figure 1c means that the required threshold for µ̂ to
fully recover K at any α > 1 decreases as p increases. This
demonstrates the second claim of Theorem 3.4.

In Figure 2 we consider a more realistic setting where one
may not know the size of the target cluster K and the node
attributes may be noisy. We keep the same graph connectiv-
ity (i.e. p = 0.03 and q = 0.002) and vary a between [0, 8]
with 0.5 increments. Recall that the node attributes are set
in a way such that µ̂ = aσ̂

√
log n, therefore the strength of

node attributes increases as a increases. For each choice of
a, given a seed node s, we run Algorithm 2 multiple times
with source mass αk for α ∈ {1.1, 1.6, . . . , 10.1}. This
gives multiple output clusters, one from each choice of α.
We consider two cases for selecting a final cluster. The first
case is a best-case scenario where we pick the cluster that
achieves the best F1 score, the second case is a more real-
istic case where we pick the cluster that has the minimum

conductance. Given edge weights wij and a cluster C, we
consider weighted conductance which is the ratio∑

i∈C,j ̸∈C wij∑
i∈C

∑
j∼i wij

.

Figure 2 illustrates the performance of Algorithm 2 in these
two cases. The x-axis of Figure 2 is the value of a where
µ̂ = aσ̂

√
log n. Overall, the performance improves as µ̂

increases. When the node attributes are reasonably strong,
e.g. a ≥ 4, the scenario where we select a cluster based
on minimum conductance matches with the best-case per-
formance. Note that, the higher µ̂ is, the lower η(c) is for
any 0 < c ≤ 1, and according to Theorem 3.5, there should
be less false positives and hence a higher F1 score. This is
exactly what Figure 2 shows. In Figure 2 we also plot the
best-case performance of unweighted flow diffusion without
node attributes. When the node attributes are very noisy, and
in particular, when µ̂ ≤ σ̂

√
log n where Assumption 3.2

clearly fails, we see that using node attributes can be harm-
ful as it can lead to worse performance than not using node
attributes at all. On the other hand, once the node attributes
become strong enough, e.g., a ≥ 4, using node attributes
start to yield much better outcome.

4.2. Real-world graphs and results

We evaluate the performance of Algorithm 2 on two co-
authorship graphs based on the Microsoft Academic Graph
from the KDD Cup 2016 challenge (Shchur et al., 2018).2

In these graphs, nodes are authors, and two nodes are con-
nected by an edge if they have coauthored a paper. The

2In Appendix D.1 we include additional experiments using
Amazon co-purchase graph (McAuley et al., 2015) and demon-
strate the performance of Algorithm 2 when the node attributes are
not strong enough. (F1 only increases by 1% on average.)
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clusters are defined according to the most active research
field of each author. The node attributes represent paper
keywords for each author’s papers. The first graph consists
of 18,333 computer science researchers and 81,894 con-
nections among them. Each computer science researcher
belongs to one of the 15 ground-truth clusters. The second
graph consists of 34,493 physics researchers and 247,962
connections among them. Each physics researcher belongs
to one of the 5 ground-truth clusters. Details of node at-
tributes and cluster sizes are found in Appendix D.

Table 1. F1 scores for local clustering in co-authorship networks

Network Cluster No attr. Use attr. Improv.

C
om

pu
te

rS
ci

en
ce

Bioinformatics 32.1 39.3 7.2
Machine Learning 30.9 37.3 6.4
Computer Vision 37.6 35.5 -2.1
NLP 45.2 52.3 7.1
Graphics 38.6 49.2 10.6
Networks 44.1 47.0 2.9
Security 29.9 35.7 5.8
Databases 48.5 58.1 9.6
Data Mining 27.5 28.8 1.3
Game Theory 60.6 66.0 5.4
HCI 70.0 77.6 7.6
Information Theory 47.4 46.9 -0.5
Medical Informatics 65.7 70.3 4.6
Robotics 59.9 59.9 0.0
Theoretical CS 66.3 70.7 4.4

Ph
ys

ic
s

Phys. Rev. A 69.4 70.9 1.5
Phys. Rev. B 41.4 42.3 0.9
Phys. Rev. C 79.3 82.1 2.8
Phys. Rev. D 62.3 68.9 6.6
Phys. Rev. E 49.5 53.7 4.2

AVERAGE 50.3 54.6 4.3

For both graphs, we consider the ground-truth communities
as the target clusters. We consider two choices for the sink
capacities T . The first is Ti = degG(i) for all i and the sec-
ond is Ti = 1 for all i. For each target cluster K in a graph,
given a seed node s ∈ K, we run Algorithm 2 with source
mass ∆s = α

∑
i∈K Ti for α ∈ {1.5, 1.75, 2, . . . , 5}. We

select the output cluster that has the minimum conductance
and measure the recovery quality using the F1 score. For
each of the 20 target clusters we run 100 trials and for each
trial we use a different seed node. We report the average F1
scores (as percentage) using the first choice for T in Table 1.
For both graphs, we find that setting the sink capacities to be
equal to the node degrees generally yields a better clustering
result than setting the sink capacities to 1. Additional results
under the second choice for T , along with more details on
parameter choices, are found in Appendix D. In most cases,
incorporating node attributes improves recovery accuracy.
Over the total 20 clusters in the two co-authorship networks,
using node attributes increases the F1 score by 4.3% on
average.

5. Conclusion and future work
In this work we propose and analyze a simple algorithm
for local graph clustering with node attributes. We provide
conditions under which the algorithm is guaranteed to work
well. We empirically demonstrate the advantage of incor-
porating node attributes over both synthetic and real-world
datasets. To the best of our knowledge, this is the first local
graph clustering algorithm for attributed graphs that also has
provable guarantees. The current work is the first step to-
wards building principled tools for local learning on graphs
using both structural and attribute information without pro-
cessing the whole graph. An interesting future direction
is to incorporate node embedding and parameter learning
into local diffusion, where the attributes and their relative
importance may be optimized simultaneously alongside the
local diffusion process.
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Conseil de recherches en sciences naturelles et en génie
du Canada (CRSNG), [RGPIN-2019-04067, DGECR-2019-
00147].

References
Abbe, E., Fan, J., and Wang, K. An ℓp theory of pca and

spectral clustering. The Annals of Statistics, 50(4):2359–
2385, 2022.

Allen-Zhu, Z., Silvio, L., and Vahab, S. M. A local algo-
rithm for finding well-connected clusters. In International
Conference on Machine Learning (ICML), 2013.

Andersen, R., Chung, F., and Lang, K. Local graph par-
titioning using pagerank vectors. IEEE Symposium on
Foundations of Computer Science (FOCS), 2006.

Andersen, R., Gharan, S. O., Peres, Y., and Trevisan, L.
Almost optimal local graph clustering using evolving sets.
Journal of the ACM, 63(2), 2016.

Arias-Castro, E., Candès, E. J., Helgason, H., and Zeitouni,
O. Searching for a trail of evidence in a maze. The Annals
of Statistics, 36(4):1726–1757, 2008.

Arias-Castro, E., Candès, E. J., and Durand, A. Detection
of an anomalous cluster in a network. The Annals of
Statistics, pp. 278–304, 2011.

9



Weighted Flow Diffusion for Local Graph Clustering with Node Attributes

Baranwal, A., Fountoulakis, K., and Jagannath, A. Graph
convolution for semi-supervised classification: Improved
linear separability and out-of-distribution generaliza-
tion. In International Conference on Machine Learning
(ICML), 2021.

Baranwal, A., Fountoulakis, K., and Jagannath, A. Effects
of graph convolutions in multi-layer networks. In Interna-
tional Conference on Learning Representations (ICLR),
2023a.

Baranwal, A., Jagannath, A., and Fountoulakis, K. Optimal-
ity of message-passing architectures for sparse graphs,
2023b.

Braun, G., Tyagi, H., and Biernacki, C. An iterative cluster-
ing algorithm for the contextual stochastic block model
with optimality guarantees. In International Conference
on Machine Learning (ICML), 2022.

Chen, L., Peng, R., and Wang, D. 2-norm flow diffusion in
near-linear time. In IEEE Symposium on Foundations of
Computer Science (FOCS), 2022.

Chen, Y. and Xu, J. Statistical-computational tradeoffs
in planted problems and submatrix localization with a
growing number of clusters and submatrices. The Journal
of Machine Learning Research, 17(1):882–938, 2016.

Chitra, U., Ding, K., Lee, J. C. H., and Raphael, B. J. Quan-
tifying and reducing bias in maximum likelihood estima-
tion of structured anomalies. In International Conference
on Machine Learning (ICML), 2021.

Deshpande, Y., Sen, S., Montanari, A., and Mossel, E. Con-
textual stochastic block models. Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Fountoulakis, K., Roosta-Khorasani, F., Shun, J., Cheng,
X., and Mahoney, M. W. Variational perspective on local
graph clustering. Mathematical Programming, 174:553–
573, 2017.

Fountoulakis, K., Wang, D., and Yang, S. p-norm flow diffu-
sion for local graph clustering. International Conference
on Machine Learning (ICML), 2020.

Fountoulakis, K., Levi, A., Yang, S., Baranwal, A., and
Jagannath, A. Graph attention retrospective. The Journal
of Machine Learning Research, 24, 2023.

Gleich, D. F. Pagerank beyond the web. SIAM Review, 57
(3):321–363, 2015.

Ha, W., Fountoulakis, K., and Mahoney, M. W. Statistical
guarantees for local graph clustering. The Journal of
Machine Learning Research, 22(1):6538–6591, 2021.

Jeub, L. G. S., Balachandran, P., Porter, M. A., Mucha, P. J.,
and Mahoney, M. W. Think locally, act locally: Detection
of small, medium-sized, and large communities in large
networks. Physical Review E, 91, 2015.

Jia, C., Li, Y., Carson, M. B., Wang, X., and Yu, J. Node
attribute-enhanced community detection in complex net-
works. Scientific reports, 7(1):1–15, 2017.

Leskovec, J., Lang, K., Dasgupta, A., and Mahoney, M.
Community structure in large networks: Natural clus-
ter sizes and the absence of large well-defined clusters.
Internet Mathematics, 6(1):29–123, 2009.

Liu, M. and Gleich, D. F. Strongly local p-norm-cut al-
gorithms for semi-supervised learning and local graph
clustering. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

Macgregor, P. and Sun, H. Local algorithms for finding
densely connected clusters. In International Conference
on Machine Learning (ICML), 2021.

McAuley, J., Targett, C., Shi, Q., and Hengel, A. V. D.
Image-based recommendations on styles and substitutes.
In ACM International Conference on Research and De-
velopment in Information Retrieval (SIGIR), 2015.

Qian, J. and Saligrama, V. Efficient minimax signal de-
tection on graphs. In Advances in Neural Information
Processing Systems (NeurIPS), 2014.

Reid, A. and Yuval, P. Finding sparse cuts locally using
evolving sets. In ACM Symposium on Theory of Comput-
ing (STOC), 2009.

Sharpnack, J. L., Krishnamurthy, A., and Singh, A. Near-
optimal anomaly detection in graphs using lovasz ex-
tended scan statistic. In Advances in Neural Information
Processing Systems (NeurIPS), 2013.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann,
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A. Primal-dual solutions of flow diffusion
Recall that we denote f∗ and x∗ as the optimal solutions of the primal and dual flow diffusion problem (1) and (2),
respectively. We derive two useful properties of x∗ based on the primal-dual relationships between f∗ and x∗. In
Appendix B when we analyze the support of x∗, we will repeatedly use these properties to characterize the nodes covered by
supp(x∗). Note that

min
f

1

2
fTWf s.t. ∆+BTWf ≤ T

= min
f

max
x≥0

1

2
fTWf + xT (∆ +BTWf − T )

= max
x≥0

min
f

1

2
fTWf + xT (∆ +BTWf − T )

= max
x≥0
−1

2
xTBTWBx+ xT (∆− T ),

therefore the optimal solutions f∗ and x∗ are related by f∗ = −Bx∗. According to the physical interpretation of the flow
variables f , this means that, in an optimal flow diffusion, the amount of mass that moves from node i to node j is precisely
wij(x

∗
i − x∗

j ) where wij is the weight for the edge (i, j). Moreover, we have x∗
i > 0 only if ∆i + [BTWf∗]i = Ti. Recall

that the quantity ∆i + [BTWf∗]i represents the amount of mass at node i after spreading mass according to f∗, therefore,
we get that x∗

i > 0 only if the final mass at node i equals exactly to its sink capacity Ti. In this case, we say that node i is
saturated.

B. Proofs
B.1. Proof of Lemma 3.3

We have that

∥Xi −Xj∥22 =

{
∥Zi − Zj∥22, if i, j ∈ K,
∥Zi − Zj∥22 + ∥µi − µj∥22 + (µi − µj)

T (Zi − Zj), if i ∈ K, j ̸∈ K.
(3)

Consider the random variable

∥Zi − Zj∥22 − E[∥Zi − Zj∥22] =
d∑
ℓ=1

(
(Ziℓ − Zjℓ)

2 − E[(Ziℓ − Zjℓ)
2]

)
.

Each term in the summation is sub-exponential and satisfies

∥(Ziℓ − Zjℓ)
2 − E[(Ziℓ − Zjℓ)

2]∥ψ1
≤ C∥(Ziℓ − Zjℓ)

2∥ψ1
= C∥Ziℓ − Zjℓ∥2ψ2

≤ 2C∥Ziℓ∥2ψ2
≤ C ′σ2

ℓ

for some absolute constants C,C ′, where ∥ · ∥ψ1
and ∥ · ∥ψ2

denote the sub-exponential norm and the sub-Gaussian norm,
respectively (Vershynin, 2018). The first inequality follows from standard centering inequality for the sub-exponential norm
(e.g. see Lemma 2.6.8 and Exercise 2.7.10 in (Vershynin, 2018)), and the second equality follows from Lemma 2.7.6 in
(Vershynin, 2018). Therefore, we may apply a Bernstein-type inequality for the sum of sub-exponential random variables
(e.g. see Theorem 2.8.1 in (Vershynin, 2018)) and get

P
(∣∣∣∥Zi − Zj∥22 − E∥Zi − Zj∥22

∣∣∣ > t
)

≤ exp

(
−min

(
t2

c
∑d
ℓ=1 ∥(Ziℓ − Zjℓ)2 − E[(Ziℓ − Zjℓ)2]∥2ψ1

,
t

c′ maxℓ ∥(Ziℓ − Zjℓ)2 − E[(Ziℓ − Zjℓ)2]∥ψ1

))

= exp

(
−min

(
t2

c′
∑d
ℓ=1 σ

4
ℓ

,
t

c′′σ̂2

))

for some absolute constants c, c′. Set t = c′′σ̂2 log n for a large enough constant c′′, use
∑d
ℓ=1(σℓ/σ̂)

4 ≤
∑d
ℓ=1(σℓ/σ̂)

2 =
O(log n) which follows from Assumption 3.2, and take a union bound over all i, j ∈ V , we get that with probability at least

12
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1− on(1), for all i, j ∈ V it holds that

∥Zi − Zj∥22 ≤ E∥Zi − Zj∥22 +O(σ̂2 log n)

≤ c̃

d∑
ℓ=1

∥Ziℓ − Zjℓ∥2ψ2
+O(σ̂2 log n)

≤ c̃′
d∑
ℓ=1

σ2
ℓ +O(σ̂2 log n)

= O(σ̂2 log n),

(4)

where c̃, c̃′ are absolute constants.

For i ∈ K and j /∈ K, the term (µi − µj)
T (Zi − Zj) =

∑d
ℓ=1(µiℓ − µjℓ)(Ziℓ − Zjℓ) is a sum of independent and mean

zero sub-Gaussian random variables. We may apply a general Hoeffding’s inequality (see Lemma 2.6.3 in (Vershynin,
2018)) and get that

P(|(µi − µj)
T (Zi − Zj)| ≥ t) ≤ 2 exp

(
ct2

maxℓ ∥Ziℓ − Zjℓ∥2ψ2
∥µi − µj∥22

)
≤ 2 exp

(
− c′t2

σ̂2∥µi − µj∥22

)
,

and hence by setting t = c′′σ̂
√
log n∥µi−µj∥2 for a large enough constant c′′ we get that with probability at least 1−on(1),

(µi − µj)
T (Zi − Zj) ≥ −O(σ̂

√
log n∥µi − µj∥2), ∀i ∈ K, j /∈ K. (5)

Combining (3), (4), (5), and using ∥µi − µj∥2 ≥ µ̂ = ω(σ̂
√
log n), we get that with probability at least 1− on(1),

∥Xi −Xj∥22 ≤ O(σ̂2 log n), ∀i ∈ K,∀j ∈ K,

∥Xi −Xj∥22 ≥ ∥µi − µj∥22 −O(σ̂
√
log n∥µi − µj∥2)

= ∥µi − µj∥22(1− on(1)) ≥ µ̂2(1− on(1)), ∀i ∈ K,∀j ̸∈ K.

By Assumption 3.2, we may pick γ that satisfies γσ̂2 = o(log−1 n) and γµ̂2 = ωn(λ), and for any such γ we have

exp(−γ∥Xi −Xj∥22) ≥ exp(−on(1)), ∀i ∈ K,∀j ∈ K,

exp(−γ∥Xi −Xj∥22) ≤ exp(−γµ̂2(1− on(1))), ∀i ∈ K,∀j ̸∈ K,

as required.

B.2. Proof of Theorem 3.4

We start with part 1 of the theorem. Without loss of generality let us assume that the node indices are such that K =
{1, 2, . . . , k} and that x∗

1 ≥ x∗
2 ≥ . . . ≥ x∗

k. In order to show that K ⊆ supp(x∗), it suffices to show that x∗
k > 0.

Assume for the sake of contradiction that x∗
k = 0. Note that since the initial mass is (1 + β)

∑
i∈K Ti, in an optimal

flow routing, the amount of mass that flows over an edge cannot be greater than (1 + β)
∑
i∈K Ti. This means that

wij |x∗
i − x∗

j | ≤ (1 + β)
∑
i′∈K Ti′ for all i, j ∈ V (recall the basic properties of x∗ provided in Section A). Therefore we

have that

x∗
1 ≤

k−1∑
i=1

(1 + β)
∑
i′∈K Ti′

wi(i+1)
+ x∗

k =

k−1∑
i=1

(1 + β)
∑
i′∈K Ti′

wi(i+1)
.

It then follows from Lemma 3.3 that with probability at least 1− on(1),

x∗
1 ≤ (1 + β)k(1 + on(1))

∑
i∈K

Ti.

On the other hand, the total amount of mass that leaves K is

k∑
i=1

∑
j≥k+1
j∼i

wij(x
∗
i − x∗

j ) ≤
k∑
i=1

x∗
i

∑
j≥k+1
j∼i

wij ≤ x∗
1

∑
(i,j)∈cutG(K)

wij .

13
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Apply Lemma 3.3, Lemma C.2 and pick ϵ = δ = 1 there, and use the above bound on x∗
1, we get that, with probability at

least 1− on(1)− k−1/3,

k∑
i=1

∑
j≥k+1
j∼i

wij(x
∗
i − x∗

j ) ≤ (1 + β)k2(1 + on(1))(2q(n− k) + 4 log k/k) exp(−γµ̂2(1− on(1)))
∑
i∈K

Ti.

Since we started with (1 + β)
∑
i∈K Ti initial mass inside K, nodes in K can settle at most

∑
i∈K Ti units of mass, we

know that at least β
∑
i∈K Ti amount of mass must leave K. In what follows we show that this cannot be the case for

appropriately chosen γ, and hence arriving at the desired contradiction. Since µ̂ = ω(σ̂
√

log n(1 + λ)), we may pick γ

such that γσ̂2 = o(log−1 n) to satisfy the assumption required for Lemma 3.3, and at the same time γµ̂2 = ω(1 + λ). Since
λ = Ω(log k + log(q(n− k)) + log(1/β)), we know that for any terms an = on(1) and bn = on(1) and for sufficiently
large n,

γµ̂2(1− an) > 2 log k + log(2q(n− k) + 4 log k/k) + log(1/β + 1) + log(1 + bn),

which implies that, for sufficiently large n,

(1 + β)k2(1 + on(1))(2q(n− k) + 4 log k/k) exp(−γµ̂2(1− on(1))) < β,

and hence
k∑
i=1

∑
j≥k+1
j∼i

wij(x
∗
i − x∗

j ) < β
∑
i∈K

Ti,

which is the desired contradiction. Therefore we must have that x∗
k > 0 and consequently K ⊆ supp(x∗). Now, since

x∗
i > 0 for all i ∈ K, this means that nodes inside K settles exactly

∑
i∈K Ti units mass, and hence exactly β

∑
i∈K Ti

mass leaves K. Because x∗
i > 0 only if node j is saturated with Ti unit mass, we get that

∑
i∈supp(x∗

i )\K
Ti ≤ β

∑
i∈K Ti.

Part 2 of the theorem is prove by following the same reasoning. Assume for the sake of contradiction that x∗
k = 0. Since

p ≥ (4+ϵ)
δ2

log k
k−1 , we apply Lemma C.1 and get that with probability at least 1− ek−ϵ/2, cutK(C) ≥ (1− δ)p(k − 1) for

every C ⊆ K such that 1 ≤ |C| ≤ k − 1. We will assume that this event holds. Moreover, for any 1 ≤ i ≤ k − 1, the total
amount of mass that moves from {1, 2, . . . , i} to {i+ 1, i+ 2, . . . , k} cannot be greater than (1 + β)

∑
i∈K Ti. Since there

are at least (1− δ)p(k − 1) edges between {1, 2, . . . , i} and {i+ 1, i+ 2, . . . , k}, we must have that

x∗
i − x∗

i+1 ≤
(1 + β)

∑
i′∈K Ti′

(1− δ)p(k − 1)minj,j′∈K,j∼j′ wjj′
,∀i = 1, 2, . . . , k − 1,

because, otherwise, there would be more than (1 + β)
∑
i∈K Ti mass that moves from {1, 2, . . . , i} to {i+ 1, i+ 2, . . . , k}.

Apply Lemma 3.3 we have that, with probability at least 1− on(1)− ek−ϵ/2,

x∗
1 ≤

k−1∑
i=1

(1 + β)
∑
i′∈K Ti′

(1− δ)p(k − 1)minj,j′∈K,j∼j′ wjj′
≤

(1 + β)k(1 + on(1))
∑
i′∈K Ti′

(1− δ)p(k − 1)
.

The rest of the proof proceeds as the proof of part 1.

B.3. Proof of Theorem 3.5

To see that K ⊆ supp(x∗), let us assume for the sake of contradiction that x∗
i = 0 for some i ∈ K. This means that node i

receives at most Ti ≤ Tmax mass, because otherwise we would have x∗
i > 0. We also know that i ̸= s because Tmax < ∆s.

Denote F := {j ∈ K : j ∼ s}. We will consider two cases depending on if i ∈ F or not. If i ∈ F , then we must have that,
with probability at least 1− on(1),

wis(x
∗
s − x∗

i ) ≤ Tmax ⇐⇒ x∗
s ≤ Tmax/wis + x∗

i = Tmax(1 + an)

for some an = on(1), where the last equality follows Lemma 3.3. Moreover, since c2 < 1 we have that

p(k − 1)

η(c2)
= p(k − 1) + q(n− k)e−c2γµ̂

2

> p(k − 1) + q(n− k)e−γµ̂
2(1−bn) (6)

14
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for any bn = on(1) and for all sufficiently large n. Therefore, with probability at least 1 − on(1) − 4k−ϵ1/3 and for all
sufficiently large n, the total amount of mass that is sent out from node s is∑

ℓ∼s

wis(x
∗
s − x∗

ℓ ) =
∑
ℓ∼s
ℓ∈K

wis(x
∗
s − x∗

ℓ ) +
∑
ℓ∼s
ℓ/∈K

wis(x
∗
s − x∗

ℓ )

(i)
≤
∑
ℓ∼s
ℓ∈K

x∗
s +

∑
ℓ∼s
ℓ/∈K

e−γµ̂
2(1−bn)x∗

s for some bn = on(1)

(ii)
≤ (1 + δ1)p(k − 1)x∗

s + ((1 + δ1)q(n− k) + 2δ1p(k − 1))e−γµ̂
2(1−bn)x∗

s

≤ (1 + 3δ1)
(
p(k − 1) + q(n− k)e−γµ̂

2(1−bn)
)
x∗
s

(iii)
< (1 + 3δ1)

p(k − 1)

η(c2)
x∗
s

≤ (1 + 3δ1)
p(k − 1)

η(c2)
Tmax(1 + an)

(iv)
< c1(1 + 3δ1)

p(k − 1)

η(c2)
Tmax,

where (i) follows from Lemma 3.3 and x∗ ≥ 0, (ii) follows from Lemma C.3, (iii) follows from (6), (iv) follows from the
assumption that c1 > 1 and hence for all sufficiently large n we have c1 ≥ (1 + an) where an = on(1). Since the initial
mass equals the sum of Ts and the total amount of mass that is sent out from s, we get that the total amount of initial mass is

∆s < c1(1 + 3δ1)
p(k − 1)

η(c2)
Tmax + Tmax < c1Tmax

(
(1 + 3δ1)(1 +

1
k−1 )k

η(c2)

)
< c1Tmax

m(δ1, δ2)k

η(c2)2
= ∆s,

which is a contradiction. Therefore, we must have i ̸∈ F .

Suppose now that i ̸∈ F . Then we know that node i receives at most Ti ≤ Tmax mass from its neighbors. In particular,
node i receives at most Tmax mass from nodes in F , that is,

∑
j∈F
j∼i

wijx
∗
j ≤ Tmax. By Lemma C.4, we know that with

probability at least 1− 2k−ϵ1/3 − k−2ϵ2 , node i has at least (1− δ1)(1− δ2)p
2(k − 1) neighbors in F . Apply Lemma 3.3

we get that, with probability at least 1− on(1)− 2k−ϵ1/3 − k−2ϵ2 ,∑
j∈F
j∼i

wijx
∗
j ≤ Ti =⇒ (1− δ1)(1− δ2)p

2(k − 1) ·min
j∈F
j∼i

x∗
j ≤ Tmax ·max

j∈F
j∼i

1

wij

=⇒ min
j∈F
j∼i

≤ Tmax(1 + an)

(1− δ1)(1− δ2)p2(k − 1)

=⇒ min
j∈F
≤ Tmax(1 + an)

(1− δ1)(1− δ2)p2(k − 1)

for some an = on(1). Let j ∈ F a node such that x∗
j ≤ x∗

ℓ for all ℓ ∈ F , then

x∗
j ≤

Tmax(1 + an)

(1− δ1)(1− δ2)p2(k − 1)
. (7)

By Lemma C.4, with probability at least 1− 2k−ϵ1/3 − k−2ϵ2 , node j has at least (1− δ1)(1− δ2)p
2(k− 1)− 1 neighbors

in F . Since x∗
j ≤ x∗

ℓ for all ℓ ∈ F and x∗
j ≤ x∗

s , we know that

|{ℓ ∈ K : x∗
ℓ ≥ x∗

j}| ≥ (1− δ1)(1− δ2)p
2(k − 1) (8)

Therefore, for all sufficiently large n, with probability at least 1− on(1)− 4k−ϵ1/3 − k−2ϵ2 , the maximum amount of mass
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that node j can send out is∑
ℓ∼j

wjℓ(x
∗
j − x∗

ℓ ) =
∑
ℓ∼j
ℓ∈K

wjℓ(x
∗
j − x∗

ℓ ) +
∑
ℓ∼j
ℓ ̸∈K

wjℓ(x
∗
j − x∗

ℓ )

(i)
≤
∑
ℓ∼j
ℓ∈K

wjℓ(x
∗
j − x∗

ℓ ) +
∑
ℓ∼j
ℓ ̸∈K

e−γµ̂
2(1−bn)(x∗

j − x∗
ℓ ) for some bn = on(1)

(ii)
≤
(
(1 + δ1)p(k − 1)− (1− δ1)(1− δ2)p

2(k − 1)
)
x∗
j

+
(
(1 + δ1)q(n− k) + 2δ1p(k − 1)

)
e−γµ̂

2(1−bn)x∗
j

≤
[
(1 + 3δ1)

(
p(k − 1) + q(n− k)e−γµ̂

2(1−bn)
)
− (1− δ1)(1− δ2)p

2(k − 1)
]
x∗
j

(iii)
≤
[
(1 + 3δ1)

p(k − 1)

η(c2)
− (1− δ1)(1− δ2)p

2(k − 1)

]
x∗
j

(iv)
≤
[
(1 + 3δ1)

p(k − 1)

η(c2)
− (1− δ1)(1− δ2)p

2(k − 1)

]
Tmax(1 + an)

(1− δ1)(1− δ2)p2(k − 1)

≤ Tmax(1 + an)
(1 + 3δ1)

(1− δ1)(1− δ2)

1

pη(c2)
− Tmax,

where (i) follows from Lemma 3.3, (ii) follows from Lemma C.3 and (8), (iii) follows from (6) and (iv) follows from (7).
Now, since node j settles at most Tj ≤ Tmax mass, the maximum amount of mass that node j receives is

Tmax(1 + an)
(1 + 3δ1)

(1− δ1)(1− δ2)

1

pη(c2)
− Tmax + Tmax = Tmax(1 + an)

(1 + 3δ1)

(1− δ1)(1− δ2)

1

pη(c2)
.

This means that

wjs(x
∗
s − x∗

j ) ≤ Tmax(1 + an)
(1 + 3δ1)

(1− δ1)(1− δ2)

1

pη(c2)

=⇒ x∗
s ≤

Tmax(1 + a′n)

(1− δ1)(1− δ2)

(
1

p2(k − 1)
+

(1 + 3δ1)

pη(c2)

)
for some a′n = on(1), where we have applied Lemma 3.3 for wjs. Apply the same reasoning as before, we get that with
probability at least 1− on(1)− 4k−ϵ1/3 − k−2ϵ2 for all sufficiently large n, the total amount of mass that is sent out from
node s is ∑

ℓ∼s

wis(x
∗
s − x∗

ℓ ) < (1 + 3δ1)
p(k − 1)

η(c2)
x∗
s

≤ Tmax(1 + a′n)

(1− δ1)(1− δ2)

(
(1 + 3δ1)

pη(c2)
+

(1 + 3δ1)
2(k − 1)

η(c2)2

)
≤ c1Tmax

(1 + 3δ1)

(1− δ1)(1− δ2)

(1 + 3δ2 +
1

p(k−1) )

η(c2)2
(k − 1)

≤ c1Tmax
m(δ1, δ2)(k − 1)

η(c2)2
,

but then this means that the total amount of initial mass is

∆s < c1Tmax
m(δ1, δ2)(k − 1)

η(c2)2
+ Tmax < c1Tmax

m(δ1, δ2)k

η(c2)2
= ∆s

which is a contradiction. Therefore we must have i ̸∈ K, but then this contradicts our assumption that i ∈ K. Since our
choice of i, s ∈ K were arbitrary, this means that x∗

i > 0 for all i ∈ K and for all s ∈ K.
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Finally, the upper bound on the false positives follows directly from the fact that x∗
i > 0 only if node i is saturated with

exactly Ti mass. When Ti = 1 for all i the result follows directly from ∆s = c1m(δ1, δ2)k/η(c2)
2. When Ti = deg(i) for

all i, we may apply Lemma C.3 and get that

∆s ≤
c1m(δ1, δ2)

η(c2)2
(1 + δ1)k(p(k − 1) + q(n− k)) ≤ c1m(δ1, δ2)

η(c2)2
(1 + δ1)

(1− δ1)
vol(K)

from which the result follows.

C. Technical lemmas
Lemma C.1 (Lower bound of internal cut). For any 0 < δ ≤ 1 and ϵ > 0, if p ≥ (4+ϵ)

δ2
log k
k−1 and k ≥ 20, then with

probability at least 1− ek−ϵ/2 we have that cutK(C) ≥ (1− δ)p(k − 1) for all proper subsets C ⊂ K.

Proof. Consider integers j such that 1 ≤ j ≤ k/2. First fix some j and let C ⊂ K be such that |C| = j. Note that cut(C)
is the sum of j(k − j) independent Bernoulli random variables with expectation E(cut(C)) = pj(k − j). Therefore we
may apply the Chernoff bound and get

P(cutK(C) ≤ (1− δ)p(k − 1)) ≤ e−pj(k−j)
(

ej(k − j)

(1− δ)(k − 1)

)(1−δ)p(k−1)

.

By a union bound over all subsets C ⊂ K such that |C| = j we get that

P (cutK(C) ≤ (1− δ)p(k − 1),∀C ⊂ K s.t. |C| = j)

≤
(
k

j

)
e−pj(k−j)

(
ej(k − j)

(1− δ)(k − 1)

)(1−δ)p(k−1)

≤
(
ek

j

)j
exp

[
−pj(k − j) + (1− δ)p(k − 1) + (1− δ)p(k − 1) log

(
j(k − j)

(1− δ)(k − 1)

)]
= exp

[
−pj(k − j) + (1− δ)p(k − 1) + (1− δ)p(k − 1) log

(
j(k − j)

(1− δ)(k − 1)

)
+ j + j log

(
k

j

)]
. (9)

Now consider the exponent in (9),

f(j) = −pj(k − j) + (1− δ)p(k − 1) + (1− δ)p(k − 1) log

(
j(k − j)

(1− δ)(k − 1)

)
+ j + j log

(
k

j

)
,

we will show that f(j) ≤ −(1 + ϵ/2) log k + 1 for all 1 ≤ j ≤ k/2 and k ≥ 20. Let us first consider the interval [1, 3k/8].
The derivative of f(j) with respect to j is

f ′(j) = −p(k − 2j) + (1− δ)p(k − 1)
(k − 2j)

j(k − j)
+ log

(
k

j

)
,

and we have that f ′(j) ≤ 0 for all 1 ≤ j ≤ 3k/8. To see this, for 1 ≤ j ≤ k/2 we have

(k − 1)

j(k − j)
≤ 1 ⇐⇒ (1− δ)p(k − 1)(k − 2j)

j(k − j)
≤ (1− δ)p(k − 2j)

⇐⇒ −p(k − 2j) + (1− δ)p(k − 1)
(k − 2j)

j(k − j)
≤ −δp(k − 2j),

(10)

moreover, since p ≥ (4+ϵ)
δ2

log k
k−1 , for 1 ≤ j ≤ 3k/8 and k ≥ 2 we have

−δp(k − 2j) ≤ −δpk

4
≤ − (4 + ϵ)k

4δ(k − 1)
log k ≤ − log k ≤ − log(k/j), (11)
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and thus by combining (10) and (11) we get f ′(j) ≤ −δp(k − 2j) + log(k/j) ≤ 0 for all 1 ≤ j ≤ 3k/8. This implies that
f(j) achieves maximum at j = 1 over the interval [1, 3k/8]. Therefore, for all 1 ≤ j ≤ 3k/8,

f(j) ≤ f(1) = −p(k − 1) + (1− δ)p(k − 1)− (1− δ)p(k − 1) log(1− δ) + 1 + log k

= −p(k − 1)(δ + (1− δ) log(1− δ)) + 1 + log k

≤ −p(k − 1)δ2/2 + 1 + log k

≤ −(2 + ϵ/2) log k + 1 + log k

= −(1 + ϵ/2) log k + 1

where the second inequality follows from the numeric inequality δ + (1− δ) log(1− δ) ≥ δ2/2 for δ ∈ (0, 1), and the third
inequality follows from the assumption that p ≥ (4+ϵ)

δ2
log k
k−1 .

Next, consider the value of f(j) over the interval [3k/8, k/2]. We have that for 3k/8 ≤ j ≤ k/2 and k ≥ 20,

f(j) ≤ −p
(
3k

8

)(
5k

8

)
+ (1− δ)p(k − 1)

(
1 + log

(
k2/4

(1− δ)(k − 1)

))
+

k

2
+

3k

8
log

(
8

3

)
≤ −15

64
pk2 + p(k − 1)

(
1 + (1− δ) log

(
k2/4

k − 1

))
+

22

25
k

≤ −pk
(

41

256
k − 1− log

(
k2/4

k − 1

))
− k

(
19

256
pk − 22

25

)
≤ −1

2
pk

≤ −(2 + ϵ/2) log k.

In the above, the first inequality follows from the fact that the term j log(k/j) is decreasing over the interval [3k/8, k/2],
the second inequality follows from the numeric inequality (1− δ)− (1− δ) log(1− δ) ≤ 1 for δ ∈ (0, 1) which follows
from the fact that log x ≥ 1− 1/x for x > 0, the forth inequality follows from k ≥ 20.

Therefore, the exponent in (9) satisfies f(j) ≤ −(1+ ϵ/2) log k+1 for all 1 ≤ j ≤ k/2 and k ≥ 20. Finally, apply a union
bound we get that

P(cutK(C) ≤ (1− δ)p(k − 1),∀C ⊂ K s.t. 1 ≤ |C| ≤ k − 1)

=

⌊k/2⌋∑
j=1

P(cutK(C) ≤ (1− δ)p(k − 1),∀C ⊂ K s.t. |C| = j)

≤ exp(f(j) + log k) ≤ exp
(
− ϵ

2
log k + 1

)
= ek−ϵ/2

which proves the required result.

Lemma C.2 (Upper bound of external cut). For any 0 < δ ≤ 1 and ϵ > 0 with probability at least 1− k−ϵ/3 we have that
cutG(K) ≤ (1 + δ)qk(n− k) + (eϵ/δ2 + ϵ/3) log k.

Proof. Note that cutG(K) is the sum of k(n − k) independent Bernoulli random variables with mean E[cutG(K)] =
qk(n−k). We consider two cases depending on the value of qk(n−k). If qk(n−k) ≥ ϵ log k/δ2, then by the multiplicative
Chernoff bound we have that,

P(cutG(K) ≥ (1 + δ)qk(n− k)) ≤ exp

(
−δ2

3
qk(n− k)

)
≤ exp (−ϵ log k/3) . (12)

Next consider the case qk(n− k) ≤ ϵ log k/δ2. Denote c(ϵ, δ) := eϵ/δ2 + ϵ/3 and observe that

ϵ

δ2
=

c(ϵ, δ)− ϵ/3

e
=

(
1− ϵ/3

c(ϵ, δ)

)
c(ϵ, δ)

e
≤ exp

(
− ϵ/3

c(ϵ, δ)

)
c(ϵ, δ)

e
.
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This means that

qk(n− k) ≤ ϵ

δ2
log k ≤ exp

(
− ϵ/3

c(ϵ, δ)
− 1

)
c(ϵ, δ) log k,

and thus
qk(n− k)

c(ϵ, δ) log k
≤ exp

(
− ϵ/3

c(ϵ, δ)
− 1

)
⇐⇒ c(ϵ, δ) + c(ϵ, δ) log

(
qk(n− k)

c(ϵ, δ) log k

)
≤ −ϵ/3.

Therefore the Chernoff bound yields

P (cutG(K) ≥ c(ϵ, δ) log k) ≤ e−qk(n−k)
(
eqk(n− k)

c(ϵ, δ) log k

)c(ϵ,δ) log k
= exp

(
−qk(n− k) + c(ϵ, δ) log k

(
1 + log

(
qk(n− k)

c(ϵ, δ) log k

)))
≤ exp

(
log k

(
c(ϵ, δ) + c(ϵ, δ) log

(
qk(n− k)

c(ϵ, δ) log k

)))
≤ exp(−ϵ log k/3).

(13)

Combining (12) and (13) gives the required result.

Lemma C.3 (Concentration of degrees). If p ≥ (3+ϵ)
δ2

log k
k−1 for some ϵ > 0 and 0 < δ ≤ 1, then with probability at least

1− 2k−ϵ/3 we have that
(1− δ)p(k − 1) ≤ degK(i) ≤ (1 + δ)p(k − 1),∀i ∈ K.

Similarly, with probability at least 1− 2k−ϵ/3 we have that

(1− δ)(p(k − 1) + q(n− k)) ≤ degG(i) ≤ (1 + δ)(p(k − 1) + q(n− k)),∀i ∈ K.

Proof. For each node i ∈ K, degK(i) is the sum of independent Bernoulli random variables with mean E[degK(i)] =
p(k − 1), therefore, apply the multiplicative Chernoff bound we have

P(|degK(i)− p(k − 1)| ≥ δp(k − 1)) ≤ 2 exp(−δ2p(k − 1)/3) ≤ 2 exp(−(1 + ϵ) log k/3).

By taking a union bound over all i ∈ K we obtain the required concentration result for degK(i) for all i ∈ K. The result
for degG(i) for all i ∈ K is obtained similarly.

Lemma C.4 (Well-connected cluster). If p ≥ max( (3+ϵ1)
δ21

log k
k−1 ,

(2+ϵ2)

δ2
√
1−δ1

√
log k√
k−1

), then with probability at least 1−2k−ϵ1/3−
k−2ϵ2 we have that for all s ∈ K, for all i ∈ K\{s}, there are at least (1− δ1)(1− δ2)p

2(k − 1) paths connecting node i
to node s such that, the path lengths are at most 2 and the paths are mutually non-overlapping, i.e., an edge appears in at
most one of the paths.

Proof. Let s ∈ K and denote F the set of neighbors of s in K. By Lemma C.3 and our assumption on p we know that
|F | ≥ (1 − δ1)p(k − 1) with probability at least 1 − 2k−ϵ1/3. Let us denote E(A,B) the set of edges between A ⊆ K
and B ⊆ K. Let i ∈ K\{s}. If i ̸∈ F , then |E({i}, F )| is the sum of independent Bernoulli random variables with mean
E[|E({i}, F )|] = |F |p. Apply the multiplicative Chernoff bound we get that

P(|E({i}, F )| ≤ (1− δ2)|F |p) ≤ exp

(
−δ22

2
|F |p

)
≤ exp

(
−δ22(1− δ1)

2
p2(k − 1)

)
≤ exp(−(2 + 2ϵ2) log k)

where the last inequality is due to our assumption that p ≥ (2+ϵ2)

δ2
√
1−δ1

√
log k√
k−1

. If i ∈ F , then the edge (i, s) is a path of length 1
between node i and node s, moreover,

P(|E({i}, F\{i})|+ 1 ≤ (1− δ2)|F |p) ≤ P(|E(i′, F )| ≤ (1− δ2)|F |p)

for any node i′ ∈ K\F and i′ ̸= s. Note that, for i ∈ K\{s}, each edge (i, j) in E({i}, F\{i}) identifies a unique path
(i, j, s) and all these paths do not have overlapping edges. Therefore, denote P (i, s) the set of mutually non-overlapping
paths of length at most 2 between i and s. and take union bounds over all i ∈ K\{s} and then over all s ∈ K, we get that

P(P (i, s) ≤ (1− δ2)|F |p, ∀s ∈ K,∀i ∈ K\{s}) ≤ k−2ϵ2 .

Finally, a union bound over the above event and the event that |F | ≤ (1− δ1)p(k − 1) gives the required result.
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D. Dataset details, empirical setup and additional results
The co-authorship graphs are based on the Microsoft Academic Graph from the KDD Cup 2016 challenge (Shchur et al.,
2018). In these graphs, nodes are authors, and two nodes are connected by an edge if they have coauthored a paper. The
clusters are defined according to the most active research field of each author. The node attributes represent paper keywords
for each author’s papers. The first graph consists of 18,333 computer science researchers and 81,894 connections among
them. Each computer science researcher belongs to one of the 15 ground-truth clusters. The node attributes consists of 6,805
key words. The second graph consists of 34,493 physics researchers and 247,962 connections among them. Each physics
researcher belongs to one of the 5 ground-truth clusters. The node attributes consists of 8,415 key words. The cluster sizes
are given in Table 2.

Table 2. Cluster statistics in co-authorship graphs

Network Cluster Number of nodes Volume

C
om

pu
te

rS
ci

en
ce

Bioinformatics 708 3767
Machine Learning 462 4387
Computer Vision 2050 20384
NLP 429 2476
Graphics 1394 15429
Networks 2193 18364
Security 371 2493
Databases 924 9954
Data Mining 775 7573
Game Theory 118 362
HCI 1444 15145
Information Theory 2033 16007
Medical Informatics 420 3838
Robotics 4136 33708
Theoretical CS 876 9901

TOTAL 18333 163788

Ph
ys

ic
s

Phys. Rev. A 5750 52151
Phys. Rev. B 5045 54853
Phys. Rev. C 17426 325475
Phys. Rev. D 2753 40451
Phys. Rev. E 3519 22994

TOTAL 34493 495924

For both datasets, we preprocess the node attributes by applying PCA to reduce the dimension to 128. In addition, for each
node we enhance its attributes by taking a uniform average over its own attributes and the neighbors’ attributes. Uniform
averaging of neighborhood attributes has been shown to improve the signal-to-noise ratio in CSBM (Baranwal et al., 2021).
This operation does not break the local nature of Algorithm 2 because it only needs to be done whenever it becomes
necessary for subsequent computations, i.e., when a node is looked at by Algorithm 2.

We consider two ways for setting the sink capacities. The first is Ti = degG(i) for all i. The corresponding local clustering
results are reported in Table 1 in the main text. The second is Ti = 1 for all i. The additional results are presented in
Table 3. For each cluster K in a graph, given a seed node s ∈ K, we run Algorithm 2 with source mass ∆s = α

∑
i∈K Ti

for α ∈ {1.5, 1.75, 2, . . . , 5}. We select the cluster that has the minimum edge-weighted conductance. Given edge weights
wij for (i, j) ∈ E and a cluster C ⊆ V , the edge-weighted conductance of C is the ratio∑

i∈C,j ̸∈C wij∑
i∈C

∑
j∼i wij

.

We measure recovery quality using the F1 score. For each cluster we run 100 trials, for each trial we randomly select a seed
node from the target cluster. We report average F1 scores over 100 trials. We set γ = 0.02 so that the edge weights are
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reasonably distributed between 0 and 1, that is, not all edges weights are arbitrarily close to 1, and not all edge weights
are arbitrarily close 0. We find that the results do not change much when we use other choices for γ within a reasonable
range, e.g. γ ∈ [0.005, 0.1]. For both choices of T , using node attributes generally improves the recovery accuracy. Overall,
setting the sink capacities to Ti = degG(i) leads to higher F1 scores than setting Ti = 1.

Table 3. F1 scores for local clustering in co-authorship networks under different settings of flow diffusion

Ti = degG(i) for all i Ti = 1 for all i

Network Cluster No attr. Ues attr. Improv. No attr. Ues attr. Improv.

C
om

pu
te

rS
ci

en
ce

Bioinformatics 32.1 39.3 7.2 23.5 31.7 8.2
Machine Learning 30.9 37.3 6.4 27.5 34.4 6.9
Computer Vision 37.6 35.5 -2.1 40.4 37.8 -2.6
NLP 45.2 52.3 7.1 34.3 37.2 2.9
Graphics 38.6 49.2 10.6 39.1 41.3 2.2
Networks 44.1 47.0 2.9 43.0 44.1 1.1
Security 29.9 35.7 5.8 23.0 26.2 3.2
Databases 48.5 58.1 9.6 41.9 42.6 0.7
Data Mining 27.5 28.8 1.3 26.2 28.6 2.4
Game Theory 60.6 66.0 5.4 56.9 62.6 5.7
HCI 70.0 77.6 7.6 44.0 63.1 19.1
Information Theory 47.4 46.9 -0.5 41.6 41.4 -0.2
Medical Informatics 65.7 70.3 4.6 62.7 68.1 5.4
Robotics 59.9 59.9 0.0 58.8 55.9 -2.9
Theoretical CS 66.3 70.7 4.4 54.9 59.1 4.2

Ph
ys

ic
s

Phys. Rev. A 69.4 70.9 1.5 53.5 60.9 7.4
Phys. Rev. B 41.4 42.3 0.9 40.4 41.1 0.7
Phys. Rev. C 79.3 82.1 2.8 84.9 85.9 1.0
Phys. Rev. D 62.3 68.9 6.6 63.6 70.0 6.4
Phys. Rev. E 49.5 53.7 4.2 30.1 34.9 4.8

AVERAGE 50.3 54.6 4.3 44.5 48.3 3.8

D.1. Additional experiments on the Amazon co-purchase graph

We carry out additional experiments using a segment of the Amazon co-purchase graph (McAuley et al., 2015; Shchur et al.,
2018). In this graph, nodes represent products, and two products are connected by an edge if they are frequently bought
together. The clusters are defined according to the product category. The node attributes are bag-of-words encoded product
reviews. The cluster sizes are given in Table 4. We use exactly the same empirical settings as before. The local clustering
results are reported in Table 5.

We estimate an average signal-to-noise ratio in each dataset as follows. Let K1,K2, . . . ,KC denote a partition of nodes
into distinct clusters. Let Xi be the node attributes of node i. For 1 ≤ r ≤ C let

µ̄r :=
1

|Kr|
∑
i∈Kr

Xi

be the empirical mean of node attributes in the cluster Kr. Denote

λ̄r := min
1≤s≤C,s̸=r

∥µ̄r − µ̄s∥2

the empirical minimum pairwise mean distance between cluster Kr and other clusters. Let σ̄ℓ denote the empirical standard
deviation for the ℓth attribute and let σ̄ = 1

d

∑d
ℓ=1 σ̄ℓ, where d is the dimension of node attributes. Then we compute an
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Table 4. Cluster statistics in the Amazon co-purchase graph

Cluster Number of nodes Volume

Film Photography 365 13383
Digital Cameras 1634 32208
Binoculars & Scopes 686 21611
Lenses 901 26479
Tripods & Monopods 872 26133
Video Surveillance 798 17959
Lighting & Studio 1900 86989
Flashes 331 13324

TOTAL 7487 238086

Table 5. F1 scores for local clustering in a segment of the Amazon co-purchase graph

Ti = degG(i) for all i Ti = 1 for all i

Cluster No attr. Ues attr. Improv. No attr. Ues attr. Improv.

Film Photography 69.0 71.9 2.9 70.4 74.0 3.6
Digital Cameras 54.4 56.0 1.6 42.7 43.1 0.4
Binoculars 83.3 85.1 1.8 81.8 82.7 0.9
Lenses 39.0 40.4 1.4 32.2 32.9 0.7
Tripods & Monopods 46.3 47.8 1.5 37.9 38.1 0.2
Video Surveillance 94.7 94.9 0.2 94.0 93.8 -0.2
Lighting & Studio 49.6 49.5 -0.1 53.7 53.5 -0.2
Flashes 33.3 32.7 -0.6 27.0 25.8 -1.2

AVERAGE 58.7 59.8 1.1 55.0 55.5 0.5

average relative signal strength for the entire dataset as

ratio :=
1

|C|

C∑
r=1

λ̄r/σ̄.

The computed results are shown in Table 6. Observe that the ratio is much smaller for the Amazon co-purchase graph than
the two co-authorships graphs. This means that the relative strength of attribute signal is much smaller for the Amazon
co-purchase graph, and it explains why there is only a very small improvement when using node attributes.

Table 6. Relative signal strength for each dataset

graph ratio

Co-authorship (Computer Science) 41.69
Co-authorship (Physics) 77.09
Amazon co-purchase 7.58

The results we observe in the experiments with real-world datasets indicate that, an very interesting future work is to
incorporate node embedding and parameter learning into the local flow diffusion pipeline (to improve signal-to-noise ratio
of node attributes), where the attributes and their relative importance may be optimized simultaneously alongside the local
diffusion process.
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D.2. Additional experiments on a large online social network

Since our algorithm is sublinear, we carry out additional experiments using the Orkut online social network, which consists
of more than 3 million nodes and 117 million edges. This network has been used by Fountoulakis et al. (2020) to evaluate
their local graph clustering algorithm. The network comes with 5000 ground-truth communities, from which we selected 11
target clusters according to size, combinatorial conductance and internal connectivity. A summary of the selected clusters is
provided in Table 7.

Table 7. Summary of clusters selected from the Orkut online social network

Cluster Number of nodes Volume Conductance

A 368 49767 0.42
B 202 31912 0.45
C 141 16022 0.45
D 113 11698 0.46
E 194 26248 0.47
F 64 4617 0.47
G 128 13786 0.47
H 107 14109 0.48
I 195 18652 0.49
J 318 41612 0.50
K 223 20204 0.50

The original dataset does not contain node attributes. Therefore, we conduct semi-synthetic experiments as follows. For
each target cluster, we generate 10-dimensional node attributes from a mixture of Gaussians, i.e., we use the same attribute
generation process as the one used in the synthetic experiments in the main paper. For each target cluster we run multiple
trials, for each trial we use a different node from the target cluster as the seed node. The number of trials we run for each
target cluster equals the number of nodes in the cluster. In order to demonstrate the effect of node attributes, we control the
strength of node attributes by varying a parameter a where µ̂ = a

√
log n and n is the total number of nodes in the graph.

This is the same setting that has been used to generate Figure 2 in the main paper. For each target cluster, we report the
average F1 scores in Table 8, where FD means flow diffusion that does not use node attributes, WFD(a=x) means weighted
flow diffusion with node attribute strength a=x. Not surprisingly, stronger node attributes lead to higher accuracy. All our
experiments are run on a personal laptop with 32GB memory. With distributed computing systems the algorithm easily
scales to much larger datasets.

Table 8. F1 scores for local clustering in the Orkut online social network

method and attribute setting

Cluster FD WFD(a=1) WFD(a=1.5) WFD(a=2)

A 53.8 68.3 83.9 95.6
B 71.1 77.0 82.8 97.5
C 63.3 70.3 78.3 92.9
D 73.4 86.0 95.7 98.9
E 61.5 77.6 87.0 90.0
F 79.1 89.4 95.7 97.8
G 71.7 82.3 90.0 94.7
H 68.4 79.8 87.3 94.7
I 60.1 70.4 82.4 93.7
J 51.6 64.8 80.6 93.8
K 54.2 66.8 80.5 91.4

In these experiments, we set the sink capacities to Ti = degG(i) for all i. For the source mass we set α = 5 and hence
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∆s = 5volG(K) where K is the target cluster and s is the seed node. We set γ = 0.04 in the Gaussian kernel and we run
diffusion for τ = 30 iterations. We did not fine tune any of these parameters. In our experiments we find that other choices
of parameters lead to similar results. Following the empirical setting of Fountoulakis et al. (2020), we apply the sweepcut
procedure on xτ to obtain the final output cluster.

D.3. Additional experiments on synthetic data with comparisons to global baselines

We carry out additional experiments on synthetic data to compare with global baseline methods. These methods require
processing the whole graph and hence they do not have a local running time. Because of that, we use the stochastic block
model to generate a smaller graph on n = 1000 nodes, and two clusters, each cluster consists of 500 nodes. The target
cluster has intra-cluster edge probability p = 0.03. The other cluster has intra-cluster edge probability p′ = 0.01. The
inter-cluster edge probability is q = 0.01. This is also known as the planted clustering model with r = 1 target cluster. We
generate node attributes from a mixture of Gaussians in the same way as we did in the main paper (cf. Section 4.1).

We compared with the following 4 baseline methods:

1. Spectral partitioning using the second eigenvector of normalized graph Laplacian (SC-graph). This uses only the graph.

2. Spectral clustering using only the node attributes and the Gaussian kernel (SC-attribute). This uses only the attributes.

3. Spectral clustering using the weighted graph whose edge weights come from the Gaussian kernel (SC-attribute-graph).
This uses both the graph and the attributes.

4. Bayes’ optimal classifier for node attributes (Bayes-attribute). This uses only the attributes.

Note that the Bayes’ optimal classifier additionally requires knowing the true means of the Gaussians. For that method we
assume that the true means are known. We use the Bayes’ optimal classifier to demonstrate the level of separability of the
node attributes. The Bayes’ optimal classier is the separator that achieves the lowest expected clustering error. We vary
the attribute strength from a = 0, 0.5, 1, . . . , 5 where µ̂ = a

√
log n. This is the same setting that has been used to generate

Figure 2 in the main paper. We report the F1 scores in Table 9, where FD represents flow diffusion that does not use the
node attributes, and WFD represents weighted flow diffusion that uses the node attributes.

Table 9. F1 scores for local clustering in the CSBM and comparisons with global baselines

attribute strength (a)

Method 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

SC-graph 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5
SC-attribute 50.1 57.3 86.6 97.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SC-attribute-graph 62.3 62.9 63.8 68.0 75.7 83.1 90.8 96.2 98.6 99.4 99.5
Bayes-attribute 50.0 62.3 85.3 97.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0
FD 78.2 78.2 78.2 78.2 78.2 78.2 78.2 78.2 78.2 78.2 78.2
WFD 77.0 77.3 78.4 80.0 82.3 85.0 87.9 90.9 93.9 96.5 98.2

We make the following observations:

• The graph-only spectral partitioning (SC-graph) has the lowest F1, because it tends to find low conductance clusters. In
this particular setting, low conductance does not translate to a good recovery result. On the contrary, graph-only flow
diffusion (FD) has better performance because it emphasizes more on the local region around the seed node.

• In the low signal regime, i.e., when a is small, attribute-based methods (SC-attribute and Bayes-attribute) have really
bad performance, while WFD does not seem to be affected too much, thanks to the stronger local graph structure, i.e.
p = 0.03 > 0.01 = q, and WFD is able to exploit the graph structure.

• In the high signal regime, i.e., when a is high, the node attributes are sufficiently informative, and hence attribute-based
methods have better performance. WFD starts to outperform its graph-only counterpart FD.
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• The accuracy improvement of WFD is slower than that of attribute-based methods, because WFD needs to overcome
the noise from the graph (q = 0.01 > 0).

• Among methods that use both the graph and the node attributes, WFD outperforms SC-attribute-graph in the low signal
regime and has similar performance in the high signal regime.

Of course, both FD and WFD use additional information, such as the size of the target cluster, to set the initial source mass,
but at the same time they are local methods and hence are scalable to much larger graphs. For WFD, we use the same
γ = (log−3/2 n)/4 as before. For both FD and WFD, we set the sink capacities to Ti = 1 for all i. Let k = 500 be the size
of the target cluster, we set the initial source mass on the seed node s to ∆s = αk, and we vary α ∈ [1.1, 1.6] with 0.05
increments. We report the average (i.e. average over multiple trials, and for each trail we use a different seed node) of the
best F1 scores among different choices for α.
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