
SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

Liren Yu 1 Jiaming Xu 2 Xiaojun Lin 1

Abstract
There is a growing interest in designing Graph
Neural Networks (GNNs) for seeded graph match-
ing, which aims to match two unlabeled graphs
using only topological information and a small set
of seed nodes. However, most previous GNNs for
this task use a semi-supervised approach, which
requires a large number of seeds and cannot learn
knowledge that is transferable to unseen graphs.
In contrast, this paper proposes a new supervised
approach that can learn from a training set how
to match unseen graphs with only a few seeds.
Our SeedGNN architecture incorporates several
novel designs, inspired by theoretical studies of
seeded graph matching: 1) it can learn to compute
and use witness-like information from different
hops, in a way that can be generalized to graphs
of different sizes; 2) it can use easily-matched
node-pairs as new seeds to improve the matching
in subsequent layers. We evaluate SeedGNN on
synthetic and real-world graphs and demonstrate
significant performance improvements over both
non-learning and learning algorithms in the ex-
isting literature. Furthermore, our experiments
confirm that the knowledge learned by SeedGNN
from training graphs can be generalized to test
graphs of different sizes and categories.

1. Introduction
Graph matching, also known as network alignment, aims to
find the node correspondence between two graphs that maxi-
mally aligns their edge sets. As a ubiquitous but challenging
problem, graph matching has numerous applications, in-
cluding social network analysis (Narayanan & Shmatikov,
2008; 2009; Zafarani et al., 2015; Zhang et al., 2015; Zhang

1Elmore Family School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, Indiana, USA 2The Fuqua
School of Business, Duke University, Durham, North Carolina,
USA. Correspondence to: Liren Yu <yu827@purdue.edu>, Ji-
aming XU <jx77@duke.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

& Philip, 2015; Chiasserini et al., 2016), computer vision
(Conte et al., 2004; Schellewald & Schnörr, 2005; Vento
& Foggia, 2013), natural language processing (Haghighi
et al., 2005), and computational biology (Singh et al., 2008;
Kazemi et al., 2016; Kriege et al., 2019). This paper focuses
on seeded graph matching, where a small portion of the
node correspondence between the two graphs is revealed
as seeds, and we seek to complete the correspondence us-
ing the few seeded node-pairs. Seeded graph matching is
motivated by the fact that, in many real applications, the
correspondence between a small portion of the two node
sets is naturally available. For example, in social network
de-anonymization, some users who explicitly link their ac-
counts across different social networks could become seeds
(Narayanan & Shmatikov, 2008; 2009). Knowledge of even
a few seeds has been shown to significantly improve the
matching results for many real-world graphs (Kazemi et al.,
2015; Fishkind et al., 2019).

Recently, the Graph Neural Network (GNN) approach for
graph matching has attracted much research attention. Al-
though such a machine-learning-based approach usually
does not possess provable theoretical guarantees, it has the
potential to learn valuable features from a large set of train-
ing data. Unfortunately, to date GNN has not been suc-
cessfully applied to seeded graph matching. Most previous
GNNs for seeded graph matching are limited to a semi-
supervised learning (SSL) paradigm, which only operates
on a single pair of graphs and treats the seed set as the la-
belled training data (Zhang et al., 2019; Li et al., 2019a;b;c;
Zhou et al., 2019; Chen et al., 2020; Derr et al., 2021). The
goal is to learn from the seed set useful features that can
be used to compute node embeddings for all nodes (see
Figure 1(a)). However, this semi-supervised learning suf-
fers from two major limitations. First, in order to obtain
high matching accuracy, the set of seeds needs to be large,
which is often unrealistic in practice. Second, as this semi-
supervised setting only learns within a given pair of graphs,
there is no effort in transferring knowledge from one pair of
graphs to other pairs of unseen graphs, which severely limits
GNNs’ potential in distilling the common knowledge from
a large set of training graphs. A natural but fundamental
question is that
Can we learn to match two graphs with only a few seeds
while generalizing to unseen graphs?

1

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

G1

G2

GNN

GNN

...

.

seeds

embedding space
(a) In semi-supervised learning, only one pair of
graphs G1 and G2 is provided. The GNN is applied
to each graph separately. Taking the topological and
non-topological features as input, this GNN maps
each node to a node embedding in some space and
matches nodes across two graphs based on the close-
ness in node embeddings. Using seeds as the training
set, this GNN is trained so that the seed pairs have
close node embeddings. However, when the num-
ber of seeds is small (while the GNN complexity is
high), other true pairs may still have very different
embeddings, leading to low matching accuracy.

Training Set

G(1)
1

G(1)
2

...
many examples of

matched graph pairs

SeedGNN (with
transferable
knowledge)

seeds
true

matching

Test Set

G1

G2

(b) Our SeedGNN is trained with many exam-
ples of matched graph pairs (on the left). Each
training graph pair comes with the true match-
ing (in blue), as well as the seeds (in red).
With training, SeedGNN can distill transfer-
able knowledge on how to effectively use a
small number of seeds to best match other
nodes. This SeedGNN is then applied to an
unseen graph pair (on the right) to achieve
high matching accuracy with only a limited
number of seeds.

0.00 0.01 0.02 0.03 0.04 0.05
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy
 R
at
e

SeedGNN
SSL GNN

(c) Performance comparison on cor-
related Erdős-Rényi graphs shows
that, with a very small fraction
of seeds, SeedGNN can already
achieve high matching accuracy,
while SSL GNN almost completely
fails. See detailed set-up in Sec-
tion 6.1.

Figure 1: Illustration of the advantages of supervised learning over semi-supervised learning for seeded graph matching.

This paper provides an affirmative answer to this question.
Specifically, we design a novel GNN architecture through a
supervised approach, namely SeedGNN, that can learn from
many examples of matched graphs, distill the knowledge
into the trained model automatically, and then apply such
knowledge to match unseen graph pairs with only a small
number of seeds (see an illustration in Figure 1(b)). The
performance comparison on correlated Erdős-Rényi graphs
(Pedarsani & Grossglauser, 2011) shown in Figure 1(c)
demonstrates that our SeedGNN requires significantly fewer
seeds to achieve higher matching accuracy than the SSL
GNN.

Our supervised SeedGNN incorporates two valuable in-
sights from theoretical studies of seeded graph matching.
The first insight is the notion of “witnesses” (Korula & Lat-
tanzi, 2014; Mossel & Xu, 2019). For node v in graph G1

and node w in graph G2, we say a seed pair (u, u′) is a ℓ-hop
witness for (v, w) if u is an ℓ-hop neighbor of v in G1 and
u′ is an ℓ-hop neighbor of w in G2. For example, in Figure 2
the seed pair (2, 2′) is a 1-hop witness for (1, 1′). For many
graph matching problems, a true pair tends to have more
witnesses than fake pairs (Korula & Lattanzi, 2014; Mossel
& Xu, 2019). Thus, the number of witnesses can be used to
measure the similarity of node-pairs. The second insight is
the notion of “percolation.” In particular, note that some true
pairs are easier to match than others. Some theoretical algo-
rithms use these easily-matched true pairs as new seeds to
match other nodes (Korula & Lattanzi, 2014; Kazemi et al.,
2015). For example, in Figure 2, since the node-pairs (1, 1′)
and (4, 4′) have a 1-hop witness, these two node-pairs can
be matched first. Then, used as new seeds, they become the
witnesses for other node-pairs, such as (3, 3′) and (6, 6′).
When done properly, a percolation process can be triggered
to match a large number of nodes. For some graphs, these
two insights have been crucial for theoretical algorithms to

successfully match graphs of n nodes with only Θ(log n)
seeds (Korula & Lattanzi, 2014; Kazemi et al., 2015; Yu
et al., 2021b).

1 1′

2 2′

3 3′4 4′

5 5′

6 6′

G1 G2

Figure 2: The node-pairs (i, i′) are true matches and the red
node-pairs are seeds.

Compared to the existing GNNs, our SeedGNN architecture
is carefully designed to effectively and explicitly incorporate
the above two insights. First, most existing GNNs are “node-
based,” i.e., they are applied to each node to compute a node
embedding. In contrast, SeedGNN is “pair-wise,” i.e., it
is applied to each pair of nodes across the two graphs. As
we elaborate in Section 4.2, this pair-wise architecture is
much more effective in learning how to compute and use
witnesses in a way that can be generalized to graphs with
different sizes. Second, we carefully design a percolation
module to filter out node-pairs with low similarities. As a
result, only the “cleaner” new seeds are used to trigger the
percolation process.

Note that a similar pair-wise architecture has appeared be-
fore in NGM (Wang et al., 2021) for seedless graph match-
ing. However, the NGM architecture was not designed for
seeded graph matching, and there are crucial differences that
prevent the effective use of the witnesses and percolation
ideas. We analytically show in Section 5 that, for seeded
graph matching, such differences can significantly affect the
matching performance when the number of seeds is small.
Our experiments in Section 6.2 further verify that NGM
does not generalize well when the test graphs have much
larger sizes and node-degrees than the training graphs.

Our numerical experiments (in Section 6) on both synthetic
and real-world graphs show that SeedGNN significantly
outperforms the state-of-the-art algorithms, including both

2

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

non-learning and learning-based ones, in terms of seed-
size requirement and matching accuracy. Moreover, our
SeedGNN can generalize to match unseen graphs of sizes
and types different from the training set.

2. Further Related Work
In this section, we discuss further related work. More discus-
sion on additional related work is deferred to Appendix A.

Theoretical Algorithms Various seeded matching algo-
rithms have been proposed based on hand-designed simi-
larity metrics computed from local topological structures
(Pedarsani & Grossglauser, 2011; Yartseva & Grossglauser,
2013; Korula & Lattanzi, 2014; Shirani et al., 2017; Mossel
& Xu, 2019; Yu et al., 2021b). The theoretical analysis on
these algorithms explains why a particular set of features
(e.g., witnesses (Korula & Lattanzi, 2014) and percolation
(Yartseva & Grossglauser, 2013)) are valuable for graph
matching. However, these theoretical algorithms require
carefully hand-tuned parameters and may not synthesize
different features most effectively (see detailed discussion
in Appendix A). In contrast, SeedGNN can potentially learn
(from the training data) what combinations of features are
most useful, and thus outperform theoretical algorithms, as
shown in our experiments Section 6.2.

GNN for Seedless Graph Matching As aforementioned,
most existing GNNs for seeded graph matching take a semi-
supervised learning approach. In contrast, our SeedGNN
falls into a supervised learning approach, which aims to
transfer knowledge from training graphs to unseen graphs.
In the literature, such a supervised learning approach has
been applied to seedless versions of the graph matching
problems in (Zanfir & Sminchisescu, 2018; Wang et al.,
2019; 2021; 2020a; 2021; Jiang et al., 2022; Wang et al.,
2020b; Fey et al., 2020; Rolı́nek et al., 2020; Gao et al.,
2021; Yu et al., 2021c). For such seedless matching prob-
lems, non-topological node features are often assumed to be
available and informative. Thus, a node-based GNN is effec-
tive in learning how to extract useful node representations
from high-quality non-topological node features. However,
for seeded matching problems, it is difficult to design a
node-based GNN to effectively utilize seed information (see
further discussions in Section 4.2). In contrast, our pair-wise
SeedGNN architecture is much more effective in learning
how to use seed information.

3. Problem Definition
We represent a graph of n nodes by G = (V,A), where
V = {1, 2, ..., n} denotes the node set, and A ∈ {0, 1}n×n

denotes the adjacent matrix, such that A(i, j) = 1 if and
only if nodes i and j are connected. For seeded graph match-

ing, we are given two graphs G1 = (V1,A1) of n1 nodes
and G2 = (V2,A2) of n2 nodes. Without loss of generality,
we assume n1 ≤ n2. There is an unknown injective map-
ping π : V1 → V2 between G1 and G2. When π(i) = j,
we say that i ∈ V1 corresponds to j ∈ V2. Throughout the
paper, we denote a node-pair by (i, j), where i ∈ V1 and
j ∈ V2. For each node-pair (i, j), if j = π(i), then (i, j) is
a true pair; if j ̸= π(i), then (i, j) is a fake pair. Then, a
seed set S containing a fraction of true pairs is given. The
goal of seeded graph matching is to recover the ground-truth
mapping π based on the observation of G1, G2 and S.

In this work, we consider the problem of seeded graph
matching in the supervised setting. The training set
consists of several pairs of graphs, their initial seeds,
and ground-truth mappings. Specifically, we use T =
{(P (1), π(1)), (P (2), π(2)), ..., (P (N), π(N))} to denote the
training set, where P (i) = (G(i)

1 ,G(i)
2 ,S(i)) denotes the i-th

training example and π(i) is the ground-truth mapping for
the i-th training example. For different training examples,
the sizes of graphs and seed sets could be different. Our
goal is to design a GNN architecture that can learn from
training examples to predict the ground-truth mappings for
unseen test graphs.

4. The Proposed Method
In this section, we present in detail our SeedGNN for seeded
graph matching. See Figure 3 for a high-level illustration.

Notation we use flatten(·) to denote the matrix reshape
operation that converts a n1 × n2 × d matrix to a matrix of
n1n2 × d, where the (i, j, :)-th entry of the input matrix is
the ((i−1)n2+j, :)-th entry of the output matrix. Then, we
use unflatten(·) to denote the inverse operation of flatten(·).

4.1. Generalizable Encoding Method for Seeds

We encode the seeded relationship as inputs for our
SeedGNN. More precisely, let s1 ∈ {0, 1}n1n2×1 be the
indicator vector for seeds among n1n2 node-pairs. If the
node-pair (i, j) is a seed, we let the ((i− 1)n2 + j)-th entry
of s1 be 1, and 0 otherwise.

We contrast our way of encoding seeds with an alternate one-
hot encoding method. One-hot encoding assigns the i-th
seeded node with a binary vector, whose i-th element being
1, and all other elements are 0. The benefit of our encoding
method is that the dimension of the encoding vector is fixed
at 1 for each node-pair, which does not depend on the graph
size or the number of seeds. Thus, SeedGNN with our
encoding method can be applied to unseen graphs with
arbitrary graph sizes and numbers of seeds. In contrast, one-
hot encoding method needs to pre-specify the maximum
number of seeds, and thus GNNs with one-hot encoding can
not generalize to new graphs with even more seeds.

3

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

The l-th layer

Convolution Module

Aggregation (3) MLP (4)
flatten(·)

Percolation Module

MLP (6)

Softmax (7) Hungarian

Masking (8)
unflatten(·)

flatten(·) Concatsl
unflatten(·) sl+1

Figure 3: An overview of the l-th layer of our SeedGNN architecture. There are L layers in total and each layer consists of
two main modules. With the node-pair representations sl as input, the convolution module is a local processing step that
aggregates the neighborhood information of each node-pair and updates the representation of its similarity through a neural
network. The percolation module is a global processing step that compares the updated similarities of all node-pairs and
finds the high-confidence ones. Then, we combine the local and global information from the two modules and propagate the
new representations sl+1 to the next layer.

4.2. Convolution Module

With the seed information encoded as 0/1 for each node-
pair, we still need to carefully design a GNN architecture
that can count witnesses. Note that most existing GNN ap-
proaches for graph matching are “node-based” (Zhang et al.,
2019; Chen et al., 2020; Wang et al., 2019; 2020a; Fey et al.,
2020; Rolı́nek et al., 2020). They apply a common GNN
separately to each of the two graphs in order to learn a node
embedding for each node. They then match nodes in the two
graphs based on the similarity of the corresponding node
embeddings. However, it is difficult for these approaches
to utilize our newly-encoded seed information effectively.
As shown in Figure 2, our encoding of seed information can
also be viewed as “cross-links” (highlighted in red color)
across the two graphs. With these “cross-links”, we can then
combine the two graphs together and apply the node-based
GNN on this union graph. However, the topological struc-
ture of this union graph only informs the GNN that there is a
seed at a particular location in the neighborhood, but not the
seed identity. For example, in Figure 2, even though node
1′ and node 4′ have different seeds in their neighborhoods,
their local neighborhood topologies (and the seed positions)
look exactly the same. Thus, node-based GNN will have a
hard time to come up with node embeddings such that node
1 has a close embedding to node 1′ but not close to node
4′. Instead, our SeedGNN is “pair-wise”, i.e., it is applied
on node-pairs instead of nodes. Intuitively, when we apply
such a pair-wise GNN to the node-pairs (1, 1′) and (1, 4′)
in Figure 2, it can easily tell that (1, 1′) has a witness, while
(1, 4′) does not. As a result, this pair-wise GNN will count
and utilize witnesses easily.

Specifically, taking the seed encoding vector s1 as input, the
counting of 1-hop witnesses can be written as

h1 = (A1 ⊗A2)s1 (1)

where ⊗ denotes the Kronecker product. Applying (1) to
Figure 2, we can get that the node-pairs (1, 1′) and (4, 4′)
have a 1-hop witness, respectively. Likewise, we may fur-
ther compute the l-hop witness-like information hl in the
l-th layer of our SeedGNN as

hl = (A1 ⊗A2)sl, (2)

where sl ∈ Rn1n2×dl is specified later in Section 4.3, which
contains the witness-like information within (l − 1)-hops.
Note that (2) can be expanded as, for node-pair (i, j),

hl[(i−1)n2+j, :] =
∑
(u,v):

A1(u,i)=A2(v,j)=1

sl[(u−1)n2+v, :],

which is similar to the aggregation step of the standard
GNN in (Hamilton et al., 2017). The only difference is that
we aggregate over a node-pair’s neighborhood. A direct
implementation of (2) takes O(n2

1n
2
2) computation, but we

can reduce the complexity by letting Hl = unflatten(hl)
and Sl = unflatten(sl), and rewriting (2) as

Hl[:, :, t] =unflatten((A1 ⊗A2)sl[:, t])

=A1Sl[:, :, t]A2, t = 1, 2, ..., dl. (3)

Assume that the mean of the node degrees of G1 and G2 is
at most dmean. When we represent A1 and A2 with sparse
matrices, each of them only contain n1dmean and n2dmean
elements. Thus, by sparse matrix multiplication, the time
complexity of Equation (3) is O(n1n2dmean).

As we will see later in Section 4.3, sl will also contain
outputs from the percolation layer. In order to learn how
to best synthesize these two features, we apply a neural
network on hl after (2):

ml = ϕl(hl), (4)

where the update function ϕl is implemented as a K-layer
neural network (we use K = 2 in our experiment). Let
ϕ
[0]
l (hl) = hl. The k-th layer of ϕl can be formulated as

ϕ
[k]
l (hl) = σ

(
ϕ
[k−1]
l (hl)W

[k−1] + b[k−1]
)
, (5)

where W [k−1] and b[k−1] are learnable weights, initial-
ized as Gaussian random variables; σ is an activation func-
tion (we use ReLU). The updated representations ml ∈
Rn1n2×(dl−1) will be sent to the next module of SeedGNN.

4.3. Percolation Module

The percolation module is designed to match high-
confidence nodes at one layer and to propagate the matched

4

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

� � � � �

�
�

�
�

�

���� ���� ��� ��� ���	

���� ��	� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

���	 ���� ���� ���� ����
���

���

���

���

��	

���

(a) Similarity/confidence matrix Yl.
� � � � �

�
�

�
�

�

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �
���

���

���

���

���

���

(b) Output Rl of the Hungarian algorithm.
� � � � �

�
�

�
�

�

���� � � � �

� ��	� � � �

� � ���� � �

� � � ���� �

� � � � ����
���

���

���

���

��	

���

(c) Zl produced by masking.
Figure 4: Illustration of percolation module. The diagonal (resp. off-diagonal) entries correspond to true (resp. fake) pairs.

nodes as new seeds to the subsequent layers. Formally, we
first obtain a similarity matrix in the l-th layer by mapping
the node-pair representations ml to a 1-dimension vector,
which is used to assess the similarity of each node-pair:

xl = ρl(ml). (6)

We implement ρl as a multi-layer neural network that is
defined similarly as ϕl in (5). The output xl is in Rn1n2×1.
Then, we transform xl to Xl = unflatten(xl) ∈ Rn1×n2 ,
and apply row-wise softmax to normalize Xl and obtain the
similarity (confidence) matrix Yl for node-pairs:

Yl =
(
softmax(Xl) + softmax(X⊤

l)⊤
)
/2, (7)

where for each row v = (v1, ..., vn) ∈ Rn of input matrix,
the softmax function is defined as

softmax(v)i =
exp(vi)∑n
j=1 exp(vj)

, for i = 1, 2, .., n.

The similarity matrix Yl needs “cleaning” because it con-
tains a lot of “noisy” information. For example, many fake
pairs may possess comparable similarity with true pairs (see
Figure 4(a) for example). Further, there are far more fake
pairs than true pairs. As a result, directly utilizing such mis-
leading information may lead to even more matching errors.
Inspired by the percolation idea from theoretical algorithms,
which passes only new seeds with high confidence levels to
the next stage (Yartseva & Grossglauser, 2013), we leverage
an approach called “masking” to remove the noisy informa-
tion and retain the cleaner information in Yl. Specifically,
we utilize the Hungarian matching algorithm (Edmonds &
Karp, 1972) to solve a linear assignment problem on Yl to
find an injective mapping between G1 and G2, such that the
total similarity of the matched node-pairs is maximized (see
Figure 4(b) for example). The matching result is denoted by
Rl ∈ {0, 1}n1×n2 , where Rl(i, j) = 1 if the node-pair (i, j)
is matched by the Hungarian algorithm, and Rl(i, j) = 0
otherwise. Then, we filter out the noisy information in Yl

by “masking”:

zl = flatten(Yl ◦Rl), (8)

where ◦ denotes element-wise multiplication (see Fig-
ure 4(c) for example). The matching information zl is sent
to the next layer. As a result, many noisy node-pairs are

discarded. We note that both the idea of using similarity
matrix to refine higher-layer matching and the idea of mask-
ing have appeared in seedless matching (Wang et al., 2019;
Fey et al., 2020; Yu et al., 2019). However, (Wang et al.,
2019; Fey et al., 2020) do not clean up the “noisy” informa-
tion as we carefully did, and (Yu et al., 2019) only applies
the Hungarian algorithm in their loss function (but not the
intermediate layers). Readers can refer to the numerical
results in Appendix E.1, which demonstrate the importance
of carefully cleaning up “noisy” information in each layer.
Further, unlike previous percolation algorithms (Yartseva &
Grossglauser, 2013), our design of the percolation module
can correct matching errors from earlier layers. We discuss
these differences further in Appendix A.

The combination of the two features With the convo-
lution module and the percolation module, our SeedGNN
can identify witnesses-like information at different hops and
generate new seeds for percolation. However, these capa-
bilities alone are insufficient. For example, when graphs
are very sparse, even true node-pairs may not have enough
witnesses if the number of hops l is small. When graphs are
very dense, a fake pair may also have many witnesses if l
is large. Thus, SeedGNN needs to learn how to adaptively
utilize various types of witnesses in different types of graphs.
Similarly, even with the above “cleaning” procedure, the out-
put of the percolation module may still have low-confidence
seeds. Directly using them for percolation could lead to
cascading errors. Thus, SeedGNN also needs to learn how
to use new seeds with different levels of confidence.

Layer 1 Layer 2 Layer l

initial seeds

s1

1-hop

new seeds z1

m1

s2 = [m1, z1]

2-hop

1-hop

new seeds z2

m2

s3 = [m2, z2]

l-hop

(l − 1)-hop

1-hop

ml

new seeds zl

sl+1 = [ml, zl]

...
...

Convolution

Percolation

...

Figure 5: The witness-like information and new seeds com-
puted by each layer.

The neural module in (4) is precisely designed to enable
such learning. Specifically, instead of directly using the
output zl from the percolation module as new seeds, we
concatenate it with the output of the convolution module, i.e.,

5

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

sl+1 = [ml, zl] ∈ Rn1n2×dl+1 , as the input to the next layer.
Then, after passing sl+1 through (2), we apply the neural
module (4). The joint effect of this design is that SeedGNN
can utilize the confidence levels of zl to decide how much
it should rely on various types of witnesses. Intuitively,
at a higher layer l ≥ 2, after passing sl by (2) and (4),
ml may contain l-hop witness-like information from the
initial seeds s1, (l − 1)-hop witness-like information from
new seeds z1, ... and 1-hop witnesses information from
new seeds zl−1 (see Figure 5). However, unlike the initial
seeds s1 that are either 0 or 1, the new seeds z1, z2, ..., zl−1

also come with confidence levels. Thus, thanks to the non-
linearity in ϕl at each layer, the strength of the various types
of witness-like information (from either the initial seeds
or the new seeds) will vary depending on the confidence
levels of the new seeds, which then allows SeedGNN to
learn how to best utilize them adaptively. For example,
for sparse graphs, the confidence levels of the new seeds
in the first several layers are low. As a result, SeedGNN
can utilize witnesses based on the initial seeds but at a
larger number of hops. In contrast, for dense graphs, if
the confidence levels of the new seeds in the first several
layers are already high, SeedGNN can then utilize the new
witnesses computed from those new seeds. This capability
is experimentally validated in Appendix E.3 by studying the
layer-wise matching process of SeedGNN for different types
of graphs. Further, SeedGNN can even combine different
types of witness-like information together and extract more
valuable features.

4.4. Loss Function

Finally, we utilize the ground-truth node correspondence as
the supervised training information for end-to-end training.
More precisely, for any training example (P, π) ∈ T , we
adopt the cross-entropy loss to measure the difference be-
tween our prediction and the ground-truth mapping π. Then,
we add up the cross-entropy loss of every layer:

LP (ϑ) = −
L∑

l=1

 ∑
(i,j): j=π(i)

log (Yl(i, j) + ϵ)

+
∑

(i,j), j ̸=π(i)

log (1− Yl(i, j) + ϵ)

 ,

where Yl is given in (7), ϑ denotes all the learnable weights
in the networks ϕl and ρl, and ϵ is a small positive value
(e.g. ϵ = 10−9) to avoid a logarithm of zero. The total loss
function is L(ϑ) =

∑
P∈T LP (ϑ). We find that the use of

the losses from all layers in training helps to speed up the
training process. This is somewhat inspired by hierarchical
learning methods in (Bengio, 2009; Schmidhuber, 1992;
Simonyan & Zisserman, 2015). It allows the lower layers to
be trained first, making it easier to train the next layers. In

testing, we will apply the trained SeedGNN model on the
test graphs and only use the matching result of the final layer,
RL, as the predicted mapping since the final layer already
synthesizes all the features learned at the lower layers.

The total time complexity of SeedGNN is O(n1n
2
2), and the

space complexity is O(n1n2). The detailed discussion on
the complexity and scalability of our SeedGNN is deferred
to Appendix C.

5. Theoretical Comparison Study
We note that NGM (a supervised seedless GNN method) in
(Wang et al., 2021) bears some similarity with SeedGNN,
because NGM also applies a pair-wise GNN, which uses an
aggregation step similar to (2). However, a crucial difference
is that after (2), NGM divides each node-pair representation
by the product of the degrees of the corresponding two
nodes. This type of normalization is quite common in GNNs
to transform the non-topological features to a similar scale.
However, this division can lead to very poor performance for
seeded graph matching. The reason is that, if the number of
seeds is small (e.g., O(log n)) and the node degree increases
proportionally to n, after the normalization step in NGM,
we expect that the resulting output value (O(logn

n2)) will
decrease to zero as n increases. Hence, we expect that it
would be difficult for NGM to distinguish the true pairs
from the fake pairs in test graphs with larger sizes and node
degrees than the training graphs.

To formally study this effect, we conduct a theoretical study
on a widely-adopted graph matching model, the correlated
Erdős-Rényi graph model G(n, p, s; θ) (Pedarsani & Gross-
glauser, 2011). We first generate the parent graph G0 from
the Erdős-Rényi model G(n, p) with n nodes and edge prob-
ability p. Then, we obtain a subgraph G1 by sampling each
edge of G0 independently with probability s. Repeat the
same sampling process independently to obtain another sub-
graph G2. Then, each true pair among G1 and G2 is inde-
pendently added into the seed set S with probability θ. We
assume that the training set and test set have the same pa-
rameters p, s, θ, and the only difference is the graph size,
denoted by ntrain and ntest, respectively.

For ease of analysis, we focus on our SeedGNN model and
an NGM-like model. For SeedGNN, we fix the number of
layers L = 2. The first layer is the same as we described
in Section 4. The second layer only uses the output of
the percolation module as input (i.e., use s2 = z1 instead
of s2 = [m1, z1]). The NGM-like model is the same as
SeedGNN except that the NGM-like model adds normaliza-
tion after the aggregation step (2). Since the node degrees
of Erdős-Rényi graphs are highly concentrated around the
average degree, we let the NGM-like model divide all the
node-pair representations by the square of the average de-

6

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

gree. We assume that, after training, the Lipschitz constants
of the neural networks ρl (in (6)) in NGM are all KL.

We then present the sufficient conditions for the trained
SeedGNN and NGM-like model to successfully match all
nodes in test graphs. Note that, in the first layer, both
SeedGNN and the NGM-like model count the 1-hop wit-
nesses in the same way, except that the NGM-like model
further divides the output by the square of the average de-
gree. Thus, the results are proportional to each other, and
applying the Hungarian algorithm to these results yields
the same matching results R1. Let β denote the fraction
of correct matches in R1 (which typically increases with
the fraction of seeds θ). However, the confidence levels Z1,
computed by these two models are quite different because
NGM does a normalization step. The difference in confi-
dence levels will influence the performance in the second
layer. More precisely, we have the following theorem, with
the proofs deferred to Appendix B.

Theorem 5.1. Suppose (ntestps)
2 ≥ c0KL log ntest. We

have

• if β ≥ c1
logntest

ntestps2
, SeedGNN correctly matches all nodes

with high probability;

• if β ≥ c2 max
{

logntest

ntestps2
,
√

logntest

ntests2

}
, the NGM-like

model correctly matches all nodes with high probability,

where c0, c1, c2 > 1 are some absolute constants.

Comparing the two sufficient conditions in Theorem 5.1,

we see that, when the graph is dense, i.e., p ≥
√

logntest

ntests2
,

we have
√

logntest

ntests2
≥ logntest

ntestps2
so that

√
logntest

ntests2
dominates

the sufficient condition for the NGM-like model. Therefore,
when the test graphs have large sizes and node degrees,
the condition of SeedGNN require a much smaller β (and
thus fewer seeds) than that of NGM. Note that a smaller
requirement of β translates to a smaller number of initial
seeds needed. Thus, given a small set of seeds, SeedGNN
may already successfully match all nodes, while NGM still
has a low matching accuracy (see Section 6.2).

6. Experiments
6.1. Experimental Set-up

In our experiment, the number of SeedGNN layers is fixed
to 6. We implement the operators ϕl and ρl as two-layer
neural networks with dl = 16. For all experiments, opti-
mization is done via ADAM (Kingma & Ba, 2015) with
a fixed learning rate of 10−2. Our model is implemented
using PyTorch (Paszke et al., 2019) and trained on an Intel
Core i7-8750H CPU. The performance is evaluated using
the matching accuracy rate, i.e., the fraction of nodes that
are correctly matched. Our code is publicly available at

https://github.com/Leron33/SeedGNN.

Datasets. We use the correlated Erdős-Rényi graph model
(Pedarsani & Grossglauser, 2011), Facebook networks in
(Traud et al., 2012), SHREC’16 computer vision dataset
in (Lähner et al., 2016), and Willow Object dataset (Cho
et al., 2013) in our experiments. We described the correlated
Erdős-Rényi graph model earlier in Section 5, and the details
of the three real datasets are deferred to Appendix D.1.

Training set. We construct the training set T in the follow-
ing way. First, we generate 100 random pairs of correlated
Erdős-Rényi graphs with n = 100, p ∈ {0.1, 0.3, 0.5},
s ∈ {0.6, 0.8, 1}, and θ = 0.1. Second, we add 10 pairs of
Facebook networks as discussed above with θ = 0.1 into
the training set. Third, we do not include any SHREC’16
dataset or Willow Object dataset in the training set. Our
SeedGNN trained on the above training set already performs
well for these two datasets (see Section 6.2), which verifies
the generalization power of our SeedGNN. The training
batch size is 64. The overall training for 500 epochs takes
about 12 hours and requires 2.68 GB memory.

Baselines. We compare the performance of our proposed
SeedGNN with several state-of-the-art algorithms: D-hop
(Mossel & Xu, 2019), PGM (Kazemi et al., 2015), and PLD
(Yu et al., 2021b) are theoretical algorithms; SGM (Fishkind
et al., 2019) is a convex relaxation algorithm; MGCN (Chen
et al., 2020) is a representative semi-supervised learning-
based GNN approach; NGM (Wang et al., 2021) is a super-
vised GNN method for seedless graph matching. We adapt
the NGM approach to seeded graph matching by replacing
the affinity matrix in NGM with the Kronecker product of
the two adjacent matrices and inputting the seed information
in the same way as SeedGNN. The details of these baselines
are deferred to Appendix D.2.

6.2. Results

SeedGNN requires fewer seeds than existing algorithms
to successfully match graphs. In Figure 6, we show
the performance of the algorithms on the correlated Erdős-
Rényi graph model. For test graphs, we vary θ while fixing
n = 500, p ∈ {0.01, 0.2}, s = 0.8. We can observe that,
among the state-of-the-art methods, the iterative 2-hop algo-
rithm has the best performance for sparse graphs (p = 0.01),
and the SGM algorithm performs the best for dense graphs
(p = 0.2). In comparison, our SeedGNN has overall the
best performance among all algorithms. Existing theoretical
studies such as (Mossel & Xu, 2019) must use witnesses
at different numbers of hops, depending on whether the
graphs are sparse (p = 0.01) or dense (p = 0.2). In con-
trast, our SeedGNN is capable of choosing the right features
automatically to match different types of graphs.

We then compare SeedGNN with the state-of-the-art algo-

7

https://github.com/Leron33/SeedGNN

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

0.0 0.04 0.08 0.12 0.16 0.2
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at
e

(a) p = 0.01

0.00 0.01 0.02 0.03 0.04 0.05
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at
e

(b) p = 0.2

SeedGNN L=6
SGM
1-hop T=6
2-hop T=3
3-hop T=2
PGM
MGCN
NGM

Figure 6: Performance comparison on correlated Erdős-Rényi graphs. Fix n = 500 and s = 0.8.

rithms on Facebook networks, which are real-world graphs
with an approximate power-law degree distribution. In Fig-
ure 7, we can see that SeedGNN is comparable to SGM and
significantly outperforms other algorithms. Note that the
matching accuracy is saturated at around 80%, because there
are about 15% nodes that do not have any common neigh-
bour in G1 and G2, and thus can not be correctly matched.

0.00 0.01 0.02 0.03 0.04 0.05
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy
 R
at
e SeedGNN L=6

SGM
1-hop T=6
2-hop T=3
3-hop T=2
PGM
PLD
MGCN
NGM

Figure 7: Performance comparison on the Facebook net-
works with different θ.

SeedGNN generalizes well to unseen graphs with sizes
and types different from the training graphs. When we
test on the correlated Erdős-Rényi graphs in Figure 6, the dif-
ferent graph sizes between the training set (n = 100) and the
test set (n = 500) already demonstrates the generalization
power of SeedGNN. To further validate that our SeedGNN
can adapt to different graphs, we evaluate SeedGNN for
deformable shape matching using the SHREC’16 dataset.
Note that the sizes and types of graphs in this dataset are
quite different from the Erdős-Rényi and Facebook graphs
in the training set. The performance improvement shown in
Figure 8 verifies the generalization power of our SeedGNN.

SeedGNN can be much more effective than semi-
supervised learning GNN when non-topological features
are not informative. Existing semi-supervised GNNs
rely heavily on high-quality non-topological features (e.g.,
DeepLink (Zhou et al., 2018), CrossMNA (Chu et al., 2019),
MGCN (Chen et al., 2020)). However, in the SHREC’16
dataset, the non-topological node features correspond to 3D
coordinates, which do not provide much useful information

0.00 0.02 0.04 0.06 0.08 0.10
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

SeedGNN L=6
SGM
1-hop T=6
2-hop T=3
3-hop T=2
PGM
MGCN
NGM

Figure 8: Performance comparison on the SHREC’16
dataset with different θ.

for correlating two 3D shapes with different poses. As a
result, in Table 1, we observe that, provided with only a
very small fraction of seeds (θ = 0.01), our SeedGNN can
significantly outperform the semi-supervised methods.

Supervised node-based GNNs for seedless graph match-
ing underperform for seeded graph matching. We com-
pare our SeedGNN with other supervised learning GNN
methods on the SHREC’16 dataset. We fix the fraction of
seeds θ at 0.01, use the random encoding to represent seed
information, and provide them as input for supervised GNNs
(except NGM, for which we described the changes in Sec-
tion 6.1). In Table 1, we can observe that our SeedGNN sig-
nificantly outperforms the supervised GNNs, even when the
latter are augmented with seed information. This suggests
that our method is more effective in using seed information
than most supervised seedless GNN methods.

NGM does not generalize well when the test graph has
much larger size and node-degree than the training
graphs. As we discussed in Section 4.2, most existing
supervised seedless GNN approaches are node-based and
have difficulty learning how to use seed information in a
generalizable way. The only exception is NGM in (Wang
et al., 2021), which has a similar pair-wise architecture as
SeedGNN. Thus, we transfer NGM to the seeded match-
ing version. However, we can observe from Figure 6 that,
although NGM performs relatively well (it still underper-
forms our SeedGNN) in larger sparse graphs (p = 0.01), it

Table 1: Comparison of GNN methods on SHREC’16 dataset. The best results are marked as bold.

Method
Semi-Supervised GNN Supervised GNN

DeepLink CrossMNA MGCN DGMC BB-GM DGM NGM SeedGNN
(Zhou et al., 2018) (Chu et al., 2019) (Chen et al., 2020) (Fey et al., 2020) (Rolı́nek et al., 2020) (Gao et al., 2021) (Wang et al., 2021) ours

Accuracy (%) 3.3± 0.8 4.2± 1.7 3.8± 1.1 23.2± 6.8 21.1± 4.4 19.31± 10.6 37.9± 5.7 43.1± 8.5

8

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

performs quite poorly in larger dense graphs (p = 0.2). This
observation confirms our theoretical analysis in Section 5.
Note that, for the experiment on the SHREC’16 dataset
(Table 1), NGM has similar performance as our SeedGNN.
This is because in this experiment, we train NGM also with
the SHREC ’16 dataset. Thus, the test graphs and training
graphs are with similar node degrees. As a result, the issue
caused by the normalization operation in NGM is not as
evident for the SHREC’16 dataset.

SeedGNN can also be used in an overall pipeline to refine
the outputs of other seedless graph matching algorithms,
taking advantage of informative non-topological features.
Although SeedGNN is designed for seeded graph match-
ing and only uses topological information, it can also be
integrated into an overall pipeline to utilize non-topological
node features that are sufficiently informative. For exam-
ple, we can first use a seedless graph matching algorithm to
generate an initial matching based on non-topological node
features. By taking this initial matching as partially-correct
seeds, we can then apply SeedGNN to correct these seeds.

To demonstrate this capability, we conduct experiments
on the Willow Object dataset, whose node features are in-
formative enough for correlating nodes. We compare the
SeedGNN pipeline with several state-of-the-art seedless
GNN methods (see Table 2). The performance values of
these existing seedless GNN methods are directly retrieved
from their respective papers. For the SeedGNN pipeline, we
still directly use the model trained in Section 6.1. The input
to SeedGNN is generated in two ways. The first way is to
apply a neural network only on non-topological features
(without graph information) and use the dot product of its
outputs on each pair of nodes to generate the similarity for
each node-pair (we denote this neural network as MLP).
Then, MLP+SeedGNN-1 directly uses the similarity val-
ues of all node-pairs as input, while MLP+SeedGNN-2
further filters out noisy information by applying the Hun-
garian algorithm on the similarity matrix. The second
way (DGMC+SeedGNN) is to use the matching result of
DGMC, one of the GNN methods for seedless graph match-
ing, as input.

From the matching accuracy presented in Table 2, we
make the following observations. First, our results show
that SeedGNN can effectively refine the output of other
seedless graph matching algorithms. Specifically, both
MLP+SeedGNN-1 and MLP-SeedGNN-2 outperform MLP,
while DGMC+SeedGNN outperforms DGMC. Second, it
is crucial to clean up the output of seedless matching
algorithms in order to achieve good performance in the
SeedGNN pipeline. This is evident as MLP+SeedGNN-2
consistently outperforms MLP+SeedGNN-1. Indeed, the
similarity matrix contains significantly more fake pairs than
true pairs. Thus, by using the Hungarian algorithm on

the similarity matrix, MLP+SeedGNN-2 sends only high-
confidence seeds to SeedGNN, and is more effective in sup-
pressing the misleading information. Third, our experiments
show that the effectiveness of the SeedGNN pipeline still
depends on the choice of seedless algorithm. Specifically,
we observe that DGMC+SeedGNN achieves the best perfor-
mance, outperforming MLP+SeedGNN and other seedless
GNN methods.

Table 2: Comparison of matching accuracy (%) on Willow
Object dataset. The best results are marked as bold.

Method face mbike car duck wbottle Mean
GMN (Zanfir & Sminchisescu, 2018) 98.1 65.0 72.9 74.3 70.5 76.2

PCA-GM (Wang et al., 2019) 100.0 76.7 84.0 93.5 96.9 90.2
NGM (Wang et al., 2021) 99.2 82.1 84.1 77.4 93.5 87.2

IPCA-GM (Wang et al., 2020a) 100.0 77.7 90.2 84.9 95.2 89.6
CIE (Yu et al., 2019) 100.0 90.0 82.2 81.2 97.6 90.2

DGMC (Fey et al., 2020) 100.0 92.1 90.3 89.0 97.1 93.7
BB-GM (Rolı́nek et al., 2020) 100.0 98.9 95.7 93.1 99.1 97.4

DGM (Gao et al., 2021) 100.0 98.8 98.0 92.8 99.0 97.7
DLGM (Yu et al., 2021c) 100.0 99.3 96.5 93.7 99.3 97.8

MLP 98.1 48.3 65.3 66.0 77.7 71.1
MLP+SeedGNN-1 99.4 77.8 84.1 77.4 89.5 85.6
MLP+SeedGNN-2 100.0 98.9 96.8 93.1 98.7 97.5
DGMC+ SeedGNN 100.0 99.6 97.4 98.7 99.0 98.9

Additional experiments to study the complexity and in-
ner working of our SeedGNN. In Appendix C.2, we
show that the runtime of our SeedGNN is comparable to
other GNN-based algorithms. In Appendix E, we investi-
gate the inner working of our SeedGNN. First, we verify the
effectiveness of our design choices for SeedGNN by compar-
ing the performance of different architectural designs. Then,
we investigate which sets of samples need to be included in
our training set to obtain an effective trained model. Finally,
we study the matching process of SeedGNN for different
types of graphs. The results verify that SeedGNN chooses
the appropriate features for different graphs based on the
confidence levels of new seeds as illustrated in Figure 5.

In summary, all of the above experiments demonstrate that
our SeedGNN significantly outperforms these baselines
across various types of graphs while requiring fewer seeds.
Moreover, the knowledge learned by SeedGNN from train-
ing graphs can be effectively generalized to test graphs of
different sizes and categories.

Limitations and societal impacts are discussed in the Ap-
pendix F and G, respectively.

Acknowledgements
L. Yu and X. Lin are supported in part by the NSF Grants
CNS-2113893 and CNS-2225950. J. Xu is supported in
part by the NSF Grant CCF-1856424 and an NSF CAREER
award CCF-2144593. We would like to thank Prof. Qiang
Qiu at Purdue University and the anonymous reviewers for
their valuable comments and suggestions on our paper.

9

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

References
Avis, D. A survey of heuristics for the weighted matching

problem. Networks, 13(4):475–493, 1983.

Barabási, A.-L. et al. Network Science. Cambridge Univer-
sity Press, 2016.

Bengio, Y. Learning deep architectures for AI. Now Pub-
lishers Inc, 2009.

Chen, H., Yin, H., Sun, X., Chen, T., Gabrys, B., and Mu-
sial, K. Multi-level graph convolutional networks for
cross-platform anchor link prediction. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 1503–1511,
2020.

Chiasserini, C.-F., Garetto, M., and Leonardi, E. Social
network de-anonymization under scale-free user rela-
tions. IEEE/ACM Transactions on Networking, 24(6):
3756–3769, 2016.

Cho, M., Alahari, K., and Ponce, J. Learning graphs to
match. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 25–32, 2013.

Chu, X., Fan, X., Yao, D., Zhu, Z., Huang, J., and Bi, J.
Cross-network embedding for multi-network alignment.
In The world wide web conference, pp. 273–284, 2019.

Conte, D., Foggia, P., Sansone, C., and Vento, M. Thirty
years of graph matching in pattern recognition. Interna-
tional journal of pattern recognition and artificial intelli-
gence, 18(03):265–298, 2004.

Crouse, D. F. On implementing 2d rectangular assignment
algorithms. IEEE Transactions on Aerospace and Elec-
tronic Systems, 52(4):1679–1696, 2016.

Derr, T., Karimi, H., Liu, X., Xu, J., and Tang, J. Deep
adversarial network alignment. In Proceedings of the
30th ACM International Conference on Information &
Knowledge Management, pp. 352–361, 2021.

Dubhashi, D. P. and Panconesi, A. Concentration of measure
for the analysis of randomized algorithms. Cambridge
University Press, 2009.

Edmonds, J. and Karp, R. M. Theoretical improvements in
algorithmic efficiency for network flow problems. Jour-
nal of the ACM (JACM), 19(2):248–264, 1972.

Fey, M., Lenssen, J. E., Morris, C., Masci, J., and Kriege,
N. M. Deep graph matching consensus. In International
Conference on Learning Representations, 2020.

Fishkind, D. E., Adali, S., Patsolic, H. G., Meng, L., Singh,
D., Lyzinski, V., and Priebe, C. E. Seeded graph matching.
Pattern recognition, 87:203–215, 2019.

Gao, Q., Wang, F., Xue, N., Yu, J.-G., and Xia, G.-S. Deep
graph matching under quadratic constraint. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5069–5078, 2021.

Haghighi, A. D., Ng, A. Y., and Manning, C. D. Robust tex-
tual inference via graph matching. In Proceedings of the
conference on Human Language Technology and Empir-
ical Methods in Natural Language Processing, pp. 387–
394. Association for Computational Linguistics, 2005.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 1025–1035, 2017.

Jiang, B., Sun, P., and Luo, B. Glmnet: Graph learning-
matching convolutional networks for feature matching.
Pattern Recognition, 121:108167, 2022.

Jiang, M., Cui, P., Yuan, N. J., Xie, X., and Yang, S. Little
is much: Bridging cross-platform behaviors through over-
lapped crowds. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, AAAI’16, pp. 13–19.
AAAI Press, 2016.

Kazemi, E., Hassani, S. H., and Grossglauser, M. Growing
a graph matching from a handful of seeds. Proceedings
of the VLDB Endowment, 8(10):1010–1021, 2015.

Kazemi, E., Hassani, H., Grossglauser, M., and Modarres,
H. P. Proper: global protein interaction network align-
ment through percolation matching. BMC bioinformatics,
17(1):527, 2016.

Kim, V. G., Lipman, Y., and Funkhouser, T. Blended intrin-
sic maps. ACM Transactions on Graphics (TOG), 30(4):
1–12, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Korula, N. and Lattanzi, S. An efficient reconciliation al-
gorithm for social networks. Proceedings of the VLDB
Endowment, 7(5):377–388, 2014.

Kriege, N. M., Humbeck, L., and Koch, O. Chemical sim-
ilarity and substructure searches. In Encyclopedia of
Bioinformatics and Computational Biology, pp. 640 –
649. Academic Press, Oxford, 2019.

Lähner, Z., Rodolà, E., Bronstein, M., Cremers, D.,
Burghard, O., Cosmo, L., Dieckmann, A., Klein, R., and
Sahillioglu, Y. SHREC’16: Matching of deformable
shapes with topological noise. Proc. 3DOR, 2(10.2312),
2016.

10

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

Li, C., Wang, S., Wang, H., Liang, Y., Yu, P. S., Li, Z.,
and Wang, W. Partially shared adversarial learning for
semi-supervised multi-platform user identity linkage. In
Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, pp. 249–
258, 2019a.

Li, C., Wang, S., Wang, Y., Yu, P., Liang, Y., Liu, Y., and
Li, Z. Adversarial learning for weakly-supervised social
network alignment. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 996–1003,
2019b.

Li, C.-Y. and Lin, S.-D. Matching users and items across
domains to improve the recommendation quality. In Pro-
ceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp.
801–810, 2014.

Li, Y., Gu, C., Dullien, T., Vinyals, O., and Kohli, P. Graph
matching networks for learning the similarity of graph
structured objects. In International conference on ma-
chine learning, pp. 3835–3845. PMLR, 2019c.

Lu, C.-T., Xie, S., Shao, W., He, L., and Yu, P. S. Item
recommendation for emerging online businesses. In Pro-
ceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI’16, pp. 3797–3803.
AAAI Press, 2016.

Lubars, J. and Srikant, R. Correcting the output of approx-
imate graph matching algorithms. In IEEE INFOCOM
2018-IEEE Conference on Computer Communications,
pp. 1745–1753. IEEE, 2018.

Lyzinski, V., Fishkind, D. E., and Priebe, C. E. Seeded graph
matching for correlated Erdös-Rényi graphs. Journal of
Machine Learning Research, 15(1):3513–3540, 2014.

Mossel, E. and Xu, J. Seeded graph matching via large
neighborhood statistics. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1005–1014. SIAM, 2019.

Narayanan, A. and Shmatikov, V. Robust de-anonymization
of large sparse datasets. In 2008 IEEE Symposium on
Security and Privacy (sp 2008), pp. 111–125. IEEE, 2008.

Narayanan, A. and Shmatikov, V. De-anonymizing social
networks. In Security and Privacy, 2009 30th IEEE Sym-
posium on, pp. 173–187. IEEE, 2009.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative

style, high-performance deep learning library. In Wal-
lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,
F., Fox, E., and Garnett, R. (eds.), Advances in Neural In-
formation Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Pedarsani, P. and Grossglauser, M. On the privacy of
anonymized networks. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 1235–1243. ACM, 2011.

Rolı́nek, M., Swoboda, P., Zietlow, D., Paulus, A., Musil,
V., and Martius, G. Deep graph matching via blackbox
differentiation of combinatorial solvers. In 16th European
Conference on Computer Vision, pp. 407–424. Springer,
2020.

Sahillioğlu, Y. Recent advances in shape correspondence.
The Visual Computer, 36(8):1705–1721, 2020.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. Meta-learning with memory-augmented neu-
ral networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

Schellewald, C. and Schnörr, C. Probabilistic subgraph
matching based on convex relaxation. In International
Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition, pp. 171–186. Springer,
2005.

Schmidhuber, J. Learning complex, extended sequences
using the principle of history compression. Neural Com-
putation, 4(2):234–242, 1992.

Shirani, F., Garg, S., and Erkip, E. Seeded graph match-
ing: Efficient algorithms and theoretical guarantees. In
2017 51st Asilomar Conference on Signals, Systems, and
Computers, pp. 253–257. IEEE, 2017.

Simonyan, K. and Zisserman, A. Very deep convolutional
networks for large-scale image recognition. In Interna-
tional Conference on Learning Representations (ICLR),
2015.

Singh, R., Xu, J., and Berger, B. Global alignment of
multiple protein interaction networks with application
to functional orthology detection. Proceedings of the
National Academy of Sciences, 105(35):12763–12768,
2008.

Traud, A. L., Mucha, P. J., and Porter, M. A. Social structure
of facebook networks. Physica A: Statistical Mechanics
and its Applications, 391(16):4165–4180, 2012.

Van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or,
D. A survey on shape correspondence. In Computer
Graphics Forum, volume 30, pp. 1681–1707. Wiley On-
line Library, 2011.

11

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

Vento, M. and Foggia, P. Graph matching techniques
for computer vision. In Image Processing: Concepts,
Methodologies, Tools, and Applications, pp. 381–421.
IGI Global, 2013.

Vestner, M., Lähner, Z., Boyarski, A., Litany, O., Slossberg,
R., Remez, T., Rodola, E., Bronstein, A., Bronstein, M.,
and Kimmel, R. Efficient deformable shape correspon-
dence via kernel matching. In 2017 International Confer-
ence on 3D Vision (3DV), pp. 517–526. IEEE, 2017a.

Vestner, M., Litman, R., Rodolà, E., Bronstein, A., and
Cremers, D. Product manifold filter: Non-rigid shape cor-
respondence via kernel density estimation in the product
space. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3327–3336,
2017b.

Wang, R., Yan, J., and Yang, X. Learning combinatorial
embedding networks for deep graph matching. In Pro-
ceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 3056–3065, 2019.

Wang, R., Yan, J., and Yang, X. Combinatorial learning
of robust deep graph matching: an embedding based
approach. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2020a.

Wang, R., Yan, J., and Yang, X. Neural graph matching net-
work: Learning lawler’s quadratic assignment problem
with extension to hypergraph and multiple-graph match-
ing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

Wang, T., Liu, H., Li, Y., Jin, Y., Hou, X., and Ling, H.
Learning combinatorial solver for graph matching. In
Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 7568–7577, 2020b.

Wen, Z., Fang, Y., and Liu, Z. Meta-inductive node clas-
sification across graphs. In Proceedings of the 44th In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1219–1228,
2021.

Yartseva, L. and Grossglauser, M. On the performance of
percolation graph matching. In Proceedings of the first
ACM conference on Online social networks, pp. 119–130.
ACM, 2013.

Yu, L., Xu, J., and Lin, X. Graph matching with partially-
correct seeds. Journal of Machine Learning Research, 22
(280):1–54, 2021a.

Yu, L., Xu, J., and Lin, X. The power of d-hops in matching
power-law graphs. Proceedings of the ACM on Measure-
ment and Analysis of Computing Systems, 5(2), 2021b.

Yu, T., Wang, R., Yan, J., and Li, B. Learning deep graph
matching with channel-independent embedding and hun-
garian attention. In International conference on learning
representations, 2019.

Yu, T., Wang, R., Yan, J., and Li, B. Deep latent graph
matching. In International Conference on Machine Learn-
ing, pp. 12187–12197. PMLR, 2021c.

Zafarani, R., Tang, L., and Liu, H. User identification
across social media. ACM Transactions on Knowledge
Discovery from Data (TKDD), 10(2):1–30, 2015.

Zanfir, A. and Sminchisescu, C. Deep learning of graph
matching. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2684–2693,
2018.

Zhang, J. and Philip, S. Y. Multiple anonymized social net-
works alignment. In 2015 IEEE International Conference
on Data Mining, pp. 599–608. IEEE, 2015.

Zhang, W., Shu, K., Liu, H., and Wang, Y. Graph neu-
ral networks for user identity linkage. arXiv preprint
arXiv:1903.02174, 2019.

Zhang, Y., Tang, J., Yang, Z., Pei, J., and Yu, P. S. Cos-
net: Connecting heterogeneous social networks with local
and global consistency. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discov-
ery and data mining, pp. 1485–1494, 2015.

Zhou, F., Liu, L., Zhang, K., Trajcevski, G., Wu, J., and
Zhong, T. Deeplink: A deep learning approach for user
identity linkage. In IEEE INFOCOM 2018-IEEE con-
ference on computer communications, pp. 1313–1321.
IEEE, 2018.

Zhou, F., Wen, Z., Trajcevski, G., Zhang, K., Zhong, T., and
Liu, F. Disentangled network alignment with matching ex-
plainability. In IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, pp. 1360–1368. IEEE,
2019.

12

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

A. Additional Discussion on Related Work
Theoretical Algorithms Existing theoretical algorithms suffer from several limitations. First, graphs with different
characteristics may require different features and carefully tuned parameters. For instance, the Percolation algorithm in
(Kazemi et al., 2015) needs to carefully choose a threshold parameter to achieve good performance, and the PLD algorithm
in (Yu et al., 2021b) is designed for graphs with power-law degree distributions. It is cumbersome to design a new algorithm
and/or tune the parameters every time when a new type of graph is processed. In contrast, by learning from the training
graphs, our SeedGNN can automatically choose the effective features. Second, these theoretical algorithms may not
synthesize different features most effectively. For instance, the l-hop algorithm in (Mossel & Xu, 2019) only utilizes the
witnesses at the l-th hop, but does not combine witnesses at different hops.

Inductive Semi-supervised Learning on Graphs Our goal of using supervised learning for seeded graph matching
shares some similarities with the work in (Wen et al., 2021), which also aims to both perform inductive learning (i.e., learn
transferrable knowledge from training graphs) and utilize a small amount of labeled data on the test graph. However, (Wen
et al., 2021) focuses on a node classification problem, which is quite different from seeded graph matching. In particular,
(Wen et al., 2021) uses node-based GNNs, which (as we discussed in Section 4.1) have more difficulty in effectively utilizing
seed information than our proposed pair-wise GNN. Further, in order to transfer knowledge from the trained GNN to test
graphs, (Wen et al., 2021) scales all GNN weights by a common factor. It is unclear how this scaling will effectively transfer
knowledge for seeded graph matching, e.g., how to best use different hops of witnesses. In contrast, our design of SeedGNN
exploits the inherent structure of the seeded graph matching problem, and can be shown to generalize well to unseen graphs
of sizes and types very different from the training set. For future work, it would be of interest to explore whether our
SeedGNN can be further improved with a meta-learning component (Santoro et al., 2016).

Convex Relaxation Algorithms In addition to the theoretical algorithms and the GNN approaches, there is another class
of algorithms based on convex relaxations of the quadratic assignment problem, which maximizes the total number of
matched edges between two graphs subject to the seed constraint (Lyzinski et al., 2014; Fishkind et al., 2019). In (Fishkind
et al., 2019), the authors describe a gradient ascent approach to solve this relaxed problem, which is called SGM. Compared
to SeedGNN, SGM also has flavors of using witnesses and percolation ideas. Specifically, the gradient of the SGM algorithm
is similar to a matrix counting 1-hop witnesses. However, using only 1-hop witnesses is known to be ineffective in sparse
graphs (as there are very few 1-hop witnesses even for true pairs). Indeed, our experiments in Section 6 find that our
SeedGNN often outperforms SGM, especially in sparse graphs.

Differences between Our Percolation Module and Previous Percolation Algorithms Unlike previous percolation
algorithms (Yartseva & Grossglauser, 2013), we allow SeedGNN to correct errors from earlier layers by re-matching nodes
at each layer. Note that in many percolation algorithms, once a new pair of seeds is identified, it will be used as the correct
match until the end. This approach can be problematic if an incorrect pair is identified as a seed, whose impact will be
lasting for many iterations down the road. In contrast, since our SeedGNN rematches nodes at each layer, even if some of
the newly-identified seeds in the previous layer are incorrect, we can correct these errors in the next layer, as long as the
fraction of incorrect seeds is small. In other words, our design of SeedGNN takes advantage of the power of partially correct
(i.e., noisy) seeds (as theoretically verified in (Lubars & Srikant, 2018; Yu et al., 2021a)).

B. Proof of Theorem 5.1
Notation We use ·∼ to denote “approximately distributed”.

Note that the first layers of SeedGNN and the NGM-like model output the same set of new seeds (β fraction of which are
correct). However, their confidence levels are very different. Specifically, after softmax in (7), correctly matched pairs
will have confidence levels close to 1, while incorrectly matched pairs will only have confidence levels close to 1

ntest
. In

contrast, since the NGM-like model divides the node-pair representations by the square of the average degree, the resulting
value (∼ 1

ntest
2) will decrease close to zero as ntest increases. After we apply softmax, the confidence levels of correct

matching and incorrect matching will both become close to 1
ntest

. More precisely, we have the following lemma, with the
proof deferred to Appendix B.1.

Lemma B.1. Assume that (ntestps)
2 ≥ c0KL log ntest for a sufficiently large constant c0. In the first layer of the NGM-like

model, for any (i, j), we have 1−δ
ntest

≤ Y1(i, j) ≤ 1+δ
ntest

with high probability, where δ is some sufficiently small constant.

13

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

Since the NGM-like model has lower confidence levels for the correctly-matched new seeds than SeedGNN, it is more
difficult for the NGM-like model to match all nodes correctly in the second layer. We present the sufficient conditions for
the second layer of SeedGNN and NGM-like model to correctly match all nodes. The proofs of these theorems are deferred
to Appendix B.1.
Theorem B.2. If β ≥ c1

logntest

ntestps2
, SeedGNN correctly matches all nodes with high probability.

Theorem B.3. If (ntestps)
2 ≥ c0KL log ntest and β ≥ c2 max

{
logntest

ntestps2
,
√

logntest

ntests2

}
, the NGM-like model correctly

matches all nodes with high probability.

B.1. Postponed Proofs

Proofs of Lemma B.1. Recall that the first layer of the NGM-like model counts the 1-hop witnesses and divides the value by
the square of average degree. Thus, in testing, we have, for any node-pair (i, j),

H1(i, j) =
1

(ntestps)2
·

∑
(u,v)∈S

A1(i, u)A2(v, j).

For any initial seed (u, v), A1(i, u)A2(v, j) is equal to 1 with probability ps2 if j = π(i), and A1(i, u)A2(v, j) is equal to
1 with probability p2s2 if j ̸= π(i). Since there are θ fraction of seeds, H1(i, j) follows the distribution given by

H1(i, j)
·∼

1

(ntestps)2
Binom

(
ntestθ, ps

2
)

if j = π(i),

1

(ntestps)2
Binom(ntestθ, p

2s2) if j ̸= π(i).

By Bernstein’s Inequality (Dubhashi & Panconesi, 2009), the upper bound of H1(i, j) is

P

{
H1(i, j) >

ntestθps
2 +

√
6ntestθps2 log ntest + 2 log ntest

(ntestps)2

}
≤P

{
Binom

(
ntestθ, ps

2
)
> ntestθps

2 +
√
6ntestθps2 log ntest + 2 log ntest

}
≤ exp (−3 log ntest) < ntest

−3.

Recall that we apply a neural network ρ1 on each element of H1 to get X1 = ρ1(H1), and the Lipschitz constant of ρ1 is
KL. Since H1(i, j) ≥ 0 for any (i, j), we have

max
(i,j),(u,v)

|X1(i, j)−X1(u, v)| ≤ KL max
(i,j),(u,v)

|H1(i, j)−H1(u, v)| ≤ KL max
(i,j)

H1(i, j).

Thus, we let δ
2 = KL

ntestθps
2+

√
6ntestθps2 logntest+2 logntest

(ntestps)2
and have

P
{

max
(i,j),(u,v)

|X1(i, j)−X1(u, v)| >
δ

2

}
≤P

{
KL max

(i,j)
H1(i, j) >

δ

2

}

≤P

⋃
(i,j)

{KLH1(i, j) >
δ

2
}

≤ntest

2P

{
H1(i, j) >

ntestθps
2 +

√
6ntestθps2 log ntest + 2 log ntest

(ntestps)2

}
≤ntest

−1. (10)

Since ntestp ≥ θ and (ntestps)
2 ≥ c0KL log ntest, δ

2 can be made to be sufficiently small and 1 ≤ exp(δ2) < 1 + δ. It
follows taht

exp(δ2)

exp(δ2) + (ntest − 1) exp(0)
≤ 1 + δ

ntest
and

exp(0)

exp(δ2) + (ntest − 1) exp(0)
≥ 1

ntest + δ
≥ 1− δ

ntest
.

14

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

We then apply row-wise softmax on X1 to get the confidence level Y1. We can bounded Y1 by the difference between
elements in X1:

max
(i,j)

Y1(i, j) ≤
exp(max(i,j) X1(i, j))

exp(max(i,j) X1(i, j)) + (ntest − 1) exp(min(i,j) X1(i, j))

=
exp(max(i,j) X1(i, j)−min(i,j) X1(i, j))

exp(max(i,j) X1(i, j)−min(i,j) X1(i, j)) + (ntest − 1) exp(0)
,

and similarly

min
(i,j)

Y1(i, j) ≥
exp(0)

exp(max(i,j) X1(i, j)−min(i,j) X1(i, j)) + (ntest − 1) exp(0)
.

Since the difference in X1 is upper bounded in (10), we have

P
{
max
(i,j)

Y1(i, j) ≤
1 + δ

ntest

}
≥P

{
max
(i,j)

Y1(i, j) ≤
exp(δ2)

exp(δ2) + (ntest − 1) exp(0)

}

≥1− P
{

max
(i,j),(u,v)

|X1(i, j)−X1(u, v)| >
δ

2

}
≥1− ntest

−1,

P
{
min
(i,j)

Y1(i, j) ≥
1− δ

ntest

}
≥P

{
min
(i,j)

Y1(i, j) ≥
exp(0)

exp(δ2) + (ntest − 1) exp(0)

}

≥1− P
{

max
(i,j),(u,v)

|X1(i, j)−X1(u, v)| >
δ

2

}
≥1− ntest

−1.

Proof of Theorem B.2. Recall that the second layer of SeedGNN aggregates over node-pair’s neighborhoods in (3). Then,
we have, for any node-pair (i, j),

H2(i, j) =
∑

(u,v):u,v∈[ntest]

A1(i, u)A2(v, j)S2(u, v).

In our analysis, we use the output of percolation module in the first layer as input (i.e. S2 = Z1). Note that Z1 is the
“cleaned” confidence levels. There are only n1 non-zeros elements in Z1 representing the confidence levels of new seeds.
Among n1 new seeds, β fraction of them are correctly matched seeds, and the rest are incorrectly matched seeds. Since
correct seeds have much higher confidence levels than incorrect seeds, after softmax normalization in (7), correct seeds have
1 confidence level and incorrect seeds have 1

ntest
confidence level. Then, We have

H2(i, j) =
∑

(u,v):Z1(u,v)>0,
v=π(u)

A1(i, u)A2(v, j) +
1

ntest
·

∑
(u,v):Z1(u,v)>0,

v ̸=π(u)

A1(i, u)A2(v, j).

For any correct seed, A1(i, u)A2(v, j) is equal to 1 with probability ps2 if j = π(i), and A1(i, u)A2(v, j) is equal to 1 with
probability p2s2 if j ̸= π(i). In contrast, for any incorrect seed, A1(i, u)A2(v, j) is equal to 1 with probability p2s2 for any
node-pair (i, j). Thus, it follows that

H2(i, j)
·∼

Binom

(
ntestβ, ps

2
)
+

1

ntest
Binom

(
ntest(1− β), p2s2

)
if j = π(i),

Binom(ntestβ, p
2s2) +

1

ntest
Binom

(
ntest(1− β), p2s2

)
if j ̸= π(i).

15

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

Since the second terms are both no greater than 1, H2(i, j) is dominated by the first terms in the right-hand-side (which are
contributed by the correct seeds). If H2(i, j) of any true pair is greater than H2(i, j) of any fake pair, all the true pairs can
be distinguished from fake pairs. By Theorem 1 in (Korula & Lattanzi, 2014), if β ≥ c1

logntest

ntestps2
with a sufficiently large

constant c1, all nodes can be correctly matched with high probability.

Proof of Theorem B.3. In the NGM-like model, the second layer aggregates over node-pair’s neighborhoods and divides the
results by the square of average degree. Thus, we have, for any node-pair (i, j),

H2(i, j) =
1

(ntestps)2

∑
(u,v):u∈[n1],v∈[n2]

A1(i, u)A2(v, j)S2(u, v).

We use the “cleaned” matching as input (i.e., S2 = Z1), and there are only n1 non-zeros elements in Z1 representing the
confidence levels of new seeds. Among the n1 new seeds, β fraction of them are correctly matched seeds, and the rest are
incorrectly matched seeds. By Lemma B.1, the confidence levels of all new seeds are close to 1

ntest
with high probability.

Then, We have

H2(i, j) =
1

ntest(ntestps)2
·

 ∑
(u,v):Z1(u,v)>0,

v=π(u)

A1(i, u)A2(v, j) +
∑

(u,v):Z1(u,v)>0,
v ̸=π(u)

A1(i, u)A2(v, j)

 .

Analogous to the analysis in the proof of Theorem B.2, H2(i, j) follows the distribution given by

H2(i, j)
·∼

1

ntest(ntestps)2
(
Binom

(
ntestβ, ps

2
)
+Binom

(
ntest(1− β), p2s2

))
if j = π(i),

1

ntest(ntestps)2
(
Binom(ntestβ, p

2s2) + Binom
(
ntest(1− β), p2s2

))
if j ̸= π(i).

If H2(i, j) of any true pair is greater than H2(i, j) of any fake pair, all the true pairs can be distinguished from fake pairs by
the NGM-like model. Note that we need to consider the influence of incorrect seeds. By Theorem 1 in (Yu et al., 2021a),

if β ≥ c2 max
{

logntest

ntestps2
,
√

logntest

ntests2

}
with a sufficiently large constant c2, all nodes can be correctly matched with high

probability.

C. Complexity and Scalability
C.1. Time and Space Complexity

First, we analyze the computational complexity of our SeedGNN. In each layer, (A1 ⊗A2)sl in (2) can be converted into
A1SlA2 as shown in (3). When we represent A1 and A2 with sparse matrices, each of them only contain n1dmean and
n2dmean elements, where dmean is the mean of the node degrees of G1 and G2. Thus, by sparse matrix multiplication, the time
complexity of Equation (3) is O(n1n2dmean). The neural networks (4) and (6) take O(n1n2) time. The Hungarian algorithm
takes O(n1n

2
2) times (Crouse, 2016). Thus, the total time complexity is O(n1n

2
2).

The space complexity of our SeedGNN is O(n1n2), since A1 and A2 are sparse matrices, and Sl has n1n2 elements.

C.2. Making SeedGNN more Scalable

For very large graphs, the step of the Hungarian algorithm becomes the computational bottleneck. We can use greedy
max-weight matching (GMWM) in (Avis, 1983) instead, as the time complexity of GMWM is only O(n1n2 log n2). With
this improvement, the total time complexity is reduced to O(n1n2 log n2 + n1n2dmean). To the best of our knowledge, the
best-known time complexity for GNN-based algorithms is O(n1n2) (Fey et al., 2020). Thus, the computational complexity
of our SeedGNN is only moderately larger than the best-known one. In Table 3, we show the average run time of GNN-based
algorithm to match a pair of large graphs on SHREC’16 dataset (with 8K-11K nodes). The semi-supervised methods

16

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

(DeepLink (Zhou et al., 2018), CrossMNA (Chu et al., 2019), MGCN (Chen et al., 2020)) are provided with a fraction
of seeds (θ = 0.01) as the training set, and the run time includes the training and test time. The supervised methods
(DGMC (Fey et al., 2020), BB-GM (Rolı́nek et al., 2020), DGM (Gao et al., 2021), NGM (Wang et al., 2021)) utilize only
non-topological features but not seeds, and the run time is only is only for a pair of test graphs. The results demonstrate that
the run time of our SeedGNN is comparable to the best-known GNN-based algorithms.

Table 3: Run time Comparison of GNN methods on SHREC’16 dataset.

Method
Semi-Supervised Supervised

DeepLink CrossMNA MGCN DGMC BB-GM DGM NGM SeedGNN
Zhou et al. (2018) Chu et al. (2019) Chen et al. (2020) Fey et al. (2020) Rolı́nek et al. (2020) Gao et al. (2021) Wang et al. (2021) ours

run time (s) 1847.0 2321.9 3573.4 80.2 130.1 211.3 879.2 141.5

D. Details of Experiments
D.1. Datasets

We give detailed descriptions of the real datasets used in our experiments.

Facebook networks The dataset in (Traud et al., 2012) provides 100 Facebook networks from different institutions. We
randomly choose 10 for training and 90 for testing. The sizes of the Facebook networks range from 962 to 32361. To lower
the training cost, we down-sample the sizes of the training graphs. Specifically, for each Facebook network for training,
we first down-sample nodes with probability 0.25 to get the parent graph G0. However, for testing, we do not perform this
down-sampling and use the original graphs directly as the parent graph G0. For both training and testing, we generate G1

and G2 from G0 by independently sub-sampling each edge of G0 twice with probability s = 0.8 and sub-sampling each node
of G0 twice with probability 0.9. The nodes of G2 are then relabeled according to a random permutation π. Then, each true
pair is independently added into the seed set S with probability θ.

The SHREC’16 dataset Matching 3D deformable shapes is a central problem in computer vision, and has been extensively
studied for decades (see (Van Kaick et al., 2011) and (Sahillioğlu, 2020) for surveys). The SHREC’16 dataset in (Lähner
et al., 2016) provides 25 deformable 3D shapes (15 for training and 10 for testing) undergoing different topological changes.
Each shape is represented by a triangulated mesh graph consisting of around 8K-11K nodes (with 3D coordinates).

Willow Object dataset Willow Object dataset (Cho et al., 2013) contains at least 40 images for each of its five categories.
Following the experimental setups in (Fey et al., 2020), we construct graphs via the Delaunay triangulation of keypoints,
and each image consists of exactly 10 labeled keypoints. The features of the keypoints are given by the concatenated output
of relu4 2 and relu5 1 of a pre-trained VGG16 (Simonyan & Zisserman, 2015).

D.2. Details of Baselines

1) D-hop (Mossel & Xu, 2019) finds the node mapping between the two graphs that maximizes the total number of D-hop
witnesses for a given D. For a fair comparison with other algorithms, we iteratively apply the D-hop algorithm T times (with
DT = 6 because SeedGNN is fixed to have 6 layers). In each iteration, we use the matching result of the previous iteration
as new seeds and apply the D-hop algorithm again. 2) PGM (Kazemi et al., 2015) iteratively matches node-pairs with at
least r witnesses. We choose r = 2, which is the same as the simulation setting in (Kazemi et al., 2015). 3) PLD (Yu et al.,
2021b) is the state-of-the-art seeded graph matching algorithm designed for graphs with power-law degree distributions
(which is a common feature of real-world social networks (Barabási et al., 2016)). 4) SGM (Fishkind et al., 2019) uses
Frank–Wolfe method to approximately solves a quadratic assignment problem that maximizes the number of matched
edges between two graphs, while being consistent with the given seeds. 5) MGCN (Chen et al., 2020) is a representative
semi-supervised learning-based GNN approach, whose performance is comparable with other semi-supervised learning
approaches. The parameters are set in the same way as those in (Chen et al., 2020). 6) NGM (Wang et al., 2021) is a
supervised GNN method for seedless graph matching, but it also uses a pair-wise GNN that utilizes an affinity matrix as
input. We transfer this approach to seeded graph matching by replacing the affinity matrix in NGM by the Kronecker product
of the two adjacent matrices, and inputting the seed information as SeedGNN. We then train the weights of NGM with the
same training set as our SeedGNN.

17

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

E. Studying the Inner-working of SeedGNN
In this section, we further investigate how the performance of SeedGNN varies as we change its inner working. First,
to verify the effectiveness of our design choices for our SeedGNN method, we compare the performance of different
architectural designs. Then, we investigate which sets of samples need to be included in our training set to obtain an effective
trained model. Finally, we study the matching process of SeedGNN for different types of graphs. The results suggest that
SeedGNN could potentially choose the appropriate features for different graphs based on the confidence levels of new seeds.

E.1. Study of the Design Choices

To verify the effectiveness of our design choices, we consider four variants of SeedGNN, which are:

1. SeedGNN-x: SeedGNN without convolution module. This variant aims to verify the importance of extracting
witness-like information at a larger number of hops.

2. SeedGNN-w: SeedGNN without percolation module. This variant aims to verify the importance of the percolation
module in SeedGNN.

3. SeedGNN-p: SeedGNN with percolation module but without the Hungarian matching algorithm (i.e., zl =
unflatten(Yl) in each GNN layer). This variant aims to verify the importance of the “cleaning” process in SeedGNN.

4. SeedGNN-h: SeedGNN with zl = unflatten(Rl) instead of (8) in each layer. This variant aims to verify that among
the new seeds, it is still important to distinguish the high-confidence one and low-confidence one.

Finally, we use “SeedGNN” to denote the full design in Fig. 3. We train all these variants with the same training set T in
Section 6.1.

In Figure 9, we show the performance of the above variants of SeedGNN on correlated Erdős-Rényi graph model. For test
graphs, we increase θ from 0 to 0.05 while fixing n = 500, p = 0.04, s = 0.8. As illustrated in Figure 9, our SeedGNN with
full design achieves the best performance among all variants, which shows the effectiveness of our design choices for the
SeedGNN architecture. Further, among the variants, SeedGNN-w almost fails completely, which highlights the significant
importance of using the percolation idea in SeedGNN for seeded graph matching. SeedGNNx does performs poorly,
which demonstrates that it is also important to extract witness-like information at a larger number of hops instead of only
1-hop. We can observe that SeedGNN and SeedGNN-h both outperform SeedGNN-p and the improvement of SeedGNN is
significantly bigger. This result verifies that it is not enough to only use the soft-correspondence (as in SeedGNN-p), and we
need to combine both the matching result Rl of the Hungarian algorithm and the similarity Yl as in (8) to achieve the best
performance.

0.00 0.01 0.02 0.03 0.04 0.05
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy
 R
at
e

SeedGNN
SeedGNN-h
SeedGNN-p
SeedGNN-x
SeedGNN-w

Figure 9: Performance comparison of our SeedGNN and four other variants on correlated Erdős-Rényi graph model with
different θ. Fix n = 500, p = 0.04, s = 0.8.

18

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

E.2. Study of the Necessary Training Samples for Generalization

Intuitively, in order to help our SeedGNN successfully learn useful knowledge that can be applied to never-seen graphs,
the training set needs to contain graph pairs with different varieties, e.g., graph sparsity, graph correlation, and the size of
seed set. However, a larger training set also increases the training time. To show which sets of graph pairs are necessary,
we compare SeedGNN trained with different training sets, whose parameters are shown in Table 4. We use T to denote
the training set that only includes the Erdős-Rényi graphs of the training set in Section 6.1. First, to show the necessity of
training graph pairs with a wide range of sparsity, we train SeedGNN with T , Tp1 and Tp2, and compare the performance
of the trained models while increasing p from 0.02 to 0.2 and fixing n = 500, s = 0.8 and θ = 0.05. Figure 10(a) shows
that, if SeedGNN is only trained with p = 0.1, it performs well on sparse graphs but poorly on dense graphs. In contrast, if
SeedGNN is only trained with p = 0.5, it performs well on dense graphs but poorly on sparse graphs. Thus, we should
include both p = 0.1 and p = 0.5 in the training set to achieve good performance. Second, to show the necessity of training
graph pairs with different correlations, we compare the performance of SeedGNN trained with T , Ts1, Ts2 and Ts3, and
compare these models while increasing s from 0.5 to 1 and fixing n = 500, p = 0.08 and θ = 0.05. Figure 10(b) shows that,
if SeedGNN is only trained with s = 0.6, it performs well on moderately correlated graphs but poorly on highly correlated
graphs. In contrast, if SeedGNN is only trained with s = 0.8 or s = 1, it performs well on highly correlated graphs but
poorly on moderately correlated graphs. Thus, we should include different correlations in the training set to achieve good
performance. Third, we compare the performance of SeedGNN trained with T , Tt1 and Tt2, and compare these models
while increasing θ from 0 to 0.05 and fixing n = 500, p = 0.04 and s = 0.8. Figure 10(c) shows that, if SeedGNN is only
trained with θ = 0.1 and θ ∈ {0.1, 0.3}, it performs exactly the same. If SeedGNN is only trained with θ = 0.3, it performs
worse than the former two. Thus, we only need to include graph pairs with a relatively small seed set in the training set.

Table 4: Different Training Sets

Training Sets p s θ
Tp1 {0.1} {0.6, 0.8, 1} {0.05, 0.1}
Tp2 {0.5} {0.6, 0.8, 1} {0.05, 0.1}
Ts1 {0.1, 0.5} {1} {0.05, 0.1}
Ts2 {0.1, 0.5} {0.8} {0.05, 0.1}
Ts3 {0.1, 0.5} {0.6} {0.05, 0.1}
Tt1 {0.1, 0.5} {0.6, 0.8, 1} {0.3}
Tt2 {0.1, 0.5} {0.6, 0.8, 1} {0.1, 0.3}

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Graph Sparsity p

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy
 R
at
e

SeedGNN
SeedGNN p1
SeedGNN p2

(a) s = 0.8, θ = 0.05.

0.5 0.6 0.7 0.8 0.9 1.0
Graph Correlation s

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy
 R
at
e

SeedGNN
SeedGNN s1
SeedGNN s2
SeedGNN s3

(b) p = 0.08, θ = 0.05.

0.00 0.01 0.02 0.03 0.04 0.05
Fraction of Seeds θ

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy
 R
at
e

SeedGNN
SeedGNN t1
SeedGNN t2

(c) p = 0.04, s = 0.8.

Figure 10: Performance comparison of SeedGNN trained with different training sets. Fix n = 500.

E.3. Layer-wise Study of SeedGNN

Recall from Section 4.3 that our design on the feature combination potentially enables SeedGNN to utilize various types of
witness-like information adaptively, based on the confidence levels of new seeds zl. In this section, we verify this capability
through numerical results. To directly visualize zl in the matching process, we present the similarity matrix Yl of each
layer of SeedGNN and compare it with the witness matrix of the iterative 1-hop and 2-hop algorithms at each iteration. We
assume that the true mapping π is the identity permutation, i.e., π(i) = i.

First, we study the matching process in dense graphs. We fix a pair of correlated Erdős-Rényi graphs with n = 50, p = 0.4,

19

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

s = 0.8 and θ = 0.1. Then, we index the nodes from 0 to 49 in the descending order of the node degree in the parent graph
G0. In Figure 11, we show the similarity matrix Yl in each layer of our SeedGNN, and compare it with the witness matrix in
each iteration using either the 1-hop or 2-hop algorithm. We can immediately see that the similarity matrices provided by
SeedGNN are more similar to the witness matrices of the iterative 1-hop algorithm than that of the iterative 2-hop algorithm.
Specifically, since the graphs are dense, the 1-hop witness from the initial seeds can already generate new seeds with high
confidence levels (see Figure 11(a) and 11(g), where there are many dark points on the diagonal (i.e., consistent with the
underlying true mapping), while there are few dark points off the diagonal). The iterative 1-hop algorithm is known to use
new 1-hop witnesses from these new seeds (see Figure 11(h)) in the next iteration. In contrast, the 2-hop witnesses from the
initial seeds are much noisier (see Figure 11(m), where the darkness of the points on the diagonal cannot be differentiated
from those off the diagonal). As we illustrated in Figure 5, these two types of witness-like information are both contained in
the second layer of SeedGNN. By comparing Figure 11(b) with Figure 11(h) and Figure 11(m), we can observe that the
second layer of SeedGNN produces a similarity matrix that is closer to the witness matrix of the 1-hop algorithm than that
of the 2-hop algorithm. Thus, we infer that, for these dense graphs in which the new seeds are reliable, the SeedGNN relies
more on witnesses computed from these new seeds.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(a) Layer 1.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(b) Layer 2.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(c) Layer 3.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(d) Layer 4.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(e) Layer 5.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(f) Layer 6.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(g) Iteration 1.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(h) Iteration 2.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(i) Iteration 3.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(j) Iteration 4.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(k) Iteration 5.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(l) Iteration 6.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(m) Iteration 1.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(n) Iteration 2.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(o) Iteration 3.

Figure 11: The similarity/witness matrices of the matching process on a fixed pair of dense correlated Erdős-Rényi graphs
with n = 50, p = 0.4, s = 0.8 and θ = 0.1. Darker points correspond to higher similarity (in Yl) or a larger number of
witnesses. Figure 11(a) — Figure 11(f) are the similarity matrix from each layer of SeedGNN. Figure 11(g) — Figure 11(l)
are the witness matrix from each iteration of the iterative 1-hop algorithm. Figure 11(m) — Figure 11(o) are the witness
matrix from each iteration of the iterative 2-hop algorithm.

Then, we study the matching process in sparse graphs. We fix a pair of correlated Erdős-Rényi graphs with n = 50, p = 0.1,
s = 0.8 and θ = 0.1. Then, we also index the nodes from 0 to 49 in the descending order of the node degree in the parent
graph G0. In Figure 12, we show the similarity matrix Yl in each layer of our SeedGNN, and compare it with the witness
matrix in each iteration using either the 1-hop or 2-hop algorithm. In contrast to Figure 11, in this case, we observe that
the similarity matrices provided by SeedGNN are more similar to the witness matrices of the iterative 2-hop algorithm
than those of the iterative 1-hop algorithm. Specifically, since the graphs are sparse, there are very few 1-hop witnesses
even for true pairs. Thus, the 1-hop algorithm almost fails completely (see Figure 12(g) — Figure 12(l)). On the contrary,
the 2-hop witnesses from the initial seeds are much more reliable (see Figure 12(m)). As a result, the iterative 2-hop
algorithm produces much better results (see Figure 12(m) — Figure 12(o)). By comparing Figure 12(b) with Figure 12(h)
and Figure 12(m), we can observe that the second layer of SeedGNN produces a similarity matrix that is closer to the
witness matrix of the 2-hop algorithm than that of the 1-hop algorithm. Thus, we can infer that, for these sparse graphs in
which the confidence levels of new seeds are low, SeedGNN utilizes 2-hop witness-like information from the initial seeds,
and avoids using 1-hop witnesses based on these new seeds.

20

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(a) Layer 1.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(b) Layer 2.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(c) Layer 3.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(d) Layer 4.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(e) Layer 5.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(f) Layer 6.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(g) Iteration 1.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(h) Iteration 2.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(i) Iteration 3.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(j) Iteration 4.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(k) Iteration 5.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(l) Iteration 6.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(m) Iteration 1.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(n) Iteration 2.

0 5 10 15 20 25 30 35 40 45

0
5

10
15

20
25

30
35

40
45

(o) Iteration 3.

Figure 12: The similarity/witness matrices of the matching process on a fixed pair of sparse correlated Erdős-Rényi graphs
with n = 50, p = 0.1, s = 0.8 and θ = 0.1. Darker points correspond to higher similarity (in Yl) or a larger number of
witnesses. Figure 12(a) — Figure 12(f) are the similarity matrix from each layer of SeedGNN. Figure 12(g) — Figure 12(l)
are the witness matrix from each iteration of the iterative 1-hop algorithm. Figure 12(m) — Figure 12(o) are the witness
matrix from each iteration of the iterative 2-hop algorithm.

In summary, from these two case studies, we conclude that our SeedGNN might be able to choose the appropriate features
for different types of graphs according to the confidence level of new seeds. Further, we observe that the matching accuracy
of SeedGNN is even higher than that of the 1-hop and 2-hop algorithms, the latter two of which have been theoretically
proven to work well for dense graphs and sparse graphs, respectively (Mossel & Xu, 2019). Thus, this result suggests that
SeedGNN may extract more valuable features, or learn more effective ways to synthesize witness-like information, than the
theoretical algorithms.

F. Limitations
The limitations of our proposed SeedGNN are three-fold. 1) We only consider using topological structure in our SeedGNN.
Although the non-topological features are sometimes hard to obtain or inaccurate due to various constraints in practice,
when they are available, we may consider combining them with topological features. 2) We only adopt the insights from
theoretical algorithms for seeded graph matching. The seedless graph matching algorithms may yield some additional
useful insights on effectively using the topological information. 3) Compared to non-learning methods, SeedGNN requires
additional training process and higher computational complexity.

There are many interesting future directions to overcome the limitations, such as simultaneously using topological and
non-topological features, and extending our key ideas into seedless graph matching.

G. Broader Impact
Our work has a positive impact on many practical applications, such as network privacy, computational biology, computer
vision, and natural language processing. For example, with the increasing number and scale of social networks, mapping
users across online social networks attracts much attention from both academia and industry. Our work can further
help information analysis, such as user behavior prediction (Jiang et al., 2016), identity verification and cross-domain
recommendation (Lu et al., 2016; Li & Lin, 2014). Another important application of graph matching is protein interaction
network alignment (Singh et al., 2008; Kazemi et al., 2016; Kriege et al., 2019). The alignment of protein-protein interaction

21

SeedGNN: Graph Neural Network for Supervised Seeded Graph Matching

(PPI) networks enables us to uncover the relationships between different species, which leads to a deeper understanding of
biological systems. In computer vision, our work can be applied in finding similar images (Conte et al., 2004; Schellewald
& Schnörr, 2005; Vento & Foggia, 2013) and matching 3D deformable shapes (Kim et al., 2011; Lähner et al., 2016; Vestner
et al., 2017a;b). In natural language processing, our work can be used in question answering, machine translation, and
information retrieval (Haghighi et al., 2005).

Participants joining different social platforms may have privacy or anonymity considerations. Our work may have some
adverse impact on user privacy protection. However, we believe that our proposed design choices may also be useful for
guiding the design of privacy protection schemes.

22

