
Graph Generative Model for Benchmarking Graph Neural Networks

Minji Yoon 1 Yue Wu 1 John Palowitch 2 Bryan Perozzi 2 Russ Salakhutdinov 1

Abstract

As the field of Graph Neural Networks (GNN)
continues to grow, it experiences a correspond-
ing increase in the need for large, real-world
datasets to train and test new GNN models on
challenging, realistic problems. Unfortunately,
such graph datasets are often generated from on-
line, highly privacy-restricted ecosystems, which
makes research and development on these datasets
hard, if not impossible. This greatly reduces
the amount of benchmark graphs available to re-
searchers, causing the field to rely only on a hand-
ful of publicly-available datasets. To address this
problem, we introduce a novel graph generative
model, Computation Graph Transformer (CGT)
that learns and reproduces the distribution of real-
world graphs in a privacy-controlled way. More
specifically, CGT (1) generates effective bench-
mark graphs on which GNNs show similar task
performance as on the source graphs, (2) scales
to process large-scale graphs, (3) incorporates off-
the-shelf privacy modules to guarantee end-user
privacy of the generated graph. Extensive ex-
periments across a vast body of graph generative
models show that only our model can successfully
generate privacy-controlled, synthetic substitutes
of large-scale real-world graphs that can be effec-
tively used to benchmark GNN models.

1. Introduction
Graph Neural Networks (GNNs) (Kipf & Welling, 2016a;
Chami et al., 2022) are machine learning models that learn
the dependences in graphs via message passing between
nodes. Various GNN models have been widely applied on a
variety of industrial domains such as misinformation detec-
tion (Benamira et al., 2019), financial fraud detection (Wang
et al., 2019), traffic prediction (Zhao et al., 2019), and so-

1Carnegie Mellon University 2Google Research. Correspon-
dence to: Minji Yoon <minjiy@cs.cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

cial recommendation (Ying et al., 2018). However, datasets
from these industrial tasks are overwhelmingly proprietary
and privacy-restricted and thus almost always unavailable
for researchers to study or evaluate new GNN architectures.
This state-of-affairs means that in many cases, GNN models
cannot be trained or evaluated on graphs that are appropriate
for the actual tasks that they need to execute.

In this paper, we propose a novel graph generation problem
to overcome the limited access to real-world graph datasets.
Given a graph, our goal is to generate synthetic graphs that
follow its distribution in terms of graph structure, node
attributes, and labels, making them usable as substitutes for
the original graph for GNN research. Any observations or
results from experiments on the original graph should be
near-reproduced on the synthetic graphs. Additionally, the
graph generation process should be scalable and privacy-
controlled to consume large-scale and privacy-restricted
real-world graphs. Formally, our new graph generation
problem is stated as follow:
Problem Definition 1. Let A, X , and Y denote adjacency,
node attribute, and node label matrices; given an original
graph G = (A,X ,Y), generate a synthetic graph dataset
G′ satisfying:

• Benchmark effectiveness: performance rankings among
m GNN models on G′ should be similar to the rankings
among the same m GNN models on G.

• Scalability: computation complexity of graph generation
should be linearly proportional to the size of the original
graph O(|G|) (i.e., number of nodes or edges).

• Privacy guarantee: any syntactic privacy notions are
given to end users (e.g., k-anonymity).

While there is already a vast body of work on graph genera-
tion, we found that no study has fully addressed the problem
setting above. (Leskovec et al., 2010; Palowitch et al., 2022)
generate random graphs using a few known graph patterns,
while (You et al., 2018; Liao et al., 2019) learn only graph
structures without considering node attribute/label informa-
tion. Recent graph generative models (Shi et al., 2020; Luo
et al., 2021) are mostly specialized to small-scale molecule
graph generation.

In this work, we introduce a novel graph generative model,
Computation Graph Transformer (CGT) that addresses the
three requirements above for the benchmark graph gen-

1

Graph Generative Model for Benchmarking Graph Neural Networks

eration problem. First, we reframe the graph generation
problem into a discrete-value sequence generation problem.
Motivated by GNN models that avoid scalability issues by
operating on egonets sampled around each node, called
computation graphs (Hamilton et al., 2017), we learn the
distribution of computation graphs rather than the whole
graph. In other words, our generated graph dataset G′ will
have a form of a set of computation graphs where GNN
models can run immediately without preceded egonet sam-
pling process. In addition to the scalability benefit, learning
distributions of computation graphs which are the direct
input to GNN models may also help to get better benchmark
effectiveness. Then, instead of learning the joint distribu-
tion of graph structures and node attributes, we devise a
novel duplicate encoding scheme for computation graphs
that transforms an adjacency and feature matrix pair into a
single, dense feature matrix that is isomorphic to the original
pair. Finally, we quantize the feature matrix into a discrete
value sequence that will be consumed by a Transformer
architecture (Vaswani et al., 2017) adapted to our graph
generation setting. After the quantization, our model can
be easily extended to provide k-anonymity or differential
privacy guarantees on node attributes and edge distributions
by incorporating off-the-shelf privacy modules.

Extensive experiments on real-world graphs with a diverse
set of GNN models demonstrate CGT provides significant
improvement over existing generative models in terms of
benchmark effectiveness (up to 1.03 higher Spearman corre-
lations, up to 33% lower MSE between original and repro-
duced GNN accuracies), scalability (up to 35k nodes and
8k node attributes), and privacy guarantees (k-anonymity
and differential privacy for node attributes). CGT also pre-
serves graph statistics on computation graphs by up to 11.01
smaller Wasserstein distance than previous approaches.

In sum, our contributions are: 1) a novel graph generation
problem featuring three requirements of modern graph learn-
ing; 2) reframing of the graph generation problem into a
discrete-valued sequence generation problem; 3) a novel
Transformer architecture able to encode the original com-
putation graph structure in sequence learning; and finally 4)
comprehensive experiments that evaluate the effectiveness
of graph generative models to benchmark GNN models.

2. Related Work
Traditional graph generative models extract common pat-
terns among real-world graphs (e.g. nodes/edge/triangle
counts, degree distribution, graph diameter, clustering coef-
ficient) (Chakrabarti & Faloutsos, 2006) and generate syn-
thetic graphs following a few heuristic rules (Erdős et al.,
1960; Leskovec et al., 2010; Leskovec & Faloutsos, 2007;
Albert & Barabási, 2002). However, they cannot gener-
ate unseen patterns on synthetic graphs (You et al., 2018).

More importantly, most of them generate only graph struc-
tures, sometimes with low-dimensional boolean node at-
tributes (Eswaran et al., 2018). General-purpose deep
graph generative models exploit GAN (Goodfellow et al.,
2014), VAE (Kingma & Welling, 2013), and RNN (Zaremba
et al., 2014) to learn graph distributions (Guo & Zhao, 2020).
Most of them focus on learning graph structures (You et al.,
2018; Liao et al., 2019; Simonovsky & Komodakis, 2018;
Grover et al., 2019), thus their evaluation metrics are graph
statistics such as orbit counts, degree coefficients, and clus-
tering coefficients which do not consider quality of gener-
ated node attributes and labels. Molecule graph generative
models are actively studied for generating promising candi-
date molecules using VAE (Jin et al., 2018), GAN (De Cao
& Kipf, 2018), RNN (Popova et al., 2019), and recently
invertible flow models (Shi et al., 2020; Luo et al., 2021).
However, most of their architectures are specialized to small-
scaled molecule graphs (e.g., 38 nodes per graph in the
ZINC datasets) with low-dimensional attribute space (e.g., 9
node attributes indicating atom types) and distinct molecule-
related information (e.g., SMILES representation or chemi-
cal structures such as bonds and rings) (Suhail et al., 2021).

3. From Graph Generation to Sequence
Generation

In this section, we illustrate how to convert the whole-graph
generation problem into a discrete-valued sequence gen-
eration problem. An input graph G is given as a triad
of adjacency matrix A ∈ Rn×n, node attribute matrix
X ∈ Rn×d, and node label matrix Y ∈ Rn with n nodes
and d-dimensional node attribute vectors.

3.1. Computation graph sampling in GNN training

Given large-scale real-world graphs, instead of operating
on the whole graph, GNNs extract each node v’s egonet
Gv, namely a computation graph, then compute embed-
dings of node v on Gv. This means that in order to bench-
mark GNN models, we are not necessarily required to learn
the distribution of the whole graph; instead, we can learn
the distribution of computation graphs which are the di-
rect input to GNN models. As with the global graph, a
computation graph Gv is composed of a sub-adjacency ma-
trix Av ∈ Rnv×nv , a sub-feature matrix Xv ∈ Rnv×d,
and node v’s label Yv ∈ R, where each of nv rows cor-
respond to nodes sampled into the computation graph.
Our problem then reduces to: given a set of computation
graphs {Gv = (Av,Xv,Yv) : v ∈ G} sampled from an
original graph, we generate a set of computation graphs
{G′

v = (A′
v,X ′

v,Y ′
v)}. This reframing allows the graph

generation process to scale to large-scale graphs.

2

Graph Generative Model for Benchmarking Graph Neural Networks

Figure 1: Computation graphs with s = 2 neighbor samples and L = 2 depth: (a) input graph; (b) original computation graphs have
differently-shaped adjacency (blue) and attribute (yellow) matrices; (c) duplicate encoding scheme outputs the same adjacency matrix and
identically-shaped attribute matrices.

3.2. Duplicate encoding scheme for computation graphs

Various sampling methods have been proposed to decide
which neighboring nodes to add to a computation graph Gv
given a target node v (Hamilton et al., 2017; Chen et al.,
2018; Huang et al., 2018; Yoon et al., 2021). Two common
rules across these sampling methods are 1) the number of
neighbors sampled for each node is limited to keep com-
putation graphs small and 2) the maximum distance (i.e.,
maximum number of hops) from the target node v to sam-
pled nodes is decided by the depth of GNN models. Details
on how to sample computation graphs can be found in Ap-
pendix A.3. This maximum number of neighbors is called
the neighbor sampling number s and the maximum number
of hops from the target node is called the depth of compu-
tation graphs L. Figure 1(b) shows computation graphs of
nodes A, B, and D sampled with sampling number s = 2
and depth L = 2. Note that the shapes of computation
graphs are variable.

Here we introduce a duplicate encoding scheme for compu-
tation graphs that is conceptually simple but brings a signifi-
cant consequence: it fixes the structure of all computation
graphs to the L-layered s-nary tree structure, allowing us to
model all adjacency matrices as a constant. Starting from
the target node v as a root node, we sample s neighbors
iteratively L times from the computation graph. When a
node has fewer neighbors than s, the duplicate encoding
scheme defines a null node with zero attribute vector (node
’−’ in node B and D’s computation graphs in Figure 1(c))
and samples it as a padding neighbor. When a node has a
neighbor also sampled by another node, the duplicate en-
coding scheme copies the shared neighbor and provides
each copy to parent nodes (node D in node A’s computation
graph is copied in Figure 1(c)). Each node attribute vector

is also copied and added to the feature matrix. As shown
in Figure 1(c), the duplicate encoding scheme ensures that
all computation graphs have an identical adjacency matrix
(presenting a balanced s-nary tree) and an identical shape
of feature matrices. Under the duplicate encoding scheme,
the graph structure information is fully encoded into feature
matrices, which we will explain in details in Section 5.3.
Note that in order to fix the adjacency matrix, we need to fix
the order of nodes in adjacency and attribute matrices (e.g.,
breadth-first ordering in Figure 1(c)).

Now our problem reduces to learning the distribution of
(duplicate-encoded) feature matrices of computation graphs:
given a set of feature matrix-label pairs {(X̃v,Yv) : v ∈ G}
of duplicate-encoded computation graphs, we generate a
set of feature matrix-label pairs {(X̃ ′

v,Y ′
v)}.

3.3. Quantization

To learn the distribution of feature matrices of computa-
tion graphs, we quantize feature vectors into discrete bins;
specifically, we cluster feature vectors in the original graph
using k-means and map each feature vector to its cluster
id. Quantization is motivated by 1) privacy benefits and
2) ease of modeling. By mapping different feature vectors
(which are clustered together) into the same cluster id, we
can guarantee k-anonymity among them (more details in
Section 4.2). Ultimately, quantization further reduces our
problem to learning the distribution of sequences of dis-
crete values, namely the sequences of cluster ids of feature
vectors in each computation graph. Such a problem is natu-
rally addressed by Transformers, state-of-the-art sequence
generative models (Vaswani et al., 2017). In Section 4, we
introduce the Computational Graph Transformer (CGT), a
novel architecture which learns the distribution of computa-

3

Graph Generative Model for Benchmarking Graph Neural Networks

Figure 2:Overview of our benchmark graph generation framework: (1) We sample a set of computation graphs of variable shapes
from the original graph, then (2) duplicate-encode them to �x adjacency matrices to a constant. (3) Duplicate-encoded feature matrices are
quantized into cluster id sequences and fed into our Computation Graph Transformer. (4) Generated cluster id sequences are de-quantized
back into duplicate-encoded feature matrices and fed into GNN models with the constant adjacency matrix.

tion graph structures encoded in the sequences effectively.

3.4. End-to-end framework for a benchmark graph
generation problem

Figure 2 summarizes the entire process of mapping a graph
generation problem into a discrete sequence generation prob-
lem. In the training phase, we 1) sample a set of computation
graphs from the input graph, 2) encode each computation
graph using the duplicate encoding scheme to �x adjacency
matrices, 3) quantize feature vectors to cluster ids they be-
long to, and �nally 4) hand over a set of(sequence of cluster
ids, node label)pairs to our new Transformer architecture to
learn their distribution. In the generation phase, we follow
the same process in the opposite direction: 1) the trained
Transformer outputs a set of(sequence of cluster ids, node
label) pairs, 2) we de-quantize cluster ids back into the fea-
ture vector space by replacing them with the mean feature
vector of the cluster, 3) we regenerate a computation graph
from each sequence of feature vectors with the adjacency
matrix �xed by the duplicate encoding scheme, and �nally
4) we feed the set of generated computation graphs into the
GNN model we want to train or evaluate.

4. Model

We present the Computation Graph Transformer that en-
codes the computation graph structure into sequence gener-
ation process with minimal modi�cation to the Transformer
architecture. Then we check our model satis�es the privacy
and scalability requirements from Problem De�nition 1.

4.1. Computation Graph Transformer (CGT)

In this work, we extend a two-stream self-attention mecha-
nism, XLNet (Yang et al., 2019), which modi�es the Trans-
former architecture (Vaswani et al., 2017) with a causal self-

attention mask to enable auto-regressive generation. Given
a sequences = [s1; � � � ; sT], theM -layered Transformer
maximizes the likelihood under the forward auto-regressive
factorization as follows:

max
�

logp� (s) =
TX

t =1

logp� (st js<t)

=
TX

t =1

log
exp(q(L)

� (s1:t � 1)> e(st))
P

s06= st
exp(q(L)

� (s1:t � 1)> e(s0))

where token embeddinge(st) maps discrete input idst to a
randomly initialized trainable vector, and query embedding
q(L)

� (s1:t � 1) encodes information until(t � 1)-th token in
the sequence. More details on the XLNet architecture can
be found in the Appendix A.12. Here we describe how we
modify XLNet to encode computation graphs effectively.

Position embeddings: In the original Transformer archi-
tecture, each token receives a position embedding encoding
its position in the sequence. In our model, sequences are
�attened computation graphs (the input computation graph
in Figure 3(a) is �attened into input sequence in Figure 3(b)).
To encode the original computation graph structure, we pro-
vide different position embeddings to different layers in the
computation graph, while nodes at the same layer share the
same position embedding. Whenl(t) denotes the layer num-
ber wheret-th node is located at the original computation
graph, position embeddingpl (t) indexed by the layer num-
ber is assigned tot-th node. In Figure 3(b), nodeC; D; F
andH located at the1-st layer in the computation graph
have the same position embeddingp1.

Attention masks: In the original architecture, query and
context embeddings,q(l)

t andh(l)
t , attend to all context em-

beddingsh (l � 1)
1:t � 1 beforet. In the computation graph, each

node is sampled based on its parent node (which is sampled

4

Graph Generative Model for Benchmarking Graph Neural Networks

Figure 3:Computation Graph Transformer (CGT): (a,b) Given a sequence �attened from the input computation graph,CGT generates
context in the forward direction.e(st), q(l)

t , andh(l)
t denote the token, query, and context embedding oft-th token at thel-th layer;pl (t)

andys1 denote the position embeddings oft-th token and label embedding of the whole sequence, respectively. (c) The cost-ef�cient
version of CGT divides the input sequence into shorter ones composed only of direct ancestor nodes.

based on its own parent nodes) and is not directly affected
by its sibling nodes. To encode this relationship more ef-
fectively, we mask all nodes except direct ancestor nodes
in the computation graph, i.e., the root node and any nodes
between the root node and the leaf node. In Figure 3(b),
nodeC's context/query embeddings attend only to direct an-
cestors, nodesA andB . Note that the number of unmasked
tokens are �xed toL in our architecture because there are al-
waysL � 1 direct ancestors inL -layered computation graphs.
Based on this observation, we design a cost-ef�cient ver-
sion ofCGT that has shorter sequence length and preserves
XLNet's auto-regressive masking as shown in Figure 3(c).

Label conditioning: Distributions of neighboring nodes
are not only affected by each node's feature information
but also by its label. It is well-known that GNNs improve
over MLP performance by adding convolution operations
that augment each node's features with neighboring node
features. This improvement is commonly attributed to nodes
whose feature vectors are noisy (outliers among nodes with
the same label) but that are connected with "good" neighbors
(whose features are well-aligned with the label). In this case,
without label information, we cannot learn whether a node
has feature-wise homogeneous neighbors or feature-wise
heterogeneous neighbors but with the same label. In our
model, query embeddingsq(0)

t are initialized with label
embeddingsys1 that encode the label of the root nodes1.

4.2. Theoretical analysis

Our framework providesk-anonymity for node attributes
and edge distributions by using k-means clustering with the
minimum cluster sizek (Bradley et al., 2000) during the
quantization phase. Note that we de�ne edge distributions as
neighboring node distributions of each node. The full proofs
for the following claims can be found in Appendix A.4.

Claim 1 (k-anonymity for node attributes and edge distribu-

tions). In the generated computation graphs, each node's
attributes and edge distribution appear at leastk times.

We can also provide differential privacy (DP) for node at-
tributes and edge distributions by exploiting DP k-means
clustering (Chang et al., 2021) during the quantization phase
and DP stochastic gradient descent (DP-SGD) (Song et al.,
2013) to train the Transformer. Unfortunately, however, DP-
SGD for Transformer networks doesn't yet work reliably in
practice. Thus we cannot guaranteestrict DP for edge dis-
tributions in practice (experimental results in Section 5.2.3
and more analysis in Appendix A.4). Thus, here, we claim
DP only for node attributes.

Claim 2 ((�; �)-Differential Privacy for node attributes).
With probability at least1� � , our generative modelA gives
� -differential privacy for any graphG, any neighboring
graphG� v without any nodev 2 G, and any new computa-
tion graphGcg generated from our model as follows:

e� � �
P r [A(G) = Gcg]

P r [A(G� v) = Gcg]
� e�

Finally, we show thatCGT satis�es the scalability require-
ment in Problem De�nition 1:

Claim 3 (Scalability). To generateL-layered computation
graphs with neighbor sampling numbers on a graph with
n nodes, computational complexity ofCGT training is
O(s2L n), and the cost-ef�cient version isO(L 2sL n).

5. Experiments
5.1. Experimental setting

Baselines: We choose5 state-of-the-art graph gener-
ative models that learn graph structures with node at-
tribute information: two VAE-based general graph gener-
ative models, VGAE (Kipf & Welling, 2016b) and Graph-
VAE (Simonovsky & Komodakis, 2018) and three molecule

5

Graph Generative Model for Benchmarking Graph Neural Networks

(a) Reproduced GNN accuracy (b) Benchmark effectiveness (c) Scalability

Figure 4:Benchmark effectiveness and scalability in graph generation.(a) We evaluate graph generative models by how well they
reproduce GNN performance from the original graph (X -axis: original accuracy) on synthetic graphs (Y -axis: reproduced accuracy). Our
method is closest tox = y, which is ideal. (b) We measure Mean Square Error (MSE) and Pearson/Spearman correlations from results in
(a). Our method shows the lowest MSE and highest correlations. (c) We measure the computation time (training + evaluation) of each
graph generative model. Only our method is scalable across all datasets while showing the best performance. O.O.T denotes out-of-time
(> 20 hrs) and O.O.M denotes out-of-memory errors.

Table 1:Privacy-Performance trade-off in graph generation

Original No privacy
K-anonymity DP kmean (� = 0 :01) DP SGD (� = 0 :1)

k = 100 k = 500 k = 1000 � = 1 � = 10 � = 25 � = 10 6 � = 10 9

Pearson(") 1.000 0.934 0.916 0.862 0.030 0.874 0.844 0.804 0.112 0.890
Spearman(") 1.000 0.935 0.947 0.812 0.018 0.869 0.805 0.807 0.116 0.959

graph generative models, GraphAF (Shi et al., 2020),
GraphDF (Luo et al., 2021), and GraphEBM (Suhail et al.,
2021). While VGAE encodes the large-scale whole graph
at once, the other4 graph generative models are designed
to process a set of small-sized graphs. Thus we provide
the original whole graph to GVAE and a set of sampled
computation graphs to the other baselines, respectively.

Datasets: We evaluate on7 public datasets —3 citation
networks (Cora, Citeseer, and Pubmed) (Sen et al., 2008),
2 co-purchase graphs (AmazonC and AmazonP) (Shchur
et al., 2018), and2 co-authorship graph (MS CS and MS
Physic) (Shchur et al., 2018). Note that these datasets are
the largest ones the baselines have been applied on. Data
statistics can be found in Appendix A.15.

GNN models: We choose9 of the most popular GNN
models for benchmarking:4 GNN models with different
aggregators, GCN (Kipf & Welling, 2016a), GIN (Xu et al.,
2018), SGC (Wu et al., 2019), and GAT (Veli�cković et al.,
2017),4 GNN models with different sampling strategies,
GraphSage (Hamilton et al., 2017), FastGCN (Chen et al.,
2018), AS-GCN (Huang et al., 2018), and PASS (Yoon et al.,
2021), and one GNN model with PageRank operations,
PPNP (Klicpera et al., 2018). Descriptions of each GNN
model can be found in the Appendix A.11.1.

5.2. Main results

In this experiment, each graph generative model learns the
distributions of7 graph datasets and generates synthetic
graphs. Then we train and evaluate9 GNN models on
each pair of original and synthetic graphs, and measure
Mean Square Error (MSE) and Pearson/Spearman correla-
tions (Myers et al., 2013) between the GNN performance
on each pair of graphs. As shown in Figure 4(a), each graph
generative model compares up to63pairs of original and re-
produced GNN performances. Unless additionally speci�ed,
K -anonymity is set toK = 30 across all experiments.

5.2.1. BENCHMARK EFFECTIVENESS.

In Figure 4(b), our proposedCGT shows up to33%lower
MSE,0:80 higher Pearson and1:03 higher Spearman cor-
relations than all baselines. GraphVAE fails to converge,
thus omitted in Figure 4. This results clearly show the graph
generative models specialized to molecules cannot be gen-
eralized to the large-scale graphs with a high-dimensional
feature space. The predicted distributions by baselines some-
times collapse to generating the the same node feature/labels
across all nodes (e.g.,0% or 100%accuracy for all GNN
models in Figure 4(a)), which is obviously not the most
effective benchmark.

6

Graph Generative Model for Benchmarking Graph Neural Networks

Table 2:Comparison with simple privacy baselines that add noisy nodes and edges to the original graph.Node/Edge re-ident. prob.
columns show node/edge re-identi�cation probabilities of each privacy method.- denotes no privacy trick has applied.

Node attributes Edge distribution Node re-ident. prob. (#) Edge re-ident. prob. (#) GCN SGC GIN GAT MSE (#)

-

Edge addition (� 2) 100% 50% 0.82 0.82 0.80 0.55 0.021
Edge addition (� 10) 100% 10% 0.39 0.40 0.37 0.70 0.168
Edge deletion (50%) 100% 50% 0.83 0.83 0.82 0.84 0.001
Edge deletion (100%) 100% 0% 0.73 0.73 0.73 0.72 0.014

Noise addition (� 5)

- 20% 100% 0.82 0.82 0.82 0.18 0.106
Edge addition (� 2) 20% 50% 0.67 0.67 0.68 0.07 0.169
Edge addition (� 10) 20% 10% 0.07 0.30 0.31 0.07 0.449
Edge deletion (50%) 20% 50% 0.78 0.77 0.77 0.15 0.120
Edge deletion (100%) 20% 0% 0.39 0.40 0.38 0.11 0.291

K -anonymity (5) K -anonymity (5) 20% 20% 0.83 0.82 0.83 0.83 0.001
K -anonymity (100) K -anonymity (100) 1% 1% 0.75 0.74 0.76 0.74 0.010
K -anonymity (500) K -anonymity (500) 0:2% 0 :2% 0.52 0.49 0.51 0.52 0.114
K -anonymity (1000) K -anonymity (1000) 0:1% 0 :1% 0.12 0.12 0.11 0.08 0.548

Original graph 100% 100% 0.86 0.85 0.85 0.83 0.000

5.2.2. SCALABILITY .

Figure 4(c) shows scalability of each graph generative
model. VGAE and GraphAF meet out-of-memory errors on
MS Physic and MS CS, respectively. GraphDF takes more
than20 hours on the third smallest dataset, AmazonP. As
GraphDF does not generate any meaningful graph structures
even on the Cora and Citeseer datasets, we stop running
GraphDF and declare an out-of-time error. These results are
not surprising, given they are originally designed for small-
size molecule graphs, thus having many un-parallelizable
operations. OnlyCGT and GraphEBM scale to all graphs
successfully. However, note that GraphEBM fails to learn
any meaningful distributions from the original graphs as
shown in Figures 4(a) and 4(b). In Appendix A.5, we show
our proposedCGT scales to ogbn-arxiv (170K nodes and
1:2M edges) and ogbn-products (2:4M nodes and61:8M
edges) successfully.

5.2.3. PRIVACY.

As none of our baseline generative models provides privacy
guarantees, we examine the performance-privacy trade-off
across different privacy guarantees on the Cora dataset only
using our method. Fork-anonymity, we use the k-means
clustering algorithm (Bradley et al., 2000) varying the mini-
mum cluster sizek. For Differential Privacy (DP) for node
attributes, we use DP k-means (Chang et al., 2021) varying
the privacy cost� while setting� = 0 :01. In Table 1, higher
k and smaller� (i.e., stronger privacy) hinder the generative
model's ability to learn the exact distributions of the original
graphs; thus, the GNN performance gaps between original
and generated graphs increase (lower Pearson and Spear-
man correlations). To provide DP for edge distributions,
we use DP stochastic gradient descent (Song et al., 2013)
to train the transformer, varying the privacy cost� while
setting� = 0 :1. In Table 1, even with astronomically low
privacy cost (� = 106), the performance of our generative
model degrades signi�cantly. When we set� = 109 (which
is impractical), we can �nally see a reasonable performance.
This shows the limited performance of DP SGD on the

transformer architecture. Detailed GNN accuracies could
be found in Appendix A.7.

To verify the effectiveness ofK -anonymity in terms of re-
identi�cation attacks, we compare it with simple privacy
baselines that add noise on nodes/edges as follow:

• Edge addition: We addx times more random edges than
the original number of edges. Given a corrupted graph,
an original edge can be re-identi�ed with a probability of
1=x.

• Edge deletion:We deletex% of edges from the original
graph. Given a corrupted graph, an original edge can be
re-identi�ed with a probability of(100� x)=100%.

• Noise addition to node attributes:Given a binary node
attribute vector, whens elements in the vector are '1', we
randomly �ip ' 0' to ' 1' for xs times. Given a corrupted
graph, an original attribute can be re-identi�ed with a
probability of1=x.

• K -anonymity: As described in the paper, given a cor-
rupted graph, a node attribute vector and an edge distri-
bution of a node can be re-identi�ed with a probability of
1=K (Claim 1 in the original paper).

We run four GNN models (GCN, SGC, GIN, GAT) with
different privacy approaches on the Cora dataset and com-
puted MSE between GNN performance on the original and
synthetic (corrupted) graphs. As presented in the table,K -
anonymity (K =5) shows the smallest MSE (0:001) while
providing stronger privacy guarantees (20%re-identi�cation
for both node and edge distribution) than the baselines of
adding noise. For instance, the edge deletion (50%, 3rd row)
also shows the smallest MSE (0:001), but this approach does
not guarantee any privacy for node attributes and provides
a 50% chance of successful edge re-identi�cation. Note
that K -anonymity (K = 100), which provides a1% re-
identi�cation ratio, shows lower MSE (0:010) than most of
the other baselines.

These results are not surprising, according to a recent
work (Epasto et al., 2022) that analyzes noise required for
privacy guarantees on graph data. (Epasto et al., 2022)

7

Graph Generative Model for Benchmarking Graph Neural Networks

(a) (b)

Figure 5: CGT preserves distributions of graph statistics in
generated graphs:Duplicate encoding encodes graph structure
into feature matrices of computation graphs. In each computation
graph, # zero vectors is inversely proportional to node degree,
while # redundant vectors is proportional to edge density. We
measure Wasserstein distanceW (P; Q) between the original dis-
tributionQ and the distributionP generated by each baseline.

shows that the noise addition approach does not work well
for low-degree nodes and requires many mutations to pro-
vide strong privacy guarantees. However, as we stated in the
limitations of this work (Appendix A.2), we need stronger
privacy guarantees thanK -anonymity to use the generator
in practice. We believe that by formally de�ning the bench-
mark graph generation problem and providing an end-to-end
framework where we can easily adapt off-the-shelf state-of-
the-art privacy modules (e.g., differential privacy), we can
promote more research in this direction.

5.3. Graph statistics.

Given a source graph, our method generates a set of compu-
tation graphs without any node ids. In other words, attackers
cannot merge the generated computation graphs to restore
the original graph and re-identify node information. Thus,
instead of traditional graph statistics such as orbit counts or
clustering coef�cients that rely on the global view of graphs,
we de�ne new graph statistics for computation graphs that
are encoded by the duplicate scheme.

Duplicate scheme �xes adjacency matrices across all compu-
tation graphs by infusing structural information (originally
encoded in adjacency matrices) into feature matrices.

• Number of zero vectors: In duplicate-encoded feature
matrices, zero vectors correspond to null nodes that are
padded when a node has fewer neighbors than a sampling
neighbor number. This metric is inversely proportional to
node degree distributionsof the underlying graph.

• Number of duplicate feature vectors:Feature vectors
are duplicated when nodes share neighbors. This metric is
proportional to number of cycles in a computation graph,
indicating theedge densityof the underlying graph.

For fair comparison, we provide the same set of duplicate-
encoded computation graphs to each baseline asCGT, then
compute the two proxy graph statistics we described above
in each generated computation graph. In Figure 5, we plot
the distributions of this two statistics generated by each
baseline. Only our method successfully preserves the distri-
butions of the graph statistics on the generated computation
graphs with up to11:01smaller Wasserstein distance than
other baselines.

In Figure 5(a), the competing baselines have basically no
zero vectors in the computation graphs. In the set of
duplicate-encoded computation graphs given to each base-
line, the input graph structures are �xed with variable feature
matrices. GraphAF, GraphDF, and GraphEBM all fail to
learn the distributions of feature vectors (i.e., the number of
zero vectors in each computation graph) and generate highly
dense feature matrices for almost all computation graphs.
This shows that the existing graph generative models cannot
jointly learn the distribution of node features with graph
structures.

5.4. Various scenarios to evaluate benchmark
effectiveness

To study the benchmark effectiveness of our generative
model in depth, we design4 different scenarios where GNN
performance varies widely. In each scenario, we make3
variations of an original graph and evaluate whether our
graph generative model can reproduce these variations. In
Figure 6, we report average performance of4 GNN mod-
els on each variation.We expect the performance trends
across variations of the original graph to be reproduced
across variations of synthetic graphs.Due to the space
limitation, we present results on the AmazonP dataset in
Figure 6. Other datasets with detailed GNN accuracies can
be found in Appendix A.9.

SCENARIO 1: noisy edges on aggregation strategies.
We choose4 GNN models with different aggregation strate-
gies: GCN with mean aggregator, GIN with sum aggregator,
SGC with linear aggregator, and GAT with attention aggre-
gator. We make3 variations of the original graph by adding
different numbers of noisy edges (# NE) to each node. In
Figure 6(a), when more noisy edges are added, the GNN

8

	Introduction
	Related Work
	From Graph Generation to Sequence Generation
	Computation graph sampling in GNN training
	Duplicate encoding scheme for computation graphs
	Quantization
	End-to-end framework for a benchmark graph generation problem

	Model
	Computation Graph Transformer (CGT)
	Theoretical analysis

	Experiments
	Experimental setting
	Main results
	Benchmark effectiveness.
	Scalability.
	Privacy.

	Graph statistics.
	Various scenarios to evaluate benchmark effectiveness
	Ablation study

	Conclusion
	Acknowledgement
	Appendix
	Reproducibility
	Limitation of the study
	Computation graph sampling in GNN training
	Proof of privacy and scalability claims
	CGT on ogbn-arxiv and ogbn-products
	CGT as training/test set generators
	Detailed GNN performance in the privacy experiment in Section 5.2.3
	Additional experiments on graph statistics
	Detailed GNN performance in the benchmark effectiveness experiment in Section 5.4
	Detailed GNN performance in the ablation study in Section 5.5
	Graph Neural Networks
	GNN models used in the benchmark effectiveness experiment

	Architecture of Computation Graph Transformer
	Differentially Private k-means and SGD algorithms
	Privacy-enhanced graph synthesis
	Experimental settings

