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Abstract
Coarse-graining (CG) accelerates molecular sim-
ulations of protein dynamics by simulating sets of
atoms as singular beads. Backmapping is the op-
posite operation of bringing lost atomistic details
back from the CG representation. While machine
learning (ML) has produced accurate and effi-
cient CG simulations of proteins, fast and reliable
backmapping remains a challenge. Rule-based
methods produce poor all-atom geometries, need-
ing computationally costly refinement through
additional simulations. Recently proposed ML
approaches outperform traditional baselines but
are not transferable between proteins and some-
times generate unphysical atom placements with
steric clashes and implausible torsion angles. This
work addresses both issues to build a fast, trans-
ferable, and reliable generative backmapping tool
for CG protein representations. We achieve gen-
eralization and reliability through a combined set
of innovations: representation based on internal
coordinates; an equivariant encoder/prior; a cus-
tom loss function that helps ensure local structure,
global structure, and physical constraints; and ex-
pert curation of high-quality out-of-equilibrium
protein data for training. Our results pave the way
for out-of-the-box backmapping of coarse-grained
simulations for arbitrary proteins.

1. Introduction
Protein dynamics ranges from large microsecond-scale
movements of protein domains to small fast fluctuations
of side chain atoms within protein pockets, and is connected
to essential biological functions such as signaling, enzyme
catalysis, and molecular machines (Salvatella, 2014). De-
spite the importance of dynamics and the large success of
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ML for prediction of protein structure, research on con-
formational ensembles started to accelerate only recently,
mainly because data were scarce. Very flexible proteins
(intrinsically disordered proteins, IDPs) or protein regions
are better understood as conformational ensembles rather
than static structures. Experimental structure determination
methods observed either one frozen structure or the average
of the conformational ensemble and thus are not suitable for
describing individual dynamic states (Miller & Phillips Jr.,
2021). Conformational ensembles are thus mainly gener-
ated using simulations such as Molecular Dynamics (MD)
simulations or statistical sampling. Following the simula-
tion, a representative subset can be selected from the pool of
sampled conformers to match the properties and constraints
derived from experimental measurements (Orellana, 2019;
Salvatella, 2014).

Atomistic simulations are often too computationally ex-
pensive for the time and length scale of protein dynam-
ics. An effective way to overcome these limitations is to
use coarse-grained (CG) simulations with simplified parti-
cles. Representing systems in a reduced number of degrees
of freedom provides access to much larger spatiotempo-
ral scales (Kmiecik et al., 2016). However, the speedup
comes at the cost of atomistic details, which are essential
in determining protein biochemical functions. For example,
identifying specific atom-level contacts at a protein-protein
interaction surface or a ligand binding pocket is crucial to
understand molecular recognition, signaling, or ligand bind-
ing (Badaczewska-Dawid et al., 2020). Thus, backmapping,
or restoring all-atom structures from CG structures, can
be required to get a complete picture of protein function,
especially for drug and protein design practices (Śledź &
Caflisch, 2018; Huang et al., 2016).

Current popular backmapping methods involve two steps: 1)
the generation of initial structures based on a set of geomet-
ric rules (Lombardi et al., 2016), libraries of protein frag-
ments (Heath et al., 2007), or random placements (Rzepiela
et al., 2010), 2) the refinement of the generated structures
by Monte Carlo relaxation or MD simulations. The second
step is necessary because these rule-based sampling meth-
ods usually result in poor initial structures (Roel-Touris &
Bonvin, 2020). However, the optimization step requires
of an exhaustive computation and can be biased towards
the choice of the scoring function and relaxation methods
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Figure 1. Overview. We aim to build a transferable and reliable backmapping tool for proteins. Our method builds on a VAE framework
(Wang et al., 2022). We train the VAE model on the protein structural ensemble data curated from PED. Our model can be characterized
with three components : internal coordinate-based representation, equivariant encoding, and physics-informed learning objectives.

(Badaczewska-Dawid et al., 2020).

Recently, data-driven methods have been proposed to
achieve both efficiency and successful restoration of lost
details through generative approaches. Li et al. (2020); Sti-
effenhofer et al. (2021); Wang et al. (2022); Shmilovich
et al. (2022) that learn the distribution of all-atom conform-
ers conditioned on the CG structures. While those methods
show promising performances on simple systems like ala-
nine dipeptide and mini-protein chignolin, most methods
cannot generalize beyond the chemistry on which they are
trained (Li et al., 2020; Wang et al., 2022; Shmilovich et al.,
2022). Stieffenhofer et al. (2021) shows the possibility
of chemical transferability by training the model on two
small molecules and testing the model on a polymer whose
monomers encompass each of the two small molecules. Still,
no prior methods have been tested on structures that have
high structural complexity and a wide range of flexibility as
in large protein molecules.

Here, we propose a deep generative backmapping tool that
has transferability across protein space. Specifically, our
model reconstructs the protein all-atom structure from the
alpha carbon of each amino acid. We build the model
on the framework of Wang et al. (2022), where a Varia-
tional Auto-Encoder (VAE) model approximates the 3D
spatial distribution of all-atom structures conditioned on
CG structures. We achieve the transferability by training
on structures from the Protein Ensemble Database (PED)
(Lazar et al., 2021), which is a database of experimentally
validated structural ensembles of IDPs and IDP-globular
protein complexes. We hypothesize that a deep generative

model, can learn the complex spatial interdependence of
atoms and residues trained on a variety of geometries and
chemical environments. We name our model GenZProt, as
the model generates Z-matrix, a set of internal coordinates
that defines a 3D molecular structure, for all-atom protein
structures. GenZProt utilizes an equivariant encoder/prior
that encodes residue-wise spatial information, and shows
improved performance compared to its invariant counterpart
and the ability to perform inference on arbitrary proteins
outside the training dataset.

Naive rule- or ML-based backmapping strategies may fail to
capture physical and chemical constraints, such as preserv-
ing the molecular connectivity of the all-atom representa-
tion, avoiding steric clashes, and reconstructing long-range
interactions between side chains. GenZPort is constructed
to preserve the topology by generating structures based on
internal coordinates—bond length, bond angle, and torsion
angle—instead of explicitly predicting Cartesian coordi-
nates of atoms. Therefore, the training procedure relies on a
loss function that optimizes local structure (bond length and
bond angle), global structure (torsion angle and reconstruc-
tion in Cartesian space), as well as novel physical constraints
(avoiding steric clashes). These design choices are proven to
be crucial to achieve high-quality samples through ablation
studies. We provide an overview of our method in Figure 1.

Our contributions can be summarized as follows:

• We propose the first data-driven generative backmap-
per that is transferable across the entire protein space.
We achieve the transferability by training on compu-
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tationally generated, experimentally validated diverse
structural ensemble data.

• We propose a model design to achieve high-quality
backmapping, relying on internal coordinates, an equiv-
ariant encoder, and loss functions that enforce physical
constraints and preserve chemical connectivity.

2. Methods
2.1. Data

PED (Lazar et al., 2021) hosts 227 entries of protein struc-
tural ensembles, mostly computationally generated and
experimentally constrained. Experimental validation re-
duces the potential bias introduce by errors in the sampling
method, such as approximations in the force fields and thus
provides better training statistics. From PED, we selected 84
proteins for training and four proteins for testing. Appendix
D details the curation of training and testing set.

2.2. CG mapping scheme

We choose alpha Carbon (Cα) mapping for coarse-graining—
every amino acid residue is represented as one bead centered
at its Cα. Cα atoms are explicitly present in popular medium
resolution coarse-grained models, such as CABS (Kolinski,
2004) or MARTINI (Monticelli et al., 2008). As a result,
the majority of backmapping algorithms starts from the Cα
trace level Badaczewska-Dawid et al. (2020).

2.3. Internal Coordinate-based Structure Generation

Figure 2. Internal coordinate-based reconstruction. (a) Backbone
atoms Ni, Ci are placed using adjacent three Cα as anchors. (b)
Side chain atoms are placed using adjacent three atoms within the
same residue.

Relying on internal coordinates makes it easier to preserve
the bond topology, since bond lengths and angles, which
are very sensitive to small distortions can be kept within
a physical range. However, correctly predicting atomic
placements and interactions in 3D space is as important
as preserving the topology (Lee et al., 2023). Instead of

attempting to reconstruct Cartesian coordinates, GenZProt
achieves faithful reconstruction of the bond topology by
generating internal coordinate representation of each atom
directly as model outputs.

GenZProt generates a set of internal coordinates (so-called
Z-matrix), which is then converted to Cartesian coordinates
through a rule-based algorithm. The placement of an atom
A in 3D space can be determined from three anchor atoms
B,C,D and a set of internal coordinates, bond length dAB ,
bond angle θABC , and torsion angle τABCD, as shown in
Figure 2.

Since the topology of a residue is fully determined from its
amino acid type, we use a predefined set of anchor atoms
per-residue. However, the choice of the predefined set of
anchors for Cα trace-to-all-atom backmapping task is not
trivial. We devise a hierarchical atomic placement algorithm,
where the backbone atoms are placed using Cαs as anchors
and the side chain atoms are placed sequentially.

In Lombardi et al. (2016) the authors postulate that the
backbone peptide bond is perpendicular to the plane de-
fined by three adjacent Cα atoms. Based on this assump-
tion, we hypothesize that a machine learning model can
learn to predict the placement of the backbone atoms
of the ith residue, Ni, Ci, relative to three adjacent Cα
atoms, Cαi−1

, Cαi
, Cαi+1

. Once we obtain the placement of
Cαi

, Ni, Ci, we define three anchors within the ith residue
to place a remaining backbone atom Oi and side chain
atoms. Atoms are then sequentially added to 3D space—for
example, when the positions of Cαi , Ni, Ci are known, Cβi

is placed from the anchors Cαi
, Ni, Ci, and with the Cβi

position known, Cγi is placed from anchors Cβi
, Cαi

, Ni.
We describe the transformation method in Figure 2.

Despite the sequential transformation, our model has a short
inference time since our decoder generates all internal coor-
dinates simultaneously in one shot. Refer to Appendix C.2
for more details on Z-matrix to 3D coordinate conversion.

2.4. VAE framework

We build our model on the VAE framework introduced in
(Wang et al., 2022). In this framework, stochastic backmap-
ping is formulated as a modeling task of the distribution of
all-atom structure x conditioned on CG structure X . The
conditional distribution p(x|X) is factorized as a latent vari-
able model with a prior Pθ(z|X) and decoder qψ(x|z,X),
formulated as p(x|X) =

∫
qψ(x|z,X)Pθ(z|X)dz. The en-

coder pϕ(z|x,X) is introduced to train the learnable prior
and decoder.

During training, the CG latent variable z is sampled from
encoder pϕ(z|x,X) as z = µϕ+σϕ ◦ϵ, where ϵ ∼ N(0, I).
During sampling, given the coarse structure X , we sample
the latent variable from the prior (z ∼ Pθ(z|X)). Latent
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Figure 3. The three levels of equivariant 3D graph message passing operations in encoder and prior.

representation z is then passed to the decoder to generate
the all-atom structure x̂.

2.5. Model Architecture

Equivariant encoder and prior. We introduce an equiv-
ariant encoder and prior architecture designed to learn the
spatial interdependence of atom and residue placements.
Since it is intuitive to model molecular structures as graphs,
we perform message passing operations on graphs where
residues and atoms are the nodes. The orientation and geom-
etry of the residues surrounding an atom are crucial to deter-
mine their 3D placement. Thus, we use geometric tensors to
represent the node attributes and use SE(3)-equivariant neu-
ral networks to perform message passing on the nodes. This
equivariant message passing neural network module was
implemented with the e3nn library (Geiger et al., 2022),
mainly referring to the score model of DiffDock (Corso
et al., 2022), which was used to predict docked poses of
ligands in protein binding pockets.

We digitize the protein molecular graph by assigning residue
and atom identity as initial node attributes. In our model
design, the encoder performs message passing at three levels:
atom-atom pair within the cutoff distance 9Å, atom-residue
pair for every atom in a residue, and residue-residue pair
within the cutoff distance 21Å. The three levels of graph
convolution are illustrated in Figure 3. The prior performs
message passing at residue level only.

Invariant decoder. We present a decoder that transforms
residue-wise latent variables into internal coordinates neces-
sary for atom placement within each residue. To accurately
model the joint distribution of internal coordinates, it is
ideal to allow flexibility within the physical range. Since
bond lengths follow a constrained single-mode Gaussian
distribution with small variance, we utilize a lookup table
(implemented as a PyTorch nn.Embedding) based on
residue type. We permit full flexibility in torsion angles.

While bond angles are correlated with torsion angles
(Karplus & Kushick, 1981), we opt to enable full flexi-
bility only for backbone bond angles and employ a lookup
table for side chain bond angles. As the statistics of side
chain angles can vary significantly depending on the com-
putational sampling method used to generate the ensem-
ble, to ensure the model learns from the correct statistics,
we eliminate stochasticity in angles. Our backbone atom
placement is based on adjacent Cα atoms, utilizing the an-
gles θNCαi

Cαi−1
and θCCαi

Cαi+1
. As these angles exhibit

higher variance compared to side chain angles, we provide
them with greater flexibility.

To predict flexible backbone bond angles and torsion angles,
we utilize message passing and pooling operations on node-
wise feature vectors, followed by Multi-Layer Perceptron
(MLP) layers. More detailed discussion and an ablation
study on the integration of side chain bond angle flexibility
can be found in Appendix C.1.

Loss functions. The VAE model is trained to minimize the
Evidential Lower Bound (ELBO) objective, which includes
the reconstruction term to train the encoder and decoder and
the Kullback–Leibler (KL) divergence term to minimize the
difference between the prior and the encoder (Kingma &
Welling, 2013), namely LELBO := Lrecon + βLKL.

To learn geometry and interactions at the atomic level while
ensuring the validity of the generated structures, we super-
vise the model on both topology and atom placements in
3D space. Topology reconstruction is measured by a Mean-
Squared-Error (MSE) loss term on bond lengths (Lbond) and
a periodic angular loss term for angles (Langle). We define
Llocal as a sum of Lbond and Langle with ϵ = 10−7:

1

|B|
∑
b∈B

(b− b̂)2︸ ︷︷ ︸
Lbond

+
1

|A|
∑
θ∈A

√
2(1− cos(θ − θ̂)) + ϵ︸ ︷︷ ︸

Langle

,

where B is a set of all bonds, b and b̂ are ground truth and
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Table 1. Ablation study on the model architecture. m1 : Our proposed model with equivariant encoder and invariant Z-matrix decoder.
m2 : Invariant encoder and Z-matrix decoder. m3 : Equivariant encoder and Cartesian coordinate decoder. m4 : Invariant encoder and
Cartesian coordinate decoder. m5 : m1 trained with PED00151 only. m6 : m4 trained with PED00151 only.

Method PED00055 PED00090 PED00151 PED00218

RMSD (Å; ↓)

m1 (GenZProt) 0.457±0.002 0.550±0.005 0.557±0.001 0.496±0.001
m2 0.578±0.004 0.787±0.002 0.648±0.005 0.565±0.003
m3 2.432±0.035 2.475±0.026 2.798±0.011 2.393±0.043
m4 (CGVAE) 2.244±0.001 2.355±0.002 2.901±0.040 2.241±0.004
m5 (GenZProt, single) - - 0.832±0.001 -
m6 (CGVAE, single) - - 2.072±0.000 -

GED (↓)

m1 (GenZProt) 0.002±0.000 0.006±0.000 0.000±0.000 0.001±0.000
m2 0.007±0.000 0.017±0.000 0.005±0.000 0.003±0.000
m3 0.349±0.035 0.431±0.010 0.405±0.002 0.339±0.008
m4 (CGVAE) 0.246±0.002 0.382±0.004 0.308±0.003 0.208±0.002
m5 (GenZProt, single) - - 0.084±0.001 -
m6 (CGVAE, single) - - 0.140±0.000 -

Steric clash ratio (%; ↓)

m1 (GenZProt) 0.140±0.003 0.142±0.002 0.211±0.008 0.190±0.003
m2 0.173±0.000 0.180±0.003 0.267±0.002 0.204±0.002
m3 2.880±0.622 3.517±0.731 3.584±0.362 3.088±0.351
m4 (CGVAE) 1.880±0.075 2.646±0.046 3.027±0.063 1.909±0.012
m5 (GenZProt, single) - - 1.090±0.164 -
m6 (CGVAE, single) - - 2.032±0.060 -

Table 2. Ablation study on the reconstruction loss definition. m1 : Our proposed model with Lrecon defined in Equation (3). m7 :
Trained without Ltorsion. m8 : Trained without Lxyz. m8 : Trained without Lsteric

Lrecon PED00055 PED00090 PED00151 PED00218

RMSD (Å; ↓)

m1 (GenZProt) 0.457±0.002 0.550±0.005 0.557±0.001 0.496±0.001
m7 (−Ltorsion) 0.495±0.002 0.582±0.003 0.571±0.001 0.509±0.000
m8 (−Lxyz) 1.910±0.251 1.905±0.136 2.025±0.337 1.754±0.198
m9 (−Lsteric) 0.467±0.005 0.573±0.013 0.570±0.005 0.524±0.003

GED (↓)

m1 (GenZProt) 0.002±0.000 0.006±0.000 0.000±0.000 0.001±0.000
m7 (−Ltorsion) 0.001±0.000 0.004±0.000 0.000±0.000 0.001±0.000
m8 (−Lxyz) 0.046±0.000 0.057±0.001 0.026±0.000 0.033±0.000
m9 (−Lsteric) 0.002±0.000 0.006±0.000 0.003±0.000 0.001±0.000

Steric clash ratio (%; ↓)

m1 (GenZProt) 0.140±0.003 0.142±0.002 0.211±0.008 0.190±0.003
m7 (−Ltorsion) 0.135±0.002 0.131±0.001 0.236±0.013 0.181±0.003
m8 (−Lxyz) 0.147±0.005 0.221±0.009 0.253±0.041 0.144±0.007
m9 (−Lsteric) 0.156±0.001 0.157±0.004 0.266±0.002 0.199±0.001

predicted bond length respectively. A is a set of all angles, θ
and θ̂ are ground truth and predicted angle in radian. Further
elaboration on the choice of the periodic angular loss term
can be found in Appendix F.1.

Defining good reconstruction of atom placements in 3D
space is not trivial for a backmapping task. A trivial so-
lution for our internal coordinate-based generation setting
would be a periodic angular loss term for torsion angles.
However, a torsion angle can have a larger effect on the
overall structure than other torsion angles. For example, a
rotation near Cα would change the residue geometry more
than a rotation at the end of the side chain. However, a sim-
ple regression would place an equal weight on every torsion
angle. Thus, we additionally introduce a root-mean-squared

distance (RMSD) loss term in Cartesian coordinate space:

Ltorsion :=
1

|T |
∑
τ∈T

√
2× (1− cos(τ − τ̂)) + ϵ

Lxyz :=
1

|N |
∑
x∈N
||x− x̂||22

(1)

where T is a set of all torsion angles, τ and τ̂ are ground
truth and predicted torsion angle, respectively. N is a set of
all atoms, x and x̂ are ground truth and predicted Cartesian
coordinates of an atom, respectively.

To put further constraints on the chemical validity of the
structures, we introduce steric clash loss, Lsteric, as an auxil-
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iary learning objective, defined as:

Lsteric :=
∑
x∈N

∑
y∈Br(x)

max(2.0− ||x− y||22, 0.0) (2)

where Br(x) is a set of atoms within the cutoff distance r =
5.0 Å with atom x. Minimizing Lsteric keeps the distance
between any two nonbonded atom pairs larger than 2.0 Å.

The reconstruction term then becomes:

Lrecon := γLlocal + δLtorsion + ηLxyz + ζLsteric. (3)

Hyperparameters γ, δ, η, ζ are set to 1.0, 1.0, 1.0, 3.0, re-
spectively. We explore different hyperparameter settings in
our ablation study.

3. Experiments
In our experiments, we perform ablation studies on the
model architecture and loss functions, and compare our
model with the baseline, CGVAE. CGVAE was partially
modified to take multiple proteins as training data. For each
experiment, we perform five random seed experiments and
report the mean and variance of the metrics. We refer the
structures decoded from the encoder-sampled latent vari-
ables as reconstructed and the structures generated from the
prior sampling as sampled structures.

3.1. Test Proteins

We test our model with four proteins of varying flexibility
and compactness: PED00055 (87 residues), PED00090
(92 residues), PED00151 (46 residues), PED00218 (129
residues). PED00055 and PED00090 are mostly globu-
lar with short disordered tails, PED00151 is an IDP, and
PED00218 is a complex of a globular protein and an IDP.

3.2. Metrics

We evaluate the model performance with three metrics:
Root Mean Squared Distance (RMSD), Graph Edit Distance
(GED), and Steric clash score.

Root Mean Squared Distance (RMSD). To evaluate the
reconstruction, we report the RMSD value of ground truth
and reconstructed structures for each model.

Graph Edit Distance (GED). The sample quality is evalu-
ated by measuring how well the generated geometries pre-
serve the original chemical bond graph, which is quantified
by the graph edit distance ratio λ(Ggen, Gtrue) between
generated graph and the ground truth graph.

Steric clash score. In addition to GED, we report the ratio
of steric clash occurrence in all atom-atom pairs within a
5.0 Å distance as a metric to measure the sample quality.
For each atom-atom pair, distance smaller than 1.2 Å is
considered a steric clash.

4. Results
4.1. Ablation Studies

Transferability and model architecture.

Table 1 shows how changing the model architecture affects
the model performance (m1-m6). m1-m4 are transferable
models trained with 84 protein ensembles. m5 and m6 are
single-chemistry models trained with PED00151 alone.

Our proposed model with equivariant encoder/prior and a
Z-matrix decoder, m1, shows the best performance for ev-
ery metric. m1 performs better than the model with an
invariant encoder/prior (m2), implying the importance of
the encoder/prior equivariance. Models with a Cartesian
coordinate decoder (m3, m4) fail to give high-quality re-
constructions for our large test proteins. As shown in Fig-
ure 4, reconstructions from m3 and m4 have many broken
bonds and inaccurate topologies. Note that m4 is equivalent
to CGVAE, except that we modified its node definition to
make it trainable for many proteins. We conclude that in-
ternal coordinate-based decoding coupled with equivariant
encoder/prior can faithfully keep the topology while recon-
structing high-quality structures with low RMSD and steric
clash rates.

We also analyze the effect of training on a large protein
dataset compared to training on a single protein structure.
m5 has a model architecture identical to m1 (GenZProt)
while m6 is identical to m4 (CGVAE), except that m5 and
m6 are trained with PED00151 structures only (284 frames).
m1 performs better than m5, even though the training set
does not include PED00151. Such a result proves that a
generalized model could be a better choice for a structure
with few data points than a single-chemistry model. m6 per-
forms better than its transferable version but still performs
worse than internal coordinate-based models. Figure 5 is
the visualization of the reconstructed structures from m1,
m4, m5, and m6.

Learning objectives. In Table 2, we evaluate the model
performance as we change the learning objective. From
m7-m9, the model architecture is identical to m1. To main-
tain topology and minimize steric clash, keeping the dis-
tance between nonbonded atom pairs was crucial, which was
achieved through 3D coordinate-based losses, such as Lxyz
and Lsteric. Consequently, models m8 and m9 showed
higher steric clash ratio compared to models m1 and m7.
Also, a higher RMSD observed in m7 implies the impor-
tance of accurate torsion angle predictions in reconstructing
precise 3D geometry.

4.2. Qualitative analysis

Generated structures. Figure 9 shows reconstructed struc-
tures and sampled structures from m1 (GenZProt) for four
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(a) Ground truth (b) m1 (GenZProt) (c) m2 (d) m3 (e) m4 (CGVAE)

PED00090

(f) m7 (g) m8 (h) m9

Architecture ablation Loss function ablation

Figure 4. Reconstruction of PED00090 from m1-m4, m7-m9.
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CGVAE
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Figure 5. Reconstruction of PED00151 from transferable models m1, m4 and single-chemistry models m5, m6.
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Figure 6. Atom-atom pairwise distances of ground truth, recon-
structed, and sampled structures of PED00218.

test proteins. Both reconstructed and sampled structures
recover the topology faithfully and do not show any notable
steric clashes.

Atom-atom distance distribution. Figure 6 shows all
atom-atom pairwise distances < 5 Å in the ground truth
structures (“true”), reconstructed structures (“recon”), and
sampled structures (“sample”) of PED00218, generated

Figure 7. KDE plot of distance between N of ILE49 (chain A) and
atom O of VAL24 (chain B) in PED00218

from m1. The ground truth distribution is well reconstructed
by the encoder or the prior. 5 Å is the higher cutoff for attrac-
tive London-van der Waals interactions (Sengupta & Kundu,
2012). Encoder-generated reconstructions completely avoid
steric clashes (< 1.2 Å), while prior-generated samples have
few steric clashes. Atom-atom pairs with distance 3.3 Å
< d < 4.0 Å are likely hydrophobic interactions (van der
Waals interactions), which is implied by a peak around 3.7
Å. Both reconstructed and sampled structures have a peak
at 3.7 Å in a density similar to the ground truth, hinting that
long-range interactions are preserved.

We further investigate one long-range interaction in
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Figure 8. KDE plots of torsion angles from the structures generated from m1.
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Figure 9. Structures reconstructed from m1 for all four test proteins: PED00055, PED00090, PED00151, PED00218.

PED00218. PED00218 is a peptide-protein complex, where
a long IDP (chain B) is binding to a globular protein (chain
A). The binding surface involves a hydrogen bond between
a backbone nitrogen of the chain A ILE49 and a backbone
oxygen of the chain B VAL24. Figure 7 is the a kernel
density estimate (KDE) plot of a distance between these two
interacting atoms. The length of hydrogen bonds typically
ranges in 2.7 Å < d < 3.3 Å (McRee, 2012). We can find
reconstructed and sampled structures within the range of
hydrogen bonds although the distributions are shifted to the
right.

Torsion angle distribution. Figure 8 shows the torsion an-
gle distribution of ground truth, reconstructed, and sampled
structures. Both the encoder- and prior-generated structures
recover ground truth distributions well. However, as shown
in the KDE plot for LYS of PED00218, the prior sometimes

fails to find all modes of the distribution. This learning
problem might be an inherent problem with VAE since its
learning objective, a reverse KL divergence, can be mini-
mized even when the prior fits to only one mode. As a result,
the learned prior distribution would not spread out to low
probability regions (Murphy, 2012). We propose to apply a
diffusion model on the latent space of GenZProt as future
work. Latent space diffusion, or stable diffusion, has been
recently highlighted for achieving an expressive prior while
retaining the generation quality (Rombach et al., 2021).

4.3. Quantitative evaluation

Detailed quantitative evaluation of the sampled structures,
including Earth Mover’s Distances (EMD) between the
ground truth and sampled torsion angle distributions and
sample quality metrics such as GED and steric clash ratio,
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can be found in Appendix A.1. We compare our model to
the baseline CGVAE and demonstrate superior performance
across all metrics. Furthermore, we compare our model to
two non-ML deterministic baselines, CG2AA (Lombardi
et al., 2016) and MODELLER (Webb & Sali, 2016) in Ap-
pendix A.3, demonstrating our model’s well-balanced speed
and reliability.

5. Conclusion
We introduce GenZProt, a transferable and reliable
backmapper that can be used out-of-the-box for any ar-
bitrary protein. We achieved chemical transferability by
training on a protein conformational ensemble dataset cu-
rated from PED. Plus, we achieved reliability by employing
physics-informed training objectives and devising an inter-
nal coordinate-based local structure construction method.

As our model seamlessly handles an arbitrary number of
peptide chains, our model can be utilized to repack side
chains of protein binding interfaces. We showed the poten-
tial of using our model for binding surface reconstruction by
testing on the protein-peptide complex PED00218. Upon
binding or complex formation, protein side chain confor-
mations can significantly change, and accounting for side
chain flexibility can substantially improve protein-protein
docking (Gray et al., 2003).

Furthermore, in principle, our framework should be appli-
cable to any family of polymers with a fixed number of
building blocks. For future work, we propose applying our
model to nucleic acids and nucleic acid-protein complexes.

Software and Data
Code and dataset for training and inference are available at
https://github.com/learningmatter-mit/GenZProt.
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E., Skepö, M., Svergun, D., Vallet, S. D., Varadi, M.,
Tompa, P., Tosatto, S. C. E., and Piovesan, D. PED in
2021: a major update of the protein ensemble database
for intrinsically disordered proteins. Nucleic Acids Res.,
49(D1):D404–D411, January 2021.

Lee, J. H., Yadollahpour, P., Watkins, A., Frey, N. C.,
Leaver-Fay, A., Ra, S., Cho, K., Gligorijević, V.,
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A. Additional Experimental Results
A.1. Sampled Structure Quality and Diversity

Here, we present an analysis of the metrics obtained from the sampled structures. We compare GED and steric clash ratio
between the reconstructed structures that are generated using encoder-decoder framework and the sampled structures that are
generated from a prior-decoder framework. We provide the results in Table 3. While the metrics of the sampled structures
are worse than those from reconstructed structures, they still outperform the reconstructed structures generated by the
baseline CGVAE (m4).

In addition, we report the diversity of the generated structures. The generation of diverse structures is crucial as it allows us
to capture a wide range of conformers that are representative of the current conformational space. To assess the diversity of
the generated structures, we employ RMSDgen, a diversity metric introduced in the work of Wang et al. (2022). Higher
values of RMSDgen indicate a greater diversity in the generated structures, reflecting the ability of our model to capture a
more extensive range of conformations.

We also conducted a quantitative comparison of the torsion angle distributions among the ground truth structures, recon-
structed structures, and sampled structures. To measure the distance between two distributions, we employ the Earth Mover’s
Distance (EMD) as a metric. In simple terms, EMD represents the minimum cost required to transform one histogram
into another (Pele & Werman, 2009). Since torsion angles exhibit periodicity, we project the angles onto a unit circle
(cos θ, sin θ). Subsequently, we compute the 2D EMD of the transformed Euclidean coordinates using the Python package
PyEMD, which implements the algorithm proposed in Pele & Werman (2009).

For a given random seed experiment, we calculate the EMD for each amino acid type and compute the average across the
present amino acid types. Then, the mean and variance of the amino acid-averaged EMD values across five random seed
experiments are computed and reported in Table 4. Our model (m1) consistently outperforms the baseline CGVAE in all
cases. It is worth mentioning that when considering chi1 (χ1) angles, the EMD of the ground truth torsion angles and
the torsion angles sampled from our model is significantly higher compared to that of reconstructed torsion angles, while
CGVAE model (m4) exhibits similar EMD values for both reconstruction and sampling. This observation suggests that our
model’s prior is not capturing the full complexity of the encoder’s learned latent space. We hypothesize that employing a
more expressive prior, by employing hierarchical VAE or diffusion model, or acquiring a larger dataset, would be beneficial
in addressing this limitation.

Table 3. Performance metrics of the structures generated from our model (m1). ‘Recon’ and ‘Sample’ stand for reconstructed structures
and sampled structures, respectively. For the sampling process, ten conformers were generated per one Cα trace.

Metric PED00055 PED00090 PED00151 PED00218

GED recon 0.002 (0.000) 0.006 (0.000) 0.000 (0.000) 0.001 (0.000)
sample 0.054 (0.000) 0.070 (0.000) 0.019 (0.000) 0.030 (0.000)

Steric clash ratio (%) recon 0.140 (0.003) 0.142 (0.002) 0.211 (0.008) 0.190 (0.003)
sample 0.473 (0.022) 0.682 (0.020) 0.637 (0.023) 0.456 (0.009)

RMSDgen (Å) sample 1.871 (0.002) 0.029 (0.001) 1.711 (0.006) 1.727 (0.002)

A.2. Speed Analysis

Table 5 shows the average observed runtime of sampling of our model. Our model shows fast sampling speeds of
approximately 0.009 seconds per frame when tested with batch size = 8. The sampling time can be proportionally reduced
as we increase the batch size.

A.3. Non-ML Benchmarks

We compare our model to two non-machine learning benchmarks, namely CG2AA (Lombardi et al., 2016) and MODELLER
(Webb & Sali, 2016; Šali & Blundell, 1993). CG2AA employs geometric reasoning to build backbone and side chain
atoms on Cα traces. For instance, as mentioned in our main text, it assumes that the plane formed by three adjacent Cα
atoms is perpendicular to the peptide bond, enabling the placement of backbone atoms. CG2AA does not involve energy
minimization stage. On the other hand, MODELLER utilizes comparative protein structure modeling techniques to generate
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Table 4. GenZProt refers to our m1 model and CGVAE refers to m4 model. The phi(ϕ) angles correspond to torsion angles for the N-Cα

rotatable bond, the psi(ψ) angles represent torsion angles for the Cα-C rotatable bond, and the chi1(χ1) angles denote the torsion angle
for the Cα-Cβ rotatable bond. The metric reported here is the Earth Mover’s Distance (EMD) of the radial distribution. ‘Recon’ and
‘Sample’ stand for reconstructed structures and sampled structures, respectively.

PED00055 Torsion Recon Sample

GenZProt
Phi 0.017±0.000 0.065±0.000
Psi 0.020±0.000 0.073±0.000
Chi1 0.055±0.001 0.268±0.001

CGVAE
Phi 0.276±0.004 0.279±0.001
Psi 0.196±0.002 0.194±0.001
Chi1 0.437±0.033 0.424±0.026

PED00090 Torsion Recon Sample

GenZProt
Phi 0.031±0.000 0.089±0.000
Psi 0.027±0.000 0.087±0.000
Chi1 0.062±0.000 0.322±0.001

CGVAE
Phi 0.210±0.000 0.284±0.002
Psi 0.164±0.001 0.199±0.000
Chi1 0.375±0.011 0.433±0.014

PED00151 Torsion Recon Sample

GenZProt
Phi 0.011±0.000 0.034±0.000
Psi 0.010±0.000 0.053±0.000
Chi1 0.045±0.001 0.262±0.000

CGVAE
Phi 0.109±0.001 0.179±0.004
Psi 0.143±0.002 0.146±0.001
Chi1 0.361±0.003 0.414±0.011

PED00218 Torsion Recon Sample

GenZProt
Phi 0.017±0.000 0.076±0.001
Psi 0.018±0.000 0.071±0.000
Chi1 0.056±0.001 0.340±0.004

CGVAE
Phi 0.239±0.001 0.351±0.000
Psi 0.208±0.000 0.286±0.001
Chi1 0.372±0.015 0.383±0.006

Table 5. Approximate inference times of GenZProt.

protein sequence length runtime [sec/frame]

PED00055 87 0.006
PED00090 92 0.010
PED00151 46 0.006
PED00218 129 0.012

3D protein structures that satisfy a set of spatial restraints. In the context of backmapping, Cα positions are used as restraints
to construct all-atom structures. MODELLER involves optimization in the 3D Cartesian space using conjugate gradients
and CHARMM22 force field (MacKerell et al., 1998) molecular dynamics with simulated annealing. Here, we present a
benchmark of our model against CG2AA and MODELLER using our PED00055 test dataset.

Table 6. Benchmark of the model performance with two non-ML methods. For MODELLER, we utilized two different options
of the AutoModel object: slow MD option (md level=refine.slow) for more refined structure generation and fast MD
(md level=refine.very fast) for faster generation. The mean and variance values were calculated across 52 frames of the
PED00055 dataset. The reported scores for our model were obtained from sampled structures generated by the GenZProt prior-decoder.

runtime [sec/frame] steric clash ratio [%] GED CG RMSD [Å]

GenZProt 0.006 (0.000) 0.473 (0.022) 0.054 (0.000) 0.000 (0.000)
CG2AA 0.016 (0.000) 1.642 (0.003) - 0.656 (0.038)

MODELLER (slow MD) 4.100 (0.012) 0.000 (0.000) 0.008 (0.000) 0.696 (0.040)
MODELLER (fast MD) 1.806 (0.002) 0.000 (0.000) 0.018 (0.000) 0.381 (0.002)

Among all methods, our model shows the shortest runtime per frame. Considering that our model’s runtime can be even
shortened if we increase the batch size, it gives our model a potential to be used simulataneously with molecular dynamics
simulation or other costly operations. Compared to MODELLER which uses energy optimization, our model is roughly 300
∼ 700 times faster. Moreover, our model is end-to-end differentiable, so it can be jointly trained with other deep learning
models for downstream tasks such as flexible protein-ligand docking.

The CG2AA method shows a poorly reconstructed topology that would necessitate additional computationally expensive
relaxation, as evidenced by a high steric clash ratio. GED scores could not be measured for CG2AA, as the reconstructed
protein structure had a much smaller number of atoms (N = 566) compared to the original structure (N = 658). On the
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other hand, structures generated by MODELLER show zero steric clashes and yield better GED scores than our model.
However, we observe a trade-off between the GED score and the CG RMSD score, which measures the RMSD between the
ground truth and the modelled Cα tracess. This suggests that MODELLER could achieve lower GED scores by relaxing Cα
structures, which is violating the geometrical consistency of the backmapping. Notably, CG2AA also does not preserve the
Cα trace precisely, whereas our model strictly preserves the CG structure.

An important distinction between our model and CG2AA or MODELLER lies in the generation of all-atom conformer
distribution for a given Cα trace. While CG2AA and MODELLER deterministically produce a single structure, our model
generates multiple possible conformers. Additionally, our model possesses the advantage of being end-to-end differentiable,
enabling its joint training with other deep learning models for various downstream tasks, including flexible protein-ligand
docking.

B. Related Work
Our work builds on Wang et al. (2022), among other recent studies on generative models for backmapping. Wang et al.
(2022) provides a principled probabilistic formulation of the backmapping problem and proposes CGVAE, a Variational
Auto-Encoder (VAE) model that approximates the 3D spatial distribution of all-atom structures conditioned on CG structures.
Compared to Wang et al. (2022), our work shows several significant advancements, including generalization to arbitrary
proteins and faithful reconstruction of a protein’s topology.

Our work can be connected to protein structure prediction tasks. AlphaFold2 (Jumper et al., 2021) showed that learning-
based methods could give robust predictions for protein structures. However, AlphaFold2 is trained on crystallography-based
structural data, and the model is limited to a single structure prediction.

To capture the ensemble of structures that characterizes a flexible biomolecule, one would need either new ML architectures
trained on out-of-equilibrium data or MD simulations over large time scales. Our work explores both directions as we train
our model on a database of IDP ensembles and test on backmapping tasks to assist CG MD simulation-based studies.

While not specifically designed for backmapping, generative models have been used for small molecule conformer generation
tasks. Jing et al. (2022) connects to our work with its internal coordinate-based conformer generation framework, where
bond lengths and angles are constrained, and torsion angles are predicted with a diffusion model. Note that we cannot
directly use such models for protein backmapping tasks since a backmapper needs to be conditioned on CG structures. Also,
small molecules have less complexity and fewer long-range interactions than macromolecules, meaning learning tasks for
small molecules could be simpler.

C. Model Design
C.1. Flexibility of the Side Chain Bond Angles

Our model is designed following the chemical assumptions that bond lengths and angles are essentially constrained given
the high energy cost associated with their distortion, while torsion angles are mostly responsible for conformational freedom
in amino acid side chains (Gō & Scheraga, 1976). Crystallographic studies of protein structures validate the little variability
in bond lengths and angles of amino acid side chains (Karplus & Kushick, 1981). Furthermore, some of the ensembles we
trained on were generated from methods that enforce fixed values for bonds and angles, and those ensembles are likely to
deviate from the natural angle distribution. Thus, we utilized a lookup table to store the mean value of each bond angle
across the training dataset.

Indeed, given the significant correlation between bond angles and torsion angles, modeling the joint distribution of the
angles and torsion angles would improve the model performance. We anticipate learning bond lengths and angles to be
a manageable task, as it primarily involves a mostly harmonic potential with a Gaussian distribution. In order to offer
comprehensive insights, we utilize the available data to train the model with side chain bond angle flexibility and present the
empirical results here. We trained a model (m10) that predicts side chain bond angles using MLP layers unlike the original
model (m1) that relied on a lookup table. Then, we assessed the RMSD, GED, and steric clash ratio values across five
random seeds and four test proteins. m10 demonstrated reduced performance compared to m1, with changes from 0.515 Å
to 0.554 Å for RMSD, 0.002 to 0.002 for GED, and 0.170% to 0.216% for steric clash ratio, respectively. However, the
average bond angle prediction error was significantly decreased in m10 – m10 had an average bond angle error of 1.89◦

for PED00218, while m1 had an error of 11.7◦. For PED00090, m10 and m1 had average bond angle errors of 1.529◦ and
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13.099◦, respectively.

Although using fewer restraints on bond angles led to an increase in unphysical geometries, our findings reveal a significant
enhancement in angle prediction accuracy. However, additional data gathering may be necessary to ensure that the current
training ensembles accurately represent the statistics of angles. We contend that allowing flexibility on the side chain bond
angles would further improve our model’s performance in the existence of a more extensive dataset with accurate angle
statistics.

C.2. Molecular Geometry and Internal Coordinate System

One possible representation of the molecular geometry is to list Cartesian coordinates of each atom. However, bond length,
bond angle, and torsion angle are a more natural representation of proteins than the Cartesian coordinates since a topology
of a molecule does not change unless it goes through a chemical reaction. In addition, since bond length, bond angle, and
torsion angle have different frequencies of degrees of freedom, it could be easier to manipulate geometry and perform a
conformational search with internal coordinate representation (Vaidehi & Jain, 2015).

To fully specify molecular geometry with Cartesian coordinates, 3N values are needed for a system of N atoms (i.e.,
x, y, z for each atom). For internal coordinate-based representation, it is a convention to specify a molecular geometry
with Z-matrix. Each line of the Z-matrix defines a position of an atom: i, atom type, j, dij , k, θijk, l, τijkl, where i is the
index of the current atom whose position is being defined, and j, k, l are the indices of adjacent atoms whose positions are
already defined. The positions of the atoms j, k, l are used as anchors to place the atom i. d, θ, and τ are distance, angle,
and torsion angle, respectively. Thus, our decoder outputs three values per atom i, dij , θijk, τijkl, where indices j, k, l are
predefined given the residue type. During training, a fully differentiable Algorithm 1 is used to convert the Z-matrix to
Cartesian coordinates. Then, Lxyz and Lsteric are computed from the reconstructed Cartesian coordinate.
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Figure 10. Structure of a glutamic acid.

Atoms in a residue are placed sequentially. For example, as shown in Figure 10, the beta carbon (Cβ), i = 5, is constructed
from atoms j = 4, k = 3, l = 2, which are the alpha carbon, C, and N , respectively. Similarly, the gamma carbon
(Cγ , i = 6) is constructed from atoms j = 5, k = 4, l = 3, which correspond to the beta carbon, alpha carbon, and C,
respectively.

However, adding atoms one by one will require N steps for a protein with N atoms, which will be extremely time-consuming.
Thus, we reconstruct all residues at once in a parallel manner. For the ith step of the conversion, ith atoms of all residue are
placed simultaneously. The order of the atoms is predefined (e.g., L =[O, N, C, CA, CB, CG, CD, OE1, OE2] for GLU).
For any protein, 13 conversion steps are executed, as the maximum number of atoms in a residue is 13 except the already
known Cα.
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Algorithm 1 A pseudocode for the reconstruction of the list of Cartesian coordinates of side chain atoms, L,
for a residue with m side chain atoms.

Input: L = [x1,x2,x3,x4], # x1, x2, x3, x4, correspond to O,C,N,CA, respectively

for i = 5 to m+ 4 do
Input: row i of the Z-matrix dij , θijk, τijkl
Let j = i− 1, k = i− 2, l = i− 3
Compute vjk := L[j] −L[k]
Compute vkl := L[k] −L[l]
Compute v := dijvjk/∥vjk∥22 # a vector of length dij pointing from j to k

Compute n := vjk × vkl # a vector normal to the plane defined by j, k, l

v← R(θijk)v # Rotate v around n by θijk
v← R(τijkl)v # Rotate v around vjk by τijkl
L[i] = v +L[j] # Cartesian coordinate of ith atom

end for
Return L

D. Training and Test Dataset
D.1. Protein Conformational Ensembles

Proteins are built from up to 20 different amino acids in Table ??. In a protein chain, amino acids are connected to their
neighbors by peptide bonds: an amide group of an amino acid forms a peptide bond (CO-NH) with a carboxyl group of
an adjacent amino acid. Peptide bonds and the alpha carbons together form a continuous chain of atoms called backbone.
An individual amino acid connected to a peptide chain in a protein is called a residue. Each residue has a chemical group
attached to the alpha carbon, called side chain.

Proteins do not exist in a static snapshot but rather exist in ensembles of conformations. The common procedure of ensemble
calculation involves the generation of a starting pool of conformations using sampling programs such as Flexible-Meccano
(FM) (Ozenne et al., 2012), TRaDES (Feldman & Hogue, 2002), or MD simulations. Then, a subset of conformers whose
computed values fit the measurements from NMR or Small-Angle X-ray Scattering (SAXS) is selected as a representative
structural ensemble. Each structure in a conformational ensemble is called a model or a frame.

Table 7. Amino acid abbreviation chart

Glycine G, GLY Proline P, PRO
Alanine A, ALA Valine V, VAL
Leucine L, LEU Isoleucine I, ILE

Methionine M, MET Cysteine C, CYS
Phenylalanine F, PHE Tyrosine Y, TYR

Typtophan W, TRP Histidine H, HIS
Lysine K, LYS Arginine R, ARG

Glutamine Q, GLN Asparagine N, ASN
Glutamic Acid E, GLU Aspartic Acid D, ASP

Serine S, SER Threonine T, THR

Our training and test data are from the protein structural ensemble database PED (Lazar et al., 2021). In this section, we
discuss how we chose the entries for training and testing and provide analysis and statistics of the data.

We split the train and test set by protein entries (i.e., models never see the test protein entries during training). The validation
set is identical to the test set, and the learning rate reduction and early stopping are controlled based on the validation loss.

D.2. Training Proteins

From 227 total entries of PED, we use 84 entries for training, four entries for validation, and four entries for testing.

The list of training entries are :

PED00003, PED00004, PED00006, PED00011, PED00013, PED00022, PED00024, PED00025, PED00032, PED00033,
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PED00034, PED00036, PED00040, PED00041, PED00044, PED00045, PED00046, PED00050, PED00051, PED00052,
PED00053, PED00054, PED00062, PED00072, PED00073, PED00074, PED00077, PED00078, PED00080, PED00085,
PED00086, PED00087, PED00088, PED00092, PED00093, PED00094, PED00095, PED00097, PED00098, PED00099,
PED00100, PED00101, PED00102, PED00104, PED00107, PED00109, PED00111, PED00112, PED00113, PED00114,
PED00115, PED00117, PED00118, PED00120, PED00121, PED00123, PED00124, PED00125, PED00126, PED00132,
PED00135, PED00141, PED00143, PED00145, PED00148, PED00150, PED00155, PED00156, PED00157, PED00158,
PED00159, PED00160, PED00161, PED00175, PED00180, PED00181, PED00185, PED00190, PED00192, PED00193,
PED00220, PED00217, PED00225, PED00227

The list of validation entries are : PED00175, PED00023, PED00043, PED00119

These proteins were excluded from the train and test set for the following reasons :

• Metal ion-binding complexes : PED00009, PED00026, PED00035, PED00037, PED00038, PED00039, PED00058,
PED00059, PED00063, PED00068, PED00069, PED00106, PED00108, PED00110, PED00131, PED00134,
PED00136

• Nucleotide-binding complexes : PED00057, PED00129, PED00130, PED00147

• Cofactor-binding complexes : PED00075, PED00089, PED00091, PED00133, PED00222

• PTM-including proteins except phosphorylation and oxidation : PED00014, PED00015, PED00047, PED00049,
PED00064, PED00096, PED00127, PED00128

• D-amino acid protein : PED00103

• Proteins simulated or experimentally measured in unnatural conditions (e.g., denatured proteins, SDS or micelle
containing solutions) : PED00060, PED00061, PED00065, PED00066, PED00067, PED00081, PED00116, PED00144,
PED00146, PED00147, PED00149, PED00152, PED00205

We included proteins with phosphorylation and oxidation PTM since they much more frequently appear than the other
PTMs.

Among 84 training entries, 23 entries were computed from the MD simulation. Sixty-one entries used sampling methods
such as Flexible-Meccano, an all-atom structural optimization and sampling method for IDPs, based on amino acid-specific
conformational potentials and volume exclusion (Ozenne et al., 2012).

D.3. Test Proteins

In this section, we introduce our four test proteins : PED00055, PED00090, PED00151, and PED00218. Structural ensemble
PED00055, the N-terminal domain of DNA polymerase β, is sampled with an X-PLOR ab initio simulation and constrained
with CHARMM parameters and NMR measurements. PED00090 is a structural ensemble of the human chorionic
gonadotropin alpha subunit sampled with X-PLOR and constrained with NMR measurements. PED00151 is a structural
ensemble of a Nuclear Localization Signal (NLS 99-140) peptide, sampled with MD simulation package CAMPARI and
reweighted to match the experimental measurement from smFRET and SAXS. PED00218 is a structure ensemble of a
complex Taf14ET-Sth1EBMC, and its structures were derived from MD simulation and fit to NMR measurements. PED
provides 55, 27, 29,598, 20 frames for entries PED00055, PED00090, PED00151, and PED00218, respectively. We use all
frames for PED00055, PED00090, and PED00218 as testing set. For PED00151, we randomly sample 140 frames from the
ensemble PED00151e000.

D.4. Single Chemistry Experiments

We perform the single chemistry experiments with entry PED00151. PED provides three ensembles for PED00151 :
PED00151e000 (9,746 frames), PED00151e001 (9,924 frames), and PED00151e002 (9,928 frames). Each ensemble is
reweighted with the COPER program (Leung et al., 2016) to match the experimental FRET efficiency and Rg values. To
reduce the training time, we randomly sample 140, 142, and 142 samples from the ensemble PED00151e000, PED00151e001,
and PED00151e002, respectively. We use PED00151e001 and PED00151e002 samples (284 frames) as the train and
validation set. We randomly select 224 frames as training set and use the remaining 60 frames for validation. PED00151e000
(140 frames) is used as the test set.
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D.5. Data Statistics

This section provides a quantitative analysis of the train and the test set. Our training set includes ∼ 10,000 frames, and the
test set includes ∼ 500 frames. Our training and test proteins have 9,562 and 354 residues in total, respectively. In other
words, the model has seen ∼ 10,000 different residue environments. The distribution of protein sequence length and the
number of frames are shown in Figure 11 plot (b) and (d). Figure 11 plot (c) shows the distribution of amino acid counts in
all training entries. The amino acids are well distributed, except for tryptophans (TRP; W) and cysteines (CYS; C).
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Figure 11. (a) Compactness plot. Train set, test set, and excluded entries are colored in blue, red, and green, respectively. Large proteins
(number of residues > 300) are omitted.

Our dataset includes proteins of various levels of compactness. Protein compactness can be characterized by the radius of
gyration (Rg) as a function of the chain length (Lazar et al., 2021). Figure 11 plot (a) plots Rg of protein chains against the
chain length. Each dot represents a chain in an entry. The trend lines in Figure 11 plot (a) are taken from Figure 2 of Lazar
et al. (2021): completely flexible, rod-like chains follow a linear trend since the size of the protein will be proportional to
the sequence length, folded proteins approximately follow a known scaling law, and disordered proteins fall in between.
As shown in the plot, our test set does not include proteins with extreme disorderedness. However, since one of our test
proteins, PED00151, is a disordered IDP with partial coils, we assume that testing on PED00151 would be enough to show
the model performance on flexible proteins.

D.6. Data Preprocessing

Hydrogen removal. Since residues can be in many protonation states, we remove all the hydrogens from the train and
test structures to reduce the number of building block representations. Moreover, in practice, protonation and hydrogen
placement software such as REDUCE (Word et al., 1999) have been reliably used. Thus, we only consider heavy atoms for
our reconstruction and sampling tasks.

Handling terminal residues and multiple chains. Since we reconstruct backbone nitrogens and carbons with three alpha
carbons (Cαi−1

, Cαi
, Cαi+1

where N > i ≥ 1) as anchors, we cannot reconstruct atomistic positions for terminal residues.
Therefore, we mask the i = 0 and i = N residues for training and inference. Also, when the entry is a protein complex with
multiple chains, two terminal residues exist for each chain. In such cases, we mask all the terminal residues.

Handling PTMs. We treat phosphorylated Threonine (TPO) and phosphorylated Serine (SPO) as individual building
blocks in addition to 20 canonical amino acids. We include proteins with oxidated residues (OXT) in our training and test
sets. However, we do not treat oxidized residues as separate building blocks since oxidation appears in many amino acid
types. Instead, we remove all the additional oxygen atoms added by oxidation PTM.
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Sampling a subset from large entries. For the entries with a large number of frames (Number of frames > 500), we use
the sampled subset of the entry to avoid the model overrepresenting those entries. We sample so that the number of frames
per entry does not exceed 500. Following is the list of the large entries : PED00003, PED00006, PED00011, PED00022,
PED00024, PED00025, PED00143, PED00145, PED00148, PED00150, PED00155, PED00180, PED00181.

E. Experimental Details
E.1. GenZProt

Our proposed model and the ablation models are trained with the hyperparameters defined in Table 8. Models were trained
with Xeon-G6 GPU nodes until convergence, with a maximum runtime of 20 hours. Five random seeds—123, 321, 12345,
42, 24—were used. In our hyperparameter search, we prioritized minimizing steric clash by assiging a larger coefficient to
the steric class loss term (ζ), while setting other coefficients to 1.0 without further consideration. We observed a trade-off
between steric clash ratio and RMSD as a function of ζ: increasing the ζ value led to lower steric clash ratios and higher
RMSD.

Table 8. A list of hyperparameters. m1-m9 are defined in the main text.

Hyperparameter m1-m6 m7 m8 m9

Node-wise latent variable dimension 36 36 36 36
Atom neighbor cutoff [Å] 9.0 9.0 9.0 9.0

Residue neighbor cutoff [Å] 21.0 21.0 21.0 21.0
Encoder convolution depth 3 3 3 3
Decoder convolution depth 4 4 4 4

Maximum training hours [hr] 20 20 20 20
Batch size 4 4 4 4

Learning rate 1e-3 1e-3 1e-3 1e-3
β coefficient for KL divergence 0.05 0.05 0.05 0.05

γ coefficient for Llocal 1.0 1.0 1.0 1.0
δ coefficient for Ltorsion 1.0 0.0 1.0 1.0
η coefficient for Lxyz 1.0 1.0 0.0 1.0
ζ coefficient for Lsteric 3.0 3.0 3.0 0.0

E.2. Baseline - CGVAE

We modify the original version of CGVAE (Wang et al., 2022) to make it trainable for multiple chemical systems. Original
CGVAE’s encoder operates with atom-wise feature vectors, while GenZProt’s encoder operates with residue-wise feature
vectors. For a protein with N residues and n atoms, Original CGVAE’s invariant encoder initializes n node attributes
with the atom identity. Then, it performs message passing operations through atom-atom pairs within a cutoff distance
and pools the atom-wise information to obtain a CG bead-wise latent variable. Unlike GenZProt, the CGVAE encoder
does not perform CG bead-CG bead pair message passing. CGVAE prior operates at the CG level—the prior initializes
node feature vectors with the index of the corresponding CG bead and performs CG bead-CG bead pair message passing
operations. When the model is trained for a single chemistry, the index alone would have provided enough information
for all-atom reconstruction. However, for a transferable model, we provide additional information by initializing the node
feature vector with the residue identity. For the encoder, we concatenate the residue identity with the atom identity to
initialize the atom-wise feature vector. For the prior, we use residue identity to initialize the feature vector.

E.3. Metrics

Root Mean Squared Distance (RMSD). The reconstruction task evaluates the model’s capacity to encode and reconstruct
given structures. We report the RMSD value of ground truth and reconstructed structures for each model. The lower the
RMSD, the closer the generated structure is to the ground truth structure.

Graph Edit Distance (GED). The sample quality is evaluated by measuring how well the generated geometries preserve
the original chemical bond graph, which is quantified by the graph edit distance ratio λ(Ggen, Gtrue) between generated
graph and the ground truth graph. Ggen is deduced from the coordinates by connecting bonds between pair-wise atoms
where the distances are within a threshold defined by an atomic covalent radius cutoff used in (Wang et al., 2022). The lower
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the λ, the better Ggen resembles Gtrue.

Steric clash score. In addition to GED, we report the ratio of steric clash occurrence in all atom-atom pairs within a 5.0 Å
distance as a metric to measure the sample quality. For each atom-atom pair, distance smaller than 1.2 Å is considered a
steric clash.

F. Learning Objectives
F.1. Periodic Angular Loss

Δθ [radian]
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ss

Figure 12. Periodic angular loss.

Periodic loss for angles introduced in Equation 2.5 is defined as:

Langle =
1

|A|
∑
θ∈A

√
2(1− cos(θ − θ̂)) + ϵ (4)

.

This loss function is minimized at ∆θ = θ − θ̂ = 0, 2π, and maximized at ∆θ = π, 1.5π]. Figure 12 shows the angle loss
term value as a function of ∆θ.

An alternative angular loss function would be Von Mises negative log-likelihood (NLL) loss, which can be computed as
− cos θ − θ̂ at concentration parameter 1. Empirically, our proposed loss function showed better results – the model trained
with NLL loss yielded an average RMSD of 0.781 Å and an average GED of 0.008 across five random seeds and four test
proteins, while ours had an average RMSD of 0.515 Å and an average GED of 0.002. The observed discrepancy may be due
to the different scaling between the angle loss and the NLL loss, as the NLL loss exhibits a sharper decrease in the loss
value as ∆θ decreases.

F.2. Interaction Score

We devised an interaction score to evaluate the model’s ability to learn long-range interactions. Interactions were identified
based on atom-atom pairwise distances, as the distance is the most determining variable of intermolecular interactions: force
field terms such as Lennard-Jones potential or electrostatic energy are computed as a function of distance.

We tested adding the interaction score to our training objective, but the interaction score loss did not affect the model
performance in reconstructing the long-range interactions. Thus, we introduce the score as a metric and not as a loss
function.

Identification of the interactions. We considered two classes of interactions.

1. Hydrogen bonds, ion-ion interactions, dipole-dipole interactions : We identify heteroatom pairs within the distance of
3.3 Å.

2. Pi-pi stacking : We identify a pair of aromatic rings (PHE, TYR, TRP, HIS) that the distance between their ring centers
is smaller than 5.5 Å.

The interaction score is defined as:

21



Chemically Transferable Generative Backmapping of Coarse-Grained Proteins

Latom-pair :=
∑

(x,y)∈A

max(||x− y||22 − 4.0, 0.0)

Lpi-pair :=
∑

(x,y)∈P

max(||x− y||22 − 6.0, 0.0)
(5)

where P is a set of pair of atoms that are identified as type 1 interacting pair (dxy < 3.5 Å), and P is a set of pair of
aromatic rings that are identified as type 2 interacting pair (dxy < 5.5 Å). The smaller the Latom-pair and Lpi-pair, the better
the long-range interactions are reconstructed.

Here, we report the interaction scores tested from different model architectures.

Table 9. Interaction scores. m1 : Our proposed model with equivariant encoder and invariant Z-matrix decoder. m2 : Invariant encoder
and Z-matrix decoder. m3 : Equivariant encoder and Cartesian coordinate decoder. m4 : Invariant encoder and Cartesian coordinate
decoder. m5 : m1 trained with PED00151 only. m6 : m4 trained with PED00151 only.

Method PED00055 PED00090 PED00151 PED00218

Interaction score (↓)

m1 (GenZProt) 0.025±0.000 0.069±0.002 0.057±0.000 1.270±0.000
m2 0.128±0.003 0.282±0.018 0.213±0.003 1.332±0.002
m3 2.527±0.165 1.539±0.014 2.139±0.085 2.412±0.006
m4 (CGVAE) 1.416±0.202 1.141±0.043 1.797±0.555 1.593±0.215
m5 (GenZProt, single) - - 0.221±0.001 -
m6 (CGVAE, single) - - 1.574±0.016 -
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