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Abstract

In real life, accurately annotating large-scale
datasets is sometimes difficult. Datasets used for
training deep learning models are likely to contain
label noise. To make use of the dataset contain-
ing label noise, two typical methods have been
proposed. One is to employ the semi-supervised
method by exploiting labeled confident examples
and unlabeled unconfident examples. The other
one is to model label noise and design statistically
consistent classifiers. A natural question remains
unsolved: which one should be used for a specific
real-world application? In this paper, we answer
the question from the perspective of causal data
generative process. Specifically, the performance
of the semi-supervised based method depends
heavily on the data generative process while the
method modeling label-noise is not influenced by
the generation process. For example, for a given
dataset, if it has a causal generative structure that
the features cause the label, the semi-supervised
based method would not be helpful. When the
causal structure is unknown, we provide an intu-
itive method to discover the causal structure for a
given dataset containing label noise.
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1. Introduction
Deep neural networks can achieve remarkable performance
when accurately annotated large-scale training datasets are
available. However, annotating a large number of examples
accurately is often expensive and sometimes infeasible in
real life. Cheap datasets which contain label errors are easy
to obtain (Li et al., 2019) and have been widely used to
train deep neural networks. Recent results (Han et al., 2018;
Nguyen et al., 2019) show that deep neural networks can
easily memorize label noise during training, which leads to
poor test performance.

To reduce the side effect of label noise, there are two major
streams of methods. One stream of methods is based on
semi-supervised techniques, i.e., SSL-based methods. These
methods focus on getting rid of label errors. Specifically,
they would first construct a labeled set and an unlabeled set
from the noisy training data. The labeled set is obtained by
selecting confident examples whose labels are likely to be
correct, e.g., by exploiting the memorization effect of deep
networks (Jiang et al., 2018). The unlabeled set is obtained
by discarding the labels of unconfident examples (i.e., whose
labels are likely to be incorrect ). Then, they employ semi-
supervised (SSL) techniques on the constructed labeled set
and unlabeled set to achieve state-of-the-art performance
(Li et al., 2019; 2020; Wei et al., 2020; Yao et al., 2021; Tan
et al., 2021; Ciortan et al., 2021; Yao et al., 2021). These
methods are usually based on heuristics and do not provide
a theoretical guarantee.

Another major stream of methods is to model the label noise
to get rid of its side effects i.e., model-based methods. They
mainly focus on estimating the label noise transition matrix
T (x), i.e., Tij(x) = P (Ỹ = i|Y = j,X = x) represent-
ing the probability that an instance x with a clean label
Y = i but flips to a noisy label Ỹ = j. The idea is that the
clean class posterior distribution P (Y |X) can be inferred
by learning the transition matrix T (x) and noisy class pos-
terior distribution P (Ỹ |X). In general, when T (x) is well
estimated (or given), these methods are statistically consis-
tent, i.e., they guarantee that the classifiers learned from the
noisy data converge to the optimal classifiers defined on the
clean data as the size of the noisy training data increases
(Patrini et al., 2017; Xia et al., 2019).
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Model-based methods provide statistical guarantees, and
SSL-based methods have demonstrated state-of-the-art
(SOTA) performance on many benchmark datasets. It nat-
urally raises the question that which stream of methods
should be exploited when given a real-world dataset. In
this paper, from a causal perspective, we answer that it is
closely dependent on the generative process of the dataset,
and none of the two streams of methods are dominating.
The SSL-based methods can easily incorporate heuristics
(e.g., prior knowledge) to make use of the finite training
sample but they do not work if the feature is the cause of
the label in the data generative process. The model-based
methods are not influenced by the data generative process.
They can make use of all the instances and noisy labels and
can be statistically consistent but they need a large training
sample to perform well.

Specifically, when the instance X is a cause of the clean
label Y , the distributions P (X) and P (Y |X) are disentan-
gled (Schölkopf et al., 2012; Zhang et al., 2015), which
means that P (X) contains no labeling information. In other
words, exploiting the unlabeled data by SSL-based meth-
ods cannot help learn the classifier. When the clean label
Y is a cause of the instance X , the distributions of P (X)
and P (Y |X) are entangled (Schölkopf et al., 2012; Zhang
et al., 2015), then P (X) generally contains some informa-
tion of P (Y |X). Then SSL-based methods are helpful. In
many real-world applications, we do not know the causal
structure of the data generative process. To detect that on
a specific noisy dataset, we proposed an intuitive method
by exploiting an asymmetric property of the two different
causal structures (X causes Y vs Y causes X) regarding
estimating the transition matrix. The contribution of this
paper is summarized as follows.

• From a causal perspective, by analyzing the genera-
tive processes of the data containing noisy labels, we
found that the performance of SSL-based methods for
learning with noisy labels will be influenced by dif-
ferent generative processes, i.e., when X causes Y ,
SSL-based methods can not leverage the unlabeled set
(which is usually split from the noisy training set) to
help learn P (Y |X); when Y causes X , it is possible
to leverage the unlabeled set to help learn P (Y |X). In
contrast, the performance of the model-based methods
is not influenced by data generative processes but is
usually hard to incorporate heuristics.

• We leverage the causal theory to the application of
learning with label noise to help algorithm design. Our
interpretation and analysis suggest that the algorithm
design should be different according to the data genera-
tive process. Given the generative process of a dataset,
it provides a high-level idea that whether SSL-based
methods or model-based methods should be more fo-

cused on when designing the algorithm for it. This
potentially can save a lot of resources for training and
testing different algorithms and accelerates algorithm
development for real-world applications.

• Given a dataset, we usually do not know the data gener-
ative process. Therefore, we have proposed an intuitive
method for discovering whether a dataset is causal (X
causes Y ) or anticausal (Y causes X). To the best of
our knowledge, this is the first discovery method when
data contains noisy labels.

2. Related Work
In this section, we first introduce the two major streams,
i.e., the methods employing semi-supervised learning and
the model-based methods. Then we introduce the causal
generation process of the noisy data.

SSL-based methods. Semi-supervised learning is widely
employed in learning with noisy labels. To get rid of label
errors, existing methods usually divide the dataset into con-
fident examples and unconfident examples. Then the deep
neural networks are trained on the confident examples in
a supervised manner (Jiang et al., 2018; Han et al., 2018).
To also make use of the unconfident examples that con-
tain a large number of incorrect labels, by just employing
the unlabeled instances, different semi-supervised learning
techniques can be employed. For example, the consistency
regularization (Laine & Aila, 2016) is employed by (En-
glesson & Azizpour, 2021); FixMatch (Sohn et al., 2020)
is employed by (Li et al., 2019); the co-Regularization is
employed by (Wei et al., 2020); contrastive learning is em-
ployed by (Li et al., 2020; Tan et al., 2021; Ciortan et al.,
2021; Ghosh & Lan, 2021; Yao et al., 2021; Zheltonozhskii
et al., 2022). Empirically, these methods have demonstrated
state-of-the-art performance.

Model-based methods. This family of methods mainly
focuses on designing statistically consistent methods by
employing the noise transition matrix T (x). Specifically,
given an instance x, its transition matrix T (x) reveals the
transition relationship from clean labels to noisy labels of
the instance., i.e.,

T (x)[P (Y = 1|x), . . . , P (Y = L|x)]⊤

= [P (Ỹ = 1|x), . . . , P (Ỹ = L|x)]⊤.

Let h : X → ∆C−1 models a class posterior distribution
and ℓce be the cross-entropy loss, then

argmin
h

Ex,y[ℓce(y, h(x))]

= argmin
h

Ex,ỹ[ℓce(ỹ,T (x)h(x))]. (1)

The above equation shows that if T (x) is given, the mini-
mizer of the corrected loss under the noisy distribution is the
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same as the minimizer of the original loss under the clean
distribution (Liu & Tao, 2016; Patrini et al., 2017). In prac-
tice, T (x) usually is not given and needs to be estimated
from noisy data (Xia et al., 2020; Li et al., 2021).

It is also worth mentioning that, methods focusing on de-
signing robust loss functions can be closely related to mod-
eling label-noise methods. These methods usually require
the noise rate to help hyper-parameter selection (Zhang &
Sabuncu, 2018; Liu & Guo, 2020). To calculate the noise
rate, T (x) usually has to be estimated (Yao et al., 2020).

Causal generation process of noisy data. We introduce
some background knowledge about causality and describe
the data generative process by the causal graph and the
structural causal model (SCM) (Spirtes & Zhang, 2016).
Specifically, in Fig. 2(a), we illustrate a possible data gener-
ative process when data contains instance-dependent label
noise by using the causal graph which represents a flow of
information and reveals causal relationships among all the
variables (Glymour et al., 2019). For example, Fig. 2(a)
shows that the latent clean label Y is a cause of the instance
X , and both X and Y are causes of Ỹ . The generation
process can also be described by a structural causal model
(SCM). Specifically,

Y ∼ PY , UX ∼ PUX
, UỸ ∼ PUỸ

,

X = f(Y,UX), Ỹ = g(X,Y, UỸ ),

where UX and UỸ are mutually independent exogenous
random variables that are also independent of Y . The oc-
currence of the exogenous variables models the random
sampling process of X and Ỹ . Both functions f and g can
be linear or non-linear functions. Each equation species the
distribution of a variable conditioned on its parents (could
be an empty set). Similarly, the SCM corresponding to the
causal graph in Fig. 2(b) can be written as:

X ∼ PX , UY ∼ PUY
, UỸ ∼ PUỸ

,

Y = f ′(X,UY ), Ỹ = g(X,Y, UỸ ).

Causal decomposition and modularity. By the con-
ditional independence relations proposed by the Markov
property (Pearl, 2000), the joint distribution P (X,Y, Ỹ )
when Y causes X can be factorized by following the causal
direction as follows.

P (X,Y, Ỹ ) = P (Y )P (X|Y )P (Ỹ |X,Y ).

The above decomposition is called a causal decomposition.
According to the modularity property of causal mechanisms
(Schölkopf et al., 2012; Peters et al., 2017), the conditional
distribution of each variable given its causes (which could
be an empty set) does not inform or influence the other
conditional distributions, which implies that all the distri-
butions P (Y ), P (X|Y ) and P (Ỹ |X,Y ) are disentangled.

X Y

(a) X causes Y

X Y

(b) Y causes X

Figure 1: An illustration of different data generative pro-
cesses without label noise. Both the instance X and the
clean label Y are observable.

Similarly, when X causes Y , the causal decomposition of
P (X,Y, Ỹ ) is as follows:

P (X,Y, Ỹ ) = P (X)P (Y |X)P (Ỹ |X,Y ).

3. Learning with Noisy Labels From A Causal
Perspective

In this section, we show that the model-based method is
independent of different generation processes while the SSL-
based methods depend on different generation processes.
We also proposed an intuitive method to detect the causal
structure by exploiting an asymmetric property regarding
estimating the transition matrix.

3.1. The Influence of Noisy Data Generative Processes to
Different Stream of Methods

To analyze the influence of noisy data generative processes
on different methods, we first explain that given a data gener-
ative process or the causal graph, whether a distribution can
inform another distribution or not can be directly concluded,
which is achieved by directly employing the modularity
property of causal mechanisms (Peters et al., 2017). Then
we explain how different generative processes of noisy data
influence SSL-based methods. Specifically, we start from
the simple case that analyzing relations between P (X) and
P (Y |X) under different data generative processes without
noisy labels as shown in Fig. 1.

When X causes Y illustrated in Fig. 1(a), the cause of X is
an empty set. Given the definition of modularity property
that the conditional distribution of each variable given its
causes does not inform or influence the other conditional
distributions, we can directly conclude that P (X) can not
inform P (Y |X), i.e., P (X) does not contain the relevant
information of P (Y |X). When Y causes X illustrated in
Fig. 1(b), the cause of Y is an empty set. Then, according
to the modularity property of causal mechanisms, P (X|Y )
can not inform P (X). In this case, P (X) and P (Y |X)
do not follow the underlying causal direction. Then they
do not satisfy the modularity property anymore. Therefore,
P (X) can inform P (Y |X). In other words, P (X) generally
contains the relevant information of P (Y |X).

We explain why the different data generative processes can
influence the performance of SSL. To make use of the unla-
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X

Ỹ

Y

(a) X causes Y

X

Ỹ

Y

(b) Y causes X

Figure 2: An illustration of different noisy data generative
processes. Both the instance X and the noisy label Ỹ are
observable, and the clean label Y is latent. We do not
assume independence and instead allow for both nontrivial
statistical and causal relations between the clean label Y
and the noisy label Ỹ .

beled data to help learn classifiers, SSL relies on the condi-
tion that P (X) has to contain the information of P (Y |X)
(Schölkopf et al., 2012). When Y causes X , because P (X)
contains the information of P (Y |X). It is possible to help
learn P (Y |X) by exploiting P (X) by SSL-based method.
An intuitive example is that, when P (X) contains the in-
formation of P (Y |X), it could be possible to find some
low-density areas in P (X), which can separate labels. Then
SSL can improve the generalization ability of a classifier by
exploiting these regions with unlabeled data. This is known
as low density separation. However, when X causes Y ,
because P (X) generally does not contain the information
of P (Y |X). It is most unlikely to find low density regions
that can separate labels. Exploiting unlabeled data by using
SSL then generally is not helpful. In Appendix A, we also
provide the derivation and a concrete toy example to clearly
illustrate the relation between P (X) and P (Y |X) under
different data generative processes.

Now we explain how the different noisy data generative
processes illustrated in Fig. 2 influence SSL-based methods
and model-based methods. In learning with noisy labels,
SSL-based methods change the problem setting to SSL by
splitting a noisy training set into a labeled set (which is
potentially clean) and an unlabeled set. Then different SSL
techniques are employed which aim to improve the perfor-
mance of the classifier by exploiting the unlabeled set.

When X causes Y illustrated in Fig. 2(a), X is a cause
of both Y and Ỹ . Causal modularity suggests that both
P (Ỹ |X) and P (Y |X) can not be informed by P (X). Then
P (X) does not contain the information on either P (Ỹ |X)
or P (Y |X), the unconfident set can not help learn a classi-
fier in general. As a result, only the confident sample which
is a subset of the noisy training data is used for learning a
classifier. It implies that SSL-based methods have the data
sacrifice issue in this case. When Y causes X illustrated
in Fig. 2(b), P (X) contains the information of P (Y |X) be-
cause P (X) and P (Y |X) not decomposed by following the
underlying causal direction and do not satisfy the modularity

property. Then SSL-based methods can use the constructed
unlabeled set to help learn a classifier.

In contrast, the consistent model-based methods do not ex-
ploit the unlabeled set (or P (X)) to learn P (Y |X). Specifi-
cally, these methods usually first need to estimate the noise
transition matrix T (x), which is usually learned in a super-
vised manner on the whole noisy training set and does not
require exploiting P (X). Then, P (Y |X) can be learned by
using the estimated T (x) to correct the loss on the whole
noisy training set, which is also learned in a supervised
manner. In these processes, only supervised information
is used to help learn P (Y |X) but not P (X). Therefore,
the performance of the model-based methods is not influ-
enced by the different data generative processes. However,
these methods usually require a large number of training
examples to accurately estimate the transition matrix (Yao
et al., 2020). If the transition matrix is poorly estimated, the
estimation error of P (Y |X) will be large.

3.2. An Intuitive Method For the Causal Structure
Detection

To discover the causal structure with data containing noisy
labels, we provide an casual structure detection method for
learning with noisy labels (i.e., CDNL estimator). To the
best of our knowledge, this is the first method to discover
whether X causes Y or Y causes X on noisy datasets.

Our method relies on an asymmetric property of estimating
flip rates under different generalization processes, i.e., when
X causes Y , the flip rate estimated by an unsupervised clas-
sification method usually has a large estimation error; when
Y causes X , the estimation error is small. Specifically, let
Y ′ be pseudo labels estimated by an unsupervised classifica-
tion method. Given pseudo labels and noise labels, the flip
rate P (Ỹ |Y ′) that Y ′ be flipped into Ỹ can be estimated.
Let Y ∗ = argmaxi P (Y = i|x) be the Bayes label on
the clean class-posterior distribution. Let P (Ỹ |Y ∗) be the
underlying flip rate that the Bayes label Y ∗ be flipped into
Ỹ . The intuition is that given a noisy dataset, if X causes
Y , P (X) does not contain labeling information, then Y ′

should be very different from clean label Y . Therefore,
the estimation error of the flip rate (the difference between
P (Ỹ |Y ′) and P (Ỹ |Y ∗)) is usually large. If Y causes X ,
P (X) contains information of P (Y |X), the Y ′ should be
“close” to clean label Y . Therefore the estimation error of
P (Ỹ |Y ′) is usually small. Specifically, the estimation error
is defined as follows.

d(P (Ỹ |Y ∗), P (Ỹ |Y ′))

=

L∑
i

L∑
j

|P (Ỹ = j|Y ∗ = i)− P (Ỹ = j|Y ′ = i)|
L2

. (2)

Then we can discuss that how to estimate P (Ỹ |Y ′) and
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Algorithm 1 CDNL Estimator

Input: a noisy training sample Str; a noisy validation
sample Sval; a cluster algorithm z; a classification model
h; a trainable stochastic matrix A

1: Optimize h and A via Eq. (5) to obtain Â∗ = P̂ (Ỹ |Y ∗)
by employing the training set Str and the validation set
Sval;

2: Employ the cluster algorithm z to estimate the cluster
IDs of all instances in training set Str;

3: Obtain Ŷ ′ of all instances from cluster IDs;
4: Calculate P̂ (Ỹ |Y ) by Eq (4).
Output: The estimation d(P̂ (Ỹ |Y ∗), P̂ (Ỹ |Y ′)) via
Eq. (2).

P (Ỹ |Y ∗), respectively.

Estimation of P (Ỹ |Y ′). To estimate the flip rate P (Ỹ |Y ′),
a clustering method is employed first to learn the cluster ID
C for every instance. Then the cluster ID can be converted
into the pseudo label Y ′ by calculating the overlapping
between the estimated Bayes label Ŷ ∗ and Cluster ID. After
having the pseudo label Y ′, the average noise rate P (Ỹ |Y ′)
obtained by a clustering method can be directly calculated.
Specifically, let C = i denote the cluster label i, and let
SCi = {xj}

NCi
j=0 denote the instance with cluster label i.

Similarly let SŶ ∗
j

= {xk}
NŶ ∗

j

k=0 denote the instance with
estimated Bayes label j by employing label-noise learning
methods (Patrini et al., 2017). We assign the pseudo labels
Ŷ ′ of all instances in set SCi

be the dominated estimated
Bayes label Ŷ ∗, i.e.,

Ŷ ′ = argmax
j∈L

∑
xk∈SŶ ∗

j

1{xk∈SCi
}

NCi

. (3)

Empirically, the assignment is implemented by applying
Hungarian algorithm (Jonker & Volgenant, 1986). After the
assignment, the pseudo labels of all training examples can
be obtained. Then P (Ỹ |Y ′) can be estimated via counting
on training examples, i.e.,

P̂ (Ỹ = j|Y ′ = i) =

∑
(x,ỹ,ŷ′) 1{Ŷ ′=i∧ỹ=j}∑

(x,ỹ,ŷ′) 1{Ŷ ′=i}
, (4)

where 1{.} is an indicator function, (x, ỹ, ŷ′) is a training
example with the estimated pseudo label, and ∧ represents
the AND operation.

It is worth mentioning that the performance of the proposed
CDLN estimator relies on the backbone unsupervised clas-
sification method. When Y causes X , the backbone method
is expected to have reasonable classification accuracy on
training instances. Thanks to the great success of the un-
supervised learning methods (Likas et al., 2003; Niu et al.,

2021; Ghosh & Lan, 2021; Zhou et al., 2021), some of
these methods can even have compatible performance with
the supervised learning on some benchmark datasets such
as STL10 (Coates et al., 2011) and CIFAR10 (Krizhevsky
et al., 2009).

Estimation of P (Ỹ |Y ∗). We directly estimate the average
flip rate P (Ỹ |Y ∗) in an end-to-end manner. Specifically, let
f be a deep classification model that outputs the estimated
Bayes label in a one-hot fashion. (Jang et al., 2016). The
distribution P (Ỹ |Y ∗) is modeled by a trainable diagonally
dominant column stochastic matrix A. Similar to the state-
of-the-art method (Li et al., 2021), the matrix A and the
classifier f are optimized in an end-to-end manner. They
are estimated by minimizing a constrained cross-entropy
loss on noisy data, i.e.,

{Â∗, f̂} = argmin
A,f

1

N

∑
x,ỹ

ℓce(ỹ, Ah(x)),

s.t.max
i

hi(x) = 1. (5)

The constraint that maxi hi(x) = 1 is to let the model
output the Bayes label (in a one-hot fashion). Empirically, it
can be achieved by employing Gumbel-Softmax (Jang et al.,
2016) which is differentiable.

It is worth mentioning that P (Ỹ |Y ∗) can be estimated
by employing existing methods that learn the noise transi-
tion matrix P (Ỹ |Y,X). Specifically, to estimate P (Ỹ |Y ∗)
with existing methods, P (Ỹ |X) and P (Ỹ |Y,X) have to
be learned first. Then both the estimated clean label Y
and the Bayes label Y ∗ can be revealed by (1). After that,
P (Ỹ |Y ∗) can be estimated by using the same technique as
in Eq. (4). However, P (Ỹ |Y,X) usually is hard to estimate
(Xia et al., 2020), which leads to the learned classifier (in
(1)) and Bayes labels being poorly estimated. As a result,
P̂ (Ỹ |Y ∗) will contain a large estimation error. Therefore,
we propose to avoid learning P (Ỹ |Y,X) and directly esti-
mate the average flip rate P (Ỹ |Y ∗) in an end-to-end man-
ner. This is achieved by letting h directly estimate Bayes
labels but not P̂ (Y |X). By reducing the output complexity
of h from a continuous distribution P̂ (Y |X) to a discrete
distribution, the learning difficulty of P (Ỹ |Y ∗) can be re-
duced. In Section 4.1.1, we have also shown that the esti-
mation error of P (Ỹ |Y ∗) by employing our method above
is much smaller than employing the state-of-the-art method
VolMinNet (Li et al., 2021) for both instance-dependent and
instance-independent label noise.

Theoretical analysis of CDNL estimator. Here, we
formally justify that when X causes Y , the average flip
rate P (Ỹ |Y ′) estimated by an unsupervised classification
method usually has a large estimation error. However, when
Y causes X , the estimation error is usually small.
Theorem 3.1. Let P (Ỹ |Y ∗) be the transition relationship
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from the noisy label Ỹ to the clean Bayes label Y ∗; let
P (Ỹ |Y ′) be the transition relationship from the noisy label
Ỹ to the pseudo label Y ′. Then the estimation error is

d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) =
1

L2

L∑
i

L∑
j

1

P (Y ∗ = j)∣∣∣∣EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ∗ = j)

P (Y ′ = j)
− P (Y ∗ = j|X)

)]∣∣∣∣ .
From the above theorem, we can find out that when the class
posterior of pseudo label P (Y ′|X) and the class posterior
P (Y ∗|X) of Bayes label are similar, the estimation error
is small. Specifically, when P (Y ′|X) and P (Y ∗|X) are
similar, P (Y ) and P (Y ′) are also similar, because P (Y ′) =
EP (X)[P (Y ′|X)] and P (Y ∗) = EP (X)[P (Y ∗|X)]. Then,
P (Y ′ = j|X = x)P (Y ∗=j)

P (Y ′=j) − P (Y ∗ = j|X = x) = 0

is small, and the estimation error d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) is
small. When Y causes X , P (X) can inform P (Y ∗|X), then
P (Y ′|X) learned by exploiting P (X) is close to P (Y ∗|X).
Therefore, the estimation error is usually small. When X
causes Y , P (X) can not inform P (Y ∗|X), then P (Y ′|X)
and P (Y ∗|X) should have a large difference. Therefore,
the estimation error is usually large.

Theorem 3.1 also shows that when P (Y ′|X) and P (Y ∗|X)
are identical, the estimation error d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) is
0. This is because in this case, P (Y ) also identical to P (Y ′).
Then, P (Y ′ = j|X = x)P (Y ∗=j)

P (Y ′=j) − P (Y ∗ = j|X = x) =

0 for all x, and the estimation error is 0.

4. Experiments
In this section, we illustrate the performance of the pro-
posed estimator and different methods under different data
generative processes with the existence of label noise.

Baselines. We illustrate the performance of state-of-the-
art model-based methods and SSL-based methods. The
model-based methods employed are (i) Forward (Patrini
et al., 2017) which estimates the transition matrix and em-
beds it to the neural network; (ii) Reweighting (Liu & Tao,
2016) which gives training examples with different weights
according to the transition matrix by importance reweight-
ing; (iii) T-Revision (Xia et al., 2019) which refines the
learned transition matrix to improve the classification ac-
curacy. The SSL-based methods employed are (iv) JoCoR
(Wei et al., 2020) which aims to reduce the diversity of
two networks during training; (v) MoPro (Li et al., 2020)
which is a contrastive learning method that achieves online
label noise correction (vi) Dividemix (Li et al., 2019) which
leverages the techniques FixMatch (Sohn et al., 2020) and
Mixup (Zhang et al., 2018); (viii) Mixup (Zhang et al., 2018)
which trains a neural network on convex combinations of

pairs of examples and their labels. For all baseline methods,
we follow the hyper-parameters settings mentioned in their
original paper. It is worth noting that, MoPro focuses on
image datasets, to let it work for non-image datasets, we
replace the strong data augmentation for images with small
Gaussian Noise, which may influence its performance.

Datasets and noise types. We have employed 2 synthetic
datasets that are XYgaussian and YXguassian and 6 real-
world datasets which are KrKp, Balancescale, Splice, Wave-
form, MNIST, and CIFAR10. The causal datasets generated
from X to Y are KrKp, Balancescale and Splice. The rest
are anticausal datasets generated from Y to X . Due to the
limited space, the results on Balancescale and Waveform are
included in Appendix B.2. We manually inject label noise
into all datasets, and 20% of data is left as the validation
set. Three types of noise in our experiments are employed
in our experiments. (1) symmetry flipping (Sym) (Patrini
et al., 2017) which randomly replaces a percentage of labels
in the training data with all possible labels. (2) pair flipping
(Pair) (Han et al., 2018) where labels are only replaced by
similar classes. (3) instance-dependent Label Noise (IDN)
(Xia et al., 2020) where different instances have different
transition matrices depending on parts of instances.

Network structure and optimization. For a fair compar-
ison, we implement all methods by PyTorch. All the meth-
ods are trained on Nvidia Geforce RTX 2080 GPUs. For
non-image datasets, a 2-hidden-layer network with batch
normalization (Ioffe & Szegedy, 2015) and dropout (0.25)
(Srivastava et al., 2014) is employed as the backbone method
for all baselines. We employ LeNet-5 for MNIST (LeCun,
1998) dataset and ResNet-18 (He et al., 2016) for CIFAR10
(Krizhevsky et al., 2009). To estimate P (Ỹ |Y ∗), we use
SGD to train the classification network with batch size 128,
momentum 0.9, and weight decay 10−4. The initial learn-
ing rate is 10−2, and it decays at 30th and 60th epochs at
the rate 0.1, respectively. To get P (Ŷ |Y ′), for XYguassian,
yxGuassain, KrKp, Balancescale, Splice and Waveform and
MNIST, K-means clustering method (Likas et al., 2003)
is employed; for CIFAR10, the SPICE∗ (Niu et al., 2021)
clustering method is employed.

4.1. Experiments on Synthetic Datasets

4.1.1. ESTIMATION ERROR OF P (Ỹ |Y ∗)

In Fig. 3, we compare the estimation error of average flip
rate P (Ỹ |Y ∗) of our CDNL estimator and the state-of-the-
art method VolMinNet (Li et al., 2021), respectively. To
let VolMinNet estimate P (Ỹ |Y ∗), we first train VolMinNet
with a noisy training set and select the best model by using
the validation set, then the estimated clean class-posterior
distribution P̂ (Y |X) is obtained. The Bayes label Y ∗ can
be directly obtained via P̂ (Y |X), and P (Ỹ |Y ∗) can be
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Figure 3: Estimation error of P (Ỹ |Y ∗) on synthetic datasets with instance-independent and instance-dependent label noise.
Our estimator outperforms the state-of-the-art method by a large margin.

Table 1: Test accuracies (%) of different methods on XYgaussian (causal) and YXgaussian (anticausal) datasets with
different types of label noise. Estimation errors obtained by CDNL estimator are shown in the parentheses after noise rates.

XYguassian Sym Instance
(causal) 20% (0.196) 30% (0.131) 40% (0.142) 20% (0.101) 30 (0.127) 40% (0.191)
Forward 98.98±0.15 98.28±0.48 96.46±1.07 98.98±0.23 98.60±0.19 97.29±0.51
Reweighting 99.26±0.23 98.57±0.34 96.85±0.71 99.42±0.30 98.42±0.35 97.14±1.07
T-Revision 99.32±0.24 98.55±0.37 96.82±0.72 99.45±0.28 98.55±0.65 97.22±0.91
JoCoR (SSL) 98.19±0.26 89.66±5.31 89.12±19.43 99.03±0.08 89.51±9.62 73.41±13.44
MoPro (SSL) 96.41±0.45 95.70±0.93 77.32±6.99 95.98±0.87 94.63±0.64 77.79±8.95
Dividemix (SSL) 97.20±0.25 96.98±0.12 95.39±0.83 97.15±0.56 97.13±0.17 90.72±0.47
Mixup (SSL) 97.15±0.14 96.88±0.35 94.12±0.76 96.93±0.44 96.15±0.65 87.68±9.06

YXguassian Sym Instance
(antiausal) 20% (0.026) 30% (0.031) 40% (0.028) 20% (0.027) 30 (0.031) 40% (0.043)
Forward 86.26±0.13 85.97±0.19 84.85±0.93 86.10±0.11 85.56±0.47 83.94±2.14
Reweighting 86.31±0.18 85.85±0.27 84.68±0.55 86.22±0.25 86.03±0.26 84.19±0.84
T-Revision 86.32±0.17 85.81±0.32 84.42±0.56 86.25±0.23 86.02±0.23 84.18±0.83
JoCoR (SSL) 86.26±0.10 85.99±0.09 85.86±0.21 86.16±0.14 86.13±0.14 85.43±0.34
MoPro (SSL) 84.79±0.72 84.17±0.61 83.67±1.32 85.36±0.63 84.43±1.27 81.07±3.03
Dividemix (SSL) 86.32±0.20 86.28±0.11 86.23±0.19 86.37±0.09 86.37±0.12 86.06±0.15
Mixup (SSL) 86.15±0.19 85.64±0.63 82.48±2.56 85.74±0.43 85.01±0.92 81.47±5.76

estimated by using the same technique as in Eq. (4). As
illustrated in Fig. 3, it shows that the estimation error of
our method is close to 0 on both instance-independent label
noise and instance-dependent label noise, which is much
smaller than the estimated error of VolMinNet. This em-
pirically validated the advantage of CDNL estimator that
directly estimates the average noise rates but does not re-
quire learning the transition matrix for each instance.

To validate the correctness of our method, we have generated
a causal dataset (from X to Y ) and an anticausal dataset
(from Y to X). For both datasets, P (X) is a multivariate
Gaussian mixture of N (0, I) and N (1, I) with dimension 5.
For the causal dataset XYguassian, the causal association f
and f ′ between X and Y are set to be linear. The parameter
of the linear function is randomly drawn from the N (0, I).
For YXguassian, we let the label be the mean value of
the multivariate Gaussian distribution. For both datasets,
we have balanced the positive and negative class priors to
0.5 and the sample size is 10000. The results with a large
sample size are included in Appendix B.1.

4.1.2. CLASSIFICATION ACCURACIES

The estimation error d(P̂ (Ỹ |Y ∗), P̂ (Ỹ |Y ′)) obtained by
the proposed CDNL estimator and the test accuracies of
model-based methods and SSL-based methods are illus-
trated in Tab. 3. Estimation errors are shown in the paren-
theses after noise rates, and the estimation error is averaged
over 5 repeated trials.

The result validates that P (X) contains labeling informa-
tion and can help learn P (Y |X) on the anticausal dataset.
Specifically, on the causal dataset (XYguassian), model-
based methods perform better than SSL-based methods. On
the anticausal dataset (YXguassian), SSL-based methods
outperform model-based methods under the same setting.
Moreover, with the increase of the noise rate, the perfor-
mance of the SOTA method DivideMix drops dramatically
on the causal dataset, but its performance is relatively stable
on anticausal dataset.

The result also shows that estimation errors on the anticausal
dataset YXgaussian are at least 2 times smaller than the
causal dataset XYguassian, which validated Theorem 3.1.

7



Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise?

Table 2: Comparing test accuracies (%) of different methods on causal and anticausal datasets with different levels and types
of label noise. Estimation errors obtained by employing CDNL estimator are shown in the parentheses after noise rates.

KrKp Sym Instance
(causal) 20% (0.297) 30% (0.196) 40% (0.070) 20% (0.262) 30% (0.166) 40% (0.072)
Forward 93.31±1.0 89.31±1.96 77.78±7.4 94.0±0.8 87.25±3.1 80.75±2.31

Reweighting 93.88±1.43 91.16±1.09 77.31±5.26 93.5±2.63 89.25±1.53 78.22±6.61
T-Revision 94.72±0.62 91.81±1.93 77.97±5.0 94.5±1.63 90.78±2.35 79.06±4.89

JoCoR (SSL) 93.69±0.23 89.53±0.84 67.81±2.07 93.44±0.71 87.44±2.95 67.75±6.51
MoPro (SSL) 89.47±1.13 79.47±7.03 65.94±2.06 89.31±3.82 79.59±6.2 62.62±4.78

Dividemix (SSL) 93.75±0.32 88.31±0.65 74.31±1.44 93.47±0.15 93.34±0.72 63.94±1.45
Mixup (SSL) 93.31±1.1 88.81±1.03 73.84±1.18 93.19±1.31 87.25±1.49 74.31±3.42

Splice Sym Pair Instance
(causal) 20% (0.136) 40% (0.146) 20% (0.140) 40% (0.148) 20% (0.151) 40% (0.153)
Forward 71.25±3.07 66.18±3.61 73.73±1.03 65.8±3.67 65.8±4.08 61.6±5.67

Reweighting 76.96±1.69 71.91±2.68 75.55±1.88 66.68±1.54 75.64±1.95 63.54±7.21
T-Revision 76.99±1.73 71.94±2.68 75.49±2.05 66.61±1.5 75.67±1.89 63.45±7.17

JoCoR (SSL) 69.81±4.61 63.2±1.89 59.37±1.44 57.71±3.7 59.66±2.44 55.3±5.87
MoPro (SSL) 53.6±0.19 53.51±0.0 53.51±0.0 53.25±0.43 53.79±0.38 52.17±3.27

Dividemix (SSL) 75.11±1.66 53.45±0.0 53.45±0.0 56.14±2.1 59.97±0.55 51.41±1.79
Mixup (SSL) 67.43±3.2 62.16±2.52 68.15±2.63 63.67±6.63 65.52±2.22 49.03±9.86

MNIST Sym Pair Instance
(anticausal) 20% (0.034) 40% (0.038) 20% (0.041) 40% (0.20) 20% (0.025) 40% (0.026)

Forward 98.75±0.08 97.86±0.22 98.84±0.10 94.92±0.89 96.87±0.15 90.30±0.61
Reweighting 98.71±0.11 98.13±0.19 98.54±.63 91.50±1.27 97.99±0.13 90.30±0.61
T-Revision 98.91±0.04 98.34±0.21 98.89±0.08 91.83±1.08 98.39±0.09 96.50±0.31

JoCoR (SSL) 98.06±0.13 96.64±0.19 98.01±0.19 96.85±0.43 98.62±0.06 96.07±0.31
MoPro (SSL) 98.51±0.92 95.14±1.23 96.79±1.04 94.96±1.32 98.53±0.52 96.45±1.20

Dividemix (SSL) 99.24±0.03 99.21±0.05 99.25±0.03 98.50±0.08 99.31±0.02 97.75±0.1
Mixup (SSL) 97.45±0.21 95.75±0.43 97.57±1.08 92.46±1.43 96.54±1.20 90.38±1.30

CIFAR10 Sym Pair Instance
(anticausal) 20% (0.010) 40% (0.009) 20% (0.010) 40% (0.026) 20% (0.037) 40% (0.042)

Forward 88.21±0.48 78.44±0.89 88.21±0.48 77.44±6.89 85.29±0.38 74.72±3.24
Reweighting 86.77±0.40 83.16±0.46 89.60±1.01 77.06±6.47 88.72±0.41 84.52±2.65
T-Revision 90.33±0.52 84.94±2.58 89.75±0.41 80.94±2.58 90.46±0.13 85.37±3.36

JoCoR (SSL) 85.96±0.25 79.65±0.43 80.33±0.20 71.62±1.05 89.80±0.28 73.78±1.39
MoPro (SSL) 78.15±0.15 67.70±0.56 77.92±0.81 69.89±1.02 78.75±0.15 67.61±0.24

Dividemix (SSL) 95.60±0.10 94.80±1.10 95.72±0.04 87.02 ±0.41 95.50±1.17 94.50±0.23
Mixup (SSL) 93.20±0.31 86.20±0.30 92.23±0.71 82.43±1.02 93.32±0.25 87.61±0.56

Specifically, when X is a cause of Y (anticausal), estimation
errors d(P̂ (Ỹ |Y ∗), P̂ (Ỹ |Y ′)) are larger than 0.1; when Y is
a cause of X , all estimation errors are smaller than 0.05. We
therefore empirically use 0.05 as a threshold to distinguish
different data generative processes on real-world datasets.

4.2. Experiments on Real-World Datasets

We illustrate estimations of CDNL estimator and test accu-
racies of different methods on real-world datasets in Tab. 2.
Due to the limited space, the results on Balancescale and
Waveform are included in Appendix B.2. The results show
that CDNL estimator can successfully determine the causal
structure of all datasets except Waveform by employing the
threshold 0.05 validated on Synthetic datasets. Specifically,
on all anticausal datasets except Waveform, the estimation
error obtained by employing CDNL estimator is lower than

0.05, and SSL-based methods demonstrate their effective-
ness. On all causal datasets, the estimation error is much
larger than 0.05, and model-based methods can have better
performance than SSL-based methods.

For Waveform, although it is an anticausal dataset, model-
based methods have better performance than SSL-based
methods, and the estimation error is also large. The reason
can be that 1). P (X) contains information of P (Y |X), but
the information contained is limited, or 2). The information
of P (Y |X) contained in P (X) is hard to be exploited by
existing unsupervised methods.

5. Conclusion
In this paper, we have investigated the influence of the data
generative process containing noisy labels on SSL-based
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methods and model-based methods. We show that the per-
formance of SSL-based methods depends on the data genera-
tive process, while model-based methods are not influenced
by the data generative process. Our analysis suggests that
for different data generative processes, different streams of
methods should be focused, or a hybrid method should be
designed in the future that can simultaneously model label
noise and leverage SSL to improve the model’s robustness.
To detect data generative processes, we have also proposed
CDNL estimator which exploits the asymmetric property of
estimating the flip rate under different generative processes.
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Figure 4: (a)-(d) illustrate the influence to P (X) when P (Y ) changes under different data generative processes. When Y
causes X , as illustrated in (a) and (b), changing P (Y ) to P ′(Y ) influences P (X), then P (X) contains labeling information;
when X causes Y , as illustrated in (c) and (d), changing P (Y ) to P ′(Y ) does not influence P (X), then P (X) does not
contain labeling information.

A. Entanglement between P (Y |X) and P (X).
To clearly illustrate the entanglement, we will derive that, when Y causes X , P (Y |X) and P (X) will change simultaneously
to P ′(Y |X) and P ′(X) if we intervene on Y , i.e., change P (Y ) to a different distribution P ′(Y ).

Specifically, when P (Y ) is changed to P ′(Y ), P (X|Y ) will not be influenced because of the modularity property (Pearl,
2000). Since P (Y ) is changed to P ′(Y ), and P (X|Y ) remains fixed, after the intervention, the joint distribution P (X,Y ) =
P (Y )P (X|Y ) will be changed to a new joint distribution P ′(X,Y ) = P ′(Y )P (X|Y ). Then P (X) will be changed to
P ′(X) =

∫
y
P ′(Y )P (X|Y )dy. By applying Bayes’ rule, P (Y |X) = P (Y )P (X|Y )/P (X) will change to a different

distribution P ′(Y |X) = P ′(Y )P (X|Y )/P ′(X) unless P ′(Y )/P ′(X) = P (Y )/P (X) which is a special case. Therefore,
P (Y |X) and P (X) generally are entangled when Y causes X .

To provide more intuition, we illustrate a toy example in Fig. 4. For example, as illustrated in Fig. 4(a), when P (Y = 0) =
P (Y = 1) = 0.5, P (Y = 2) = P (Y = 3) = 0 , the data is drawn from either P (X|Y = 0) or P (X|Y = 1), then P (X) =
0.5P (X|Y = 0)+0.5P (X|Y = 1). However, if the class prior is changed to P ′(Y = 0) = P ′(Y = 1) = 0, P ′(Y = 2) =
P ′(Y = 3) = 0.5, as illustrated in Fig. 4(b), instead of drawing data belonging to Y = 0 and Y = 1, the data belonging
to Y = 2 and Y = 3 will be drawn, and the data distribution becomes P ′(X) = 0.5P (X|Y = 2) + 0.5P (X|Y = 3).
Meanwhile, the change in P (Y ) also leads to a change in P (Y |X). The changes of P (X) and P (Y |X) both come from
changes of P (Y ), indicating that P (X) contains information of P (Y |X). Therefore the SSL-based methods can be useful
in this case.

When feature X is a cause of Y , intervention on P (Y ) will change the function f ′ or the distribution of UY but leave P (X)
unchanged. For example, from Fig. 4(c) to Fig. 4(d), the function f ′ will be changed to output Y = 0 or Y = 1 instead of
Y = 2 or Y = 3 to account for the label distribution change. The change of the selected label sets will only change the
classification rules (tasks). It is clear that relabeling the sampled data points with different labels according to the new rules
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Table 3: Test accuracies (%) of different methods on XYgaussian (causal) and YXgaussian (anticausal) datasets with
different types of label noise. Estimation errors obtained by CDNL estimator are shown in the parentheses after noise rates.

XYguassian Sym Instance
(causal) 20% (0.196) 30% (0.142) 40% (0.131) 20% (0.150) 30 (0.127) 40% (0.171)
Forward 98.9±0.21 98.35±0.19 96.98±0.37 98.85±0.17 98.29±0.24 96.72±0.63
Reweighting 98.61±0.10 99.01±0.12 96.42±1.2 99.54±0.23 99.25±0.28 98.37±0.61
T-Revision 99.44±0.12 98.11±0.12 97.08±1.48 99.54±0.23 99.26±0.22 98.36±0.59
JoCoR (SSL) 98.05±0.03 97.63±0.16 97.11±0.19 98.0±0.11 97.65±0.21 97.26±0.09
MoPro (SSL) 96.75±0.67 95.5±1.3 79.76±4.95 95.85±0.87 95.26±1.78 78.24±6.1
Dividemix (SSL) 97.58±0.4 96.13±0.95 93.31±2.17 96.61±1.05 95.98±1.56 94.14±2.28
Mixup (SSL) 96.86±0.59 96.06±0.63 92.55±1.54 97.0±0.46 96.44±0.51 93.57±0.71
YXguassian Sym Instance
(anticausal) 20% (0.021) 30% (0.008) 40% (0.005) 20% (0.023) 30 (0.013) 40% (0.005)
Forward 86.28±0.19 86.04±0.14 85.24±0.41 86.22±0.12 85.98±0.23 85.64±0.43
Reweighting 86.23±0.14 85.19±0.25 85.13±0.68 86.39±0.11 86.04±0.26 85.54±0.39
T-Revision 86.43±0.13 85.2±0.12 85.23±0.32 86.4±0.27 86.03±0.25 85.54±0.39
JoCoR (SSL) 86.14±0.08 85.88±0.22 85.23±0.53 86.04±0.09 85.86±0.28 85.1±0.26
MoPro (SSL) 85.17±0.71 83.73±1.32 81.11±2.35 85.17±0.49 84.4±0.54 82.2±1.06
Dividemix (SSL) 85.03±1.07 85.9 ±0.28 85.09±1.34 85.8±0.85 85.74±0.54 85.8±0.36
Mixup (SSL) 85.92±0.48 84.3±2.34 82.62±2.78 86.2±0.22 85.62±0.55 82.08±4.57

Table 4: Test accuracies (%) of different methods on Balancescale (causal) with different types of label noise. Estimation
errors obtained by CDNL estimator are shown in the parentheses after noise rates.

Balancescale Sym Pair Instance
(Causal) 20% (0.099) 40% (0.071) 20% (0.113) 40% (0.109) 20% (0.110) 40% (0.090)
Forward 74.24±8.74 78.8±10.53 83.36±2.23 72.48±9.12 75.36±5.53 69.6±9.71

Reweighting 89.76±3.37 89.28±1.87 94.08±2.41 79.36±15.02 90.72±2.8 86.24±1.38
T-Revision 92.64±0.93 89.76±3.14 92.32±3.97 81.12±13.91 89.12±3.45 85.28±2.06

JoCoR (SSL) 76.96±3.87 58.08±13.43 72.32±10.43 60.16±12.88 73.28±4.34 51.2±6.13
MoPro (SSL) 84.29±2.38 84.13±1.81 84.73±3.16 80.79±7.93 86.19±2.59 78.1±7.28

Dividemix (SSL) 88.16±0.32 86.56±0.93 81.12±0.39 62.96±1.47 87.52±0.64 79.04±1.18
Mixup (SSL) 86.08±2.51 83.68±3.49 86.72±1.3 67.68±17.1 84.96±2.17 75.36±5.46

will not influence the distribution of the sampled data points P (X), and P (X) is disentangled with the different label sets.
Then P (X) generally does not contain information to learn clean label Y . Therefore the SSL-based methods may not work
well in this case.

B. Additional experiments
B.1. Results on Synthetic Datasets with A Large Sample Size

We increase the sample size for both XYguassian and YXguassian from 10000 to 20000. The experiment settings are the
same as in our main paper. The results show that on the causal dataset XYguassian, model-based methods perform better
than SSL-based methods. It is because that P (X) does not contain information of P (Y |X), then SSL-based methods may
not be helpful. On the anticausal dataset YXguassian, model-based methods also perform better than SSL-based methods.
The reason is that given sufficiently a large amount of training data, the advantage of model-based methods (See Tab. 2
that is statistically consistent will be demonstrated. However, for the real-world application, the dataset can contain high
dimensional features such as image datasets. In such a case, because of the curse of dimensionality, the training sample size
usually is insufficient. Therefore, SSL-based methods can also be important and have many real-world applications.

B.2. More Results on Real World Datasets

As mentioned in our main paper, although Waveform is an anticausal dataset, model-based methods have better performance
than SSL-based methods, and the estimation error is also large. The reason can be that 1). P (X) contains information
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Table 5: Test accuracies (%) of different methods on Waveform (anticausal) datasets with different types of label noise.
Estimation errors obtained by CDNL estimator are shown in the parentheses after noise rates.

Waveform Sym Pair Instance
(Anticausal) 20% (0.138) 40% (0.257) 20% (0.257) 40% (0.12) 20% (0.099) 40% (0.089)

Forward 74.66±7.68 74.76±3.3 70.02±10.79 66.46±3.84 59.78±12.14 56.62±12.87
Reweighting 84.58±1.89 83.92±1.38 83.30±2.28 73.22±4.51 85.02±0.93 83.3±3.02
T-Revision 84.24±1.3 85.70±0.66 82.72±6.03 68.86±8.56 84.04±2.38 83.5±1.87

JoCoR (SSL) 83.44±0.83 60.28±1.46 80.64±1.29 57.14±4.17 63.84±8.8 54.56±4.44
MoPro (SSL) 76.62±7.16 76.37±7.0 79.55±2.32 58.44±7.11 77.36±4.04 65.14±5.61

Dividemix (SSL) 83.36±0.63 82.06±1.25 69.74±1.9 58.48±0.98 73.00±2.30 66.86±1.26
Mixup (SSL) 81.38±1.67 79.48±1.05 80.54±2.51 72.34±4.58 78.88±1.05 71.26±5.44

of P (Y |X), but the information contained is limited, or 2). The information of P (Y |X) contained in P (X) is hard to be
exploited by existing unsupervised methods.

In Tab. 6, for baselines, if the causal graph they generate contains any variables in the feature set X that cause Y , and Y does
not cause any variables in the feature set, then the prediction is “causal”. If Y is a cause to at least one variable in X , then
the prediction is “anticausal”. If there are no edges between any variables in X and Y , the prediction is considered None.

B.3. Compare with Existing Causal Discovery Methods

To the best of our knowledge, our method discovers causal and anticausal relations when the dataset contains noisy labels,
there are no ”natural” baselines for the CDNL. For completeness, we would like to add two existing causal discovery
methods which are not designed to handle the noisy data for comparison. Specifically, PC (Spirtes et al., 2000) is a famous
score-based approach for causal discovery, which is based on conditional tests on variables and sets of variables. GIES
(Hauser & Bühlmann, 2012) is a score-based Bayesian algorithm that heuristically searches the graph which minimizes a
likelihood score on the data.

As mentioned in our paper, on all anticausal datasets except Waveform, the difference d(P̂ (Ỹ |Y ∗)|P̂ (Ỹ |Y ′)) obtained
by employing CDNL estimator is lower than 0.05. Here, we set the threshold of CDNL estimator to 0.05, i.e., if
d(P̂ (Ỹ |Y ∗)|P̂ (Ỹ |Y ′)) smaller than or equal to 0.05, then it is anticausal dataset; if d(P̂ (Ỹ |Y ∗)|P̂ (Ỹ |Y ′)) greater than
0.05, then it is causal dataset. The results on two causal datasets show that our method is more accurate and robust than the
two baselines. Note that, to the best of our knowledge, existing methods can not be directly applied to MNIST and CIFAR10
datasets because there are too many (pixel-level) variables in an image (feature set).

Table 6: Detecting causal and anticausal relations with different causal discovery methods.

Sym Pair Instance
0.20% 0.40% 0.20% 0.40% 0.20% 0.40%

Krkp (causal)
GIES anticausal anticausal anticausal anticausal anticausal causal
PC anticausal anticausal anticausal anticausal anticausal anticausal

CDNL causal causal causal causal causal causal

Splice (causal)
GIES anticausal anticausal anticausal anticausal anticausal anticausal
PC anticausal none anticausal anticausal anticausal none

CDNL causal causal causal causal causal causal

Balancescale (causal)
GIES causal causal causal anticausal causal causal
PC anticausal none anticausal anticausal anticausal anticausal

CDNL causal causal causal causal causal causal

C. Proof of Theorem 3.1
In this section, we will prove the theorem in our main paper.
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Proof. Let f̃(x) = argmaxi P (Ỹ = i|X = x) output the noisy label of every instance x.

P (Ỹ = i|Y ∗ = j) = EP (X|Y ∗=j)[1{f̃(X)=i}]

=

∫
x

1{f̃(x)=i}P (X = x|Y ∗ = j)dx

=

∫
x

1{f̃(x)=i}
P (Y ∗ = j|X = x)P (X = x)

P (Y ∗ = j)
dx

= EP (X)

[
1{f̃(X)=i}

P (Y ∗ = j|X)

P (Y ∗ = j)

]
. (6)

Then similarly,

P (Ỹ = i|Y ′ = j) = EP (X|Y ′=j)

[
1{f̃(X)=i}

]
=

∫
x

1{f̃(x)=i}P (X = x|Y ′ = j)dx

=

∫
x

1{f̃(x)=i}
P (Y ′ = j|X = x)P (X = x)

P (Y ′ = j)
dx

= EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)

P (Y ′ = j)

]
. (7)

The last equality is obtained by using the reweighting technique (Liu & Tao, 2016), which requires that P (X|Y ∗ = j) and
P (X|Y ′ = j) have the same support. Then we calculate the difference P (Ỹ = i|Y ′ = j)− P (Ỹ = i|Y ∗ = j) as follows.

P (Ỹ = i|Y ′ = j)− P (Ỹ = i|Y ∗ = j)

=EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)

P (Y ′ = j)

]
− EP (X)

[
1{f̃(X)=i}

P (Y ∗ = j|X)

P (Y ∗ = j)

]
=EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ′ = j)
− P (Y ∗ = j|X)

P (Y ∗ = j)

)]
=EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)P (Y ∗ = j)− P (Y ∗ = j|X)P (Y ′ = j)

P (Y ′ = j)P (Y ∗ = j)

]
=

1

P (Y ∗ = j)
EP (X)

[
1{f̃(X)=i}

P (Y ′ = j|X)P (Y ∗ = j)− P (Y ∗ = j|X)P (Y ′ = j)

P (Y ′ = j)

]
=

1

P (Y ∗ = j)
EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ∗ = j)

P (Y ′ = j)
− P (Y ∗ = j|X)

)]
(8)

By using the above equation, the estimation error d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) is as follows.

d(P (Ỹ |Y ′), P (Ỹ |Y ∗)) =

L∑
i

L∑
j

|P (Ỹ = i|Y ′ = j)− P (Ỹ = i|Y ∗ = j)|
L2

=
1

L2

L∑
i

L∑
j

∣∣∣∣ 1

P (Y ∗ = j)
EP (X)

[
1{f̃(X)=i}

(
P (Y ′ = j|X)

P (Y ∗ = j)

P (Y ′ = j)
− P (Y ∗ = j|X)

)]∣∣∣∣
which completes the proof.
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