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Abstract

Recent work has observed an intriguing ªNeu-

ral Collapseº phenomenon in well-trained neural

networks, where the last-layer representations of

training samples with the same label collapse into

each other. This appears to suggest that the last-

layer representations are completely determined

by the labels, and do not depend on the intrinsic

structure of input distribution. We provide evi-

dence that this is not a complete description, and

that the apparent collapse hides important fine-

grained structure in the representations. Specifi-

cally, even when representations apparently col-

lapse, the small amount of remaining variation can

still faithfully and accurately captures the intrinsic

structure of input distribution. As an example, if

we train on CIFAR-10 using only 5 coarse-grained

labels (by combining two classes into one super-

class) until convergence, we can reconstruct the

original 10-class labels from the learned repre-

sentations via unsupervised clustering. The re-

constructed labels achieve 93% accuracy on the

CIFAR-10 test set, nearly matching the normal

CIFAR-10 accuracy for the same architecture. We

also provide an initial theoretical result showing

the fine-grained representation structure in a sim-

plified synthetic setting. Our results show con-

cretely how the structure of input data can play

a significant role in determining the fine-grained

structure of neural representations, going beyond

what Neural Collapse predicts.

1. Introduction

Much of the success of deep neural networks has, arguably,

been attributed to their ability to learn useful representations,
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or features, of the data (Rumelhart et al., 1985). Although

neural networks are often trained to optimize a single ob-

jective function with no explicit requirements on the inner

representations, there is ample evidence suggesting that

these learned representations contain rich information about

the input data (Levy & Goldberg, 2014; Olah et al., 2017).

As a result, formally characterizing and understanding the

structural properties of neural representations is of great

theoretical and practical interest, and can provide insights

on how deep learning works and how to make better use of

these representations.

One intriguing phenomenon recently discovered by Papyan

et al. (2020) is Neural Collapse, which identifies structural

properties of last-layer representations during the terminal

phase of training (i.e. after zero training error is reached).

The simplest of these properties is that the last-layer repre-

sentations for training samples with the same label collapse

into a single point, which is referred to as ªvariability col-

lapse (NC1).º This is surprising, since the collapsed struc-

ture is not necessary to achieve small training or test error,

yet it arises consistently in standard architectures trained on

standard classification datasets.

A series of recent papers were able to theoretically explain

Neural Collapse under a simplified model called the uncon-

strained feature model or layer-peeled model (see Section 2

for a list of references). In this model, the last-layer repre-

sentation of each training sample is treated as a free opti-

mization variable and therefore the training loss essentially

has the form of a matrix factorization. Under a variety of

different setups, it was proved that the solution to this sim-

plified problem should satisfy Neural Collapse. Although

Neural Collapse is relatively well understood in this simpli-

fied model, this model completely ignores the role of the

input data because the loss function is independent of the in-

put data. Conceptually, this suggests that Neural Collapse

is only determined by the labels and may happen regard-

less of the input data distribution. Zhu et al. (2021) provided

further empirical support of this claim via a random labeling

experiment.

On the other hand, it is conceivable that the intrinsic struc-

ture of the input distribution should play a role in de-

termining the structure of neural net representations. For

1



Are Neurons Actually Collapsed? On the Fine-Grained Structure in Neural Representations

Figure 1. Fine-grained clustering structure of the last-layer repre-

sentations of ResNet-18 trained on Coarse CIFAR-10 (5 super-

classes). Left figure: PCA visualization for all training samples.

Right figure: t-SNE visualization for all training samples in super-

class 4 (which consists of original classes 4 and 9).

example, if a class contains a heterogeneous set of input

data (such as different subclasses), it is possible that their

heterogeneity is also respected in their feature representa-

tions (Sohoni et al., 2020). However, this appears to con-

tradict Neural Collapse, because Neural Collapse would

predict that all the representations collapse into each other

as long as they have the same class label. This dilemma

motivates us to study the following main question in this

paper:

How can we reconcile the roles of the intrinsic structure of

input distribution vs. the explicit structure of the labels in

determining the last-layer representations in neural

networks?

Our methodology and findings. To study the above ques-

tion, we design experiments to manually create a mismatch

between the intrinsic structure of the input distribution and

the explicit labels provided for training in standard classifica-

tion datasets and measure how the last-layer representations

behave in response to our interventions. This allows us to

isolate the effect of the input distribution from the effect

of labels. As an illustrative example, for the CIFAR-10

dataset (a 10-class classification task), we alter its labels

in two different ways, resulting in a coarsely-labeled and a

finely-labeled version:

• Coarse CIFAR-10: combine every two class labels

into one and obtain a 5-class task (see Figure 2 for an

illustration);

• Fine CIFAR-10: split every class label randomly into

two labels and obtain a 20-class task.

We train standard network architectures (e.g. ResNet,

DenseNet) using SGD on these altered datasets. Our main

findings are summarized below.

First, both the intrinsic structure of the input distribution

and the explicit labels provided in training clearly affect

the structure of the last-layer representations. The effect

of input distribution emerges earlier in training, while the

effect of labels appears at a later stage. For example, for both

Coarse CIFAR-10 and Fine CIFAR-10, at some point the

representations naturally form 10 clusters according to the

original CIFAR-10 labels (which comes from the intrinsic

input structure), even though 5 or 20 different labels are

provided for training. Later in training (after 100% training

accuracy is reached), the representations collapse into 5

or 20 clusters driven by the explicit labels provided, as

predicted by Neural Collapse.

Second, even after Neural Collapse has occurred according

to the explicit label information, the seemingly collapsed

representations corresponding to each label can still exhibit

fine-grained structures determined by the input distribu-

tion. As an illustration, Figure 1 visualizes the representa-

tions from the last epoch of training a ResNet-18 on Coarse

CIFAR-10. While globally there are 5 separated clusters as

predicted by Neural Collapse, if we zoom in on each cluster,

it clearly consists of two subclusters which correspond to

the original CIFAR-10 classes. We also find that this phe-

nomenon persists even after a very long training period (e.g.

1,000 epochs), indicating that the effect of input distribution

is not destroyed by that of the labels, at least not within a

normal training budget.

To further validate our finding that significant input infor-

mation is present in the last-layer representations despite

Neural Collapse, we perform a simple Cluster-and-Linear-

Probe (CLP) procedure on the representations from ResNet-

18 trained on Coarse CIFAR-10, in which we use an unsu-

pervised clustering method to reconstruct the original labels,

and then train a linear classifier on top of these representa-

tions using the reconstructed labels. We find that CLP can

achieve > 93% accuracy on the original CIFAR-10 test set,

matching the standard accuracy of ResNet-18, even though

only 5 coarse labels are provided the entire time.

Theoretical result in a synthetic setting. To complement

our findings, we provide a theoretical explanation of the fine-

grained representation structure in a simplified synthetic

setting Ð a one-hidden-layer neural network trained on

coarsely labeled Gaussian mixture data. We prove that such

a network trained by gradient descent produces separable

hidden-layer representations for different clusters even if

they are given the same label for training.

Takeaway. While Neural Collapse is an intriguing phe-

nomenon that consistently happens, we provide concrete

evidence showing that it is not the most comprehensive

description of the behavior of last-layer representations in

practice, as it fails to capture the possible fine-grained prop-
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erties determined by the intrinsic structure of the input dis-

tribution.

2. Related Work

The Neural Collapse phenomenon was originally discovered

by Papyan et al. (2020), and has led to a series of further

investigations.

A number of papers Fang et al. (2021); Lu & Steinerberger

(2020); Wojtowytsch et al. (2020); Mixon et al. (2022);

Zhu et al. (2021); Ji et al. (2021); Han et al. (2021); Zhou

et al. (2022); Tirer & Bruna (2022); Yaras et al. (2022) stud-

ied a simplified unconstrained feature model, also known

as layer-peeled model, and showed that Neural Collapse

provably happens under a variety of settings. This model

treats the last-layer representations of all training samples

as free optimization variables. By doing this, the loss func-

tion no longer depends on the input data, and therefore this

line of work is unable to capture any effect of the input

distribution on the structure of the representations. Ergen

& Pilanci (2021); Tirer & Bruna (2022); Weinan & Woj-

towytsch (2022) considered more complicated models but

still did not incorporate the role of the input distribution.

Hui et al. (2022) studied the connection of Neural Collapse

to generalization and concluded that Neural Collapse occurs

only on the training set, not on the test set. Galanti et al.

(2021) found that Neural Collapse does generalize to test

samples as well as new classes, and used this observation to

study transfer learning and few-shot learning.

Sohoni et al. (2020) observed that the last-layer represen-

tations of different subclasses within the same class are

often separated into different clusters, and used this observa-

tion to design an algorithm for improving group robustness.

The fine-grained representation phenomenon we observe

is in a qualitatively different regime from that of Sohoni

et al. (2020). First of all, we focus on the Neural Collapse

regime and find that fine-grained representation structure

can co-exist with Neural Collapse. Furthermore, Sohoni

et al. (2020) looked at settings in which different subclasses

have very different accuracies and explicitly attributed the

representation separability phenomenon to this performance

difference. On the other hand, we find that representation

separability can happen even when there is no performance

gap between different subclasses.

3. Preliminaries and Setup

Consider a classification dataset D = {(xk, yk)}nk=1, where

(xk, yk) ∈ R
d′ × [C] is a pair of input features and label, n

is the number of samples, d′ is the input dimension, and C
is the number of classes. Here [C] = {1, . . . , C}.

For a given neural network, we denote its last-layer repre-

sentations corresponding to the dataset D by H ∈ R
n×d,

i.e. the hidden representation before the final linear trans-

formation, where d is the last-layer dimensionality. For an

original class c ∈ [C], we denote the number of samples

in class c by nc, and the last-layer representation of k-th

sample in class c by h
(c)
k .

3.1. Preliminaries of Neural Collapse

Neural Collapse (Papyan et al., 2020) characterizes 4 phe-

nomena, named NC1-NC4. Here we introduce NC1 and

NC2 which concern the structure of the last-layer represen-

tations.

NC1, or variability collapse, asserts that the variance of

last-layer representations of samples within the same class

vanishes as training proceeds. Formally, it can be measured

by NC1 =
1
CTr

(

ΣWΣ†
B

)

(Papyan et al., 2020; Zhu et al.,

2021), which is observed to go to 0. Here ΣW and ΣB are

defined as

ΣW =
1

C

∑

c∈[C]

1

nc

nc
∑

i=1

(

h
(c)
i − µc

)(

h
(c)
i − µc

)⊤
(1)

and

ΣB =
1

C

∑

c∈[C]

(µc − µG) (µc − µG)
⊤
, (2)

where µc =
1
nc

∑nc

k=1 h
(c)
k are the class means and µG =

1
n

∑C
c=1

∑nc

k=1 h
(c)
k is the global mean.

NC2 predicts that the class means form a special struc-

ture, namely, their normalized covariance converges to the

Simplex Equiangular Tight Frame (ETF). This can be char-

acterize by

NC2

def
=

∥

∥

∥

∥

MM⊤

∥MM⊤∥F
− 1√

C − 1

(

I − 1

C
1C1

⊤
C

)∥

∥

∥

∥

F
→ 0

(3)

during training, where M ∈ R
C×d is the stack of central-

ized class-means, whose c-th row is µc−µG, and ✶C ∈ ❘C

is the all-one vector, and I is the identity matrix.

3.2. Experiment Setup

In our experiment, we explore the role of input distribution

and labels through assigning coarser or finer labels to each

sample, and then explore the structure of last-layer repre-

sentation of a model trained on the dataset with coarse or

fine labels and see to what extent the information of original

labels are preserved.

The coarse labels are created in the following way. Choose

a number C̃ divides C, and create coarse labels by

ỹk = yk mod C̃, (4)
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Figure 2. Illustration of Coarse CIFAR-10.

which merges the classes whose indices have the same re-

mainder w.r.t. C̃ and thus creates C̃ super-classes. Since

the original indices of classes generally have no special

meanings, this process should act similarly to randomly

merging classes.1 We say the samples with the same coarse

label belong to the same super-class, and call the dataset

D̃ = {(xk, ỹk)}nk=1 the coarse dataset, which we use to

train the model. Figure 2 provides an illustration of the

coarse labels on CIFAR-10 with C̃ = 5, which we call

Coarse CIFAR-10.

To create fine labels, we randomly split each class into two

sub-classes. Specifically, the fine labels are created by

ŷk = yk + βC, (5)

where ŷk is the fine label of sample k andC is the number of

original classes and β is a Bernoulli Variable. This process

result in a dataset D̂ = {(xk, ŷk)}nk=1 with 2C classes.

Same as before, we call D̂ the fine dataset.

4. Exploring the Fine-Grained Representation

Structure with Coarse CIFAR-10

In this section, we experiment with coarsely labeled datasets,

using Coarse CIFAR-10 as an illustrative example. Specif-

ically, the model is trained on the training set of Coarse

CIFAR-10 for a certain number of steps that is sufficient for

the model to converge. We then take the last-layer represen-

tations of the model throughout training and explore their

structure.

In order to make an exhaustive observation, the experiments

are performed using different learning rates and weight-

decay rates. Specifically, we choose the initial learning rate

in {10−1, 10−2, 10−3} (we apply a standard learning rate

decay schedule) and the weight-decay rate in {5×10−3, 5×
10−4, 5×10−5} and run all 9 possible combinations of them.

The experiments are also conducted on multiple datasets

and network architectures. Due to space limit, we defer

complete results to Appendix (see Appendices C, E and F).

In this section we focus on ResNet-18 on Coarse CIFAR-

10, where the original number of classes is C = 10 and

1We adopt this deterministic process for simplicity and repro-
ducibility. However, we do provide additional results with random
merging in Appendix F.

the number of coarse labels is C̃ = 5. In this section, we

only report results for one group of representative hyper-

parameter combinations: learning rate is 0.1 and weight-

decay rate is 5× 10−4. Results for other hyper-parameters

are presented in Appendices C to H.

First, we verify that Neural Collapse does happen, i.e. the

representations converge to 5 clusters, and the class means

form a Simplex ETF structure. Specifically, we measure

NC1 and NC2 defined in Section 3.1, with C replaced by C̃
since we are calculating it on the coarsely labeled dataset.

The results are shown in Figure 3, which matches previous

results in Papyan et al. (2020); Zhu et al. (2021), which

verify Neural Collapse happens.

Figure 3. The value of NC1 and NC2 w.r.t. number of training

epochs.

4.1. Class Distance

Now, we look at the average square Euclidian distance of

last-layer representations between each two original classes.

Formally, we calculate a class distance matrix D ∈ R
C×C ,

whose entries are

Di,j =
1

ninj

ni
∑

u=1

nj
∑

v=1

∥

∥

∥h
(i)
u − h(j)

v

∥

∥

∥

2

2
, (6)

for all i, j ∈ [C], where h
(c)
k represents the last-layer repre-

sentation of the k-th sample of super-class u.

Since the model is trained on the coarse dataset, Neural

Collapse asserts that for every original class pair i, j in the

same super-class (including the case of i = j), the class

distance Di,j should be very small. In Coarse CIFAR-10,
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Figure 4. An illustration of predicted class distance matrix

heatmaps of Coarse CIFAR-10, each row and column represents

an original class. (a): If input distribution dominates the last-layer

representations. (b): If Neural Collapse dominates the last-layer

representations.

this will result in three darks lines (darker color represents

lower value) in the heatmap of D since each super class con-

tains two original classes, as illustrated in Figure 4 (b). For

example, in Coarse CIFAR-10 the original class "airplane"

and "dog" both belong to the super class "airplane & dog",

therefore per Neural Collapse’s prediction, their last-layer

representations would collapse to each other, making the

average square distance extremely small compared to other

entries. In contrast, if the last-layer representations perfectly

reflect the distribution of input, i.e. original classes, the

class distance matrix should be a diagonal matrix as shown

in Figure 4 (a), because the last-layer representation of sam-

ples in each original class only collapse to the class-mean

of this original class.

Figure 5 displays the heatmaps of class distance matrix D
at different stages in training, which shows that: (i) There

are indeed three dark lines that show up, but they do not

show up simultaneously. In particular, the central diagonal

line ± representing the samples in the same original classes

± emerges earlier in training. (ii) Even in the final stage

of training when the training error is zero, the three lines

are not of the same degree of darkness. The central line

is clearly darker, indicating a smaller distance within the

original classes.

Those observations suggest that the actual behaviour of the

last-layer representations is between the cases predicted

in Figure 4 (a) and (b): the input distribution and training

labels both have an impact on the distribution of the last-

layer representations, both of them can be present even after

reaching zero training error for a long time, and the impact

of input distribution emerges earlier in training. These ob-

servations suggest both the existence of Neural Collapse and

the inadequacy of Neural Collapse to completely describe

the behaviour of last-layer representations.

(a) epoch = 20 (b) epoch = 120

(c) epoch = 240 (d) epoch = 350

Figure 5. The heatmap of class distance matrix.

4.2. Visualization

In this subsection, we take a closer look at the last-layer

representations of the model at the end of training by re-

ducing the dimensionality of the last-layer representations

to 2 through t-SNE (Van der Maaten & Hinton, 2008) and

visualize them. Specifically, we visualize each super-class

separately, but color the samples whose original labels are

different with different colors.

The visualization results are displayed in Figure 6, from

which we observe a distinguishable difference between dif-

ferent original classes Ð their representations form well-

separated clusters in the 2-dimensional space. This suggests

that the input distribution information, i.e. the original label

information, is well preserved in the last-layer representa-

tions.

Training extremely long. In order to explore if the fine-

grained structures are still preserved even after a extremely

long time of training, we further train the model with 1,000

epochs. The heatmap of the distance matrix is presented

in Figure 7. We also produce the t-SNE visualizations, but

only include the result of the first super-class in Figure 8

due to space limitation.

4.3. Learning CIFAR-10 from 5 Coarse Labels

As the results in Section 4.2 suggest, even after the training

accuracy has reached 100% for a long time, the samples

within each super-class still exhibit a clear structure per

their original class, and those structures act as clusters after

reducing dimensionality. Inspired by this observation, we

perform a Cluster-and-Linear-Probe (CLP) test to quantify

to what extent the original class information is preserved
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Figure 6. The t-SNE visualization of the last-layer representations of ResNet-18 trained on Coarse CIFAR-10. Each plot corresponds to a

super-class.

Figure 7. The heatmap of dis-

tance matrix of ResNet-18

trained on Coarse CIFAR-10 for

1,000 epochs.

Figure 8. The t-SNE visualiza-

tion of the last-layer represen-

tations of the first super-class

of ResNet-18 trained on Coarse

CIFAR-10 for 1,000 epochs.

in the last-layer representations. In CLP, we use the repre-

sentations learned on Coarse CIFAR-10 to reconstruct 10
labels and run a linear probe on these representations using

the reconstructed labels. Specifically, we first use t-SNE

to reduce the dimensionality to 2 and then use k-means to

find 2 clusters in the dimensionality-reduced representations

within each super-class. We use the clusters as reconstructed

labels to do a linear probe. In linear probe, we train a linear

classifier on top of the previously learned representations

on the training set with reconstructed labels and evaluate

the learned linear classifier on the original test set. Notice

that because we do not know the mapping of reconstructed

classes to true original classes, we permute each possible

mapping and report the highest performance. We also train

a linear probe with original training labels as a comparison.

The result is shown in Figure 9.

The performance of CLP on the original test set is com-

parable to linear probe trained on true original labels or

even to models originally trained on CIFAR-10. Notice that

the representation H is obtained from the model trained

with coarse labels, and the label reconstruction only uses

information of H and the number of original classes. This

means we can achieve very high performance on the original

test set even if we only have access to coarse labels. This

result further confirms that the input distribution plays an

important role in the last-layer representations.

Figure 9. The CLP result. ªoriginal testº is the highest test set

accuracy achieved by ResNet18 trained on original CIFAR-10

with the same training hyper-parameters.

5. How Does Semantic Similarity Affect the

Fine-Grained Structure?

In our experiments with Coarse CIFAR-10, each coarse la-

bel is obtained by combining two classes regardless of the

semantics. The fact that the neural network can separate

the two classes in its representation space implies that the

network recognizes these two classes as semantically dif-

ferent (even though they are given the same coarse label).

In this section, we explore the following question: If the

sub-classes in a super-class have semantic similarity, will

the representations still exhibit a fine-grained structure to

distinguish them? Intuitively, if the coarse label provided is

ªnaturalº and consists of semantically similar sub-classes, it

is possible that the neural network will not distinguish be-

tween them and just produce truly collapsed representations.

We take a step towards answering this question by looking at

ResNet-18 trained on CIFAR-100 using the official 20 super-

classes (each super-class contains 5 sub-classes) as labels.

Unlike randomly merging classes as we did in Section 4, the

official super-classes of CIFAR-100 are natural, merging
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Figure 10. The t-SNE visual-

ization of the last-layer repre-

sentations of super-class ªve-

hicles 1º of ResNet-18 trained

on CIFAR-100 with original

super-classes.

Figure 11. The t-SNE visu-

alization of the last-layer

representations of super-class

ªnon-insect invertebratesº

of ResNet-18 trained on

CIFAR-100 with original

super-classes.

Figure 12. The t-SNE visu-

alization of the last-layer

representations of super-class

1 of ResNet-18 trained on

CIFAR-100 with random

super-classes.

Figure 13. The t-SNE visu-

alization of the last-layer

representations of super-class

2 of ResNet-18 trained on

CIFAR-100 with random

super-classes.

classes with similar semantics (for example, ªbeaverº and

ªdolphinº both belong to ªaquatic mammalsº). This offers a

perfect testbed for our question.

We find that ResNet-18 indeed is not able to distinguish all

sub-classes in its representation space, but can still produce

separable representations if some sub-classes within a super-

class are sufficiently different. Interestingly, the notion

of semantic similarity of ResNet-18 turns out to agree well

with that of humans. Figures 10 and 11 show the t-SNE visu-

alizations of representations from two super-classes. From

the visualizations, although there are not as clear clusters as

for Coarse CIFAR-10, the representations do exhibit visible

separations between certain sub-classes. In Figure 10, ªbicy-

clesº and ªmotorcyclesº are entangled together, while they

are separated from ªbusº, ªpickup truckº, and ªtrainº, which

is human-interpretable. In Figure 11, ªcrabº and ªlobsterº

are mixed together, which are both aquatic and belong to

malacostraca, while the other three are not and have more

differentiative representations.

In comparison, when the CIFAR-100 classes are randomly

merged into 20 super-classes, we find that the sub-class rep-

resentations are much better separated (Figures 12 and 13).

This is because randomly merged super-classes no longer

have semantic similarity in their sub-classes.

These results confirm the intuition that the fine-grained struc-

ture in last-layer representations is affected by, or even based

on, the semantic similarity between the inputs.

6. Fine-Grained Representation Structure on

Fine CIFAR-10

In this section, we consider a finely-labeled dataset. We

construct a fine version of CIFAR-10 with the process de-

scribed in Section 3.2, and call it Fine CIFAR-10. Figure 14

presents the class distance matrices, arranged by the number

of training epochs. As before, we only provide the results

for a specific training hyper-parameter setting here and defer

the full results to Appendix D.

It can be observed that at the early stage of training, there

are three dark lines, which indicates the last-layer repre-

sentations are converging towards 10 clusters instead of

20. At the end of training, this 10-class relationship is still

preserved, although with a lighter color. Therefore, both

the input distribution and the label information still have a

strong influence on the representation structure when fine

labels are used for training.

(a) epoch = 20 (b) epoch = 120

(c) epoch = 240 (d) epoch = 350

Figure 14. The heatmap of class distance matrix on Fine CIFAR-

10.

7. Theoretical Result in a Synthetic Setting

In this section, we provide a theoretical result to show the

fine-grained representation structure for a coarsely labeled

dataset, supporting our empirical observations in previous

sections. In particular, we consider a one-hidden-layer neu-

ral network trained by gradient descent on Gaussian mixture

data. We describe our setting below.
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Data generation. We consider input data generated from

a mixture of 4 separated Gaussian distributions in R
d. We

denote the four clusters as C1, C2, C3, and C4. We give

coarse label +1 to inputs from C1 and C2, and give coarse

label −1 to inputs from C3 and C4. We denote the n samples

as {(xi, yi)}ni=1. We assume a sample xi where i ∈ Cp

(p ∈ {1, 2, 3, 4}) is generated according to

xi = µ(p) + ξi, (7)

where ξi ∼ N (0, κ2I). We assume that the means µ(p)’s

are pairwise orthogonal and ∥µ(p)∥2 = τ . For convenience,

assume each cluster Cp has the same number of samples

|Cp| = n/4.

Neural network. We consider training a one-hidden-layer

network with m hidden neurons. The first-layer weight

matrix is W = (w1,w2, · · · ,wm) ∈ R
d×m and is trained

by gradient descent. The second-layer weights are fixed to

be all ones (which satisfies the ETF structure predicted by

Neural Collapse in this setting). The output of the network

is

f(x,W ) = 1
⊤h(x,W ) =

m
∑

r=1

σ
(

w⊤
r x
)

,

where h(x,W ) =
(

σ(w⊤
r x)

)m

r=1
∈ R

m is the hidden-layer

representation, and

σ(z) =











1
3z

3 if |z| ≤ 1

z − 2
3 if z ≥ 1

z + 2
3 if z ≤ −1

is the activation function. This activation is a smoothed

version of symmetrized ReLU; it and its variants have been

adopted in a line of theoretical work (e.g. Allen-Zhu & Li

(2020); Zou et al. (2021); Shen et al. (2022)).

Loss function and training algorithm. We train the net-

work by gradient descent on the logistic loss

L(W ) =
1

n

n
∑

i=1

ℓ(f(xi,W ), yi)

where ℓ(ŷ, y) = −yŷ
2 is the unhinged loss (van Rooyen et al.,

2015). Notice that when f(xi,W ) is small, the unhinged

loss can be viewed as an approximation of logistic loss

(Shen et al., 2022). We initialize the first-layer weights i.i.d.

from N (0, ω2) and update them using gradient descent with

learning rate η.

Our main theorem shows that after training, the hidden-

layer representations for C1 and C2 will form two separate

clusters, even though they are given the same label. (Similar

result holds for C3 and C4 by symmetry.) In particular, for

any three samples i1, i2 ∈ C1 and i3 ∈ C2, we show that

∥h(xi1)− h(xi2)∥2 ≪ ∥h(xi1)− h(xi3)∥2.

Theorem 7.1. Consider the synthetic setting describe above

and let c = 8κ
√
d

τ . Suppose that the following conditions

hold regarding the Gaussian mean length τ , Gaussian vari-

ance κ2, weight initialization variance ω2, input dimension

d, number of samples n, and number of neurons m:

1. n
1
2 d−

1
4 ≪ c ≪ n

1
2 d−

1
6 ;

2. d1/3 ≫ n;

3. d−
1
4n

1
2 c

−1 ≪ τω ≪ log−
1
2 (m).

For learning rate η = O
(

min
{

c
3τ−4, c2ωτ−3, c2ωτ

})

and number of iterations T = Θ( 1
ηωτ3 ), with high

probability, the hidden-layer representation map h(x) =
h(x,W (T )) satisfies that for all i1, i2 ∈ C1 and i3 ∈ C2,

we have

∥h(xi1)− h(xi2)∥2 ≪ ∥h(xi1)− h(xi3)∥2.

An example set of parameters that satisfy the above condi-

tions is:

κ = 1, τ = d0.52, ω = d−0.53,m = log d, n = d0.32.

The proof of Theorem 7.1 is given in Appendix A. The main

step is to prove that after training, the neurons wr will be

better correlated with the class means µ(p) than with the

individual sample noise ξi. Therefore, the network will

produce more similar representations for samples from the

same cluster than for samples from different clusters.

Empirical verification. To verify our theoretical analysis

and gain more understanding of the fine-grained structure

of last-layer representation we provide some synthetic ex-

periment results under the setting of classifying mixture

of Gaussian using a 2-layer MLP in Appendix B, which

is analogous (although not exactly the same) to the setting

analyzed in our theory. Notice that this synthetic experi-

ment is not only helpful to verify the theory, but also able

to let us perform controlled experiments by varying differ-

ent characteristics of the data distribution, architecture, and

algorithmic components, to let us better understand how

those hyper-parameters play a role in the final-layer repre-

sentation, and serve as a starting point for a more thorough

understanding of the last-layer representation behavior of

neural networks.

8. Discussion

In this paper, we initiated the study of the role of the intrin-

sic structure of the input data distribution on the last-layer

representations of neural networks, and in particular, how to

reconcile it with the Neural Collapse phenomenon, which

8
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is only driven by the explicit labels provided in the training

procedure. Through a series of experiments, we provide

concrete evidence that the representations can exhibit clear

fine-grained structure despite their apparent collapse. While

Neural Collapse is an intriguing phenomenon and deserves

further studies to understand its cause and consequences, our

work calls for more scientific investigations of the structure

of neural representations that go beyond Neural Collapse.

We note that the fine-grained representation structure we

observed depends on the inductive biases of the network

architecture and the training algorithm, and may not appear

universally. In our experiments on Coarse CIFAR-10, we

observe the fine-grained structure for ResNet and DenseNet,

but not for VGG (see Appendices G and H for extended

results). We also note that certain choices of learning rate

and weight-decay rate lead to stronger fine-grained structure

than others. We leave a thorough investigation of such

subtlety for future work.
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A. Proof of Theorem 7.1

Recall that we use unhinged loss ℓ(f(x), y) = −yf(x)
2 whose gradient is

∂ℓ (f(x), y)

∂f(x)
=

−y
2
, (8)

and our purpose is to prove

∥h(xi1)− h(xi2)∥ ≪ ∥h(xi1)− h(xi3)∥. (9)

A.1. Concentration Lemmas Used

We first introduce some concentration lemmas that we will use.

Lemma A.1 (McKenna). Suppose {ψk}nk=1 are a set of independent Gaussian variables that ψk ∼ N (0, σ2
kI), then for

any t > 0,

P

{

n
∑

k=1

|ψk| ≥ t

}

≤ exp

(

− t2

2
∑n

k=1 σ
2
k

+ n log 2

)

. (10)

In other words, with probability at least exp(−n), the following inequality holds:

∑n

k=1
|ψk| ≥ 3

√

√

√

√n

n
∑

i=1

σ2
k. (11)

Lemma A.2 (Lemma 4 in (Shen et al., 2022)). If z1 ∼ N (0, σ2
1I) and z2 ∼ N

(

0, σ2
2I
)

are d-dimensional independent

Gaussian vectors, then , we have

P

{

∣

∣z⊤
1 z2

∣

∣ ≥ 4σ1σ2
√

d log(2/δ)
}

≤ δ (12)

Lemma A.3 (Corollary 3 in (Shen et al., 2022)). If z ∼ N (0, σ2I) is a d-dimensional Gaussian vector, then for large

enough d, and δ > 2e−d/64 we have
1

2
σ2d ≤ ∥z∥2 ≤ 2σ2d (13)

Lemma A.4 (Union Bound). If there are n variables {zk}nk=1 (not necessarily independent), and each zk satisfies

P {zk ≥ ϵk(δ)} ≤ δ, (14)

then

P

{

n
∑

k=1

zk ≥
n
∑

k=1

ϵk (δ/n)

}

≤ δ (15)

Proof. We have that

P

{

n
∑

k=1

zk ≤
n
∑

k=1

ϵk (δ/n)

}

≥ P

n
⋂

k=1

{zk ≤ ϵk(δ/n)} (16)

≥
n
∑

k=1

P {zk ≤ ϵk(δ/n)} − n+ 1 (17)

≥ n− n× δ

n
− n+ 1 (18)

= 1− δ. (19)

11
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Lemma A.5 (Lemma 5 in (Shen et al., 2022)). If there are i.i.d samples {zi}Ni=1, where zi ∼ N (0, σ2), then with probability

at least 1− δ we have

N
max
i=1

|zi| ≤ σ

√

2 log
2N

δ
. (20)

Lemma A.6 (Anti-Concentration). If a random variable z ∼ N (0, σ2), then for any δ > 0,

P {−δ < z < δ} < δ

σ
, (21)

in other words, with probability higher than 1− δ, we have |z| ≥ σδ.

Proof.

P {−δ < z < δ} =

∫ δ

−δ

1

σ
√
2π

exp

(

− x2

2σ2

)

dx (22)

≤
∫ δ

−δ

1

σ
√
2π

dx (23)

= σδ
2√
2π

(24)

< σδ. (25)

A.2. The Dynamics of Model Parameter

In this section, we will consider the dynamics of the projection of the model parameters on the ªcluster meanº direction and

the ªnoiseº direction. Specifically, let µk = µ(p) for k ∈ Cp, we will investigate these two quantities: ζk(t) = wr(t)
⊤µk

and ϕk(t) = wr(t)
⊤ξi. Notice that ζk is only dependent on the cluster mean of the cluster which xk belongs, so if xk ∈ Cs,

we denote ζk by ζ(s). Notice that ζk and ϕk are actually depend on neuron index r. Throughout this section we fix a neuron

index r to perform the analysis.

Notice that since we have assumed f(x) is initialized very small, the activation function σ will fall in the interval [−1, 1],
and hence be a cubic function. Hereinafter unless explicitly mentioned, we will simply use σ(z) = 1

3z
3 and therefore

σ′(x) = x2. This simplification will be rigorously justified in the Theorem 7.1.

Since we optimize the objective function by gradient descent with step size η. The update of wr(t) in each step is ∆w(t) =

−η ∂L(W )
∂wr(t)

. For other quantities (i.e. ζ, ϕ), we will use ∆ to denote the update. For example ∆ζ(s)(t) = ∆wr(t)
⊤µ(s).

The gradient of target function w.r.t. wr(t) is:

1

η
∆wr(t) = − ∂L(W )

∂W r(t)
(26)

= − 1

n

n
∑

i=1

ℓ′(f(xi;wr(t)), yi)
∂f(xi,wr(t))

∂wr(t)
(27)

= − 1

n

n
∑

i=1

ℓ′(f(xi;wr(t)), yi)σ
′(x⊤

i wr(t))xi (28)

=
1

2n

n
∑

i=1

yiσ
′(x⊤

i wr(t))xi (29)

=
1

2n

n
∑

i=1

yiσ
′
(

µ⊤
i wr(t) + ξ⊤i wr(t)

)

(µi + ξi) (30)

=
1

2n

4
∑

p=1

∑

xi∈Cp

yiσ
′
(

wr(t)
⊤µ(p) +wr(t)

⊤ξi

)

(µ(p) + ξi). (31)

12
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Next, we consider the projection of wr(t) onto the direction of µ(s) and ξk separately.

Lemma A.7. For s ∈ {1, 2}, we have the following inequality holds with probability at least 1− exp(−n):
∣

∣

∣

∣

∣

1

η
∆ζ(s)(t)− τ2

2n

∑

xi∈Cs

σ′
[

ζ(s)(t) + ϕi(t)
]

∣

∣

∣

∣

∣

≤ 3

2
Lτκ. (32)

Proof. Notice that since s ∈ {1, 2}, we have yi = 1 for xi ∈ Cs. We have that

2n× 1

η
∆wr(t)

⊤µ(s) =

4
∑

p=1

∑

xi∈Cp

yiσ
′
(

wr(t)
⊤µ(p) +wr(t)

⊤ξi

)(

µ(p)⊤µ(s) + ξ⊤i µ
(s)
)

(33)

=
∑

xi∈Cs

σ′
(

wr(t)
⊤µ(s) + ξ⊤i wr(t)

)

τ2 +

n
∑

i=1

yiσ
′
(

wr(t)
⊤µ(s) +wr(t)

⊤ξi

)

ξ⊤i µ
(s) (34)

∈
∑

xi∈Cs

σ′
(

wr(t)
⊤µ(s) + ξ⊤i wr(t)

)

τ2 ±
(

L
n
∑

i=1

∣

∣

∣
ξ⊤i µ

(s)
∣

∣

∣

)

(35)

=
∑

xi∈Cs

σ′
(

wr(t)
⊤µ(s) + ξ⊤i wr(t)

)

τ2 ± Lβ, (36)

where β =
∑n

i=1 |ξ⊤i µ(s)|. Since ξ⊤i µ
(s) ∼ N (0, κ2τ2), by Lemma A.1, we have that

P {β ≥ 3nκτ} ≤ exp(−n). (37)

Combining Equations (36) and (37), we have that with probability at least 1− exp(−n),

2n× 1

η
∆wr(t)

⊤µ(s) ∈ τ2
∑

xi∈Cs

σ′
(

wr(t)
⊤µ(s) + ξ⊤i wr(t)

)

± 3nLτκ, (38)

which proves the proposition.

Lemma A.8. For k ∈ C1 ∪ C2, if there exists a constant c(n) > 0 such that n ≤ c(n) κdτ , then we have

P

{

κ2d

4n
σ′(ϕk(t) + ζk(t))−

5

2
κτL ≤ 1

η
∆ϕk(t) ≤

3κ2d

4n
σ′(ϕk(t) + ζk(t)) +

5

2
κτL

}

≥ 1− δ, (39)

where δ = exp(−n) + 2n exp
(

− 1
c
2

)

+ 2 exp(−d/64).

Proof. For the noise term ξk, notice that since k ∈ C1 ∪ C2, we have yk = 1, and

2n× 1

η
∆wr(t)

⊤ξk =σ′
[

µ⊤
k wr(t) + ξ⊤k wr(t)

]

∥ξk∥2 + σ′
[

µ⊤
k wr(t) + ξ⊤k wr(t)

]

ξ⊤k µk (40)

+

4
∑

p=1

∑

xi∈Cp
i ̸=k

yiσ
′(wr(t)

⊤µ(p) +wr(t)
⊤ξi)

(

ξ⊤k µ
(p) + ξ⊤k ξi

)

(41)

∈σ′
[

µ⊤
k wr(t) + ξ⊤k wr(t)

]

∥ξk∥2 ±






L
∣

∣

∣
ξ⊤k µk

∣

∣

∣
+

4
∑

p=1

∑

xi∈Cp
i ̸=k

L
∣

∣

∣
ξ⊤k µ

(p) + ξ⊤k ξi

∣

∣

∣






(42)

⊆σ′
[

µ⊤
k wr(t) + ξ⊤k wr(t)

]

∥ξk∥2 ±







n
∑

i=1

L
∣

∣

∣ξ
⊤
i µi

∣

∣

∣+
∑

1≤i≤n
i ̸=k

L
∣

∣

∣ξ
⊤
k ξi

∣

∣

∣






(43)

=σ′
[

µ⊤
k wr(t) + ξ⊤k wr(t)

]

∥ξk∥2 ± Lβ (44)
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where

β =

n
∑

i=1

∣

∣

∣
ξ⊤k µi

∣

∣

∣
+
∑

1≤i≤n
i ̸=k

∣

∣

∣ξ
⊤
k ξi

∣

∣

∣ . (45)

Notice that n ≤ c(n)κd
τ . Let δ1 = exp(−n). From Lemma A.1, with probability at least 1− δ1, we have

∑n

i=1

∣

∣

∣ξ
⊤
k µi

∣

∣

∣ ≤ 3τκn. (46)

From Lemma A.2 and Lemma A.1, we have that with probability at least 1− δ2, we have

∑

i ̸=k

∣

∣

∣
ξ⊤k ξi

∣

∣

∣
≤ 2nκ2

√

d log(2n/δ2). (47)

Take δ2 = 2n exp
(

− 1
c
2

)

, we get

∑

i ̸=k

∣

∣

∣ξ
⊤
k ξi

∣

∣

∣ ≤ 2nκ2
√

d log(2n/δ2). (48)

≤ 2nκ2
√

d× τ2

κ2d
(49)

= 2nκτ (50)

To summery, with probability at least 1− δ1 − δ2, we have

L
2n
β ≤ 5

2
κτL. (51)

.

From Lemma A.3, with δ3 > 2 exp(−d/64), we have

1

2
κ2d ≤ ∥ξk∥2 ≤ 3

2
κ2d. (52)

Combining Equations (51) and (52), the proposition is proved.

To summarize, Lemma A.7 shows that with probability at least 1− δ1, where δ1 = − exp(−n), we have

ζ(s)(t+ 1)− ζ(s)(t) ∈ τ2η

2n

∑

xi∈Cs

σ′
[

ζ(s)(t) + ϕi(t)
]

± τ2η

2
× 3Lκ

τ
(53)

and with probability at least 1− δ2, where δ2 = exp(−n) + 2n exp
(

−c−2
)

+ 2 exp(−d/64), we have

ϕk(t+ 1)− ϕk(t) = η
d

dt
ϕk(t) (54)

∈ η

[

κ2d

4n
σ′(ϕk(t) + ζk(t))−

5

2
κτL, 3κ

2d

4n
σ′(ϕk(t) + ζk(t)) +

5c(n)κ2dL
n

]

(55)

⊆ η

[

κ2d

4n
σ′(|ϕk(t)|+ |ζk(t)|)−

5c(n)κ2dL
n

,
3κ2d

4n
σ′(|ϕk(t)|+ |ζk(t)|) +

5

2
κτL

]

. (56)

Lemma A.9. Let s ∈ {1, 2}. Suppose ζ(s) is initialized by ζ(s)(0), and there exists constants c(t) ∈
(

0, 8
1+8c

)

and

C(φ) > 0 such that the following conditions hold for t0 < c(t)
(

τ2η
∣

∣ζ(s)(0)
∣

∣

)−1
:

14
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1. ∀t ≤ t0, if ζ(s)(0) > 0, we have
[

ζ(s)(0)−1 −
(

1
8 − c

)

ητ2t
]−1 ≤ ζ(s)(t) ≤

[

ζ(s)(0)−1 −
(

1
8 + c

)

ητ2t
]−1

, while if

ζ(s)(0) < 0, we have ζ(s)(0) ≤ ζ(s)(t) ≤ ζ(s)(0) +
(

1
8 + c

)

ητ2t|ζ(s)(0)|2,

2. ∀t ≤ t0, ∀i ≤ n, |ϕi(t)| ≤ C(φ)
c
2

n

∣

∣ζ(s)(t)
∣

∣+ c

8 |ζ(s)(0)|;

3.
√

32Ln
c
2
√
d
≤ |ζ(s)(0)| ≤ c(8−c(t))

16ητ2 ;

4. c ≤ min
{

nC(φ)

4 ,
(

n
48

)
1
3 , 18

}

,

and ζ(s) is updated as described in Equation (53), then we have:

a) ∀t ≤ t0,
∣

∣ζ(s)(t)
∣

∣ > 1
2

∣

∣ζ(s)(0)
∣

∣;

b)
(

1
8 − c

2

)

ητ2ζ(s)(t0)
2 ≤ ζ(s)(t0 + 1)− ζ(s)(t0) ≤

(

1
8 + c

2

)

ητ2ζ(s)(t0)
2;

c) If ζ(s)(0) > 0, we have

[

ζ(s)(0)−1 −
(

1

8
− c

)

ητ2(t0 + 1)

]−1

≤ ζ(s)(t0 + 1) ≤
[

ζ(s)(0)−1 −
(

1

8
+ c

)

ητ2(t0 + 1)

]−1

, (57)

while if ζ(s)(0) < 0 we have ζ(s)(0) ≤ ζ(s)(t0 + 1) ≤ ζ(s)(0) + ητ2(t0 + 1)|ζ(s)(0)|2.

Proof.

• First, notice that since t < t0 < c(t)
(

ητ2|ζ(s)(0)|
)−1

, we have ητ2t|ζ(s)(0)|2 ≤ c(t)|ζ(s)(0)|, and

ζ(s)(t) ≤ ζ(s)(0) +

(

1

8
+ c

)

ητ2t|ζ(s)(0)|2 ≤ ζ(s)(0) + c(t)
(

1

8
+ c

)

|ζ(s)(0)| ≤ 0. (58)

If ζ(s)(0) < 0, then

|ζ(s)(t)| ≥ |ζ(s)(0)| − ητ2t|ζ(s)(0)|2 ≥
(

1− c(t)
)

|ζ(s)(0)| ≥ 1

2
|ζ(s)(0)|. (59)

While if ζ(s)(0) > 0, then

∣

∣

∣
ζ(s)(t)

∣

∣

∣
≥
[

∣

∣

∣
ζ(s)(0)

∣

∣

∣

−1

−
(

1

8
− c

)

τ2ηt

]−1

≥ |ζ(s)(0)|. (60)

Equation (59) and Equation (60) together proves Result a).

• Notice that from Condition 4 we have c
2C(φ)

n ≤ c

4 . From Condition 2, we have

ζ(s)(t) + ϕi(t) ≥
∣

∣

∣
ζ(s)(t)

∣

∣

∣
− |ϕi(t)| ≥

(

1− c

4

) ∣

∣

∣ζ(s)(t)
∣

∣

∣− c

8
|ζ(s)(0)| ≥

(

1− c

2

)

|ζ(s)(t)| (61)

and

ζ(s)(t) + ϕi(t) ≤
∣

∣

∣ζ(s)(t)
∣

∣

∣+ |ϕi(t)| ≤
(

1 +
c

4

) ∣

∣

∣ζ(s)(t)
∣

∣

∣+
c

8
|ζ(s)(0)| ≤

(

1 +
c

2

)

|ζ(s)(t)|. (62)

Therefore we have

1

n

∑

xi∈Cs

σ′
[

ζ(s)(t) + ϕi(t)
]

=
1

n

∑

xi∈Cs

[

ζ(s)(t) + ϕi(t)
]2

(63)

∈ 1

n

∑

xi∈Cs

(

1± c

2

)2

ζ(s)(t)2 (64)

=
1

4

(

1± c

2

)2

ζ(s)(t)2. (65)

⊆ 1

4
(1± 2c)ζ(s)(t)2. (66)
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From Condition 3, Condition 4 and Result a), we have

3Lκ
τ

≤ c

8
ζ(s)(0)2 ≤ c

2
ζ(s)(t)2. (67)

Subtracting Equation (66) and Equation (67) into the update rule Equation (53), we have

ζ(s)(t+ 1)− ζ(s)(t) ∈ τ2η

2

(

1

4
± c

2

)

ζ(s)(t)2 ± τ2ηc

4
ζ(s)(t)2 (68)

= τ2ηζ(s)(t)2 ×
(

1

8
± c

2

)

, (69)

which proves Result b).

• For the greater-or-equal part of Result c), if ζ(s)(0) < 0, then we have ζ(s)(t0 + 1) ≥ ζ(s)(t0) ≥ ζ(s)(0). In the

following we assume ζ(s)(0) > 0. From Result b) we have

ζ(s)(t0 + 1) ≥ ζ(s)(t0) +

(

1

8
− c

2

)

ητ2ζ(s)(t0)
2 (70)

≥ 1

ζ(s)(0)−1 −
(

1
8 − c

)

τ2ηt0
+

(

1
8 − c

2

)

τ2η
(

ζ(s)(0)−1 −
(

1
8 − c

)

τ2ηt0
)2 (71)

=
ζ(s)(0)−1 −

(

1
8 − c

)

τ2ηt0 +
(

1
8 − c

2

)

τ2η
(

ζ(s)(0)−1 −
(

1
8 − c

)

τ2ηt0
)2 (72)

(i)

≥ 1

ζ(s)(0)−1 −
(

1
8 − c

)

τ2η(t0 + 1)
, (73)

which proves the greater-or-equal part of Result c). To see (i), let A = ζ(s)(0)−1 −
(

1
8 − c

)

τ2ηt0. Since t0 <

c(t)
[

τ2η|ζ(s)(0)|
]−1

and ζ(s)(0) ≤ c(8−c(t))
16ητ2 , we have

A ≥
[

1− c(t)
(

1

8
− c

)]

ζ(s)(0)−1 ≥
(

1− c(t)

8

)

ζ(s)(0)−1 ≥ 2

c

ητ2, (74)

and

[

A+

(

1

8
− c

)

τ2η +
c

2
τ2η

] [

A−
(

1

8
− c

)

τ2η

]

−A2 =
c

2
Aτ2η −

(

1

8
− c

)2

τ4η2 − c

2
τ4η2 (75)

≥ τ4η2

[

1−
(

[

1

8
− c

]2

+
c

2

)]

(76)

≥ 0, (77)

which proves the greater-or-equal part of Result c).

• For the less-or-equal part of Result c), if ζ(s)(0) < 0, simply notice that |ζ(s)(t0)| ≤ |ζ(s)(0)|, so

ζ(s)(t0 + 1) ≤ ζ(s)(0) +

(

1

8
+ c

)

ητ2t0ζ
(s)(0)2 +

(

1

8
+ c

)

ητ2ζ(s)(t0)
2 ≤ ζ(s)(0) +

(

1

8
+ c

)

ητ2(t0 + 1)ζ(s)(0)2,

(78)

16
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which proves the result. If ζ(s)(0) > 0, then we have

ζ(s)(t0 + 1) ≤ ζ(s)(t0) +

(

1

8
+

c

2

)

ητ2ζ(s)(t0)
2 (79)

≤ 1

ζ(s)(0)−1 −
(

1
8 + c

)

τ2ηt0
+

(

1
8 + c

2

)

τ2η
(

ζ(s)(0)−1 −
(

1
8 + c

)

τ2ηt0
)2 (80)

=
ζ(s)(0)−1 −

(

1
8 + c

)

τ2ηt0 +
(

1
8 + c

2

)

τ2η
(

ζ(s)(0)−1 −
(

1
8 + c

)

τ2ηt0
)2 (81)

≤ ζ(s)(0)−1 −
(

1
8 + c

)

τ2η(t0 − 1)
(

ζ(s)(0)−1 −
(

1
8 + c

)

τ2ηt0
)2 (82)

(ii)
<

1

ζ(s)(0)−1 −
(

1
8 + c

)

τ2η(t0 + 1)
, (83)

which proves the less-or-equal part of Result c). To see (ii), notice that
[

ζ(s)(0)−1 −
(

1

8
+ c

)

τ2η(t0 − 1)

] [

ζ(s)(0)−1 −
(

1

8
+ c

)

τ2η(t0 + 1)

]

(84)

=

[

ζ(s)(0)−1 −
(

1

8
+ c

)

τ2ηt0

]2

−
(

1

8
+ c

)2

τ4η2 (85)

<

[

ζ(s)(0)−1 −
(

1

8
+ c

)

τ2ηt0

]2

. (86)

Next, we will consider the dynamics of wr projected to the direction of ξi.

Lemma A.10. Let s ∈ {1, 2} and k ∈ Cs. Suppose ζk is initialized as ζk(0) and ϕk(k) is initialized as ϕk(0), and there

exists constants c(t) ∈
(

0, 8
1+8c

)

and 8 ≤ C(φ) ≤ n such that the following conditions hold for t0 ≤ c(t)
(

τ2η|ζk(0)|
)−1

:

1. ∀t ≤ t0, if ζk(0) > 0, we have
[

ζk(0)
−1 −

(

1
8 − c

)

ητ2t
]−1 ≤ ζk(t) ≤

[

ζk(0)
−1 −

(

1
8 + c

)

ητ2t
]−1

, while if

ζk(0) < 0, we have ζk(0) ≤ ζk(t) ≤ ζk(0) +
(

1
8 + c

)

ητ2t|ζk(0)|2,

2. t ≤ t0, |ϕk(t)| ≤ C(φ)
c
2

n |ζk(t)|+ c

8 |ζk(0)|, and |ϕk(0)| ≤ c

8 |ζk(0)|;

3.
√

32Ln
c
2
√
d
≤ |ζk(0)| ≤

c(8−c(t))
16ητ2 ;

4. c ≤ min
{

1
4 − 2

C(φ) ,
nC(φ)

4 ,
(

n
48

)
1
3 , 18

}

,

and ϕk is updated through Equation (56), ζk is updated through Equation (53), then

|ϕk(t0 + 1)| ≤ C(φ)
c
2

n
|ζk(t0 + 1)|+ c

8
|ζk(0)|. (87)

Proof.

• From Lemma A.9, we have:

∀t ≤ t0, |ζk(t)| >
1

2
|ζk(0)| (88)

and
(

1

8
− c

2

)

ητ2ζk(t0)
2 ≤ ζk(t0 + 1)− ζk(t0) ≤

(

1

8
+

c

2

)

ητ2ζk(t0)
2. (89)
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• Let s = 5
2κτL, from Condition 4 and the update rule Equation (56) we have

ϕk(t+ 1)− ϕk(t) ∈ η

[

κ2d

4n
σ′(|ϕk(t)|+ |ζk(t)|)− s,

3κ2d

4n
σ′(|ϕk(t)|+ |ζk(t)|) + s

]

. (90)

Given Condition 2 and Condition 4, we have

|ϕk(t)|+ |ζk(t)| ≤
(

1 +
C(φ)

c
2

n
+

c

4

)

|ζk(t)| ≤ 2|ζk(t)|. (91)

Since
√

32Ln
c
2
√
d
≤ |ζk(0)| ≤ 2|ζk(t)|, we have

s =
5

2
κτL ≤ 5κ2d

n
ζk(0)

2 ≤ 20κ2d

n
ζk(t)

2. (92)

Combining Equations (91) and (92)we have

3κ2d

4n
σ′(ϕk(t) + ζk(t)) + s ≤ 3κ2d

2n
ζ(t)2 +

20κ2d

n
ζ(t)2 ≤ 30κ2d

n
ζ(t)2. (93)

On the other hand, we have

κ2d

4n
σ′(ϕk(t)− ζk(t))− s ≥ κ2d

2n
ζ(t)2 − 20κ2d

n
ζ(t)2 ≥ −30κ2d

2n
ζ(t)2. (94)

In summary we have

|ϕk(t+ 1)− ϕk(t)| ≤
30ηκ2d

n
ζ(t)2. (95)

• Notice that C(φ) ≥ 1
1
8−

c

2

. From Equation (89), we know that ζk(t0)
2 ≤ C(φ)

ητ2 [ζ(t0 + 1)− ζ(t0)]. If ζk(0) > 0, we

have

|ϕk(t+ 1)| ≤ |ϕk(t)|+ |ϕk(t+ 1)− ϕk(t)| (96)

≤ c

8
ζk(0) +

C(φ)κ2d

nτ2
ζk(t) +

30ηκ2d

n
ζk(t)

2 (97)

≤ c

8
ζk(0) +

C(φ)κ2d

nτ2
ζk(t) +

30ηκ2d

n
× C(φ)

ητ2
[ζ(t0 + 1)− ζ(t0)] (98)

=
c

8
ζk(0) +

C(φ)κ2d

nτ2
ζk(t+ 1). (99)

≤ c

8
ζk(0) +

C(φ)
c
2

n
ζk(t+ 1). (100)

While if ζk(0) < 0, then we have |ζk(t)| ≤ |ζk(0)|, and since c(t) ≤ C(φ), we have

|ϕk(t+ 1)| ≤ |ϕk(0)|+
t0
∑

i=1

ηκ2d

n
ζk(t)

2 (101)

≤ c

8
|ζk(0)|+ t0 ×

ηκ2d

n
ζk(0)

2 (102)

≤ c

8
|ζk(0)|+

c(t)κ2d

nτ2
|ζk(0)| (103)

≤ c

8
|ζk(0)|+

2c(t)κ2d

nτ2
|ζk(t+ 1)| (104)

≤ c

8
|ζk(0)|+

C(φ)
c
2

n
|ζk(t+ 1)|. (105)
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Combining Lemma A.9 and Lemma A.10, we have the following conclusion:

Corollary A.11. Let s ∈ {1, 2}. Suppose ζ(s) is initialized as ζ(s)(0) and ϕk(k) is initialized as ϕk(0) for any k ∈ Cs,

and there exists constants c(t) ∈
(

0, 8
1+8c

)

and 8 ≤ C(φ) ≤ n such that the following conditions hold for t0 ≤
c(t)
(

τ2η|ζ(s)(0)|
)−1

and any xk ∈ Cs:

1.
√

32Ln
c
2
√
d
≤ |ζ(s)(0)| ≤ c(8−c(t))

16ητ2 ;

2. |ϕk(0)| ≤ c

8 |ζ(s)(0)|;

3. c ≤ min
{

1
4 − 2

C(φ) ,
nC(φ)

4 ,
(

n
48

)
1
3 , 18

}

;

and ϕk is updated through Equation (56), ζ(s) is updated through Equation (53), then we have for all t ≤ t0 and xk ∈ Cs,

we have the following conclusions:

a) if ζ(s)(0) > 0, then
[

ζ(s)(0)−1 −
(

1
8 − c

)

ητ2t
]−1 ≤ ζ(s)(t) ≤

[

ζ(s)(0)−1 −
(

1
8 + c

)

ητ2t
]−1

, while if ζ(s)(0) < 0,

then ζ(s)(0) ≤ ζ(s)(t) ≤ 0;

b) |ϕk(t)| ≤ C(φ)
c
2

n

∣

∣ζ(s)(t)
∣

∣+ c

8 |ζ(s)(0)|.

A.3. The Analysis of Initialization

Next, we consider the initialization conditions in Corollary A.11. In this section, we will show that, either the initialization

conditions in Corollary A.11 will be satisfied at some point, or ζ and ϕ will stay small all the time.

Notice that ζk(t) is initialized as ζk(0) = w(0)⊤µk ∼ N (0, τ2ω2) and ϕk(t) is initialized as ϕk(0) = w(0)⊤ξk where

w(0) ∼ N (0, ω2I) and ξk ∼ N
(

0, κ2I
)

. We have

Lemma A.12. For s ∈ {1, 2}, and any constant P we have ∀k ∈ Cs, ϕk(0) ≤ P cζ(s)(0) with probability higher than

1− δ, where δ = n
2 exp(−d/64) + n

2 exp(−2P c−1) + c
1/2.

Proof. Let event A = { 1
2κ

2d ≤ ∥ξk∥2 ≤ 2κ2d}. From Lemma A.3, we have P(A) ≥ 1−2 exp(−d/64). Conditioned on A,

for any constant S we have P{|ϕk(0)| ≤ 2Sωκ
√
d} ≥ 1− 2 exp

(

−2S2
)

. From union bound we have |ϕk(0)| ≤ 2Sωκ
√
d

holds for all k ∈ Cs with probability at least 1− n
2 exp(−d/64)− n

2 exp
(

−2S2
)

.

From Lemma A.6, for any constant T we have P{|ζk(0)| ≥ Tωτ} ≤ 1− T .

Let S = P
2 c

−1/2 and T = c
1/2 we have with probability at least 1− n

2 exp(−d/64)− n
2 exp(−2P c−1)− c

1/2,

∀k ∈ Cs,
|ϕk(0)|
|ζ(s)(0)| ≤

2Sωκ
√
d

Tωτ
= P c, (106)

which proves the proposition.

Lemma A.13. For any s ∈ {1, 2}, if |ζ(s)(0)| ≥
√

18Ln
c
2
√
d

, then the following conclusions hold with probability at least

1− δ, where δ = 2 exp

(

− c
2
(

1− c(t)

8

)2

8η2ω2τ6

)

+ n
2 exp(−d/64) + n

2 exp(− 1
4c ) + c

1/2:

a) |ζ(s)(0)| < c(8−c(t))
16ητ2 ;

b) ∀k ∈ Cs, |ϕk(0)| ≤ c

8 |ζk(0)|.
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Proof. From Chernoff inequality, we have |ζ(s)(0)| ≤ c(8−c(t))
16ητ2 with probability at least 1 − δ1, where δ1 =

2 exp

(

− c
2
(

1− c(t)

8

)2

8η2ω2τ6

)

. From Lemma A.12, we have ∀k ∈ Cs, |ϕk(0)| ≤ c

8 ×
√

18Ln
c
2
√
d

≤ c

8 |ζk(0)| holds with prob-

ability at least 1− δ2, where δ2 = n
2 exp(−d/64)+ n

2 exp(− 1
4c ) + c

1/2. The proposition is proved through union bounding

the probabilities of these two quantities.

Lemma A.14. Let q = 32Ln
c
2
√
d

. For s ∈ {1, 2}, if |ζ(s)(0)| ≤ √
q, and there exists a constant c(t) ∈

(

0, 8
1+8c

)

such that

t0 ≤ c(t)
(

ητ2
√
q
)−1

we have |ζ(s)(t0 − 1)| ≤ √
q, |ζ(s)(t0)| ≥ √

q and :

1. c ≤ 1
8 ;

2. η ≤ min

{

1,
c(8−c(t))

16τ2(
√
q+τ2q)

}

,

then the following conclusions hold with probability at least 1− δ, where δ = n
2 exp(−d/64) + n

2 exp(− 1
4c ) + c

1/2:

a) |ζ(s)(t0)| <
c(8−c(t))
16ητ2 ;

b) ∀k ∈ Cs, |ϕi(t0)| ≤ c

8

√
q.

Moreover, if |ζ(s)(t)| < √
q holds for all t < c(t)

(

ητ2
√
q
)−1

, then we also have ∀i ∈ Cs, ϕi(t) ≤ c

8

√
q.

Proof. If there does not exists a t0 such that ζ(s)(t0 + 1)| ≥ √
q, then we set t0 = c(t)

(

ητ2
√
q
)−1

in the following. With

this notation we have |ζ(s)(t)| ≤ √
q for all t < t0.

• Consider deduction on ϕk. For a specific t < t0 if for all t′ < t we have |ϕk(t′)| ≤ c

8 ×√
q, then we have

|ϕk(t)| ≤ |ϕk(0)|+
t−1
∑

t′=1

[

3ηκ2d

4n
σ′
(

|ϕk(t′)|+ |ζ(s)(t′)|
)

+
5

2
ηκτL

]

(107)

≤ |ϕk(0)|+
t−1
∑

t′=1

[

3ηκ2d

4n

[(

1 +
c

8

)√
q
]2

+
5ηκ2dq

n

]

(108)

≤ |ϕk(0)|+ t0η

[

3κ2dq

2n
+

5κ2dq

n

]

(109)

≤ |ϕk(0)|+ 7c(t)c4
√
q (110)

≤ |ϕk(0)|+
7c

64

√
q. (111)

From Lemma A.12, we have ∀k ∈ Cs, ϕk(0) ≤ c

64

√
q holds with probability at least 1 − δ1, where δ1 =

n
2 exp(−d/64) + n

2 exp(− 1
32c ) + c

1/2. Through union bound, we have all n
4 satisfies this condition with proba-

bility at least 1− n
4 δ1.

• Next, using Equation (53) and Condition 2, we have

|ζ(s)(t0)| ≤ |ζ(s)(t0)− 1|+×τ
2η

2n
× n

4
×
(√

q +
c

8

√
q
)2

+
3κτqη

2
(112)

≤ √
q +

ητ2q

2
+

3cτ2qη

2
√
d

(113)

≤ c

(

8− c(t)
)

16ητ2
. (114)

Consider the union bound of the two inequalities, the proposition is proved.
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A.4. The Bound of the Representation Distance

In this section, we put all the results together and prove our main theorem. In this section we will consider all neurons. For

ζ(s) w.r.t. the r-th neuron, we denote it as ζ(s,r), and for ϕk we denote it as ϕ
(r)
k . Similar to before if k ∈ Cs we also write

ζ(s,r) as ζ
(r)
k .

Theorem A.15. Suppose the model and training process is described as before, and following conditions hold

1. n ≤ d1/3;

2.
√

32Ln

d
1
2

≤ c ≤ min

{

√

n

d
1
3
, 18

}

3. η ≤ min

{

1,
c
2×

(

8c+4ωτ
√

log(4m)
)

4τ2(τ2+1)

}

;

4. 2
τ ×

√

32Ln
c
2
√
d
≤ ω ≤ 1

4τ
√
log 4m

,

then for all t < t0 = 1−4ωτ
√
log 4m

1
8+c

×
(

2ητ3ω
√

log(4m)
)−1

, we have

∥h (xi1)− h (xi3)∥
∥h (xi1)− h (xi2)∥

≥
√

1
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With probability at least 1− δ, where

δ = 4mt0 exp
(

−c
−2
)

+mn exp
(

−c
−1
)

+mc

1
2 + 2m exp



−
c
2 ×

(

8c+ 4ωτ
√

log(4m)
)

16η2ω2τ6



+ 2m−1. (116)

Proof.

Let q = 32Ln
c
2
√
d
≤ 1 and c(t) = 1−4ωτ

√
log 4m

1
8+c

≤ 8, we have η ≤ c(8−c(t))
16τ2(

√
q+τ2q)

and ωτ ≥ 2
√
q.

• First, notice that both Lemma A.7 and Lemma A.8 holds with high probability. Specifically, Lemma A.7 holds with

probability at least 1 − exp(−n), and Lemma A.8 holds with probability at least 1 − δ′1, where δ′1 = exp(−n) +
2n exp

(

− 1
c
2

)

+2 exp(−d/64) ≤ 3n exp
(

− 1
c
2

)

. We have that Corollary A.11 holds with probability at least 1−mt0δ1,

where δ1 = 4n exp(−n).

• From Lemma A.5, we have ∀r ≤ m,
∣

∣ζ(1,r)(0)
∣

∣ ≤ 2ωτ
√
log 4m with probability at least 1 − δ2, where δ2 = 1

m .

Similarly the probability of ∀r ≤ m,
∣

∣ζ(2,r)(0)
∣

∣ ≤ 2ωτ
√
log 4m is also at least 1 − δ2. In this case for any s, r we

have t0 ≤ c(t)
(

ητ2
∣

∣ζ(s,r)(0)
∣

∣

)−1
.

If in addition Corollary A.11 holds, then from Lemmas A.13 and A.14 and Corollary A.11, for any s ∈ {1, 2} and

i ∈ Cs we have |ϕi(t)| ≤ C(φ)
c
2

n

∣

∣ζ(s)(t)
∣

∣+ c

8

√
q and ζ(s,r)(t) ≤

[

1−
(

1
8 + c

)

c(t)
]−1 ∣

∣ζ(1,r)(0)
∣

∣ with probability at
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least 1− δ3, where δ3 = 2 exp

(

− c
2
(

1− c(t)

8

)2

8η2ω2τ6

)

+ n exp(− 1
4c ) + c

1/2. In this case we have

∀r ≤ m, ∀s ∈ {1, 2}, ∀t ≤ t0,
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(120)

with probability at least 1− 2δ2 −mδ3.

With |ζ(s,r)(t)| ≤ 1
2 and |ϕi(t)| ≤ |ζ(s,r)(t)| ≤ 1

2 where i ∈ Cs, we have |w(t)⊤xi| ≤ 1, which falls in the range

where σ(w(t)⊤xi) =
1
3

[

w(t)⊤xi

]3
, which fulfills our assumption in Section A.2. In the following we will assume

σ(z) = 1
3z

3.

• If the conclusion of Lemmas A.13 and A.14 and Corollary A.11 holds, for any t ≤ t0 we have
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≤ L′σ
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2
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• Notice that if Corollary A.11 holds, then the sign of ζ(s,r)(t), as well as ζ(s,r)(t) − ϕ
(s)
i (t), is determined by its

initialization ζ(s,r)(t). Since ζ(s,r)(0) ∼ N (0, ω2τ2), we with probability at least 0.5 that ζ(2,r)(0) ≤ 0 and since

ω ≥ 2
√
q

τ , from Lemma A.6 we have ζ(1,r)(0) ≥ √
q with probability at least 1

2 . We denote A to be the neuron indices

r who satisfies ζ(2,r)(0) < 0 and ζ(1,r)(0) ≥ √
q. For each r ≤ m, we have P{r ∈ A} ≥ 1

4 . By calculating the

concentration of Binomial distribution (Chung & Lu, 2006), we have |A| ≥ m
8 with probability at least 1− δ4, where

δ4 = exp(−m/32). If r ∈ A, then we have

|h(xi1)− h (xi3)|r =
∣

∣

∣σ
(

wr(t)
⊤µ(1) +wr(t)

⊤ξi1

)

− σ
(

wr(t)
⊤µ(2) +wr(t)

⊤ξi2

)∣

∣

∣ (126)

≥ σ
(∣

∣

∣ζ(1,r)(t) + ϕ
(r)
i1

(t)
∣

∣

∣

)

. (127)

≥ σ
(∣

∣

∣ζ(1,r)(t)
∣

∣

∣−
∣

∣

∣ϕ
(r)
i1

(t)
∣

∣

∣

)

. (128)

≥ σ

[(

1− C(φ)
c
2

n

)

∣

∣

∣ζ(1,r)(t)
∣

∣

∣− c

8
|ζk(0)|

]

(129)

≥ σ

(

1

2
ζk(t)

)

(130)

≥ σ

(

1

2

[

ζ(1,r)(0)−1 −
(

1

8
− c

)

ητ2t

]−1
)

(131)

= σ

(

1

2

[

1− c(t)
(

1

8
− c

)]−1
∣

∣

∣ζ(1,r)(0)
∣

∣

∣

)

. (132)

22



Are Neurons Actually Collapsed? On the Fine-Grained Structure in Neural Representations

Notice that ∀r ∈ A,
∣

∣ζ(1,r)(0)
∣

∣ ≥ √
q, we have

∥h (xi1)− h (xi3)∥2 =
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• To put things together, notice that since σ(z) = 1
3z

3, we have σ(a)/σ(b) = 3σ(a/b). Let δ = mt0δ1+2δ2+mδ3+δ4,

with probability at least 1− δ we have
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Notice that σ(z) = 1
3z

3, we have

∥h (xi1)− h (xi3)∥
∥h (xi1)− h (xi2)∥
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2 d−

3
2
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, (142)

and simply taking C(φ) = 10 proves the proposition.

B. Experiment on Mixture of Gaussian with Coarse Labels

In this section, we reproduce the experiments under the setting of classifying mixture of Gaussian using a 2-layer MLP.

Formally, we create a dataset from a mixture of Gaussian, where the input from the c-th cluster is generated from N (µ(c), I),
and each cluster mean µ(c) is drawn i.i.d. from N (0, σ2I). The class label of each datapoint is the index of the cluster it

belongs to. The larger σ2 is, the larger the separation between each two clusters is, and the more likely it is to observe a

fine-grained representation structure when given coarse labels.

We perform the same coarsening process described in Section 3.2 (by combining two classes into one super-class) and train

a 2-layer MLP on the coarsely labeled dataset. We measure the significance of the fine-grained structure using the ratio

between {the average squared distance between representations in the same super-class but different sub-classes} and {the
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average squared distance between representations in the same subclass}, which we call the Mean Squared Distance Ratio

(MSDR). Mathematically, it is defined as

MSDR =
averagei ̸=j in same super-class{Di,j}

averagei{Di,i}
,

where Di,j is defined in (6). A larger MSDR means that the fine-grained structure is more pronounced, while MSDR ≈ 1
indicates no fine-grained structure.

By varying training and data-generating parameters, we investigate factors that impact the significance of the fine-grained

structure. Specifically, we vary the input dimension, hidden dimension in the network, and weight decay rate, and plot how

MSDR scales with σ2. The results are shown in Figures 15 to 17. Note that in each figure we use two different scales in the

x-axes to differentiate the cases of σ2 < 2 and σ2 > 2.

From the figures, we observe that both input and hidden dimensions exhibit a clear positive correlation with MSDR. On the

other hand, the weight decay rate does not have an impact on MSDR in this setting.

Figure 15. Mean Squared Distance Ratio vs. variance σ
2 for different input dimensions. Red lines on the left end are cases where the

training accuracy does not reach 100%.

Training details. We generate data from 8 clusters, each having 500 samples. We train the model with gradient descent

for 1,000 steps. The results are averaged over 10 runs. When varying one hyper-parameter, other hyper-parameters are set to

their default values: dinput = 512, dhidden = 512,weight decay = 0.

Figure 16. Mean Squared Distance Ratio vs. variance σ
2 for different hidden dimensions. Red lines on the left end are cases where the

training accuracy does not reach 100%.
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Figure 17. Mean Squared Distance Ratio vs. variance σ
2 for different weight decay rates. Red lines on the left end are cases where the

training accuracy does not reach 100%.

B.1. Modeling Semantic Similarity

In Section 5, we showed that the emergence of fine-grained representations depends on the semantic similarity between

sub-classes. Now we take a step in investigating this question by creating ªsimilarº and ªdissimilarº sub-classes in the

Gaussian mixture model considered in this section.

In particular, we use the same data-generating process described above, except that half of the super-classes will be altered

so that they consist of ªsimilarº sub-classes, and we say that the other super-classes consist of ªdissimilarº sub-classes. The

way to generate similar sub-classes it to first sample µ ∼ N (0, σ2I) and then generate two means µ(c),µ(c′) ∼ N (µ, τ2I).
Therefore, we can vary τ2 to control the level of similarity between similar sub-classes.

We use default hyper-parameters described above, fix σ2 = 4, and vary τ2. Figure 18 shows the Mean Squared Distance

Ratio for similar and dissimilar subclasses, respectively. We see that fine-grained structure within a super-class does require

sufficient dissimilarity between its sub-classes, which agrees with our observation from Section 5 on CIFAR-100.

Figure 18. Mean Squared Distance Ratio vs. sub-variance τ
2. The setting is described in Appendix B.1.

C. Complete Coarse CIFAR-10 Experiment Results

In the following sections, we provide extended experiment results. As mentioned in Section 3.2, we permute learning rate

in {10−1, 10−2, 10−3} and weight decay rate in {5× 10−3, 5× 10−4, 5× 10−5}. Generally, the results will be shown in

a 3× 3 table, of which each grid represents the result of one hyper-parameter combination, with each row has the same

learning rate and each column has the same weight decay rate.

In this section, we repeat the experiments in Section 4 with all learning rate and weight-decay rate combinations. Firstly, we

present the training statistics (accuracy, loss) of all hyper-parameters in Figures 19 and 20 as an reference. It can be observed

that all hyper-parameter groups achieved very low training error except the first one (weight decay = 5× 10−3, learning rate
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= 10−1). In fact, the last two hyper-parameter combinations (learning rate = 10−3, weight decay ∈ {5× 10−4, 5× 10−5})

didn’t achieve exactly 0 training error (their training error are < 0.5% but not exactly 0), and the other 6 hyper-parameter

combinations all achieved exactly 0 training error.

Figure 19. Training and test error during training. Figure 20. Training and test loss during training.

C.1. Class Distance

Here we present the visualization of the heatmap of class distance matrix D which is defined in Section 4.1. We choose

4 epochs to show the trend during training. The results are presented in Figures 21 to 24, whose epoch numbers are

20, 120, 240 and 349 respectively.

C.2. Visualization

In this section, we present the t-SNE visualization result of ResNet-18 on Coarse CIFAR-10 in Figures 25 to 27. The results

are divided into three groups, each of which has the same learning rate and the format of each group is the same as Figure 6.

C.3. Cluster-and-Linear-Probe

The Cluster-and-Linear-Probe test results of ResNet-18 trained on Coarse CIFAR-10 with all hyper-parameter combinations

are presented in Figure 28.

D. Complete Class Distance Result of Fine CIFAR-10

In this section, we provide the visualization of the class distance matrix of Fine CIFAR-10 with all hyper-parameter

combinations, which has been partially displayed in Section 6. As before, multiple epochs during training are selected

to display a evolutionary trend of the class distance matrices. The results are presented in Figures 29 to 31, whose epoch

numbers are 20, 200 and 350 respectively.

E. Experiment of ResNet-18 on Coarse CIFAR-100

In this section, we report extended experiment results on Coarse CIFAR-100. The same with the case of Coarse CIFAR-10,

we construct CIFAR-100 through the label coarsening process described in Section 3.2 and choose C̃ = 20, so that every 5
original classes are merged into one super-class. We repeat most of experiments in Section 4.
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Figure 21. The heatmaps of class distance matrices of different

hyper-parameter combinations at epoch 20.

Figure 22. The heatmaps of class distance matrices of different

hyper-parameter combinations at epoch 120.

Figure 23. The heatmaps of class distance matrices of different

hyper-parameter combinations at epoch 240.

Figure 24. The heatmaps of class distance matrices of different

hyper-parameter combinations at epoch 349.
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Figure 25. Visualization of last layer representations of ResNet-18 trained on Coarse CIFAR-10 with learning rate = 0.1. Each row

represents a hyper-parameter combination and each column represents a super-class. The weight decay rates from top to bottom are

5× 10
−3

, 5× 10
−4

, 5× 10
−5.

Figure 26. Visualization of last layer representations of ResNet-18 trained on Coarse CIFAR-10 with learning rate = 0.01. Each row

represents a hyper-parameter combination and each column represents a super-class. The weight decay rates from top to bottom are

5× 10
−3

, 5× 10
−4

, 5× 10
−5.
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Figure 27. Visualization of last layer representations of ResNet-18 trained on Coarse CIFAR-10 with learning rate = 0.001. Each row

represents a hyper-parameter combination and each column represents a super-class. The weight decay rates from top to bottom are

5× 10
−3

, 5× 10
−4

, 5× 10
−5.

Figure 28. The result of Cluster-and-Linear-Probe test. In the fig-

ureªCLPº refers to Cluster-and-Linear-Probe, ªLPOº refers to linear

probe with original labels and ªOT’ refers to the test set accuracy of

model trained on original CIFAR-10.

Figure 29. The heatmaps of class distance matrices of different

hyper-parameter combinations on Fine CIFAR-10 at epoch 20.
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Figure 30. The heatmaps of class distance matrices of different

hyper-parameter combinations on Fine CIFAR-10 at epoch 200.

Figure 31. The heatmaps of class distance matrices of different

hyper-parameter combinations on Fine CIFAR-10 at epoch 350.

E.1. Class Distance

The heatmaps of distance matrices are presented in Figures 32, 33 and 35, whose epoch number are 20, 200 and 350
respectively.

E.2. Visualization

In this section, we present the t-SNE visualization result of ResNet-18 on Coarse CIFAR-100. We only put the result for

learning rate = 0.01 and weight decay = 1e-4 here as a demonstration in Figure 34.

E.3. Cluster-and-Linear-Probe

Notice that we omit the visualization result of Coarse CIFAR-100 since there are too many figures. We present the Cluster-

and-Linear-Probe results to reflect the clustering property of last-layer representations learned on Coarse CIFAR-100. The

CLP results are presented in Figure 36.

F. Random Coarse CIFAR-10

In this section, as mentioned in Section 3.2, we make our experiment more complete by performing a random combination

of labels on CIFAR-10 rather than using a determined coarsening process as in the main paper. The dataset construction is

almost the same as the process of assigning coarse labels described in Section 3.2, except here we randomly shuffle the class

indices before coarsening them.

The class distance matrices of three difference epochs are shown in Figures 37 to 39. From the results we can see, although

there are no longer three dark lines, for each row there are generally two dark blocks, represents the original classes belongs

to the same super-class, and the same observations in Section 4 can still be made here.

G. Experiment with DenseNet

We also perform our experiments with different neural network structures for completeness. In this section, we show the

result with DenseNet-121 on Coarse CIFAR-10. The experiments with DenseNet is supportive to our observations in the

main paper.
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Figure 32. The heatmaps of class distance matrices of different

hyper-parameter combinations on Coarse CIFAR-100 at epoch 20.

Figure 33. The heatmaps of class distance matrices of different

hyper-parameter combinations on Coarse CIFAR-100 at epoch 200.

Figure 34. Visualization of last layer representations of ResNet-18 trained on Coarse CIFAR-100. Each grid represents a super-class and

each color in a grid represents a sub-class.
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Figure 35. The heatmaps of class distance matrices of different

hyper-parameter combinations on Coarse CIFAR-100 at epoch 350.

Figure 36. The result of Cluster-and-Linear-Probe test. In the fig-

ureªCLPº refers to Cluster-and-Linear-Probe, ªLPOº refers to linear

probe with original labels and ªOT’ refers to the test set accuracy of

model trained on original CIFAR-100.

Figure 37. The heatmaps of class distance matrices of different

hyper-parameter combinations on Random Coarse CIFAR-10 at

epoch 20.

Figure 38. The heatmaps of class distance matrices of different

hyper-parameter combinations on Random Coarse CIFAR-10 at

epoch 200.
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Figure 39. The heatmaps of class distance matrices of different

hyper-parameter combinations on Random Coarse CIFAR-10 at

epoch 350.

Figure 40. The heatmaps of class distance matrices of different

hyper-parameter combinations with DenseNet-121 on Coarse

CIFAR-10 at epoch 20.

G.1. Class Distance

The class distance matrices of three epochs during training are presented in Figures 40 to 42.

G.2. Cluster-and-Linear-Probe

The Cluster-and-Linear-Probe test results are presented in Figure 43.

H. Experiment with VGG

We also extend our experiments to VGG-18. Interestingly, VGG to some extent is a counter example of the observations

made in the main paper: it only displays Neural Collapse, and can not distinguish different original classes within one

super-class, even in an early stage of training. The reason why VGG is abnormal requires further exploration.

The class distance matrices of three epochs with VGG during training are shown in Figures 44 to 46. It can be observed that

the three dark lines appears almost at the same time and always be of nearly the same darkness. This represents the trend

predicted by Neural Collapse (Figure 4 (a)), but rejects the prediction made by (Figure 4 (b)).
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Figure 41. The heatmaps of class distance matrices of different

hyper-parameter combinations with DenseNet-121 on Coarse

CIFAR-10 at epoch 20.

Figure 42. The heatmaps of class distance matrices of different

hyper-parameter combinations with DenseNet-121 on Coarse

CIFAR-10 at epoch 20.

Figure 43. The result of Cluster-and-Linear-Probe test with

DenseNet-121. In the figureªCLPº refers to Cluster-and-Linear-

Probe, ªLPOº refers to linear probe with original labels and ªOT’

refers to the test set accuracy of model trained on original CIFAR-

10.

Figure 44. The heatmaps of class distance matrices of different

hyper-parameter combinations with VGG-18 on Coarse CIFAR-

10 at epoch 20.
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Figure 45. The heatmaps of class distance matrices of different

hyper-parameter combinations with VGG-18 on Coarse CIFAR-

10 at epoch 200.

Figure 46. The heatmaps of class distance matrices of different

hyper-parameter combinations with VGG-18 on Coarse CIFAR-

10 at epoch 350.
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