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Abstract
A critical element of learning with noisy labels
is noisy label detection. Notably, numerous pre-
vious works assume that no source of labels can
be clean in a noisy label detection context. In this
work, we relax this assumption and assume that a
small subset of the training data is clean, which
enables substantial noisy label detection perfor-
mance gains. Specifically, we propose a novel
framework that leverages clean data by framing
the problem of noisy label detection with clean
data as a multiple hypothesis testing problem.
Moreover, we propose BHN, a simple yet effec-
tive approach for noisy label detection that inte-
grates the Benjamini-Hochberg (BH) procedure
into deep neural networks. BHN achieves state-of-
the-art performance and outperforms baselines by
28.48% in terms of false discovery rate (FDR)
and by 18.99% in terms of F1 on CIFAR-10.
Extensive ablation studies further demonstrate
the superiority of BHN. Our code is available
at https://github.com/ChenglinYu/BHN.

1. Introduction
Although deep neural networks (DNNs) have already
achieved tremendous success in a variety of applications,
ranging from computer vision (Krizhevsky et al., 2012; Liu
et al., 2019; 2017) to natural language processing (Ragesh
et al., 2021) and medical image analysis (Qian et al., 2022),
such success requires large-scale datasets with correct an-
notations to be available for training (Liu & Tsang, 2015;
2017). Creating such large-scale datasets is arduous, and
label annotation is often impacted by human error (Cheng
et al., 2021). For instance, the recent utilization of crowd-
sourcing (Welinder et al., 2010) or search engines (Xiao
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et al., 2015) in dataset construction potentially results in the
problem of noisy labels (Yi & Wu, 2019; Liu et al., 2020;
Wang et al., 2021). Training a model with noisy labels could
be detrimental, as networks have been shown to fit the misla-
beled training examples (a.k.a. memorization) (Arpit et al.,
2017; Zhang et al., 2017).

To mitigate the issue of memorization from noisy labels,
extensive research has recently been conducted into noisy
label learning algorithms. Among them, the noise-cleansing
approach (Malach & Shalev-Shwartz, 2017; Tanaka et al.,
2018; Chen et al., 2019; Zheng et al., 2020; Wang et al.,
2021; Kim et al., 2021) is one of the most popular meth-
ods due to its promising experimental results. Noisy label
detection focuses on segregating the clean data from the cor-
rupted dataset, based on the outputs of a classifier trained on
the noisy dataset. For example, Chen et al. (2019) randomly
divide noisy training data, then employ cross-validation to
classify true-labeled examples while removing large-loss
examples in each training round.

Despite this promise, existing noisy label detection methods
largely overlook clean data. We find that there is usually
a small set of clean data in real-world noisy datasets. For
example, Clothing1M (Xiao et al., 2015) comprises 1M
images with real noisy labels and an additional∼48K points
of verified clean data. Moreover, the clean data have been
used to boost the performance of the classifiers (Li et al.,
2017; Veit et al., 2017; Hendrycks et al., 2018). Motivated
by the above, this paper aims to explore the benefits of clean
data for noisy label detection.

Accordingly, in this paper, we propose BHN, a simple yet
effective approach that enables the effective exploitation of
clean data for noisy label detection. We first frame the prob-
lem of noisy label detection with clean data as a multiple
hypothesis testing problem. Subsequently, we define the p-
values based on the neural network with the clean data. The
p-values are then applied to the Benjamini-Hochberg (BH)
procedure (Yoav & Daniel, 2001), which is a classical mul-
tiple hypothesis testing algorithm, to detect corrupted exam-
ples. Our BHN establishes the state-of-the-art performance
on the real-world Clothing1M benchmark (Xiao et al., 2015)
and the CIFAR-10 and CIFAR-100 datasets (Krizhevsky
et al., 2009) with synthetic noise across different network
depths. In particular, our method outperforms the previ-
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ous best method by 28.48% in terms of FDR and 18.99%
in terms of F1 on CIFAR-10, and by 2.26% in the test ac-
curacy of the final classifier on Clothing1M. Furthermore,
extensive ablation studies are performed to demonstrate the
superiority of our method.

Notation. For an integer N , we denote by [N ] the set of
integers {1, . . . , N}. For a vector a, we denote by ||a||2
the L2 norm of a, and by ay the y-th element of a. We use
ey to denote a standard basis vector with the y-th element
1. For a set A, |A| represents the cardinality of this set.
Random variables are always denoted with uppercase letters,
while the realized values of the variable are denoted by the
corresponding lowercase letters.

2. Preliminaries: Noisy Label Detection
We consider a classification problem from an instance space
X to a label space Y = {1, . . . ,K}. There is an (unknown)
joint probability distribution D on Z = X × Y from which
labeled examples Z = (X,Y ) are drawn. In the standard
(non-noisy) supervised learning setting, the learner is given
a training sample D = {(xi, yi)}i∈[N ], sampled indepen-
dently and identically distributed (i.i.d.) from D; here the
goal is to learn a classifier f : X → RK . An ideal classifier
can be obtained by minimizing the following expected risk:

RL(f) = E(x,y)∼D [L (f(x), y)] ,

where L is the commonly used cross-entropy loss with the
softmax activation function:

LCE(f(x), y) = − logP(y|x) = − log
efy(x)∑K
i=1 e

fi(x)
.

(1)
Here, P(y|x) is the softmax probability. We use f ′(x; θ) =
[P(y = 1|x),P(y = 2|x), . . . ,P(y = K|x)]T to denote the
softmax logits of the neural network.

When learning from noisy labels, however, the learner en-
counters noisy examples Z̃ = (X, Ỹ ), where Ỹ denotes a
noisy version of Y . In more detail, the learner receives a
noisy training sample D̃1 = {(xi, ỹi)}i∈[N ], sampled i.i.d.
from the noisy distribution D̃. The noisy label ỹi is re-
ferred to as corrupted if ỹi 6= yi, and clean otherwise. The
corresponding examples are referred to as corrupted exam-
ples and clean examples respectively. Following Zhu et al.
(2022), we focus on the case of closed-set label noise in
which Y and Ỹ are assumed to be in the same label space
[K]. We are also given a set of clean data D0 = {z0i }2mi=1

drawn from D. The noisy label detection task can be formu-
lated as a hypothesis testing problem: specifically, one of
determining whether an example (x, y) ∈ (X × Y) is from
D or not (corrupted).

3. Noisy Label Detection via Multiple
Hypothesis Testing

In this section, we formulate the noisy label detection task
as a multiple (hypothesis) testing problem (Section 3.2).
Subsequently, we demonstrate how this multiple testing
problem can be integrated into modern neural networks
(Section 3.3).

3.1. Multiple Hypothesis Testing

In this subsection, we provide some background on hypoth-
esis testing that will be essential to an understanding of our
approach. We begin with single hypothesis testing, and then
further expand on multiple hypothesis testing.

Single Hypothesis Testing. In a single hypothesis testing
problem, one considers two hypotheses (the null H0 and
the alternative H1), and decides whether the data at hand
sufficiently support the null. Specifically, given a set of
observations (e.g., coin tosses), our goal is to increase the
probability of making a true discovery (e.g., declaring that
a coin is biased given that it is truly biased), while main-
taining a prescribed level of type I error, α (e.g., declaring
that a coin is biased given that it is not). This is typically
accomplished by examining the p-value, which serves as a
universal language for hypothesis testing (Bradley, 2012).

Definition 3.1 (p-value (George & Roger L, 2021)). A p-
value p(X̃) is a test statistic satisfying 0 ≤ p(X̃) ≤ 1 for
every sample1 X̃ . Small values of p(X̃) give evidence that
H1 is true. A p-value is valid if, for every 0 ≤ α ≤ 1,

PH0 [p(X̃) ≤ α] ≤ α (2)

An important benefit of using p-values is that they enable
a meaningful error rate to be maintained. There are many
methods employed to maintain such error rates, which are
based on p-values (Sture, 1979; Hochberg, 1988; Yoav &
Yosef, 1995).

Multiple Hypothesis Testing. Multiple testing is per-
formed when a statistical analysis involves multiple simul-
taneous tests, each of which has the potential to produce a
“discovery”. A stated confidence level generally applies only
to each test considered individually; however, it is often
desirable to determine a confidence level for a whole family
of simultaneous tests. Notably, failure to compensate for
multiple comparisons may have severe consequences. For
example, consider a set of m coins, where our goal is to
detect biased coins. Assume we test the hypothesis that a
coin is biased with a confidence level of α. Furthermore,
assume that all the coins are in reality unbiased. We can
accordingly expect to make αm false discoveries. The prob-
ability that we make at least one false discovery (referred

1A sample means a sequence of examples.
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to as the Family-Wise Error Rate (FWER)) increases as m
grows. As a result, we are very likely to report that there is
at least one biased coin in the set, even if the coins are all
fair. This issue can be addressed by applying the Bonferroni
correction (Jelle J & Aldo, 2014): it can be shown that by
performing each test at a confidence level of α/m, we are
guaranteed to achieve a FWER no greater than α. However,
the Bonferroni correction is also very conservative, with the
result that few discoveries are likely to be made.

To overcome these issues, Yoav and Yosef (1995) propose
to control the False Discovery Rate (FDR), and introduce a
simple approach for controlling the FDR, commonly known
as the Benjamini-Hochberg (BH) procedure.

Definition 3.2 (FDR). Let V denote the number of true
null hypotheses rejected; moreover, let R be the number
of rejected hypotheses, and Q be the unobservable random
quotient,

Q =

{
V/R, if R > 0,

0, otherwise.
(3)

where Q is the proportion of rejections that are false rejec-
tions (unless there are no rejections at all, in which case Q
is defined to be zero). The expectation of Q is called the
FDR: FDR = E[Q].

Definition 3.3 (The Benjamini-Hochberg Procedure (Yoav
& Daniel, 2001)). Let p(1) ≤ p(2) ≤ · · · ≤ p(N) be the
ordered observed p-values. Define k = max{i : p(i) ≤
i
N α}. The BH procedure rejects H0,(1), . . . ,H0,(k), where
H0,(i) is the hypothesis corresponding to p(i). If no such i
exists, the BH procedure rejects no hypothesis.

As is evident from above, FDR is evidently less conservative
than the FWER. Thus, FDR-controlling procedures can re-
sult in more discoveries than FWER-controlling procedures,
at the cost of an increased number of type I errors.

3.2. Noisy Label Detection as a Multiple Hypothesis
Testing Problem

The noisy distribution (D̃) can be regarded as a mixture of
clean distribution (D) and corrupted distribution (Dcor). We
formalize the problem of determining which examples in
D̃1 are corrupted as the following N testing problems:

H0,1 : (X1, Ỹ1) ∼ D, H1,1 : (X1, Ỹ1) ∼ Dcor

H0,2 : (X2, Ỹ2) ∼ D, H1,2 : (X2, Ỹ2) ∼ Dcor

...

H0,N : (XN , ỸN ) ∼ D, H1,N : (XN , ỸN ) ∼ Dcor.

(4)

By rejecting H0,i, we conclude that the true label of Xi is
not Yi.

3.3. P -Value with Neural Networks

In this section, we define the p-value with neural networks.

Motivation. According to the definition of p-value given
in Equation (2), we can decisively reject H0,i when the p-
value is small. On the other hand, the score function has
been used to detect corrupted examples (Northcutt et al.,
2021; Cheng et al., 2021) based on neural networks. A
score function ŝ assigns a scalar value to any noisy example,
such that small values of ŝ indicate that the example may
be corrupted. We therefore define the p-value based on the
score function to incorporate the neural network. There
are two critical components: the score function and the
computation of the p-value based on the score.

Noisy Label Detection Score Function. Various score
functions have been designed to detect corrupted exam-
ples, hard-to-learn instances (Liu et al., 2021), and out-of-
distribution examples (Hendrycks & Gimpel, 2017; Wei
et al., 2022; Mu & Yixuan, 2023). The majority of these
score functions are based on the softmax probability of the
neural network. Therefore, for the sake of simplicity, we
directly adopt the negative cross-entropy loss of the neu-
ral network on the noisy example as our score function
ŝ : Z → R for the sake of simplicity (i.e., the negative
logarithm of the softmax probability corresponding to the
noisy label ŝ((x, ỹ)) = −LCE(f(x), ỹ)). The key insight is
that the true label should trigger a relatively higher softmax
probability than that of a corrupted label for a well-trained
neural network (Hendrycks & Gimpel, 2017).

Having established the score function, we next show how to
transform the score into a valid p-value.

P -Value based on the Score Function. Suppose that
ŝ(Z̃) follows a continuous distribution if Z̃ ∼ D is indepen-
dent of the data used to train ŝ. We define F as the cumula-
tive distribution function (CDF) of ŝ(Z̃). If F was known,
then we could use F (ŝ(Z̃i)) as an exact p-value for the null
hypothesisH0,i : Zi ∼ D, in the sense that F (ŝ(Z̃i)) would
be uniformly distributed ifH0,i is true. In practice, however,
we do not know F ; instead we have access to a small set of
clean data D0. Based on this clean data, we determine form
the empirical CDF of ŝ(Z̃). We split D0 into two sets. The
first set, Dtrain

0 = {z01 , . . . , z0m}, is used to train the score
function; the second set, Dcal

0 = {z0m+1, . . . , z
0
2m}, is used

as a calibration set for estimating the CDF of ŝ(Z̃). The
empirical CDF is given by

F̂m(t) =
1

m

m∑
i=1

I(∞,t][ŝ(Z
0
m+i)], (5)

where I(∞,t][s] is a {0, 1}-valued indicator function for the
event {s ≤ t}. Unfortunately, the composition of F̂m onto ŝ

(i.e., (F̂m ◦ ŝ)(Z̃) =
|{1≤i≤m:ŝ(Z0

m+i)≤ŝ(Z̃)}|
m ) is not a valid
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p-value, which is uniformly distributed on {0, 1
m ,

2
m , . . . , 1}

if Z̃ ∼ D is independent of the data in Dtrain
0 . For exam-

ple, when m = 6, α = 0.25, PH0
[p(Z) ≤ 0.25] = 2

7 ≈
0.28 > 0.25, which contradicts the validity of the p-value
according to Equation (2). We therefore consider a modified
composition in which we add 1 to both the numerator and
denominator of the original composition, as follows:

p(Z̃) =
|{1 ≤ i ≤ m : ŝ(Z0

m+i) ≤ ŝ(Z̃)}|+ 1

m+ 1
. (6)

Since p(Z̃) as defined in Equation (6) is uniformly dis-
tributed on { 1

m+1 ,
2

m+1 , . . . , 1} when ŝ(Z̃) follows a con-
tinuous distribution and Z̃ ∼ D is independent of the data
in Dtrain

0 , the adjusted composition is a valid p-value. We
refer to the p-value defined in Equation (6) as the empirical
p-value.

BH Procedure. In Section 3.1, we have shown that the
BH procedure can control the FDR. The following theorem
establishes that the BH procedure maintains the FDR at
a specified significance level when using the empirical p-
values defined above.

Theorem 3.4 (BH procedure with empirical p-values can
control the FDR). Assume that ŝ(Z̃) is continuously dis-
tributed. Consider N noisy examples z̃1, . . . , z̃N , where the
clean examples are jointly independent of each other and
of the data in D0. Then, the BH procedure applied at level
α ∈ (0, 1) to (p(Z̃1), . . . , p(Z̃N )) controls the FDR at level
π0α, where π0 is the proportion of true nulls; that is,

E
[
|R ∩ H0|

max{1, |R|}

]
≤ π0α ≤ α, (7)

whereH0 = {i : H0,i holds} ⊆ {1, . . . , N} is the subset of
clean examples in the noisy dataset, andR ⊆ {1, . . . , N}
is the subset of examples reported as corrupted examples.

Proof of Theorem 3.4. It is known that the BH procedure
can control the FDR when a particular type of mutual p-
value dependence, called Positive Regression Dependent on
a Subset (PRDS) (Vladimir, 2013), is employed. Therefore,
our main task is to prove that the empirical p-values are
PRDS. Since the property PRDS is based on the concept
of the increasing set, we first provide the definition of an
increasing set.

Definition 3.5 (Increasing set). For vectors a and b of equal
dimension, we say that a � b if every coordinate of a is no
smaller than the corresponding coordinate of b. Moreover,
A ⊂ RN is increasing if a ∈ A and b � a implies b ∈ A.

The definition of PRDS is as presented below:

Definition 3.6 (PRDS). A random vector V =
(V1, . . . , VN ) is PRDS on a set I0 ⊆ {1, . . . , N} if, for

any i ∈ I0 and any increasing set A, the probability
P[V ∈ A|Vi = v] is increasing in v.

In the multiple testing literature,
(p(Z̃1), p(Z̃2), . . . , p(Z̃N )) is often said to be PRDS
if it is PRDS on the set of nulls.

Theorem 3.7 (Empirical p-values based on the score func-
tion are PRDS). Assume that ŝ(Z̃) is continuously dis-
tributed. Consider N noisy examples z̃1, . . . , z̃N , where
the clean examples are jointly independent of each other
and of the data in D0. The p-values (p(Z̃1), . . . , p(Z̃N ))
are then PRDS on the set of clean examples.

The proof of Theorem 3.7 is provided in Appendix G. Next,
we present the main corollary based on Theorem 3.7, which
completes the proof of Theorem 3.4.

Corollary 3.8 (Benjamini and Yekutieli (Yoav & Daniel,
2001)). In the setting of Theorem 3.7, the BH procedure
applied at level α ∈ (0, 1) to (p(Z̃1), . . . , p(Z̃N )) controls
the FDR at level π0α, where π0 is the proportion of true
nulls. That is,

E
[
|R ∩ H0|

max{1, |R|}

]
≤ π0α ≤ α, (8)

whereH0 = {i : H0,i holds} ⊆ {1, . . . , N} is the subset of
clean examples in the noisy dataset, andR ⊆ {1, . . . , N}
is the subset of examples reported as likely corrupted exam-
ples.

The proof is completed.

We summarize our approach in Algorithm 1. Our algorithm
offers two compelling advantages:

1. Distributional assumption free: Our method does
not impose distributional assumptions about the under-
lying noise transition matrix, which provides a proba-
bilistic formulation on label transition from true label
y to noisy label ỹ. Therefore, our method provides
stronger flexibility and generality, and is applicable no
matter what the noise type is.

2. Statistical guarantee: Our method returns a valid p-
value for each noisy example. This operation guar-
antees maintaining a FDR on the noisy training set,
thereby avoiding an unnecessary waste of clean exam-
ples.

4. Experiments
In this section, we first introduce implementation details and
baselines for experiments in Section 4.1. Then, we provide
quantitative performance results in Sections 4.2 and 4.3.
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Table 1. Comparisons of FDR, Recall, and F1 (%) on CIFAR-10 and CIFAR-100. We add three types of synthetic noise to each dataset.
We use ResNet34 as the backbone for each method. ↑ indicates that larger values are better, and vice versa. Top 2 results are marked in
bold.

Method
CIFAR-10 CIFAR-100

Symm. 0.6 Asym. 0.3 Inst. 0.4 Symm. 0.6 Asym. 0.3 Inst. 0.4
FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑

CORES 11.92 86.05 87.05 59.06 5.75 10.09 19.59 32.45 46.24 6.19 48.02 63.52 81.82 0.04 0.09 14.40 2.47 4.81
CL 40.00 84.43 70.15 70.23 87.43 44.41 60.33 85.42 54.18 39.50 89.10 72.06 70.16 93.52 45.25 60.55 91.72 55.16
SimiFeat-V 12.23 90.64 89.18 35.65 84.31 72.99 30.20 74.77 72.20 11.77 54.41 67.31 49.29 71.99 59.50 35.89 69.59 66.74
SimiFeat-R 31.59 99.34 81.02 44.00 91.70 69.54 34.57 91.29 76.23 29.25 99.33 82.64 60.09 91.45 55.57 48.42 93.53 66.50
BHN 3.80 95.90 96.05 7.17 91.13 91.98 5.98 91.18 92.58 4.10 81.31 88.01 7.79 67.14 77.71 6.48 72.99 81.99

Algorithm 1 Noisy Label Detection via Multiple Testing

1: Input: Clean data D0. Noisy data: D̃1 =
{(xi, ỹi)}i∈[N ].

2: Split D0 into two sets of even size Dtrain
0 and Dcal

0 .
3: Train the neural network f using Dtrain

0

4: Calculate the p-values of D̃1.
5: Using BH procedure to determine whether to reject or

accept for each null hypothesis. The examples corre-
sponding to the rejected hypotheses are regarded as
corrupted examples.

4.1. Experimental Setup

Datasets and Baselines. We evaluate BHN on three
benchmark datasets: CIFAR-10, CIFAR100 (Krizhevsky
et al., 2009), and Clothing1M (Xiao et al., 2015). CIFAR10
and CIFAR-100 are the most popular datasets used in the
literature of learning with noisy labels (Reed et al., 2014;
Patrini et al., 2017; Jiang et al., 2018). As these two datasets
are clean and lack noisy labels, we divide the training set
into two different sets, D0 and D1, and follow the settings
commonly used in the literature (Guo et al., 2018; Jiang
et al., 2018) to add synthetic noise into D1. D0 is used
as the clean set. No noisy labels are added in the test sets.
Three different types of synthetic label noise are generated,
as outlined below.

• Symmetric Noise flips labels uniformly to all other
classes (Cheng et al., 2021).

• Asymmetric Noise is generated by pair-wise flipping,
i.e., randomly flipping the true label i to the next class (i
mod K) + 1 (Zhu et al., 2022).

• Instance-dependent Noise flips labels according to the
probability that an example is mislabeled. This probabil-
ity is computed based on the corresponding feature of the
example (Zhu et al., 2021).

We denote the ratio of corrupted examples in the noisy
dataset by η. In line with (Zhu et al., 2022), we use sym-
metric noise with η = 0.6 (Symm. 0.6), asymmetric noise
with η = 0.3 (Asym. 0.3), and instance-dependent noise
with η = 0.4 (Inst. 0.4) in our experiments. More details on
each type of noise are provided in Appendix A.

Moreover, we conduct experiments on a large real-world
dataset, Clothing1M (Xiao et al., 2015), which is composed
of clothing data crawled from online shopping websites.

We compare our proposed BHN with four state-of-the-art
baselines: CORES (Cheng et al., 2021), Confident Learn-
ing (CL) (Northcutt et al., 2021), and SimiFeat-V and
SimiFeat-R (Zhu et al., 2022). To facilitate a fair com-
parison, we implement the same backbone model for all
methods. Following the convention established by Cheng
et al. (2021), we use ResNet34 (He et al., 2016) for CIFAR-
10 and CIFAR-100 and ResNet50 (He et al., 2016) for Cloth-
ing1M. More details are provided in Appendix C.

Evaluation Metrics. We compare BHN with the base-
lines on two aspects.

• Noisy Label Detection: (1) the false discovery rate
(FDR) of detected corrupted examples; (2) the recall of
detected corrupted examples (Recall); (3) the F1 of the
detected corrupted examples, which is the harmonic mean
of precision and recall.

• Image Classification: We compare the accuracy of the
final image classifier. BHN and all other baselines are
evaluated on the same clean test set.

4.2. Noisy Label Detection Performance on Noisy
Datasets

We present the results of comparing the noisy label detec-
tion performance of BHN and the other baselines on two
synthetic datasets with the aforementioned three types of
noise in Table 1. As the table shows, BHN significantly im-
proves the FDR and F1 of noisy label detection in all cases.
For example, we observe that BHN reduces the FDR from
35.65% to 7.17% under the Asym. 0.3 noise on CIFAR-10
compared with the best baseline, a direct improvement of
28.48%; moreover, BHN outperforms the best baseline by
18.99% in terms of F1. On the CIFAR-100 dataset, BHN im-
proves the F1 from 66.74% to 81.99% under the Inst. 0.4
noise compared with the best baseline, a direct improvement
of 15.25%. Furthermore, when counting the frequency of
reaching top-2 recall, we find that BHN outperforms all
other baselines.

BHN Guarantees Maintenance of the FDR. Table 1
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Table 2. Comparisons of test accuracy of the final classifier (%)
on CIFAR-10 and CIFAR-100. All methods use ResNet34 as the
backbone. Top 1 results are marked in bold.

Method
CIFAR-10 CIFAR-100

Symm. 0.6 Asym. 0.3 Inst. 0.4 Symm. 0.6 Asym. 0.3 Inst. 0.4

CORES 73.47 65.28 64.72 30.43 49.96 43.10
CL 25.00 48.41 35.80 7.12 10.34 9.13
SimiFeat-V 77.08 83.74 74.60 37.40 54.88 50.72
SimiFeat-R 63.89 84.13 79.48 33.92 46.50 42.68
BHN (ours) 86.30 89.79 88.63 46.16 61.46 58.06

shows that all the FDRs of BHN are smaller than the pre-
scribed level of FDR α (i.e., 10%). which demonstrates that
BHN guarantees maintenance of the FDR.

BHN is Free from Distributional Assumptions. As can
be seen from Table 1, BHN consistently performs well under
various types of noisy labels without any access to noise in-
formation (i.e., noise ratio and noise type). For example, our
BHN achieves F1 scores of 96.05%, 91.98%, and 92.58%
under the conditions of Symm. 0.6 noise, Asym. 0.3 noise,
and Inst. 0.4 noise respectively on CIFAR-10. By con-
trast, CORES achieves 87.05% F1 under Symm. 0.6 noise,
but 10.09% and 46.24% F1 under Asym. 0.3 noise and
Inst. 0.4 noise respectively on CIFAR-10. This observation
suggests that BHN does not depend on the distributional as-
sumptions on the noisy distribution, and further informs us
that customized training processes might not be universally
applicable.

In addition to ResNet34, we also compare our method with
other baselines using ResNet18 and ResNet50 on CIFAR-
10 and CIFAR-100. The results, provided in Table 5 of
Appendix D, show that BHN consistently outperforms the
baselines under all networks in terms of F1. The superior
performances at various network depths demonstrate the
effectiveness and general applicability of BHN.

4.3. Classification Performance on Clean Test Sets

We further verify whether BHN improves the classifica-
tion performance of the final classifier. For all methods,
we remove the detected corrupted examples, and use the
remaining examples to train the classifier. Our results in
Table 2 show that BHN consistently outperforms all other
baselines in all cases. For example, we can observe that
BHN surpasses the best baseline (SimiFeat-V) by 12.24% in
terms of test accuracy on CIFAR-100 with Symm. 0.6 noise.
In addition to ResNet50, we also compare BHN with other
methods using ResNet18 and ResNet34 on Clothing1M.
The results are provided in Table 6 of Appendix E. Again,
BHN can be seen to outperform all the other approaches.

Results on Clothing1M. While the previous results origi-
nate from synthetic datasets, Table 3 presents the experimen-
tal results on Clothing1M, which is a dataset with real-world
noisy labels. Our BHN achieves the state-of-the-art perfor-

Table 3. The best epoch (clean) test accuracy for each method on
Clothing1M. None: Standard training with 1M noisy data. Top 1
results are marked in bold.

Method None CORES SimiFeat-R BHN

Accuracy 70.32 73.24 72.37 75.50

46.66
55.59

71.07
75.55

78.11
82.29

83.76
85.0

86.87
87.06
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30.92
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41.38
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49.04

53.13
55.8
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0
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)
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Asym. 0.3

Figure 1. Ablation on the test accuracy of the neural network on
CIFAR-10 (left) and CIFAR-100 (right).

mance, outperforming the runner-up method by 2.26% in
terms of test accuracy of the final classifier.

5. A Closer Look at BHN
In this section, we provide further analysis and ablations to
facilitate a deeper understanding of the behavior of BHN.
Unless explicitly specified, the ablations are based on the
ResNet18 model.

5.1. Effect of Test Accuracy of the Neural Network
Adopted in the Score Function

Figure 1 illustrates the effect of the test accuracy of the
neural network adopted in the score function. We observe
that the F1 score increases with the test accuracy of the
neural network. Moreover, BHN achieves relatively high F1
based on neural networks with relatively low test accuracy.
For example, we obtain an F1 of approximately 83% for
Symm. 0.6 noise on CIFAR-100, while the test accuracy of
the neural network is about 49%.

Analysis. Figure 2 presents a histogram of the scores of
clean and corrupted examples generated by neural networks
with different test accuracies on CIFAR-100. As we can
observe from Figure 2, there is substantial overlap between
the score densities of clean and corrupted examples when
the test accuracy of the neural network is 12.86%. As the
test accuracy of the neural network increases, the densities
of clean examples become more concentrated on the high
score side, while the densities of corrupted examples do not
change much. When the test accuracy of the neural network
is 45.87%, the overlap between the score densities of clean
and corrupted examples becomes small. We can therefore
conclude that the neural network with relatively low test
accuracy can produce highly distinguishable scores between
clean and corrupted examples.
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Figure 2. Scores of clean and corrupted examples on CIFAR-100 with Symm. 0.6 noise using the ResNet18 model with different test
accuracies. The test accuracies of the neural network increase steadily from the upper left to the lower right.

5.2. Alternative Score Function

We further note that our framework could also be compatible
with alternative forms of score function ŝ. For example, we
explore another variant of our method, BHN-cosin, which
uses the cosine similarity (Techapanurak & Okatani, 2019;
Hsu et al., 2020; Zhu et al., 2022) between the softmax
logits of the neural network and the one-hot vector of the
label as the score function, i.e.,

ŝ((x, ỹ)) =
f ′(x; θ)eỹ

‖f ′(x; θ)‖2‖eỹ‖2
(9)

where eỹ is the one-hot encoding of label ỹ.

Table 4 contrasts the performances of BHN and BHN-
cosin on CIFAR-10 and CIFAR-100 using ResNet18. No-
tably, the same results are obtained on ResNet34 and
ResNet50 (Tables 7 and 8 in Appendix F). Our results reveal
that BHN-cosin achieves almost the same performance as
BHN, which suggest that the norm of softmax logits has
little effect on the noisy label detection performance. To
explore this phenomenon further, we contrast the norms
of softmax logits on clean and corrupted examples using
neural networks with different test accuracies in Figure 4
of Appendix F. The results show that the norms on clean
and corrupted examples have almost the same densities, and
moreover that the norms of softmax logits cannot enhance
the discrimination beween clean and corrupted examples.

5.3. Effect of the Noise Rate η

In Figure 3, we investigate the effect of different symmetric
noise rates varying from 0.1 to 0.6. Note that a smaller

symmetric noise rate indicates more clean data and less cor-
rupted data. Here, we consistently use 60% of the overall
training set as D1. We highlight several observations: (1)
The F1 for all methods generally decreases with decreasing
noise ratio. In particular, a smaller noise ratio translates
into a more difficult detection problem, because the overlap
between the noisy and clean distributions becomes signif-
icant. For example, on CIFAR-10, the F1 of SimiFeat-V
increases from 51.37% (η=0.1) to 88.34% (η=0.6). (2) Our
methods, BHN and BHN-cosin, are overall more robust
than the baselines at small values of η. In a challenging case
with η=0.1, BHN and BHN-cosin outperform SimiFeat-V
by 33.16% and 32.95% in terms of F1 on CIFAR-10, re-
spectively. These experimental results further suggest that
BHN does not rely on specific assumptions regarding the
noisy distribution. (3) Our methods always maintain the
FDR under different levels of noise.

6. Related Works
Existing approaches to learning with noisy labels can be
classified into two types: (1) detecting corrupted labels and
then cleansing potential corrupted labels, or reducing their
impacts in subsequent training; (2) directly training noise-
robust models with noisy labels.

(1) Noise-cleansing-based Approaches attempt to detect
corrupted labels (a.k.a. sample selection) and then cleanse
potential corrupted labels or reduce their impacts on sub-
sequent training (Krueger et al., 2017; Malach & Shalev-
Shwartz, 2017; Jiang et al., 2018; Chen et al., 2019; Song
et al., 2019a; Lyu & Tsang, 2020; Zhang et al., 2021; Song

7



Delving into Noisy Label Detection with Clean Data

Table 4. Comparisons of FDR, Recall, F1, and test accuracy (%) of BHN and BHN-cosin on CIFAR-10 and CIFAR-100. All methods are
based on the ResNet18 network.

Method Symm. 0.6 Asym. 0.3 Inst. 0.4
FDR↓ Recall↑ F1↑ Accuracy ↑ FDR↓ Recall↑ F1↑ Accuracy ↑ FDR↓ Recall↑ F1↑ Accuracy ↑

CIFAR-10
BHN 4.00 96.40 96.20 86.65 7.40 92.40 92.50 90.14 6.30 91.40 92.50 88.09
BHN-cosin 3.71 95.50 95.89 86.17 6.82 91.35 92.25 90.61 5.77 90.29 92.22 87.84

CIFAR-100
BHN 3.68 80.82 87.89 49.56 6.90 65.39 76.82 62.46 6.15 72.73 81.95 59.46
BHN-cosin 4.23 79.35 86.79 50.24 7.30 63.22 75.17 63.01 6.38 71.55 81.11 58.93
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Figure 3. FDR, Recall, and F1 of different methods on CIFAR-10 using ResNet18 with different noise rates

et al., 2021; Zhu et al., 2022). The tendency of DNNs to
fall into memorization has been explored theoretically and
empirically to facilitate the identification of clean exam-
ples from among noisy training data (Krueger et al., 2017;
Zhang et al., 2020a). Since DNNs tend to first learn simple
and generalized patterns, then gradually overfit to noisy pat-
terns (Arpit et al., 2017; Song et al., 2019b), one common
approach to robust training method design involves treating
small-loss training examples as clean (Jiang et al., 2018;
Shen & Sanghavi, 2019; Chen et al., 2019; Li et al., 2020).
Recent methods often leverage multiple DNNs to cooperate
with one another, or run multiple training rounds (Wang
et al., 2018). Notably, all these methods require training
DNNs with noisy supervision and are impacted by the mem-
orization of corrupted examples. Zhu et al. (2022) propose
a training-free solution to detect noisy labels by using the
neighborhood information of features. Almost all previous
methods are largely dependent only on the noisy dataset.
By contrast, our BHN enables us to leverage clean data to
detect noisy labels.

(2) Noise-robust Approaches aim to design a robust clas-
sifier with noisy labels, including by utilizing explicit reg-
ularizations (Liu et al., 2020; Wei et al., 2021), designing
robust architectures (Xiao et al., 2015; Chen & Gupta, 2015;
Bekker & Goldberger, 2016; Jindal et al., 2016; Goldberger
& Ben-Reuven, 2017; Yao et al., 2019; Cheng et al., 2020),
or improving the loss functions (Zhang & Sabuncu, 2018;
Wang et al., 2019; Ma et al., 2020) to design a robust clas-

sifier. Some of these methods assume the availability of a
small set of clean data, then leverage this clean data to train
a classifier robust to label noise (Li et al., 2017; Hendrycks
et al., 2018; Ren et al., 2018; Zhang et al., 2020b). Li et al.
(2017) propose distilling the predictions of a model pre-
trained on clean labels into a second network trained on
both these predictions and the noisy labels. Hendrycks et al.
(2018) utilize clean data by proposing a loss correction tech-
nique that utilizes clean examples in a data-efficient manner
to mitigate the effects of label noise on deep neural net-
work classifiers. Ren et al. (2018) propose a loss correction
approach that uses a set of clean data and meta-learning.
Zhang et al. (2020b) leverage a small set of clean data to
estimate the exemplar weights and labels, then train models
in a supervised manner that is highly invulnerable to label
noise. By contrast, the clean data in our work is leveraged
for noisy label detection.

7. Conclusion
In this paper, we present BHN, a simple yet effective ap-
proach for noisy label detection that leverages a set of
clean data. Throughout our experiments, we demonstrate
that BHN outperforms previous noisy label detection meth-
ods across various datasets and networks, which we show
by considering several types of noise and noise strengths.
These results demonstrate that the BHN is a powerful data-
efficient method for corrupted label detection.
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A. Synthetic Noisy Label Generation Process
Since CIFAR-10 and CIFAR-100 are assumed to have no noisy labels, we manage three types of noisy label for noisy label
injection: the symmetric label noise, the asymmetric label noise, and the instance-dependent label noise. We explain details
of these noisy label generation processes.

Both the symmetric and asymmetric noise models follow the class-dependent assumption (i.e., the label noise depends only
on the clean class: P[Ỹ |X,Y ] = P[Ỹ |Y ]). Specially, the symmetric noise is generated by uniform flipping (i.e., randomly
flipping a true label to the other possible classes with probability η) (Cheng et al., 2021). The asymmetric noise is generated
by pair-wise flipping (i.e., randomly flipping true label i to the next class (i mod K) + 1). Denote by d the dimension
of features. The instance-dependent label noise is synthesized by randomly generating a d×K projection matrix wi for
each class i and project each incoming feature with true class yi onto each column of wyi

. Instance n is more likely to be
flipped to class j if the projection value of xn on the j-th column of wyn

is high. We follow the instance-dependent noise
generation process utilized at Zhu et al. (2021) illustrated as Algorithm 2.

Algorithm 2 Instance Dependent Noise Generation Process
Require: Clean examples (xn, yn)Nn=1;, Noise rate η

1: Sample instance flip rates q ∈ RN from the truncated normal distribution N(η, 0.12, [0, 1]) with mean η, variance 0.12

and truncation interval [0, 1];
2: Independently sample w1, w2, ..., wK from the standard normal distribution N(0, 12) with mean zero and variance 1;
3: for n = 1, 2, ..., N do
4: p = xn × wyn ;
5: pyn = − inf;
6: p = qn × softmax(p);
7: pyn

= 1− qn;
8: Randomly choose a label from the label space according to the possibilities p as noisy label ỹn;
9: end for

Output: Noisy examples (xn, ỹn)Nn=1

B. Details of Datasets and Implementation
To facilitate a fair comparison, we implement same backbone model for all methods. Following Cheng et al. (2021), we use
ResNet34 for CIFAR-10 and CIFAR-100 and ResNet50 for Clothing1M.

We use the same set of hyper-parameters for CIFAR-10 and CIFAR-100. During training the model, we set a batch size of
128. We use Stochastic Gradient Descent (SGD) with a weight decay 5× 10−4 and a momentum of 0.9. We train the model
for 200 epochs. We set the initial learning rate of 0.1 and decrease it by the factor of 10 after 160 epochs.

For Clothing1M, we resize the image to 256× 256, crop the middle 224× 224 as input and perform normalization. We first
perform noisy label detection on 1 million noisy training examples, then train only with the selected clean data to check the
effectiveness. Particularly, we first train the neural network on the clean training set to obtain the score function. The neural
network is trained for 80 epochs on 47,570 clean training images. Batch-size is set to 32. The initial learning rate is set as
2× 10−3 and reduced by a factor of 10 at 40 epochs. We set the weight decay as 1× 10−3. We use 14,313 clean validation
images as the calibration set. We perform BH on 1 million noisy training examples and train on the selected clean data
to check the test accuracy of the final classifier. In the training process on selected data, for each epoch, we sample 1000
mini-batches from the training data while ensuring the (noisy) labels are balanced. Other training details are the same as
those when training on the clean training set.

C. Baseline Description
We compare BH with four state-of-the-art baselines for learning with noisy labels: CORES (Cheng et al., 2021), Confident
Learning (CL) (Northcutt et al., 2021), SimiFeat-V and SimiFeat-R (Zhu et al., 2022).

• CORES (Cheng et al., 2021): This work trains ResNet34 on the noisy dataset and uses its proposed sample sieve to filter
out the corrupted examples. We adopt its default setting during training and calculate the F1 of the sieved out corrupted
examples.
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• Confident Learning (CL) (Northcutt et al., 2021): This work detects corrupted labels by firstly estimating probabilistic
thresholds to characterize the label noise, ranking examples based on model predictions, then filtering out corrupted
examples based on ranking and thresholds. We adopt its default hyper-parameter setting to train neural networks.

• SimiFeat-V and SimiFeat-R (Zhu et al., 2022): These two methods are based on the assumption that “closer” instances
are more likely to share the same clean label. SimiFeat-V uses “local voting” via checking the noisy label consensuses of
nearby features to determine if the example is corrupted. SimiFeat-R scores each instance based on the neighborhood
information and filters out a guaranteed number of instances that are likely to be corrupted.

Since these methods all overlook the possible clean data, we evaluate these methods on the same noisy data set D̃1.

D. Noisy Label Detection Performance using ResNet18 and ResNet50
To further demonstrate the superiority of BHN in noisy label detection, we evaluate the noisy label detection performance of
BHN on CIFAR-10 and CIFAR-100 with different types of noise using ResNet18 and ResNet50, respectively. As illustrated
in Table 5, our BHN also consistently outperforms all baselines in terms of FDR and F1 in all cases. For example, using
ResNet50, BHN improves the F1 from 75.30% to 91.81% on CIFAR-10 under Inst. 0.4 noise, a direct improvement of
16.51%; moreover, BHN reduces the FDR by 15.29% compared with the best baseline. Using ResNet18, BHN outperforms
the best baseline by 17.68% in F1 on CIFAR-100 with Asym. 0.3 noise. Furthermore, when counting the frequency of
reaching top-2 recall, we find that BHN consistently outperforms all other baselines under ResNet18 and ResNet50. The
superior performances at various network depths demonstrate the effectiveness and general applicability of BHN.

Table 5. Comparisons of FDR, Recall, and F1 on CIFAR-10 and CIFAR-100. All methods use ResNet18 and ResNet50 as the backbone,
respectively. ↑ indicates that larger values are better, and vice versa. Top 2 results are marked in bold.

Method
CIFAR-10 CIFAR-100

Symm. 0.6 Asym. 0.3 Inst. 0.4 Symm. 0.6 Asym. 0.3 Inst. 0.4
FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑ FDR↓ Recall↑ F1↑

ResNet18
CORES 7.07 88.04 90.42 48.65 3.82 7.11 13.86 28.52 42.85 4.96 34.29 50.40 62.50 0.03 0.07 7.64 1.11 2.19
CL 40.14 85.04 70.26 70.21 87.47 44.44 60.46 85.07 54.10 39.67 88.53 71.76 70.25 93.40 45.13 60.52 91.45 55.15
SimiFeat-V 12.87 89.58 88.34 36.71 83.59 72.04 30.25 74.68 72.13 11.31 52.79 66.19 49.64 71.62 59.14 35.54 68.25 66.30
SimiFeat-R 31.02 98.63 81.18 44.86 91.20 68.73 34.81 89.87 75.56 20.88 99.39 82.23 60.40 91.43 55.27 48.90 93.01 65.96
BHN (ours) 4.00 96.40 96.20 7.40 92.40 92.50 6.30 91.40 92.50 3.68 80.82 87.89 6.90 65.39 76.82 6.15 72.73 81.95

ResNet50
CORES 24.10 85.53 80.43 60.18 8.00 13.32 21.22 37.78 51.07 6.34 64.50 76.39 61.32 0.46 0.90 14.73 7.39 13.60
CL 39.92 84.92 70.37 70.28 87.26 44.33 60.44 85.28 54.04 39.66 89.15 71.97 70.23 94.47 45.28 60.68 91.98 55.09
SimiFeat-V 12.73 88.70 87.98 36.55 82.53 71.74 30.56 74.30 71.78 12.04 57.78 69.75 50.26 71.78 58.76 36.56 71.54 67.25
SimiFeat-R 26.83 98.25 83.88 43.87 90.25 69.21 34.70 88.93 75.30 28.21 99.02 83.23 59.57 88.81 55.57 47.42 92.21 66.97
BHN (ours) 3.84 94.83 95.49 7.01 90.17 91.56 5.93 89.66 91.81 4.10 78.21 86.16 7.63 64.48 75.95 6.64 71.90 81.24
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E. Classification Performance on Clean Test Sets using ResNet18 and ResNet50
We further verify whether BHN improves the classification performance of the final classifier using ResNet18 and ResNet50
on CIFAR-10 and CIFAR-100, respectively. For all methods, we remove the detected corrupted examples, and use the
remaining examples to train the classifier. Our results in Table 6 show that BHN consistently outperforms all other baselines
in all cases with synthetic noise. For example, we can observe that BHN outperforms the best baseline (SimiFeat-V) by
7.57% in the test accuracy on CIFAR-100 with Inst. 0.4 noise under ResNet18, while surpasses SimiFeat-V by 5.21% in
terms of test accuracy on CIFAR-10 with Asym. 0.3 noise under ResNet50.

Table 6. Comparisons of test accuracy of the final classifier (%) on CIFAR-10 and CIFAR-100. All the methods use ResNet18 and
ResNet50 as the backbone, respectively. Top 1 results are marked in bold.

Method
CIFAR-10 CIFAR-100

Symm. 0.6 Asym. 0.3 Inst. 0.4 Symm. 0.6 Asym. 0.3 Inst. 0.4

ResNet18
CORES 76.20 65.97 63.51 30.62 50.46 44.18
CL 25.55 49.37 35.77 7.98 12.39 11.22
SimiFeat-V 75.31 81.03 74.47 39.56 54.56 51.89
SimiFeat-R 58.56 82.34 77.93 35.55 48.36 45.55
BHN (ours) 86.65 90.14 88.09 49.56 62.46 59.46

ResNet50
CORES 68.34 70.15 66.31 37.75 47.71 38.98
CL 26.88 48.87 32.35 6.84 9.74 8.13
SimiFeat-V 75.42 82.68 76.36 39.27 55.26 51.07
SimiFeat-R 66.42 82.36 77.69 36.78 49.79 43.18
BHN (ours) 85.05 87.89 86.58 48.57 62.71 58.70

F. Alternative Score Function
We further evaluate the noisy label detection performance of BHN-cosin on the CIFAR datasets under the ResNet34 and
ResNet50 backbone, respectively. The results are provided in Tables 7 and 8. Again, BHN-cosin achieves almost the same
performance as BHN. which suggest that the norm of softmax logits has little effect on the performance of noisy label
detection. To explore this phenomenon further we contrast the norms of softmax logits on clean and corrupted examples
using neural networks with different test accuracy in Figure 4. The results show that the norms on clean and corrupted
examples consistently have almost the same densities under neural networks with different test accuracy, and moreover that
the norms of softmax logits cannot enhance the discrimination between clean and corrupted examples. Therefore, BHN and
BHN-cosin achieve similar performance.

Table 7. Comparisons of FDR, Recall, and F1, and test accuracy (%) of BHN and BHN-cosin on CIFAR-10. All methods are based on the
ResNet34 and ResNet50 network, respectively.

Method Symm. 0.6 Asym. 0.3 Inst. 0.4
FDR↓ Recall↑ F1↑ Accuracy ↑ FDR↓ Recall↑ F1↑ Accuracy ↑ FDR↓ Recall↑ F1↑ Accuracy ↑

ResNet34
BHN 3.80 95.90 96.05 86.30 7.17 91.13 91.98 89.79 5.98 91.18 92.58 88.63
BHN-cosin 3.78 95.82 96.02 86.15 7.25 91.00 91.87 90.07 5.98 90.85 92.41 87.89

ResNet50
BHN 3.84 94.83 95.49 85.05 7.01 90.17 91.56 87.89 5.93 89.66 91.81 86.58
BHN-cosin 3.84 94.72 95.44 85.61 7.04 90.19 91.56 88.10 5.96 89.64 91.79 87.18

G. Proof
Theorem 3.7 (Empirical p-values based on the score function are PRDS). Assume that ŝ(Z̃) is continuously distributed.
Consider N noisy examples z̃1, . . . , z̃N where the clean examples are jointly independent of each other and of the data in
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Table 8. Comparisons of FDR, Recall, F1 and test accuracy (%) of BHN and BHN-cosin on CIFAR-100. All methods are based on the
ResNet34 and ResNet50 network, respectively.

Method Symm. 0.6 Asym. 0.3 Inst. 0.4
FDR↓ Recall↑ F1↑ Accuracy ↑ FDR↓ Recall↑ F1↑ Accuracy ↑ FDR↓ Recall↑ F1↑ Accuracy ↑

ResNet34
BHN 4.10 81.31 88.01 46.16 7.79 67.14 77.71 61.46 6.48 72.99 81.99 58.06
BHN-cosin 4.18 78.28 86.17 44.68 7.95 64.10 75.57 62.02 6.39 69.11 79.51 56.82

ResNet50
BHN 4.10 78.21 86.16 48.57 7.63 64.48 75.95 62.71 6.64 71.90 81.24 58.70
BHN-cosin 4.15 76.42 85.04 45.13 7.73 62.28 74.36 60.98 6.27 68.59 79.21 56.72
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Figure 4. The norms of softmax logits on clean and corrupted examples on CIFAR-100 with the Symm. 0.6 noise using ResNet18 with
different test accuracy.
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D0. Then the p-values (p(Z̃1), . . . , p(Z̃N )) are PRDS on the set of clean examples.
Definition 3.5 (Increasing set). For vectors a and b of equal dimension, we say a � b if every coordinate of a is no smaller
than the corresponding coordinate of b, and a set A ⊂ RN is increasing if a ∈ A and b � a implies b ∈ A.
Definition 3.6 (PRDS). A random vector V = (V1, . . . , VN ) is PRDS on a set I0 ⊆ {1, . . . , N} if for any i ∈ I0 and any
increasing set A, the probability P[V ∈ A|Vi = v] is increasing in v.

In the multiple testing literature, (p(Z̃1), p(Z̃2), . . . , p(Z̃N )) is often said to be PRDS if it is PRDS on the set of nulls.

Proof of Theorem 3.7. Let S = (S(1), . . . , S(m)) be the order statistics of (ŝ(Z0
i ))i∈{m+1,...,2m}, the noisy label detection

scores evaluated on the calibration set. Let Y = (p1, . . . , pN ) be the empirical p-values evaluated on the noisy set (i.e.,
pj = p(Z̃j)). Then, for any increasing set A, we have

P [Y ∈ A | Yi = y] =

∫
P [Y ∈ A | S = s]P [S = s | Yi = y] ds

= ES|Yi=y [P [Y ∈ A | S]] .

With this representation, the conclusion will be implied by the following two lemmas.

Lemma G.1. For an increasing set A and vectors s, s′ such that s � s′, then

P [Y ∈ A | S = s] ≥ P [Y ∈ A | S = s′] .

Lemma G.2. For y ≥ y′, if i belongs to the set of nulls, there exists S1 ∼ S | Yi = y and S2 ∼ S | Yi = y′ such that
P [S1 � S2] = 1.

In other words, Lemma G.1 states that the p-values increase as the scores on the calibration set decrease, while Lemma G.2
states that a larger p-value indicates the scores on the calibration set are smaller. The proof of Theorem 3.7 follows easily
from Lemmas G.1 and G.2. Take any y ≥ y′ and let S1 and S2 be as in the statement of Lemma G.2. Then, for any i
belonging to the set of nulls,

P [Y ∈ A | Yi = y] = ES1 [P [Y ∈ A | S = S1]]

≥ ES2 [P [Y ∈ A | S = S2]]

= P [Y ∈ A | Yi = y′] .

The inequality follows from Lemma G.1 and the fact that P [S1 � S2] = 1, which comes from Lemma G.2.

Lemma G.1 follows immediately from the definition of empirical p-value in Equation (6). Lemma G.2 is proved below.

Proof of Lemma G.2. Since ŝ(Z̃) is continuously distributed, we can assume without loss of generality that the
scores Si follow the uniform distribution on [0, 1]. Let S′(1) ≤ S′(2) ≤ . . . ≤ S′(m+1) be the order statistics of

(ŝ(Z0
m+1), . . . , ŝ(Z

0
2m), ŝ(Z̃1)) and R2m+1 be the rank of ŝ(Z̃1) among these. By definition,{

(S(1), . . . , S(m)) | R2m+1 = k, S′(1), . . . , S
′
(m+1)

}
= (S′(1), . . . , S

′
(k−1), S

′
(k+1), . . . , S

′
(m+1)).

Since ŝ(Z̃) is continuously distributed, R2m+1 is independent of (S′(1), S
′
(2), . . . , S

′
(m+1)). As a result, for any positive

integer k ≤ m+ 1, {
(S(1), . . . , S(m)) | R2m+1 = k

}
d
= (S′(1), . . . , S

′
(k−1), S

′
(k+1), . . . , S

′
(m+1)).

The right-hand-side is clearly entry-wise non-increasing in k. Since p1 = R2m+1/(m+ 1), Lemma G.2 is proved for i = 1.
The same proof carries over to other indices i belonging to the set of clean examples.
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