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Abstract
Deep ensemble is a simple yet powerful way
to improve the performance of deep neural net-
works. Under this motivation, recent works on
mode connectivity have shown that parameters of
ensembles are connected by low-loss subspaces,
and one can efficiently collect ensemble param-
eters in those subspaces. While this provides
a way to efficiently train ensembles, for infer-
ence, multiple forward passes should still be ex-
ecuted using all the ensemble parameters, which
often becomes a serious bottleneck for real-world
deployment. In this work, we propose a novel
framework to reduce such costs. Given a low-
loss subspace connecting two modes of a neural
network, we build an additional neural network
that predicts the output of the original neural net-
work evaluated at a certain point in the low-loss
subspace. The additional neural network, which
we call a “bridge”, is a lightweight network that
takes minimal features from the original network
and predicts outputs for the low-loss subspace
without forward passes through the original net-
work. We empirically demonstrate that we can
indeed train such bridge networks and signifi-
cantly reduce inference costs with the help of
bridge networks.

1. Introduction
Deep Ensemble (DE) (Lakshminarayanan et al., 2017) is a
simple algorithm to improve both the predictive accuracy
and the uncertainty calibration of deep neural networks,
where a neural network is trained multiple times using the
same data but with different random seeds. Due to this ran-
domness, the parameters obtained from the multiple train-
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ing runs reach different local optima, called modes, on the
loss surface (Fort et al., 2019). These parameters represent
a set of various functions that serve as an effective approx-
imation for Bayesian Model Averaging (BMA) (Wilson &
Izmailov, 2020).

An apparent drawback of DE is that it requires multiple
training runs. This cost can be huge especially for large-
scale settings for which parallel training is not feasible.
Garipov et al. (2018) and Draxler et al. (2018) showed that
the modes in the loss surface of a deep neural network are
connected by relatively simple low-dimensional subspaces
where every parameter in those subspaces retains low train-
ing error, and the parameters along those subspaces are
good candidates for ensembling. Based on this observation,
Garipov et al. (2018) and Huang et al. (2017) proposed al-
gorithms to quickly construct deep ensembles without hav-
ing to run multiple independent training runs.

While the fast ensembling methods based on mode con-
nectivity reduce training costs, they do not address another
important drawback of DE; the inference cost. One should
still execute multiple forward passes using all the parame-
ters collected for the ensemble, and this cost often becomes
critical for a real-world scenario, where the training is done
in a resource-abundant setting with plenty of computation
time, but for the deployment, the inference should be done
in a resource-limited environment. For such settings, re-
ducing the inference cost is much more important than re-
ducing the training cost.

In this paper, we propose a novel approach to scale up DE
by reducing the inference cost. We start from an assump-
tion; if two modes in an ensemble are connected by a sim-
ple subspace, we can predict the outputs corresponding to
the parameters in the subspace using only the outputs com-
puted from the modes. In other words, we can predict the
outputs evaluated in the subspace without having to for-
ward the actual parameters in the subspace through the net-
work. If this is indeed possible, for instance, given two
modes, we can approximate an ensemble of three models
consisting of parameters collected from three different lo-
cations (one from the subspace connecting two modes, and
two from each mode) with only two forward passes and a
small auxiliary forward pass.

We show that we can actually implement this idea using
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an additional lightweight network whose inference cost is
relatively low compared to that of the original neural net-
work. This additional network, what we call a “bridge net-
work”, takes some features from the original neural net-
work (e.g., features from the penultimate layer) and di-
rectly predicts the outputs computed from the connecting
subspace. In other words, the bridge network lets us travel
between modes in the function space.

We present two types of bridge networks depending on
the number of modes involved in prediction, network ar-
chitectures for bridge networks, and training procedures.
Through empirical validation on various image classifica-
tion benchmarks, we show that (1) bridge networks can pre-
dict outputs of connecting subspaces quite accurately with
minimal computation cost, and (2) DEs augmented with
bridge networks can significantly reduce inference costs
without big sacrifice in performance.

2. Preliminaries
2.1. Problem setup

In this paper, we discuss the K-way classification problem
taking D-dimensional inputs. A classifier is constructed
with a deep neural network fθ : RD → RK which is de-
composed into a feature extractor f (ft)

ϕ : RD → RDft and a

classifier f (cls)
ψ : RDft → RK , i.e., fθ(x) = f

(cls)
ψ ◦f (ft)

ϕ (x).
Here, ϕ ∈ Φ andψ ∈ Ψ denote the parameters for the fea-
ture extractor and classifier, respectively, θ = (ϕ,ψ) ∈ Θ,
and Dft is the dimension of the feature. An output from the
classifier corresponds to a class probability vector.

2.2. Finding low-loss subspaces

While there are few low-loss subspaces that are known
to connect modes of deep neural networks, in this paper,
we focus on Bezier curves as suggested in (Garipov et al.,
2018). Let θi and θj be two parameters (usually corre-
sponding to modes) of a neural network. The quadratic
Bezier curve between them is defined as{

(1− r)2θi + 2r(1− r)θ
(be)
i,j + r2θj | r ∈ [0, 1]

}
, (1)

where θ(be)
i,j is a pin-point parameter characterizing the

curve. Based on this curve paramerization, a low-loss sub-
space connecting (θi,θj) is found by minimizing the fol-
lowing loss w.r.t. θ(be)

i,j ,∫ 1

0

L
(
θ
(be)
i,j (r)

)
dr, (2)

where θ(be)
i,j (r) denotes the parameter at the position r of

the curve,

θ
(be)
i,j (r) = (1− r)2θi + 2r(1− r)θ

(be)
i,j + r2θj , (3)

and L : Θ → R is the loss function evaluating parameters
(e.g., cross entropy). Since the integration above is usually
intractable, we instead minimize the stochastic approxima-
tion:

Er∼U(0,1)

[
L
(
θ
(be)
i,j (r)

)]
, (4)

where U(0, 1) is the uniform distribution on [0, 1]. For a
more detailed procedure of Bezier curve training, please
refer to Garipov et al. (2018).

2.3. Ensembles with Bezier curves

Let {θ1, . . . ,θm} be a set of parameters independently
trained as a deep ensemble. Then, for each pair (θi,θj),
we can construct a low-loss Bezier curve. Since all of the
parameters along those Bezier curves achieve low loss, we
can add them to the ensemble for improved performance.
For instance, choosing r = 0.5, we can collect θ(be)

i,j (0.5)
for all (i, j) pairs, and construct an ensembled predictor as

1

m+
(
m
2

)( m∑
i=1

fθi
(x) +

∑
i<j

f
θ
(be)
i,j (0.5)

(x)

)
. (5)

While this strategy provide an effective way to increase the
number of ensemble members, for inference, an additional
O(m2) number of forward passes are required. Our pri-
mary goal in this paper is to reduce this additional cost by
bypassing the direct forward passes with θ(be)

i,j (r).

3. Main contribution
In this section, we present a novel method that directly pre-
dicts the outputs of neural networks evaluated at parameters
on Bezier curves without actual forward passes with them.

3.1. Bridge networks

Let us first recall our key assumption stated in the intro-
duction; if two modes in an ensemble are connected by a
simple low-loss subspace (Bezier curve), then we can pre-
dict the outputs corresponding to the parameters on the sub-
space using only the information obtained from the modes.
The intuition behind this assumption is that, since the pa-
rameters are connected with a simple curve, the corre-
sponding outputs may also be connected via a relatively
simple mapping, which is far less complex than the origi-
nal neural network. If such mapping exists, we may learn
them via a lightweight neural network.

More specifically, let zi := f
(ft)
ϕi

(x) and vi := fθi(x) =

f
(cls)
ψi

(zi) for i ∈ {1, . . . ,m}. Let vi,j(r) := f
θ
(be)
i,j (r)

(x).

In order to use vi,j(r) with vi to get an ensemble, we
should forward x through f

θ
(be)
i,j (r)

, starting from the bot-

tom layer. Instead, we reuse zi to predict vi,j(r) with a
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Figure 1: Ensembles with a Bezier curve (left), a type I bridge network (center), and a type II bridge network (right).

lightweight neural network. We call such a lightweight
neural network a “bridge network”, since it allows us to
move directly from vi to vi,j(r) in the function space, not
through the actual parameter space. A bridge network is
usually constructed with a Convolutional Neural Network
(CNN) whose inference cost is much lower than that of fθi

.

From the following, we introduce two types of bridge net-
works depending on the number of modes involved in the
computation. Figure 1 presents a schematic diagram that
compares forward passes of ensembles with/without bridge
networks.

Type I bridge networks A type I bridge network h
(r)
i,j

takes a feature zi from one mode and predicts vi,j(r) as

vi,j(r) ≈ ṽi,j(r) = h
(r)
i,j (zi). (6)

A type I bridge network can be constructed between any
pair of connected modes (θi,θj) and an ensembled predic-
tion for specific mode θi with its Bezier parameter θ(be)

i,j

can be approximated as

1

2

(
vi + h

(r)
i,j (zi)

)
, (7)

whose inference cost is nearly identical to that of vi (nearly
a single forward pass). One can also connect θi with mul-
tiple modes {θj1 , . . . ,θjk}, learn bridge networks between
(i, j1), . . . , (i, jk), and construct an ensemble

1

1 + k

(
vi +

k∑
j=1

h
(r)
i,jk

(zi)

)
. (8)

Still, since the costs for h(r)
i,jk

s are much lower than vi, the
inference cost does not increase significantly.

Type II bridge networks A type II bridge network
between (θi,θj) takes two features (zi, zj) to predict
vi,j(r).

vi,j(r) ≈ ṽi,j(r) = H
(r)
i,j (zi, zj). (9)

An ensembled prediction with the type II bridge network is
then constructed as

1

3

(
vi + vj +H

(r)
i,j (zi, zj)

)
, (10)

where we construct an ensemble of three models with ef-
fectively two forward passes (for vi and vj). Similar to the
type I bridge networks, we may construct multiple bridges
between modes and use them together for an ensemble.

3.2. Learning bridge networks

Fixing a position r on Bezier curves In the definition of
the bridge networks above, we fixed the value r. In prin-
ciple, we may parameterize the bridge networks to take r
as an additional input to predict vi,j(r) for any r ∈ [0, 1],
but we found this to be ineffective due to the difficulty of
learning all the outputs corresponding to arbitrary r val-
ues. Moreover, as we empirically observed in Figure 2,
the ensemble with Bezier parameters is most effective with
r = 0.5, and adding additional parameters evaluated at dif-
ferent r values does not significantly improve the perfor-
mance. To this end, we fix r = 0.5 and aim to learn bridge
networks predicting vi,j(0.5) throughout the paper. See
Appendix B.1 for more detailed inspection.

Training procedure Let {θ1, . . . ,θm} be a set of pa-
rameters in an ensemble. Given a set of Bezier parameters
{θ(be)

i,j } connecting them, we learn bridge networks (either
type I or II) for each Bezier curve. The training proce-
dure is straightforward. We minimize the Kullback-Leibler
divergence between the actual output from the Bezier pa-
rameters and the prediction made from the bridge network.
It makes the bridge network imitate the original function
defined by the Bezier parameters in the same manner as a
conventional knowledge distillation (Hinton et al., 2015).

Further, we apply the mixup (Zhang et al., 2018) method to
explore more diverse responses, preventing the bridge from
learning to just copy the outputs of the base model. Refer
to Appendix A.1 for the detailed training procedure.
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Figure 2: Performance of an ensemble of two modes and a parameter from the Bezier curve connecting them, evaluated
for ResNet-50 on ImageNet. Here, r ∈ (0, 1) denotes a position on the curve. (Top) Ensemble performances when one
member from the Bezier curve r is added to DE-2. (Bottom) Ensemble performances when members are sequentially
added to DE-2 from a Bezier curve. For accuracy, the higher is better, and for NLL, ECE and BS, the lower is better.

4. Related Works
Mode connectivity The geometric properties of deep
neural networks’ loss surfaces have been studied, and one
notable property is the mode connectivity (Garipov et al.,
2018; Draxler et al., 2018); there exists a simple path be-
tween modes of a neural network on which the network
retains low training error along that path. From this, fast
ensembling methods that collect ensemble members on the
mode-connecting-paths have been proposed (Huang et al.,
2017; Garipov et al., 2018). Extending this idea, Izmailov
et al. (2020) approximated the posteriors of Bayesian neu-
ral nets via the low-loss subspace and used them for BMA.
Wortsman et al. (2021) also presented a method for further
improving performance by ensembling over the subspaces.

Efficient ensembling Despite the superior performance
of DE (Lakshminarayanan et al., 2017; Ovadia et al., 2019),
it suffers from additional computation costs for both the
training and the inference. There have been several works
that reduce the computational burden in training by col-
lecting ensemble members efficiently (Huang et al., 2017;
Garipov et al., 2018; Benton et al., 2021), but they did
not consider inference costs that arose from multiple for-
ward passes. On the other hand, there also exist inference-
efficient ensembling methods by sharing parameters (Wen
et al., 2019; Dusenberry et al., 2020) or sharing representa-
tions (Lee et al., 2015; Siqueira et al., 2018; Antorán et al.,
2020; Havasi et al., 2021). In particular, Antorán et al.
(2020) and Havasi et al. (2021) presented the methods to
obtain an ensemble prediction by a single forward pass.
Nevertheless, these methods do not scale well for complex
large-scale datasets or require large network capacity.

5. Experiments
In this section, we are going to answer the following three
big questions:
1. Do bridge networks really learn to predict the outputs of

a function from the Bezier curves?
2. How much ensemble gain we obtain via bridge net-

works with lower computational complexity?
3. How many bridge networks do we have to make in order

to achieve certain ensemble performances?
We answer them in §§ 5.2 to 5.4 with empirical validation.

5.1. Setup

Datasets and networks We evaluate the proposed bridge
networks on various image classification benchmarks, in-
cluding CIFAR-10, CIFAR-100, Tiny ImageNet, and Im-
ageNet datasets. Throughout the experiments, we use the
family of residual networks (ResNet; He et al., 2016) as
a base model: ResNet-32×2 for CIFAR-10, ResNet-32×4
for CIFAR-100, ResNet-34 for Tiny ImageNet and ResNet-
50 for ImageNet, where ×2 and ×4 denotes the multi-
plier of the number of channels for convolutional layers.
The base models for CIFAR datasets have fewer parame-
ters than the (Tiny) ImageNet base models, which have dif-
ferent settings. We construct bridge networks with CNNs
with a residual path whose inference costs are relatively
low compared to those of ResNet base models. For detailed
training settings, including bridge network architectures or
hyperparameter settings, please refer to Appendix A.4.

By changing the channel size of the convolutional layers in
the bridge network, we can balance the trade-off between
performance gains with computational costs. We check this
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Figure 3: Bar plots in the third column show the class probability outputs of the bridge network (orange) and the base model
with the Bezier parameters (blue) for given images displayed in the first column. We also depict the predicted outputs from
the base model with θ1 and θ2 in the second and fourth columns, respectively. Additional results are in Appendix B.6.

Table 1: R2 scores and KL divergence values quantify how similar the following models to the target function defined with
Bezier parameters θ(be)

1,2 (0.5) are in output probabilities; ‘Match Type I/II Bridge’, ‘Other Type I/II Bridge’, and ‘Other
Bezier’. Refer to § 5.2 for a detailed description of each model. All values are measured on the test split of each dataset.

Dataset CIFAR-10 CIFAR-100 Tiny ImageNet ImageNet

Model R2 (↑) KL (↓) R2 (↑) KL (↓) R2 (↑) KL (↓) R2 (↑) KL (↓)
Match type I bridge 0.916 ± 0.003 0.131 ± 0.005 0.805 ± 0.006 0.388 ± 0.011 0.751 ± 0.498 0.498 ± 0.015 0.906 ± 0.001 0.229 ± 0.002

Other type I bridge 0.908 ± 0.002 0.148 ± 0.004 0.780 ± 0.005 0.450 ± 0.010 0.719 ± 0.588 0.588 ± 0.045 0.894 ± 0.001 0.260 ± 0.004

Match type II bridge 0.930 ± 0.002 0.108 ± 0.003 0.837 ± 0.002 0.318 ± 0.004 0.767 ± 0.004 0.459 ± 0.009 0.920 ± 0.001 0.191 ± 0.003

Other type II bridge 0.911 ± 0.002 0.144 ± 0.003 0.794 ± 0.003 0.425 ± 0.006 0.720 ± 0.008 0.573 ± 0.011 0.898 ± 0.000 0.241 ± 0.002

Other Bezier 0.870 ± 0.004 0.229 ± 0.007 0.734 ± 0.002 0.586 ± 0.002 0.655 ± 0.701 0.701 ± 0.011 0.874 ± 0.002 0.323 ± 0.004

trade-off in Appendix B.2. We refer to a bridge network
with less than 10% of floating-point operations (FLOPs)
compared to the base model as Bridgesm(small bridge), and
a bridge with more than 15% as Bridgemd(medium bridge).

Efficiency metrics We choose FLOPs and the number
of parameters (#Params) for efficiency evaluation as these
metrics are commonly used to consider the efficiency (De-
hghani et al., 2021). Because FLOPs and #Params of the
base model are different for each dataset, we report the rel-
ative FLOPs and the relative #Params with respect to the
corresponding base model instead for better comparison.

Uncertainty metrics As suggested by Ashukha et al.
(2020), along with the classification accuracy (ACC), we
report the calibrated versions of Negative Log-likelihood
(NLL), Expected Calibration Error (ECE), and Brier Score
(BS) as metrics for uncertainty evaluation. We also mea-
sure the Deep Ensemble Equivalent (DEE) score proposed
in Ashukha et al. (2020), which shows the relative perfor-
mance for DE in terms of NLL and roughly be interpreted
as effective number of models for an ensemble. See Ap-
pendix A.5 for more details.

5.2. Correspondence between bridges and Beziers

Figure 3 visualizes the outputs of the bridge network H
(0.5)
1,2

which predicts the logits from θ
(be)
1,2 (0.5). To be more

specific, we visualize the predicted logits from θ1, θ2,

θ
(be)
1,2 (0.5), and the bridge network H

(0.5)
1,2 , for two test ex-

amples of CIFAR-10. Indeed, the bridge network predicts
well the logits from the Bezier curve. Appendix B.6 pro-
vides additional examples that further verify this.

To assess the quality of the prediction of bridge networks,
we use a set of ensemble parameters {θ1,θ2, . . . ,θm} and
Bezier curves between them. If the bridge network H

(0.5)
1,2

predicts v1,2(0.5) well compared to the other baselines,
we can confirm that there exists the correspondence be-
tween the bridge network and the Bezier curve. To this
end, we measure the R2 score and Kullback-Leibler diver-
gence (KL) which quantify how similar outputs of the fol-
lowing baselines to that of the target function f

θ
(be)
1,2 (0.5)

;
(1) ‘Match type I/II bridge’ denote the bridge network
imitating the function of θ(be)

1,2 (0.5), (2) ‘Other type I/II
bridge’ denote the bridge network imitating the function of
θ
(be)
i,j (0.5) for some (i, j) ̸= (1, 2), and (3) ‘Other Bezier’

denotes the base model with the parameters θ(be)
i,j (0.5) for

some (i, j) ̸= (1, 2).

Table 1 summarizes the results. Compared to the base-
lines (i.e., ‘Other type I/II bridge’ and ‘Other Bezier’), the
bridge networks produce more similar outputs to the target
outputs. The R2 values between the predictions and tar-
gets are significantly higher than those from the wrong tar-
gets, demonstrating that the bridge predictions indeed are
approximating our target outputs of interest.
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Table 2: Performance improvement of the ensemble by adding type I bridges to the single base ResNet model on Tiny
ImageNet and ImageNet datasets. FLOPs, #Params, and DEE metrics are measured with respect to the single base model.
Bridgesm and Bridgemd denote the small and the medium versions of the bridge network based on their FLOPs.

Tiny ImageNet
Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)
ResNet (DE-1) × 1.000 × 1.000 62.66 ± 0.23 1.683 ± 0.009 0.050 ± 0.004 1.000

+ 1 Bridgesm × 1.050 × 1.057 64.58 ± 0.17 1.478 ± 0.006 0.025 ± 0.002 2.280 ± 0.086

+ 2 Bridgesm × 1.099 × 1.114 65.37 ± 0.13 1.421 ± 0.004 0.018 ± 0.002 3.087 ± 0.118

+ 3 Bridgesm × 1.149 × 1.171 65.82 ± 0.10 1.395 ± 0.003 0.015 ± 0.001 3.680 ± 0.133

+ 1 Bridgemd × 1.180 × 1.206 65.13 ± 0.12 1.446 ± 0.002 0.034 ± 0.002 2.709 ± 0.049

+ 2 Bridgemd × 1.359 × 1.412 66.29 ± 0.06 1.388 ± 0.004 0.025 ± 0.001 3.845 ± 0.171

+ 3 Bridgemd × 1.539 × 1.618 66.76 ± 0.09 1.362 ± 0.003 0.023 ± 0.001 4.708 ± 0.209

DE-2 × 2.000 × 2.000 65.54 ± 0.25 1.499 ± 0.007 0.029 ± 0.003 2.000

ImageNet
Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)
ResNet (DE-1) × 1.000 × 1.000 75.85 ± 0.06 0.936 ± 0.003 0.019 ± 0.001 1.000

+ 1 Bridgesm × 1.061 × 1.071 76.46 ± 0.06 0.914 ± 0.000 0.012 ± 0.001 1.418 ± 0.034

+ 2 Bridgesm × 1.123 × 1.141 76.60 ± 0.06 0.907 ± 0.000 0.012 ± 0.001 1.537 ± 0.026

+ 3 Bridgesm × 1.184 × 1.212 76.69 ± 0.04 0.905 ± 0.000 0.011 ± 0.001 1.584 ± 0.021

+ 1 Bridgemd × 1.194 × 1.222 77.03 ± 0.07 0.889 ± 0.001 0.013 ± 0.000 1.881 ± 0.022

+ 2 Bridgemd × 1.389 × 1.444 77.37 ± 0.07 0.876 ± 0.001 0.013 ± 0.001 2.341 ± 0.076

+ 3 Bridgemd × 1.583 × 1.665 77.48 ± 0.03 0.870 ± 0.000 0.013 ± 0.000 2.618 ± 0.062

DE-2 × 2.000 × 2.000 77.12 ± 0.04 0.883 ± 0.001 0.012 ± 0.001 2.000
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Figure 4: The cost-performance plots of type I bridges compared to DE on Tiny ImageNet and ImageNet datasets. The
x-axis denotes the relative FLOPs quantifying the inference cost of the model compared to a single base model, and the
y-axis shows the corresponding predictive performance. On the basis of DE (black dashed line), the upper left position is
preferable in ACC, and the lower left position is preferable in NLL.

5.3. Classification with bridge networks

5.3.1. TYPE I BRIDGE NETWORKS

Single model performances with type I bridge networks
In situations where multiple forward passes are not allowed
for inference, we can approximate an ensemble of a single
base model and the ones from Bezier curves with type I
bridge networks. The results are shown in Table 2. The
results show that for Stochastic Gradient Descent (SGD)
trained single ResNet model, an ensemble with type I
bridge networks improves the performance both in terms
of accuracy and uncertainty estimation. Only adding one
small type I bridge with 5 ∼ 6% FLOPs to the base model
(ResNet + 1 Bridgesm) dramatically improves the accu-
racy and DEE on both datasets. Furthermore, using more
FLOPs with a medium type I bridge (ResNet + 1 Bridgemd)
gives better performance gains.

Using multiple type I bridge networks As type I bridge
network requires features from only one mode of each
curve for inference, we can use multiple type I bridge net-
works for a single base model without significantly increas-
ing inference cost, as we mentioned at Equation 8. Table 2
reports the performance gain of a single base model with an
increasing number of type I bridges. Each bridge approxi-
mates the models on different Bezier curves between a sin-
gle mode and others (i.e., Bezier curves between modes A-
B, A-C, and so on where A, B, and C are different modes.),
not the models on a single Bezier curve. Adding more
bridge networks introduces more diverse outputs to the en-

sembles. One can see that the performance continuously
improves as the number of bridges increases, with low ad-
ditional inference costs. Figure 4 shows how much type I
bridge networks efficiently increase the performances pro-
portional to FLOPs.

5.3.2. TYPE II BRIDGE NETWORKS

Performance Table 3 summarizes the classification re-
sults comparing DE, DE with Bezier curves, and DE with
type II bridge networks. For more experimental results in-
cluding other datasets, please refer to Appendix B.7. From
Table 3, one can see that with only a slight increase in the
computational costs, the ensembles with bridge networks
achieve almost DEE 2.051 ensemble gain for DE-4 case on
Tiny ImageNet dataset. This gain is not specific only for
DE-4; the ensembles with type II bridge networks consis-
tently improved predictive accuracy and uncertainty cali-
bration with a small increase in the inference costs. Fig-
ure 5 shows how much our type II bridge network achieves
high performance in the perspective of relative FLOPs.

Computational cost We report FLOPs for inference on
Table 3 to indicate how much relative computational costs
are required for the competing models. Figure 5 summa-
rizes the tradeoff between FLOPs and performance in vari-
ous metrics. As one can see from these results, our bridge
networks could achieve a remarkable gain in performance,
so for some cases, adding bridge ensembles achieved per-
formance gains larger than those might be achieved by
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Table 3: Performance improvement of the ensemble by adding type II bridges as members to existing DE ensembles on
Tiny ImageNet and ImageNet datasets. FLOPs, #Params, and DEE metrics are measured with respect to corresponding
DEs. Type II bridges consistently improve the accuracy and uncertainty metrics of the ensemble before saturation. Bridgesm
and Bridgemd denote the small and the medium versions of the bridge network based on their FLOPs.

Tiny ImageNet
Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)
DE-4 × 4.000 × 4.000 67.50 ± 0.11 1.381 ± 0.004 0.018 ± 0.001 4.000

+ 1 Bridgesm × 4.058 × 4.067 67.86 ± 0.05 1.334 ± 0.003 0.017 ± 0.002 6.051 ± 0.181

+ 2 Bridgesm × 4.117 × 4.135 68.12 ± 0.09 1.311 ± 0.005 0.015 ± 0.001 8.174 ± 0.465

+ 4 Bridgesm × 4.234 × 4.269 68.47 ± 0.14 1.288 ± 0.004 0.015 ± 0.001 10.340 ± 0.773

+ 6 Bridgesm × 4.351 × 4.404 68.51 ± 0.10 1.278 ± 0.003 0.014 ± 0.001 11.268 ± 0.871

+ 1 Bridgemd × 4.198 × 4.226 68.00 ± 0.11 1.333 ± 0.003 0.019 ± 0.001 6.183 ± 0.120

+ 2 Bridgemd × 4.395 × 4.453 68.33 ± 0.08 1.308 ± 0.003 0.019 ± 0.001 8.489 ± 0.481

+ 4 Bridgemd × 4.791 × 4.906 68.61 ± 0.05 1.281 ± 0.004 0.021 ± 0.003 10.897 ± 0.800

+ 6 Bridgemd × 5.186 × 5.359 68.80 ± 0.09 1.269 ± 0.003 0.021 ± 0.001 12.110 ± 1.083

DE-5 × 5.000 × 5.000 67.90 ± 0.14 1.354 ± 0.003 0.019 ± 0.001 5.000

ImageNet
Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)
DE-4 × 4.000 × 4.000 77.87 ± 0.04 0.851 ± 0.001 0.012 ± 0.001 4.000

+ 1 Bridgesm × 4.086 × 4.088 77.93 ± 0.02 0.847 ± 0.000 0.012 ± 0.001 4.580 ± 0.052

+ 2 Bridgesm × 4.172 × 4.176 78.00 ± 0.04 0.846 ± 0.000 0.011 ± 0.000 4.739 ± 0.052

+ 4 Bridgesm × 4.343 × 4.351 78.10 ± 0.03 0.846 ± 0.000 0.011 ± 0.001 4.768 ± 0.041

+ 6 Bridgesm × 4.515 × 4.527 78.12 ± 0.05 0.846 ± 0.001 0.011 ± 0.001 4.659 ± 0.037

+ 1 Bridgemd × 4.243 × 4.256 78.14 ± 0.03 0.839 ± 0.000 0.011 ± 0.001 6.123 ± 0.121

+ 2 Bridgemd × 4.487 × 4.512 78.30 ± 0.05 0.833 ± 0.000 0.012 ± 0.001 8.068 ± 0.144

+ 4 Bridgemd × 4.973 × 5.024 78.46 ± 0.04 0.828 ± 0.000 0.012 ± 0.000 9.951 ± 0.163

+ 6 Bridgemd × 5.460 × 5.536 78.56 ± 0.09 0.825 ± 0.000 0.012 ± 0.001 10.760 ± 0.202

DE-5 × 5.000 × 5.000 78.03 ± 0.03 0.844 ± 0.001 0.012 ± 0.001 5.000
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Figure 5: The cost-performance plots of type II bridges compared to DE on Tiny ImageNet and ImageNet datasets. The
x-axis denotes the relative FLOPs quantifying the inference cost of the model compared to DE basis from DE-2 to DE-7,
and the y-axis shows the corresponding predictive performance. On the basis of DE (black dashed line), the upper left
position is preferable in ACC, and the lower left position is preferable in NLL.

adding entire ensemble members. For instance, in Tiny
ImageNet experiments, DE-4 + 2 bridges were better than
DE-5. Please refer to Appendix B.7 for the full results in-
cluding various DE sizes and other datasets.

5.4. How many type II bridges are required?
For an ensemble of m parameters, the number of pairs that
can be connected by Bezier curves is

(
m
2

)
, which grows

quadratically with m. In the previous experiment, we con-
structed Bezier curves and bridges for all possible pairs
(which explains the large inference costs for Bezier ensem-
bles), but in practice, we found that it is not necessary to
use bridge networks for all of those pairs. As an example,
we compare the performance of DE-4 + bridge ensembles
with an increasing number of bridges on Tiny ImageNet
and ImageNet datasets. The results are summarized in Ta-
ble 3. Just one small bridge dramatically increases the per-
formance, and the performance gain gradually saturates as
we add more bridges. Notably, only one bridge shows sim-
ilar or better performance than DE-5.

5.5. Comparison with other efficient ensemble methods

To show the efficiency of our model, we compared it to
methods that efficiently use an ensemble. For compari-
son, we choose BatchEnsemble (BE; Wen et al., 2019),
multi-input multi-output network (MIMO; Havasi et al.,
2021), a single model trained with stochastic weight av-

eraging (SWA; Izmailov et al., 2018), and a single model
that knowledge-distilled from DE-n teacher models (Hin-
ton et al., 2015) on Tiny ImageNet dataset.

Table 4 and Figure 6 summarize the results. BatchEnsem-
ble is efficient in terms of the number of parameters, but it
still uses the same FLOPs as DE. In addition, the method is
not scalable, so it does not work well for relatively difficult
datasets such as Tiny ImageNet.

MIMO operates effectively when the capacity of the model
is sufficient because several subnetworks are independently
learned in a single model and the ensemble effect is ex-
pected with only one forward pass. However, in difficult
datasets, it is hard to have sufficient network capacity, and
it is not easy to train a model because additional training
techniques such as batch repetition are required. Despite
using ResNet-34×2, which increased the width by twice
as much as the baseline ResNet, the performance did not
improve as expected.

SWA and knowledge distillation give considerable perfor-
mance gain to a single model. However, by adding a bridge
network of about 5% FLOPs, it outperforms SWA in terms
of both ACC and NLL. And knowledge-distilled single
models show high accuracies, but the advantage for cali-
bration that can be obtained from the ensemble is not large.
As an extension of our method, a model that is trained in
the form of a single model can be used as the base model
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Table 4: Comparison of performance improvement of the efficient methods on Tiny ImageNet dataset. FLOPs, #Params,
and DEE metrics are measured with respect to the single ResNet-34.

Tiny ImageNet
Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)
ResNet (DE-1) × 1.000 × 1.000 62.66 ± 0.23 1.683 ± 0.009 0.050 ± 0.004 1.000

+ 1 Bridgesm × 1.050 × 1.057 64.58 ± 0.17 1.478 ± 0.006 0.025 ± 0.002 2.280 ± 0.086

+ 2 Bridgesm × 1.099 × 1.114 65.37 ± 0.13 1.421 ± 0.004 0.018 ± 0.002 3.087 ± 0.118

+ 3 Bridgesm × 1.149 × 1.171 65.82 ± 0.10 1.395 ± 0.003 0.015 ± 0.001 3.680 ± 0.133

DE-2 × 2.000 × 2.000 65.54 ± 0.25 1.499 ± 0.007 0.029 ± 0.003 2.000
DE-3 × 3.000 × 3.000 66.65 ± 0.18 1.425 ± 0.005 0.024 ± 0.002 3.000

BE-2 × 2.000 × 1.001 61.44 ± 0.16 1.651 ± 0.006 0.014 ± 0.003 1.169 ± 0.079

BE-3 × 3.000 × 1.002 62.33 ± 0.24 1.603 ± 0.014 0.015 ± 0.003 1.433 ± 0.070

BE-4 × 4.000 × 1.003 62.42 ± 0.58 1.607 ± 0.020 0.015 ± 0.003 1.410 ± 0.098

MIMO (M = 2) × 2.000 × 3.994 63.47 ± 0.76 1.691 ± 0.013 0.065 ± 0.000 0.983 ± 0.053

ResNet (SWA) × 1.000 × 1.000 64.03 ± 0.21 1.519 ± 0.010 0.030 ± 0.002 1.888 ± 0.074

+ 1 Bridgesm × 1.050 × 1.057 65.26 ± 0.08 1.435 ± 0.004 0.031 ± 0.001 2.865 ± 0.087

+ 2 Bridgesm × 1.099 × 1.114 65.77 ± 0.10 1.403 ± 0.003 0.028 ± 0.002 3.511 ± 0.162

+ 3 Bridgesm × 1.149 × 1.171 65.96 ± 0.09 1.387 ± 0.001 0.026 ± 0.002 3.873 ± 0.160

ResNet (KD from DE-2) × 1.000 × 1.000 64.71 ± 0.23 1.629 ± 0.005 0.066 ± 0.002 1.290 ± 0.038

ResNet (KD from DE-3) × 1.000 × 1.000 65.09 ± 0.25 1.622 ± 0.002 0.068 ± 0.003 1.331 ± 0.035
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Figure 6: The cost-performance plots of efficient methods compared to DE of ResNet-34 on Tiny ImageNet dataset. The
x-axis denotes the relative FLOPs quantifying the inference cost of the model compared to a single ResNet-34, and the
y-axis shows the corresponding predictive performance. On the basis of DE (black dashed line), the upper left position is
preferable in ACC, and the lower left position is preferable in NLL.

of bridge networks to give a greater performance gain. The
results show that the type I bridges using an SWA-trained
single model as a base model (ResNet (SWA) + Bridgesm)
further improve the performance. We empirically validate
this in Appendix B.5.

6. Discussion
Difference between type I and type II bridges Both
types I and II bridges approximate the model located at the
midpoint of the Bezier curve with a small inference cost.
While the type II bridge requires both outputs of models
located at two endpoints of the Bezier curve, the type I
bridge only requires one. Since we provide more infor-
mation about the Bezier subspace to the type II bridge, it
will approximate the midpoint of the Bezier curve more
accurately than the type I bridge. Indeed, the experimen-
tal results presented in § 5.2 shows that the type II bridge
produces more similar output to the target model (i.e., the
midpoint of the Bezier curve) than the type I bridge. Nev-
ertheless, it is worth investigating the type I bridge since its
strength lies in the possibility of scaling up a single model.
To be specific, § 5.3.1 shows that type I bridges can pro-
gressively enhance the single model to be stronger than DE-
1,2,3 with a relatively lower cost.

Which type of bridge network should I use? Although
type II bridges usually perform better than type I (due to
the rich information that came from two endpoints of the
Beizer curve), they presume the feasibility of multiple base
networks during inference. Thus, in practice, it is encour-
aged to use type II bridges only if we are allowed to for-
ward multiple base networks (if not, we should use type I
bridges). If the available FLOPs and memory are between

DE-1 and DE-2, only type I bridges can be used, because
they can work with a single base model (one endpoint). If
you have more FLOPs and more memory available than
the DE-2, you can use type II bridges. Although type II
bridges require base models for both endpoints, they can
make more accurate predictions and show higher ensem-
ble gains than type I bridges. This point can be confirmed
more clearly by looking at the x-axis (relative FLOPs) of
Figure 4 and Figure 5 of the paper, which shows the rela-
tive performance compared to the relative FLOPs of type
I and type II bridges, and the performance improvement
accordingly. In summary, type I bridges can be effectively
used in a situation where available relative FLOPs are about
×1 ∼ ×2, and type II bridges can be effectively used with
type I bridges in a situation where available relative FLOPs
are more than ×2. We inspect the situation in which type I
and type II bridges are mixed in Appendix B.3.

7. Conclusion
In this paper, we proposed a novel framework for efficient
ensembling that reduces inference costs of ensembles with
a lightweight network called bridge networks. Bridge net-
works predict the neural network outputs corresponding
to the parameters obtained from the Bezier curves con-
necting two ensemble parameters without actual forward
passes through the network. Instead, they reuse features
and outputs computed from the ensemble members and di-
rectly predict the outputs corresponding to Bezier parame-
ters in function spaces. Using various image classification
benchmarks, we demonstrate that we can train such bridge
networks with simple CNNs with minimal inference costs,
and bridge-augmented ensembles could achieve significant
gain in terms of accuracy and uncertainty calibration.
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A. Experimental Details
We release the code used in the experiments on GitHub1.

A.1. Training procedure

Algorithm 1 Training type I bridge networks

Require: Training dataset D, a pair of parameters (θ1,θ2)
and corresponding Bezier parameter θ(be)

1,2 , a bridge net-

work h
(r)
1,2 (type I) with parameters ω, learning rate η, a

mixup coefficient α.

Initialize ω.
while not converged do

Sample a mini-batch B ∼ D.
for i = 1, . . . , |B| do

Take the input xi from B.
x̃i ← mixup(xi, α)

z1 ← f
(ft)
ϕ1

(x̃i), v1 ← f
(cls)
ψ1

(z1).
v1,2(r)← f

θ
(be)
1,2 (0.5)

(x̃i).

ṽ1,2(r)← h
(0.5)
1,2 (z1;ω).

ℓi ← DKL(v1,2(0.5)||ṽ1,2(0.5))
end for
ω ← ω − η∇ω 1

|B|
∑

i ℓi.
end while
return ω.

Algorithm 2 Training type II bridge networks

Require: Training dataset D, a pair of parameters (θ1,θ2)
and corresponding Bezier parameter θ(be)

1,2 , a bridge net-

work H
(r)
1,2 (type II) with parameters ω, learning rate η, a

mixup coefficient α.

Initialize ω.
while not converged do

Sample a mini-batch B ∼ D.
for i = 1, . . . , |B| do

Take the input xi from B.
x̃i ← mixup(xi, α)

z1 ← f
(ft)
ϕ1

(x̃i), v1 ← f
(cls)
ψ1

(z1).

z2 ← f
(ft)
ϕ2

(x̃i), v2 ← f
(cls)
ψ2

(z2).
v1,2(r)← f

θ
(be)
1,2 (0.5)

(x̃i).

ṽ1,2(r) = H
(0.5)
1,2 (z1, z2;ω).

ℓi ← DKL(v1,2(0.5)||ṽ1,2(0.5))
end for
ω ← ω − η∇ω 1

|B|
∑

i ℓi.
end while
return ω.

A.2. Filter Response Normalization

Throughout experiments using convolutional neural networks, we use the Filter Response Normalization (FRN; Singh &
Krishnan, 2020) instead of the Batch Normalization (BN; Ioffe & Szegedy, 2015) to avoid recomputation of BN statistics
along the subspaces. Besides, FRN is fully made up of learned parameters and it does not utilize dependencies between
training examples, thus, it gives us a more clear interpretation of the parameter space (Wenzel et al., 2020; Izmailov et al.,
2021). We also perform experiments with Batch Normalization and present the results in Appendix B.8.

A.3. Aligning the Bezier curves

In very difficult datasets such as ImageNet, it is not easy to reduce the training loss sufficiently small, and there are consid-
erable discrepancies between trained models. This makes the low-loss subspace between modes sufficiently complex, and
the correlation between model outputs in the low-loss subspace becomes low. A bridge network is built on the assumption
that the outputs on the mode and the output on the low-loss subspace it approximates will be sufficiently correlated, so it
will not perform well in this situation. Therefore, in a situation where the base model does not have a sufficiently low train-
ing loss, as introduced in Tatro et al. (2020), we align the modes through permutation before finding a low-loss subspace
between them. Through this ‘neuron alignment’, the correlation between the model output on the bezier curve and the
model output in the mode rises significantly, and the bridge network works better. Conversely, in relatively easy datasets
like CIFAR-10, alignment reduces the diversity between low-loss subspaces and modes too much to help the ensemble.
Thus, we align models in mode before finding low-loss subspace on ImageNet dataset, and do not align on CIFAR-10/100,
and Tiny ImageNet datasets.

1https://github.com/yuneg11/Bridge-Network
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A.4. Datasets and models

Dataset We use CIFAR-10/100 (Krizhevsky et al., 2009), Tiny ImageNet (Li et al., 2017) and ImageNet (Russakovsky
et al., 2015) datasets. We apply the data augmentation consisting of random cropping of 32 pixels with padding of 4
pixels and random horizontal flipping. We subtract per-channel means from input images and divide them by per-channel
standard deviations.

Network We employ similar ResNet block structures for the bridge networks in each dataset. Each bridge network
consists of three backbone blocks and one classifier layer. To adjust FLOPs, we modify the channel sizes of the bridge
network. To utilize the features of the base models, we extract features z from the third-to-last block of the base models.

• For CIFAR-10 dataset, we use ResNet-32×2 as a base network which consists of 15 basic blocks (5, 5, 5) and 32 layers
with widen factor of 2 and in-planes of 16.

• For CIFAR-100 dataset, we use ResNet-32×4 as a base network which is almost the same network as CIFAR-10 with
widen factor of 4.

• For Tiny ImageNet dataset, we use ResNet-34 as a base network which consists of 16 basic blocks (3, 4, 6, 3) and 34
layers with in-planes of 64.

• For ImageNet dataset, we use ResNet-50 as a base network which consists of 16 bottleneck blocks (3, 4, 6, 3) and 50
layers with in-planes of 64.

Optimization We train base ResNet networks for 200 epochs with learning rate 0.1. We use the SGD optimizer with
momentum 0.9 and adjust learning rate with simple cosine scheduler. We give weight decay 0.001 for CIFAR-10 dataset,
0.0005 for CIFAR-100 and Tiny ImageNet dataset, and 0.0001 for ImageNet dataset.

Regularization We apply the mixup augmentation to train bridge models. Since the training error of the base network
is near zero for the family of residual networks on CIFAR-10/100 and Tiny ImageNet, given a training input without any
modification, the base network and the target network (the one on the Bezier curve) will produce almost identical outputs,
so the bridge trained with them will just copy the outputs of the base network. To prevent this, we perturb the inputs via
mixup. On the other hand, for the datasets such as ImageNet where the models fail to achieve near zero training errors, the
base network and the target networks are already distinct enough, so we found that the bridge can be trained easily without
such tricks (i.e., we used mixup coefficient α = 0.0). We use α = 0.4 for CIFAR-10/100 and Tiny ImageNet datasets. We
do not use mixup (α = 0.0) for ImageNet dataset.

A.5. Evaluation

Efficiency metrics Dehghani et al. (2021) pointed out that there can be contradictions between commonly used metrics
(e.g., FLOPs, the number of parameters, and speed) and suggested refraining from reporting results using just a single one.
So, we present FLOPs and the number of parameters in the results.

Uncertainty metrics Let p(x) ∈ [0, 1]K be a predicted probabilities for a given input x, where p(k) denotes the kth
element of the probability vector, i.e., p(k) is a predicted confidence on kth class. We have the following common metrics
on the dataset D consists of inputs x and labels y:

• Accuracy (ACC):

ACC(D) = E(x,y)∈D

[[
y = argmax

k
p(k)(x)

]]
. (11)

• Negative log-likelihood (NLL):

NLL(D) = E(x,y)∈D

[
− log p(y)(x)

]
. (12)

• Brier score (BS):

BS(D) = E(x,y)∈D

[∥∥∥p(x)− y∥∥∥2
2

]
, (13)

where y denotes one-hot encoded version of the label y, i.e., y(y) = 1 and y(k) = 0 for k ̸= y.
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• Expected calibration error (ECE):

ECE(D, Nbin) =

Nbin∑
b=1

nb|δb|
n1 + · · ·+ nNbin

, (14)

where Nbin is the number of bins, nb is the number of examples in the bth bin, and δb is the calibration error of the bth
bin. Specifically, the bth bin consists of predictions having the maximum confidence values in [(b − 1)/K, b/K), and
the calibration error denotes the difference between accuracy and averaged confidences. We fix Nbin = 15 in this paper.

We evaluate the calibrated metrics that compute the aforementioned metrics with the temperature scaling (Guo et al.,
2017), as Ashukha et al. (2020) suggested. Specifically, (1) we first find the optimal temperature which minimizes the NLL
over the validation examples, and (2) compute uncertainty metrics including NLL, BS, and ECE using temperature scaled
predicted probabilities under the optimal temperature. Moreover, we evaluate the following Deep Ensemble Equivalent
(DEE) score, which measure the relative performance for DE in terms of NLL,

DEE(D) = min {m ≥ 0 | NLL(D) ≤ NLLDE-m(D)}, (15)

where NLLDE-m(D) denotes the NLL of DE-m on the dataset D. Here, we linearly interpolate NLLDE-m(D) values for
m ∈ R and make the DEE score continuous.

A.6. Computing Resources

We conduct Tiny ImageNet experiments on TPU v2-8 and TPU v3-8 supported by TPU Research Cloud2 and the others
on NVIDIA GeForce RTX 3090. We implemented the experimental codes using PyTorch (Paszke et al., 2019).

B. Additional Experiments
B.1. Ablations on the choice of values for Bezier curve r

Table 5: R2 score, KL divergence, and ensemble performances along Bezier curve r ∈ (0, 1] on Tiny ImageNet dataset
with Batch Normalization. Each type I bridge is trained to approximate the Bezier curve r ∈ (0, 1] with 0.1 step size. R2

score and KL divergence are calculated between the bridge output and the output of target Bezier curve r. Here, the type I
bridge (r = 1.0) actually tries to approximate the mode on the other end, and struggles to do so.

Tiny ImageNet

Model R2 (↑) KL (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) - - 63.90 ± 0.11 1.560 ± 0.006 0.035 ± 0.004 0.483 ± 0.002 1.000

+ Bridgesm (r = 0.1) 0.739 ± 0.003 0.600 ± 0.001 63.57 ± 0.24 1.533 ± 0.005 0.022 ± 0.002 0.485 ± 0.002 1.816 ± 0.042

+ Bridgesm (r = 0.2) 0.753 ± 0.002 0.539 ± 0.007 64.44 ± 0.12 1.508 ± 0.003 0.023 ± 0.004 0.472 ± 0.001 1.952 ± 0.061

+ Bridgesm (r = 0.3) 0.754 ± 0.005 0.511 ± 0.009 64.38 ± 0.20 1.507 ± 0.003 0.022 ± 0.000 0.472 ± 0.000 1.957 ± 0.055

+ Bridgesm (r = 0.4) 0.749 ± 0.007 0.506 ± 0.011 64.50 ± 0.15 1.494 ± 0.001 0.024 ± 0.001 0.470 ± 0.001 2.073 ± 0.085

+ Bridgesm (r = 0.5) 0.751 ± 0.008 0.498 ± 0.015 64.58 ± 0.17 1.478 ± 0.006 0.025 ± 0.002 0.469 ± 0.001 2.280 ± 0.086

+ Bridgesm (r = 0.6) 0.740 ± 0.013 0.530 ± 0.025 64.80 ± 0.17 1.483 ± 0.003 0.025 ± 0.002 0.470 ± 0.001 2.208 ± 0.053

+ Bridgesm (r = 0.7) 0.727 ± 0.012 0.576 ± 0.026 64.67 ± 0.33 1.494 ± 0.005 0.024 ± 0.001 0.470 ± 0.002 2.062 ± 0.116

+ Bridgesm (r = 0.8) 0.719 ± 0.011 0.626 ± 0.023 64.61 ± 0.15 1.492 ± 0.005 0.020 ± 0.002 0.470 ± 0.001 2.107 ± 0.116

+ Bridgesm (r = 0.9) 0.698 ± 0.008 0.721 ± 0.020 63.70 ± 0.17 1.526 ± 0.008 0.021 ± 0.004 0.484 ± 0.002 1.854 ± 0.022

+ Bridgesm (r = 1.0) 0.677 ± 0.008 0.810 ± 0.025 63.83 ± 0.10 1.529 ± 0.008 0.019 ± 0.003 0.484 ± 0.002 1.836 ± 0.052

We further examine the impact of selecting different values for a Bezier curve r when constructing type I bridge networks.
In particular, r = 1.0 would lead the type I bridge to directly predict the other mode from the given mode, which could have
significant implications. Table 5 summarizes the results on Tiny ImageNet dataset using ResNet with Batch Normalization.

Our proposed bridge networks are built on the hypothesis that there is a correspondence between two points on the low-loss
Bezier curve in both weight and function space. As demonstrated in § 5.2, the type I bridge networks can accurately predict

2https://sites.research.google/trc/about/
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the function output of the target model (r = 0.5) using the base model (r = 0.0) due to the close relationship between the
target and base models in terms of mode connectivity in weight space.

As we move further away from the base model (i.e., as r increases), there could be further improvements. While it is true
for ideal bridge networks that perfectly predict the target model for any r value in the range of [0, 1], we should note that the
connection between the source and target models becomes weaker as we move away from the source. The results clearly
show that the type I bridge networks struggle in accurately predicting the target model with r > 0.6, which is reflected in
lower R2 values. As a result, the final ensemble performance suffers with lower ACC and higher NLL values.

B.2. Relationship between model size and regression result

Table 6: FLOPs, #Params, R2 scores, and ensemble performance metrics of various type II bridge network sizes on
CIFAR-100. We use ResNet-32×4 as a base model and 3 blocks of CNN with a residual connection as bridge networks.
The number after CNN indicates the number of channels. R2 scores are measured with respect to the target Bezier r = 0.5.

Bridge FLOPs (↓) #Params (↓) R2 (↑) ACC (↑) NLL (↓) ECE (↓) BS (↓)

CNN 32 ch × 0.012 × 0.009 0.709 ± 0.004 75.62 ± 0.17 0.914 ± 0.005 0.013 ± 0.001 0.342 ± 0.002

CNN 64 ch × 0.029 × 0.022 0.758 ± 0.004 75.78 ± 0.30 0.901 ± 0.004 0.016 ± 0.002 0.338 ± 0.001

CNN 128 ch × 0.079 × 0.060 0.793 ± 0.003 75.98 ± 0.20 0.894 ± 0.003 0.021 ± 0.002 0.335 ± 0.001

CNN 256 ch × 0.252 × 0.192 0.805 ± 0.006 76.21 ± 0.11 0.863 ± 0.003 0.021 ± 0.002 0.324 ± 0.001

We measure the relationship between the size of the bridge networks and the goodness of predictions measured by R2

scores. Table 6 shows that we can achieve decent R2 scores with a small number of parameters, and the performance
improves as we increase the flexibility of our bridge network.

B.3. Using type I and type II bridges together

Table 7: Performance improvement of the ensemble by adding both type I and type II bridges as members to existing DE
ensembles on Tiny ImageNet datasets. FLOPs, #Params, and DEE metrics are measured with respect to corresponding
DEs. (I) denotes the bridge is type I, and (II) denotes the bridge is type II.

Tiny ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 65.54 ± 0.25 1.499 ± 0.007 0.029 ± 0.003 0.461 ± 0.001 2.000

+ 1 Bridgesm(II) × 2.058 × 2.067 66.66 ± 0.37 1.394 ± 0.007 0.021 ± 0.002 0.445 ± 0.001 3.708 ± 0.187

+ 2 Bridgesm(I) × 2.157 × 2.181 67.24 ± 0.19 1.341 ± 0.002 0.015 ± 0.002 0.437 ± 0.001 5.673 ± 0.219

DE-3 × 3.000 × 3.000 66.65 ± 0.18 1.425 ± 0.005 0.024 ± 0.002 0.444 ± 0.001 3.000

+ 3 Bridgesm(II) × 3.175 × 3.202 68.06 ± 0.26 1.312 ± 0.006 0.016 ± 0.001 0.428 ± 0.001 8.092 ± 0.610

+ 3 Bridgesm(I) × 3.324 × 3.373 68.27 ± 0.17 1.292 ± 0.006 0.014 ± 0.002 0.427 ± 0.001 9.846 ± 0.718

DE-4 × 4.000 × 4.000 67.50 ± 0.11 1.381 ± 0.004 0.018 ± 0.001 0.435 ± 0.001 4.000

1

2

H

2 3H

1

h

Figure 7: ‘DE-2 + 2 Bridgesm(I) + 1 Bridgesm(II)’ ensemble and ‘DE-3 + 3 Bridgesm(I) + 3 Bridgesm(II)’ ensemble.

Depending on the amount of computing resources available, we can use different combinations of bridge networks. One
can freely add more type I bridge networks to the ensemble of the base model and type II bridge networks. As an example,
let us assume that the computing resources can handle DE-2, but not DE-3. Then we can use two base models to construct
DE-2, and one type II bridge network connecting them. After that, we can add more type I bridges to each base model
to increase the performance of the ensemble. There is no restriction to use only one type I bridge network on one base
model, so more type I bridges can be used. Table 7 shows that adding two type I bridge networks further improves the
performance of the ‘DE-2 + 1 Bridgesm(II)’. And this can be similarly applied to the case of DE-3.

B.4. Selecting the optimal mode

Given the practicality of the proposed type I bridge networks, we investigate how to choose the base model among multiple
modes. To this end, we consider three modes and evaluate the performance of “DE-1 + 2 type I Bridgesm” using three
different base models. Table 8 briefly demonstrates this scenario. As a result, selecting a good-performing base model
generally leads to good ensemble performance. However, in cases where the performance difference between modes is not
significant, the difference in ensemble performance was also not significantly different within the margin of error.
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Table 8: Among the three modes with considerable and comparable performance differences, we choose one mode as the
base endpoint and train type I bridges for the other two modes on Tiny ImageNet dataset. Selecting the mode with the best
performance showed better ensemble performance than other cases.

Tiny ImageNet

Considerable differences Comparable differences

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓)

ResNet (High) × 1.000 × 1.000 63.11 1.649 0.044 0.492 62.64 1.683 0.049 0.496
+ 2 Bridgesm × 1.099 × 1.114 65.90 1.415 0.014 0.455 65.48 1.421 0.023 0.457

ResNet (Center) × 1.000 × 1.000 62.64 1.683 0.049 0.496 62.61 1.687 0.053 0.501
+ 2 Bridgesm × 1.099 × 1.114 65.45 1.421 0.020 0.458 65.43 1.427 0.020 0.459

ResNet (Low) × 1.000 × 1.000 62.38 1.693 0.053 0.501 62.38 1.693 0.053 0.501
+ 2 Bridgesm × 1.099 × 1.114 65.29 1.419 0.021 0.458 65.09 1.417 0.020 0.457

B.5. Using bridge networks with SWA trained base model

Table 9: Comparison of performance improvement of the efficient methods on Tiny ImageNet dataset. FLOPs, #Params,
and DEE metrics are measured with respect to the single ResNet-34.

Tiny ImageNet
Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) DEE (↑)
ResNet (SWA) × 1.000 × 1.000 64.03 ± 0.21 1.519 ± 0.010 0.030 ± 0.002 1.888 ± 0.074

+ 1 Bridgesm × 1.050 × 1.057 65.26 ± 0.08 1.435 ± 0.004 0.031 ± 0.001 2.865 ± 0.087

+ 2 Bridgesm × 1.099 × 1.114 65.77 ± 0.10 1.403 ± 0.003 0.028 ± 0.002 3.511 ± 0.162

+ 3 Bridgesm × 1.149 × 1.171 65.96 ± 0.09 1.387 ± 0.001 0.026 ± 0.002 3.873 ± 0.160

+ 1 Bridgemd × 1.180 × 1.206 65.46 ± 0.05 1.422 ± 0.004 0.030 ± 0.001 3.093 ± 0.173

+ 2 Bridgemd × 1.359 × 1.412 66.06 ± 0.15 1.386 ± 0.004 0.025 ± 0.002 3.903 ± 0.190

+ 3 Bridgemd × 1.539 × 1.618 66.46 ± 0.14 1.369 ± 0.002 0.024 ± 0.002 4.431 ± 0.181

+ 4 Bridgemd × 1.719 × 1.824 66.71 ± 0.04 1.359 ± 0.001 0.022 ± 0.001 4.817 ± 0.111

DE-2 (SWA) × 2.000 × 2.000 66.28 ± 0.07 1.400 ± 0.003 0.020 ± 0.002 3.565 ± 0.156
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Figure 8: The cost-performance plots of efficient methods compared to DE of ResNet-34 on Tiny ImageNet dataset. The
x-axis denotes the relative FLOPs quantifying the inference cost of the model compared to a single ResNet-34, and the
y-axis shows the corresponding predictive performance. On the basis of DE (black dashed line), the upper left position is
preferable in ACC, and the lower left position is preferable in NLL.
We trained base models with SWA and also train Bezier curves connecting them. Then we train bridge networks to learn
curves using features from SWA-trained base models. Table 9 and Figure 8 show that the bridge networks also give
performance improvements when the base models are trained with SWA.

B.6. Additional examples

In Figure 9, we visually inspect the logit regression of a type II bridge network. Our bridge network very accurately
predicts the logits of r = 0.5 from Bezier curve when the two base models (r = 0 and r = 1) gives similar output logits
(deer, ship, and frog). When the base models are not confident on the samples (airplane, bird, cat, and horse), the network
recovers the scale of logits approximately. However, it fails to predict some challenging samples (truck and dog) when
even the base models are very confused.

B.7. Full type I and type II bridge results

We report full experimental results for classification tasks; (1) Type I bridge network results in Table 10, Table 12, Table 14
and Table 16, (2) Type II bridge network results in Table 11, Table 13, Table 15 and Table 17.

B.8. Full type I and type II bridge results with Batch Normalization

We report complete experimental results for classification tasks with Batch Normalization instead of Filter Response Nor-
malization; (1) Type I bridge network results in Table 18, Table 20 and Table 22, (2) Type II bridge network results in
Table 19, Table 21 and Table 23. The results indicate that the choice of a normalization operation is an architectural detail,
and our approach is also compatible with conventional Batch Normalization.
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Bezier Bridge

Figure 9: Bar plots in the third column depict whether the bridge network (orange) outputs the same class probability
values as the base model with the Bezier parameters θ(be)

1,2 (0.5) (blue), for a given test inputs displayed in the first column.
We also depict the predicted logits from θ1 and θ2 in the second and fourth columns, respectively.
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Table 10: Full result of performance improvement of the ensemble by adding type I bridges on CIFAR-10 dataset. We use
the same settings as described in Table 2.

CIFAR-10

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 91.78 ± 0.10 0.287 ± 0.001 0.019 ± 0.001 0.126 ± 0.001 1.000

+ 1 Bridgesm × 1.062 × 1.048 92.10 ± 0.04 0.252 ± 0.001 0.011 ± 0.001 0.118 ± 0.000 1.645 ± 0.041

+ 2 Bridgesm × 1.125 × 1.097 92.15 ± 0.04 0.246 ± 0.001 0.009 ± 0.000 0.117 ± 0.000 1.759 ± 0.051

+ 3 Bridgesm × 1.187 × 1.145 92.18 ± 0.04 0.244 ± 0.001 0.011 ± 0.000 0.116 ± 0.000 1.801 ± 0.055

+ 4 Bridgesm × 1.249 × 1.194 92.22 ± 0.06 0.243 ± 0.000 0.010 ± 0.001 0.116 ± 0.000 1.819 ± 0.046

+ 1 Bridgemd × 1.205 × 1.159 92.09 ± 0.08 0.251 ± 0.001 0.011 ± 0.000 0.118 ± 0.000 1.674 ± 0.029

+ 2 Bridgemd × 1.411 × 1.319 92.20 ± 0.05 0.244 ± 0.001 0.010 ± 0.001 0.116 ± 0.000 1.797 ± 0.045

+ 3 Bridgemd × 1.616 × 1.478 92.23 ± 0.05 0.241 ± 0.000 0.009 ± 0.000 0.115 ± 0.000 1.850 ± 0.047

+ 4 Bridgemd × 1.822 × 1.638 92.29 ± 0.03 0.240 ± 0.000 0.010 ± 0.001 0.115 ± 0.000 1.874 ± 0.045

DE-2 × 2.000 × 2.000 93.07 ± 0.11 0.233 ± 0.003 0.012 ± 0.001 0.107 ± 0.001 2.000

Table 11: Full result of performance improvement of the ensemble by adding type II bridges on CIFAR-10 dataset. We use
the same settings as described in Table 3.

CIFAR-10

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 93.07 ± 0.11 0.233 ± 0.003 0.012 ± 0.001 0.107 ± 0.001 2.000

+ 1 Bridgesm × 2.081 × 2.063 93.09 ± 0.09 0.219 ± 0.003 0.007 ± 0.001 0.103 ± 0.001 2.811 ± 0.143

+ 1 Bridgemd × 2.247 × 2.192 93.09 ± 0.15 0.219 ± 0.003 0.007 ± 0.001 0.103 ± 0.001 2.837 ± 0.160

+ 1 Bezier × 3.000 × 3.000 93.03 ± 0.11 0.227 ± 0.004 0.008 ± 0.001 0.105 ± 0.001 2.377 ± 0.090

DE-3 × 3.000 × 3.000 93.37 ± 0.03 0.216 ± 0.004 0.009 ± 0.001 0.100 ± 0.001 3.000

+ 1 Bridgesm × 3.081 × 3.063 93.45 ± 0.08 0.206 ± 0.002 0.006 ± 0.002 0.097 ± 0.001 3.896 ± 0.115

+ 2 Bridgesm × 3.162 × 3.125 93.49 ± 0.10 0.203 ± 0.002 0.006 ± 0.001 0.097 ± 0.001 4.343 ± 0.213

+ 3 Bridgesm × 3.244 × 3.188 93.52 ± 0.07 0.201 ± 0.002 0.006 ± 0.001 0.096 ± 0.001 4.629 ± 0.159

+ 1 Bridgemd × 3.247 × 3.192 93.48 ± 0.05 0.206 ± 0.003 0.007 ± 0.001 0.097 ± 0.001 3.899 ± 0.128

+ 2 Bridgemd × 3.494 × 3.384 93.53 ± 0.09 0.203 ± 0.002 0.006 ± 0.000 0.096 ± 0.001 4.346 ± 0.248

+ 3 Bridgemd × 3.741 × 3.575 93.52 ± 0.08 0.201 ± 0.002 0.007 ± 0.001 0.096 ± 0.001 4.658 ± 0.245

+ 3 Bezier × 6.000 × 6.000 93.37 ± 0.14 0.208 ± 0.003 0.006 ± 0.000 0.098 ± 0.001 3.752 ± 0.194

DE-4 × 4.000 × 4.000 93.59 ± 0.10 0.205 ± 0.002 0.010 ± 0.001 0.096 ± 0.001 4.000

+ 1 Bridgesm × 4.081 × 4.063 93.54 ± 0.06 0.199 ± 0.002 0.008 ± 0.002 0.094 ± 0.001 5.040 ± 0.050

+ 2 Bridgesm × 4.162 × 4.125 93.60 ± 0.08 0.197 ± 0.002 0.006 ± 0.001 0.094 ± 0.001 5.458 ± 0.099

+ 3 Bridgesm × 4.244 × 4.188 93.60 ± 0.06 0.195 ± 0.002 0.006 ± 0.001 0.094 ± 0.001 5.678 ± 0.115

+ 4 Bridgesm × 4.325 × 4.251 93.57 ± 0.03 0.195 ± 0.002 0.006 ± 0.000 0.093 ± 0.001 5.869 ± 0.177

+ 5 Bridgesm × 4.406 × 4.314 93.55 ± 0.05 0.194 ± 0.002 0.005 ± 0.000 0.093 ± 0.001 5.950 ± 0.212

+ 6 Bridgesm × 4.487 × 4.376 93.58 ± 0.04 0.194 ± 0.002 0.006 ± 0.000 0.094 ± 0.001 5.997 ± 0.172

+ 1 Bridgemd × 4.247 × 4.192 93.56 ± 0.08 0.199 ± 0.002 0.009 ± 0.001 0.094 ± 0.001 5.006 ± 0.086

+ 2 Bridgemd × 4.494 × 4.384 93.63 ± 0.10 0.197 ± 0.002 0.007 ± 0.001 0.093 ± 0.001 5.415 ± 0.120

+ 3 Bridgemd × 4.741 × 4.575 93.63 ± 0.07 0.196 ± 0.002 0.007 ± 0.001 0.093 ± 0.001 5.646 ± 0.123

+ 4 Bridgemd × 4.988 × 4.767 93.67 ± 0.07 0.195 ± 0.002 0.007 ± 0.001 0.093 ± 0.001 5.857 ± 0.165

+ 5 Bridgemd × 5.236 × 4.959 93.62 ± 0.04 0.194 ± 0.002 0.006 ± 0.000 0.093 ± 0.001 6.008 ± 0.206

+ 6 Bridgemd × 5.483 × 5.151 93.57 ± 0.03 0.194 ± 0.002 0.006 ± 0.000 0.093 ± 0.001 6.086 ± 0.233

+ 6 Bezier × 10.000 × 10.000 93.59 ± 0.11 0.198 ± 0.002 0.007 ± 0.001 0.094 ± 0.001 5.109 ± 0.212

DE-5 × 5.000 × 5.000 93.68 ± 0.10 0.199 ± 0.002 0.011 ± 0.001 0.093 ± 0.001 5.000
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Table 12: Full result of performance improvement of the ensemble by adding type I bridges on CIFAR-100 dataset. We
use the same settings as described in Table 2.

CIFAR-100

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 74.06 ± 0.31 1.060 ± 0.005 0.047 ± 0.003 0.367 ± 0.002 1.000

+ 1 Bridgesm × 1.063 × 1.048 75.03 ± 0.07 0.938 ± 0.001 0.029 ± 0.001 0.347 ± 0.000 1.928 ± 0.038

+ 2 Bridgesm × 1.127 × 1.097 75.47 ± 0.11 0.911 ± 0.001 0.025 ± 0.000 0.342 ± 0.001 2.321 ± 0.076

+ 3 Bridgesm × 1.190 × 1.145 75.58 ± 0.16 0.900 ± 0.001 0.025 ± 0.001 0.340 ± 0.000 2.545 ± 0.077

+ 4 Bridgesm × 1.253 × 1.194 75.58 ± 0.07 0.893 ± 0.001 0.024 ± 0.001 0.339 ± 0.000 2.673 ± 0.070

+ 1 Bridgemd × 1.210 × 1.160 75.25 ± 0.09 0.929 ± 0.003 0.033 ± 0.001 0.344 ± 0.001 2.008 ± 0.042

+ 2 Bridgemd × 1.419 × 1.320 75.64 ± 0.05 0.901 ± 0.002 0.030 ± 0.001 0.339 ± 0.000 2.517 ± 0.068

+ 3 Bridgemd × 1.629 × 1.480 75.71 ± 0.03 0.888 ± 0.001 0.031 ± 0.001 0.337 ± 0.000 2.765 ± 0.081

+ 4 Bridgemd × 1.838 × 1.640 75.85 ± 0.10 0.882 ± 0.001 0.030 ± 0.001 0.336 ± 0.000 2.895 ± 0.061

DE-2 × 2.000 × 2.000 76.21 ± 0.11 0.928 ± 0.004 0.027 ± 0.003 0.334 ± 0.001 2.000

Table 13: Full result of performance improvement of the ensemble by adding type II bridges on CIFAR-100 dataset. We
use the same settings as described in Table 3.

CIFAR-100

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 76.21 ± 0.11 0.928 ± 0.004 0.027 ± 0.003 0.334 ± 0.001 2.000

+ 1 Bridgesm × 2.083 × 2.063 76.72 ± 0.19 0.868 ± 0.001 0.025 ± 0.001 0.325 ± 0.001 3.256 ± 0.096

+ 1 Bridgemd × 2.252 × 2.192 76.75 ± 0.12 0.863 ± 0.003 0.024 ± 0.002 0.324 ± 0.001 3.435 ± 0.065

+ 1 Bezier × 3.000 × 3.000 76.87 ± 0.10 0.879 ± 0.005 0.021 ± 0.002 0.324 ± 0.001 2.954 ± 0.111

DE-3 × 3.000 × 3.000 77.23 ± 0.18 0.876 ± 0.003 0.024 ± 0.001 0.321 ± 0.001 3.000

+ 1 Bridgesm × 3.083 × 3.063 77.43 ± 0.09 0.838 ± 0.001 0.021 ± 0.002 0.316 ± 0.001 4.429 ± 0.112

+ 2 Bridgesm × 3.165 × 3.126 77.62 ± 0.08 0.822 ± 0.002 0.019 ± 0.001 0.314 ± 0.000 5.387 ± 0.168

+ 3 Bridgesm × 3.248 × 3.190 77.67 ± 0.09 0.813 ± 0.003 0.020 ± 0.002 0.313 ± 0.000 5.980 ± 0.289

+ 1 Bridgemd × 3.252 × 3.192 77.53 ± 0.13 0.835 ± 0.002 0.021 ± 0.002 0.315 ± 0.001 4.581 ± 0.097

+ 2 Bridgemd × 3.504 × 3.385 77.71 ± 0.05 0.818 ± 0.002 0.022 ± 0.001 0.312 ± 0.000 5.655 ± 0.093

+ 3 Bridgemd × 3.756 × 3.577 77.77 ± 0.05 0.809 ± 0.003 0.023 ± 0.001 0.311 ± 0.000 6.304 ± 0.236

+ 3 Bezier × 6.000 × 6.000 77.92 ± 0.04 0.816 ± 0.004 0.018 ± 0.002 0.310 ± 0.001 5.782 ± 0.254

DE-4 × 4.000 × 4.000 77.79 ± 0.21 0.846 ± 0.001 0.023 ± 0.002 0.313 ± 0.001 4.000

+ 1 Bridgesm × 4.083 × 4.063 77.85 ± 0.19 0.819 ± 0.002 0.020 ± 0.001 0.310 ± 0.001 5.570 ± 0.120

+ 2 Bridgesm × 4.165 × 4.126 77.92 ± 0.14 0.807 ± 0.002 0.019 ± 0.002 0.309 ± 0.000 6.481 ± 0.202

+ 3 Bridgesm × 4.248 × 4.190 78.07 ± 0.09 0.799 ± 0.002 0.021 ± 0.001 0.308 ± 0.000 7.079 ± 0.121

+ 4 Bridgesm × 4.330 × 4.253 78.09 ± 0.07 0.794 ± 0.002 0.020 ± 0.002 0.307 ± 0.000 7.505 ± 0.168

+ 5 Bridgesm × 4.413 × 4.316 78.13 ± 0.18 0.790 ± 0.001 0.020 ± 0.001 0.307 ± 0.000 7.858 ± 0.119

+ 6 Bridgesm × 4.496 × 4.379 78.15 ± 0.20 0.788 ± 0.002 0.020 ± 0.002 0.307 ± 0.000 8.036 ± 0.104

+ 1 Bridgemd × 4.252 × 4.192 77.91 ± 0.14 0.817 ± 0.002 0.020 ± 0.001 0.309 ± 0.001 5.671 ± 0.057

+ 2 Bridgemd × 4.504 × 4.385 78.05 ± 0.15 0.804 ± 0.002 0.021 ± 0.001 0.308 ± 0.001 6.696 ± 0.105

+ 3 Bridgemd × 4.756 × 4.577 78.06 ± 0.06 0.796 ± 0.002 0.020 ± 0.001 0.306 ± 0.000 7.363 ± 0.087

+ 4 Bridgemd × 5.008 × 4.770 78.17 ± 0.12 0.791 ± 0.001 0.021 ± 0.001 0.306 ± 0.000 7.831 ± 0.052

+ 5 Bridgemd × 5.260 × 4.962 78.19 ± 0.08 0.786 ± 0.001 0.021 ± 0.002 0.305 ± 0.000 8.182 ± 0.027

+ 6 Bridgemd × 5.512 × 5.154 78.24 ± 0.10 0.784 ± 0.002 0.021 ± 0.001 0.305 ± 0.000 8.382 ± 0.073

+ 6 Bezier × 10.000 × 10.000 78.36 ± 0.05 0.787 ± 0.003 0.016 ± 0.001 0.303 ± 0.001 8.178 ± 0.144

DE-5 × 5.000 × 5.000 78.21 ± 0.08 0.827 ± 0.003 0.024 ± 0.002 0.308 ± 0.000 5.000
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Table 14: Full result of performance improvement of the ensemble by adding type I bridges on Tiny ImageNet dataset. We
use the same settings as described in Table 2.

Tiny ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 62.66 ± 0.23 1.683 ± 0.009 0.050 ± 0.004 0.499 ± 0.002 1.000

+ 1 Bridgesm × 1.050 × 1.057 64.58 ± 0.17 1.478 ± 0.006 0.025 ± 0.002 0.469 ± 0.001 2.280 ± 0.086

+ 2 Bridgesm × 1.099 × 1.114 65.37 ± 0.13 1.421 ± 0.004 0.018 ± 0.002 0.459 ± 0.000 3.087 ± 0.118

+ 3 Bridgesm × 1.149 × 1.171 65.82 ± 0.10 1.395 ± 0.003 0.015 ± 0.001 0.454 ± 0.001 3.680 ± 0.133

+ 4 Bridgesm × 1.198 × 1.228 65.93 ± 0.10 1.380 ± 0.001 0.014 ± 0.002 0.452 ± 0.000 4.061 ± 0.157

+ 1 Bridgemd × 1.180 × 1.206 65.13 ± 0.12 1.446 ± 0.002 0.034 ± 0.002 0.461 ± 0.001 2.709 ± 0.049

+ 2 Bridgemd × 1.359 × 1.412 66.29 ± 0.06 1.388 ± 0.004 0.025 ± 0.001 0.449 ± 0.000 3.845 ± 0.171

+ 3 Bridgemd × 1.539 × 1.618 66.76 ± 0.09 1.362 ± 0.003 0.023 ± 0.001 0.443 ± 0.000 4.708 ± 0.209

+ 4 Bridgemd × 1.719 × 1.824 66.96 ± 0.06 1.347 ± 0.002 0.023 ± 0.001 0.440 ± 0.000 5.372 ± 0.169

DE-2 × 2.000 × 2.000 65.54 ± 0.25 1.499 ± 0.007 0.029 ± 0.003 0.461 ± 0.001 2.000

Table 15: Full result of performance improvement of the ensemble by adding type II bridges on Tiny ImageNet dataset.
We use the same settings as described in Table 3.

Tiny ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 65.54 ± 0.25 1.499 ± 0.007 0.029 ± 0.003 0.461 ± 0.001 2.000

+ 1 Bridgesm × 2.058 × 2.067 66.66 ± 0.37 1.394 ± 0.007 0.021 ± 0.002 0.445 ± 0.001 3.708 ± 0.187

+ 1 Bridgemd × 2.198 × 2.226 66.72 ± 0.15 1.386 ± 0.005 0.025 ± 0.001 0.443 ± 0.001 3.901 ± 0.109

+ 1 Bezier × 3.000 × 3.000 66.17 ± 0.12 1.436 ± 0.004 0.024 ± 0.001 0.449 ± 0.001 2.851 ± 0.059

DE-3 × 3.000 × 3.000 66.65 ± 0.18 1.425 ± 0.005 0.024 ± 0.002 0.444 ± 0.001 3.000

+ 1 Bridgesm × 3.058 × 3.067 67.38 ± 0.18 1.358 ± 0.005 0.016 ± 0.001 0.435 ± 0.001 4.868 ± 0.189

+ 2 Bridgesm × 3.117 × 3.135 67.80 ± 0.04 1.328 ± 0.007 0.017 ± 0.001 0.430 ± 0.002 6.632 ± 0.640

+ 3 Bridgesm × 3.175 × 3.202 68.06 ± 0.26 1.312 ± 0.006 0.016 ± 0.001 0.428 ± 0.001 8.092 ± 0.610

+ 1 Bridgemd × 3.198 × 3.226 67.47 ± 0.11 1.354 ± 0.006 0.020 ± 0.001 0.433 ± 0.001 5.028 ± 0.192

+ 2 Bridgemd × 3.395 × 3.453 67.97 ± 0.10 1.322 ± 0.005 0.022 ± 0.002 0.428 ± 0.001 7.196 ± 0.521

+ 3 Bridgemd × 3.593 × 3.679 68.22 ± 0.09 1.303 ± 0.006 0.022 ± 0.002 0.425 ± 0.001 8.931 ± 0.627

+ 3 Bezier × 6.000 × 6.000 67.80 ± 0.12 1.344 ± 0.004 0.019 ± 0.003 0.430 ± 0.000 5.513 ± 0.162

DE-4 × 4.000 × 4.000 67.50 ± 0.11 1.381 ± 0.004 0.018 ± 0.001 0.435 ± 0.001 4.000

+ 1 Bridgesm × 4.058 × 4.067 67.86 ± 0.05 1.334 ± 0.003 0.017 ± 0.002 0.429 ± 0.001 6.051 ± 0.181

+ 2 Bridgesm × 4.117 × 4.135 68.12 ± 0.09 1.311 ± 0.005 0.015 ± 0.001 0.425 ± 0.001 8.174 ± 0.465

+ 3 Bridgesm × 4.175 × 4.202 68.42 ± 0.09 1.297 ± 0.004 0.015 ± 0.002 0.424 ± 0.001 9.508 ± 0.633

+ 4 Bridgesm × 4.234 × 4.269 68.47 ± 0.14 1.288 ± 0.004 0.015 ± 0.001 0.422 ± 0.001 10.340 ± 0.773

+ 5 Bridgesm × 4.292 × 4.337 68.49 ± 0.25 1.282 ± 0.004 0.015 ± 0.001 0.422 ± 0.001 10.861 ± 0.829

+ 6 Bridgesm × 4.351 × 4.404 68.51 ± 0.10 1.278 ± 0.003 0.014 ± 0.001 0.421 ± 0.001 11.268 ± 0.871

+ 1 Bridgemd × 4.198 × 4.226 68.00 ± 0.11 1.333 ± 0.003 0.019 ± 0.001 0.428 ± 0.001 6.183 ± 0.120

+ 2 Bridgemd × 4.395 × 4.453 68.33 ± 0.08 1.308 ± 0.003 0.019 ± 0.001 0.424 ± 0.001 8.489 ± 0.481

+ 3 Bridgemd × 4.593 × 4.679 68.50 ± 0.06 1.293 ± 0.003 0.020 ± 0.001 0.422 ± 0.001 9.853 ± 0.679

+ 4 Bridgemd × 4.791 × 4.906 68.61 ± 0.05 1.281 ± 0.004 0.021 ± 0.003 0.420 ± 0.001 10.897 ± 0.800

+ 5 Bridgemd × 4.988 × 5.132 68.70 ± 0.10 1.274 ± 0.003 0.023 ± 0.001 0.419 ± 0.001 11.560 ± 0.964

+ 6 Bridgemd × 5.186 × 5.359 68.80 ± 0.09 1.269 ± 0.003 0.021 ± 0.001 0.418 ± 0.001 12.110 ± 1.083

+ 6 Bezier × 10.000 × 10.000 68.51 ± 0.18 1.299 ± 0.002 0.020 ± 0.001 0.421 ± 0.000 9.312 ± 0.610

DE-5 × 5.000 × 5.000 67.90 ± 0.14 1.354 ± 0.003 0.019 ± 0.001 0.429 ± 0.001 5.000
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Table 16: Full result of performance improvement of the ensemble by adding type I bridges on ImageNet dataset. We use
the same settings as described in Table 2.

ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 75.85 ± 0.06 0.936 ± 0.003 0.019 ± 0.001 0.333 ± 0.001 1.000

+ 1 Bridgesm × 1.061 × 1.071 76.46 ± 0.06 0.914 ± 0.000 0.012 ± 0.001 0.326 ± 0.000 1.418 ± 0.034

+ 2 Bridgesm × 1.123 × 1.141 76.60 ± 0.06 0.907 ± 0.000 0.012 ± 0.001 0.324 ± 0.000 1.537 ± 0.026

+ 3 Bridgesm × 1.184 × 1.212 76.69 ± 0.04 0.905 ± 0.000 0.011 ± 0.001 0.323 ± 0.000 1.584 ± 0.021

+ 4 Bridgesm × 1.245 × 1.283 76.71 ± 0.03 0.904 ± 0.000 0.011 ± 0.001 0.322 ± 0.000 1.610 ± 0.021

+ 1 Bridgemd × 1.194 × 1.222 77.03 ± 0.07 0.889 ± 0.001 0.013 ± 0.000 0.319 ± 0.000 1.881 ± 0.022

+ 2 Bridgemd × 1.389 × 1.444 77.37 ± 0.07 0.876 ± 0.001 0.013 ± 0.001 0.315 ± 0.000 2.341 ± 0.076

+ 3 Bridgemd × 1.583 × 1.665 77.48 ± 0.03 0.870 ± 0.000 0.013 ± 0.000 0.313 ± 0.000 2.618 ± 0.062

+ 4 Bridgemd × 1.778 × 1.887 77.59 ± 0.04 0.867 ± 0.000 0.013 ± 0.000 0.312 ± 0.000 2.781 ± 0.069

DE-2 × 2.000 × 2.000 77.12 ± 0.04 0.883 ± 0.001 0.012 ± 0.001 0.318 ± 0.000 2.000

Table 17: Full result of performance improvement of the ensemble by adding type II bridges on ImageNet dataset. We use
the same settings as described in Table 3.

ImageNet

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 77.12 ± 0.04 0.883 ± 0.001 0.012 ± 0.001 0.318 ± 0.000 2.000

+ 1 Bridgesm × 2.086 × 2.088 77.44 ± 0.03 0.871 ± 0.001 0.012 ± 0.000 0.314 ± 0.000 2.567 ± 0.017

+ 1 Bridgemd × 2.243 × 2.256 77.70 ± 0.05 0.857 ± 0.001 0.012 ± 0.001 0.310 ± 0.000 3.416 ± 0.131

+ 1 Bezier × 3.000 × 3.000 77.81 ± 0.10 0.854 ± 0.001 0.012 ± 0.001 0.309 ± 0.000 3.767 ± 0.137

DE-3 × 3.000 × 3.000 77.64 ± 0.04 0.862 ± 0.001 0.013 ± 0.001 0.311 ± 0.000 3.000

+ 1 Bridgesm × 3.086 × 3.088 77.77 ± 0.04 0.856 ± 0.001 0.012 ± 0.000 0.310 ± 0.000 3.536 ± 0.043

+ 2 Bridgesm × 3.172 × 3.176 77.87 ± 0.02 0.854 ± 0.001 0.011 ± 0.000 0.309 ± 0.000 3.735 ± 0.053

+ 3 Bridgesm × 3.257 × 3.263 77.94 ± 0.02 0.853 ± 0.001 0.012 ± 0.000 0.308 ± 0.000 3.779 ± 0.041

+ 1 Bridgemd × 3.243 × 3.256 77.95 ± 0.07 0.846 ± 0.000 0.012 ± 0.001 0.307 ± 0.000 4.670 ± 0.118

+ 2 Bridgemd × 3.487 × 3.512 78.16 ± 0.07 0.838 ± 0.001 0.012 ± 0.001 0.305 ± 0.000 6.438 ± 0.241

+ 3 Bridgemd × 3.730 × 3.768 78.28 ± 0.06 0.835 ± 0.001 0.012 ± 0.000 0.303 ± 0.000 7.610 ± 0.242

+ 3 Bezier × 6.000 × 6.000 78.62 ± 0.05 0.823 ± 0.001 0.012 ± 0.001 0.300 ± 0.000 11.580 ± 0.410

DE-4 × 4.000 × 4.000 77.87 ± 0.04 0.851 ± 0.001 0.012 ± 0.001 0.308 ± 0.000 4.000

+ 1 Bridgesm × 4.086 × 4.088 77.93 ± 0.02 0.847 ± 0.000 0.012 ± 0.001 0.307 ± 0.000 4.580 ± 0.052

+ 2 Bridgesm × 4.172 × 4.176 78.00 ± 0.04 0.846 ± 0.000 0.011 ± 0.000 0.307 ± 0.000 4.739 ± 0.052

+ 3 Bridgesm × 4.257 × 4.263 78.07 ± 0.03 0.846 ± 0.000 0.011 ± 0.001 0.306 ± 0.000 4.775 ± 0.048

+ 4 Bridgesm × 4.343 × 4.351 78.10 ± 0.03 0.846 ± 0.000 0.011 ± 0.001 0.306 ± 0.000 4.768 ± 0.041

+ 5 Bridgesm × 4.429 × 4.439 78.14 ± 0.04 0.846 ± 0.000 0.012 ± 0.001 0.306 ± 0.000 4.724 ± 0.039

+ 6 Bridgesm × 4.515 × 4.527 78.12 ± 0.05 0.846 ± 0.001 0.011 ± 0.001 0.306 ± 0.000 4.659 ± 0.037

+ 1 Bridgemd × 4.243 × 4.256 78.14 ± 0.03 0.839 ± 0.000 0.011 ± 0.001 0.305 ± 0.000 6.123 ± 0.121

+ 2 Bridgemd × 4.487 × 4.512 78.30 ± 0.05 0.833 ± 0.000 0.012 ± 0.001 0.303 ± 0.000 8.068 ± 0.144

+ 3 Bridgemd × 4.730 × 4.768 78.38 ± 0.05 0.830 ± 0.000 0.012 ± 0.001 0.302 ± 0.000 9.281 ± 0.126

+ 4 Bridgemd × 4.973 × 5.024 78.46 ± 0.04 0.828 ± 0.000 0.012 ± 0.000 0.301 ± 0.000 9.951 ± 0.163

+ 5 Bridgemd × 5.217 × 5.280 78.53 ± 0.07 0.826 ± 0.000 0.012 ± 0.001 0.301 ± 0.000 10.450 ± 0.177

+ 6 Bridgemd × 5.460 × 5.536 78.56 ± 0.09 0.825 ± 0.000 0.012 ± 0.001 0.301 ± 0.000 10.760 ± 0.202

+ 6 Bezier × 10.000 × 10.000 78.95 ± 0.02 0.807 ± 0.001 0.013 ± 0.001 0.295 ± 0.000 16.639 ± 0.477

DE-5 × 5.000 × 5.000 78.03 ± 0.03 0.844 ± 0.001 0.012 ± 0.001 0.306 ± 0.000 5.000
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Table 18: Full result of performance improvement of the ensemble by adding type I bridges on CIFAR-10 dataset. We use
the same settings as described in Table 2 except that BatchNorm is applied instead of FRN.

CIFAR-10 (w/ BatchNorm)

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 93.33 ± 0.17 0.212 ± 0.006 0.008 ± 0.002 0.100 ± 0.002 1.000

+ 1 Bridgesm × 1.063 × 1.048 93.72 ± 0.03 0.192 ± 0.001 0.007 ± 0.001 0.093 ± 0.000 1.611 ± 0.085

+ 2 Bridgesm × 1.125 × 1.097 93.77 ± 0.04 0.189 ± 0.001 0.007 ± 0.001 0.092 ± 0.000 1.696 ± 0.073

+ 3 Bridgesm × 1.188 × 1.145 93.80 ± 0.07 0.188 ± 0.001 0.008 ± 0.001 0.092 ± 0.000 1.727 ± 0.095

+ 4 Bridgesm × 1.250 × 1.194 93.77 ± 0.01 0.187 ± 0.001 0.007 ± 0.001 0.092 ± 0.000 1.749 ± 0.113

+ 1 Bridgemd × 1.207 × 1.159 93.70 ± 0.03 0.190 ± 0.001 0.007 ± 0.000 0.093 ± 0.000 1.654 ± 0.075

+ 2 Bridgemd × 1.413 × 1.319 93.80 ± 0.04 0.187 ± 0.001 0.007 ± 0.000 0.092 ± 0.000 1.743 ± 0.063

+ 3 Bridgemd × 1.620 × 1.478 93.79 ± 0.03 0.186 ± 0.001 0.007 ± 0.001 0.091 ± 0.000 1.780 ± 0.081

+ 4 Bridgemd × 1.827 × 1.638 93.80 ± 0.03 0.185 ± 0.000 0.007 ± 0.000 0.091 ± 0.000 1.806 ± 0.088

DE-2 × 2.000 × 2.000 94.39 ± 0.04 0.179 ± 0.002 0.008 ± 0.002 0.086 ± 0.001 2.000

Table 19: Full result of performance improvement of the ensemble by adding type II bridges on CIFAR-10 dataset. We use
the same settings as described in Table 3 except that BatchNorm is applied instead of FRN.

CIFAR-10 (w/ BatchNorm)

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 94.39 ± 0.04 0.179 ± 0.002 0.008 ± 0.002 0.086 ± 0.001 2.000

+ 1 Bridgesm × 2.082 × 2.063 94.33 ± 0.05 0.174 ± 0.001 0.005 ± 0.001 0.085 ± 0.001 2.603 ± 0.056

+ 1 Bridgemd × 2.249 × 2.192 94.35 ± 0.13 0.174 ± 0.002 0.006 ± 0.001 0.084 ± 0.001 2.630 ± 0.090

+ 1 Bezier × 3.000 × 3.000 94.28 ± 0.07 0.178 ± 0.003 0.006 ± 0.001 0.086 ± 0.001 2.136 ± 0.097

DE-3 × 3.000 × 3.000 94.56 ± 0.10 0.170 ± 0.001 0.007 ± 0.000 0.082 ± 0.001 3.000

+ 1 Bridgesm × 3.082 × 3.063 94.51 ± 0.03 0.166 ± 0.001 0.005 ± 0.000 0.081 ± 0.001 3.672 ± 0.068

+ 2 Bridgesm × 3.163 × 3.125 94.48 ± 0.04 0.165 ± 0.001 0.005 ± 0.001 0.081 ± 0.000 3.845 ± 0.054

+ 3 Bridgesm × 3.245 × 3.188 94.45 ± 0.07 0.165 ± 0.001 0.005 ± 0.001 0.081 ± 0.001 3.907 ± 0.027

+ 1 Bridgemd × 3.249 × 3.192 94.48 ± 0.06 0.166 ± 0.001 0.005 ± 0.001 0.081 ± 0.001 3.681 ± 0.075

+ 2 Bridgemd × 3.497 × 3.384 94.46 ± 0.04 0.165 ± 0.002 0.005 ± 0.001 0.081 ± 0.001 3.897 ± 0.111

+ 3 Bridgemd × 3.746 × 3.575 94.44 ± 0.07 0.164 ± 0.002 0.006 ± 0.002 0.081 ± 0.001 3.960 ± 0.152

+ 3 Bezier × 6.000 × 6.000 94.43 ± 0.08 0.169 ± 0.002 0.005 ± 0.001 0.082 ± 0.001 3.135 ± 0.184

DE-4 × 4.000 × 4.000 94.65 ± 0.09 0.164 ± 0.001 0.006 ± 0.000 0.079 ± 0.000 4.000

+ 1 Bridgesm × 4.082 × 4.063 94.65 ± 0.08 0.161 ± 0.000 0.004 ± 0.000 0.079 ± 0.000 4.746 ± 0.149

+ 2 Bridgesm × 4.163 × 4.125 94.63 ± 0.09 0.161 ± 0.000 0.006 ± 0.000 0.079 ± 0.000 4.876 ± 0.093

+ 3 Bridgesm × 4.245 × 4.188 94.60 ± 0.05 0.161 ± 0.000 0.004 ± 0.001 0.079 ± 0.000 4.867 ± 0.075

+ 4 Bridgesm × 4.326 × 4.251 94.58 ± 0.03 0.161 ± 0.001 0.004 ± 0.000 0.079 ± 0.000 4.897 ± 0.057

+ 5 Bridgesm × 4.408 × 4.314 94.54 ± 0.03 0.161 ± 0.001 0.004 ± 0.000 0.080 ± 0.000 4.756 ± 0.055

+ 6 Bridgesm × 4.489 × 4.376 94.53 ± 0.01 0.161 ± 0.001 0.004 ± 0.001 0.080 ± 0.000 4.735 ± 0.090

+ 1 Bridgemd × 4.249 × 4.192 94.65 ± 0.09 0.161 ± 0.001 0.004 ± 0.001 0.079 ± 0.000 4.796 ± 0.031

+ 2 Bridgemd × 4.497 × 4.384 94.60 ± 0.06 0.160 ± 0.001 0.005 ± 0.000 0.079 ± 0.000 4.966 ± 0.112

+ 3 Bridgemd × 4.746 × 4.575 94.58 ± 0.10 0.160 ± 0.001 0.005 ± 0.001 0.079 ± 0.000 4.978 ± 0.117

+ 4 Bridgemd × 4.994 × 4.767 94.52 ± 0.05 0.160 ± 0.001 0.006 ± 0.001 0.079 ± 0.000 4.978 ± 0.149

+ 5 Bridgemd × 5.243 × 4.959 94.55 ± 0.06 0.161 ± 0.001 0.005 ± 0.001 0.080 ± 0.000 4.806 ± 0.130

+ 6 Bridgemd × 5.492 × 5.151 94.52 ± 0.07 0.161 ± 0.001 0.004 ± 0.001 0.080 ± 0.000 4.760 ± 0.143

+ 6 Bezier × 10.000 × 10.000 94.43 ± 0.06 0.166 ± 0.001 0.005 ± 0.001 0.082 ± 0.000 3.611 ± 0.207

DE-5 × 5.000 × 5.000 94.78 ± 0.06 0.160 ± 0.001 0.006 ± 0.001 0.077 ± 0.000 5.000
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Table 20: Full result of performance improvement of the ensemble by adding type I bridges on CIFAR-100 dataset. We
use the same settings as described in Table 2 except that BatchNorm is applied instead of FRN.

CIFAR-100 (w/ BatchNorm)

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 76.48 ± 0.18 0.909 ± 0.009 0.036 ± 0.001 0.332 ± 0.003 1.000

+ 1 Bridgesm × 1.063 × 1.048 77.45 ± 0.12 0.828 ± 0.007 0.021 ± 0.003 0.316 ± 0.002 1.718 ± 0.086

+ 2 Bridgesm × 1.127 × 1.097 77.77 ± 0.10 0.805 ± 0.004 0.019 ± 0.001 0.310 ± 0.002 1.937 ± 0.088

+ 3 Bridgesm × 1.190 × 1.145 77.87 ± 0.04 0.793 ± 0.002 0.017 ± 0.001 0.307 ± 0.001 2.062 ± 0.124

+ 4 Bridgesm × 1.254 × 1.194 77.85 ± 0.11 0.788 ± 0.002 0.016 ± 0.001 0.306 ± 0.001 2.148 ± 0.128

+ 1 Bridgemd × 1.210 × 1.160 77.56 ± 0.16 0.819 ± 0.008 0.021 ± 0.001 0.313 ± 0.002 1.798 ± 0.102

+ 2 Bridgemd × 1.420 × 1.320 77.95 ± 0.20 0.793 ± 0.006 0.019 ± 0.002 0.307 ± 0.002 2.072 ± 0.155

+ 3 Bridgemd × 1.630 × 1.481 78.22 ± 0.14 0.782 ± 0.004 0.019 ± 0.001 0.304 ± 0.001 2.296 ± 0.141

+ 4 Bridgemd × 1.840 × 1.641 78.25 ± 0.05 0.776 ± 0.003 0.018 ± 0.001 0.302 ± 0.001 2.412 ± 0.122

DE-2 × 2.000 × 2.000 78.73 ± 0.09 0.795 ± 0.005 0.021 ± 0.003 0.299 ± 0.001 2.000

Table 21: Full result of performance improvement of the ensemble by adding type II bridges on CIFAR-100 dataset. We
use the same settings as described in Table 3 except that BatchNorm is applied instead of FRN.

CIFAR-100 (w/ BatchNorm)

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 78.73 ± 0.09 0.795 ± 0.005 0.021 ± 0.003 0.299 ± 0.001 2.000

+ 1 Bridgesm × 2.083 × 2.063 79.15 ± 0.13 0.757 ± 0.002 0.015 ± 0.001 0.292 ± 0.001 2.812 ± 0.075

+ 1 Bridgemd × 2.253 × 2.193 79.22 ± 0.12 0.755 ± 0.002 0.015 ± 0.001 0.291 ± 0.001 2.872 ± 0.088

+ 1 Bezier × 3.000 × 3.000 79.17 ± 0.13 0.765 ± 0.002 0.017 ± 0.001 0.292 ± 0.001 2.661 ± 0.111

DE-3 × 3.000 × 3.000 79.79 ± 0.13 0.748 ± 0.005 0.020 ± 0.001 0.285 ± 0.001 3.000

+ 1 Bridgesm × 3.083 × 3.063 79.93 ± 0.11 0.728 ± 0.003 0.016 ± 0.001 0.282 ± 0.001 3.847 ± 0.172

+ 2 Bridgesm × 3.166 × 3.127 80.01 ± 0.08 0.718 ± 0.001 0.014 ± 0.002 0.280 ± 0.000 4.310 ± 0.134

+ 3 Bridgesm × 3.248 × 3.190 80.06 ± 0.04 0.711 ± 0.003 0.014 ± 0.001 0.279 ± 0.001 4.705 ± 0.199

+ 1 Bridgemd × 3.253 × 3.193 79.92 ± 0.07 0.727 ± 0.003 0.013 ± 0.002 0.281 ± 0.001 3.885 ± 0.152

+ 2 Bridgemd × 3.506 × 3.385 80.01 ± 0.06 0.716 ± 0.001 0.014 ± 0.001 0.279 ± 0.001 4.425 ± 0.145

+ 3 Bridgemd × 3.758 × 3.578 80.08 ± 0.07 0.708 ± 0.004 0.013 ± 0.001 0.277 ± 0.001 4.891 ± 0.274

+ 3 Bezier × 6.000 × 6.000 80.13 ± 0.08 0.712 ± 0.005 0.013 ± 0.001 0.278 ± 0.001 4.613 ± 0.333

DE-4 × 4.000 × 4.000 80.19 ± 0.10 0.723 ± 0.003 0.017 ± 0.001 0.277 ± 0.001 4.000

+ 1 Bridgesm × 4.083 × 4.063 80.26 ± 0.11 0.710 ± 0.003 0.015 ± 0.002 0.276 ± 0.001 4.749 ± 0.087

+ 2 Bridgesm × 4.166 × 4.127 80.29 ± 0.14 0.703 ± 0.002 0.013 ± 0.001 0.275 ± 0.000 5.207 ± 0.099

+ 3 Bridgesm × 4.248 × 4.190 80.28 ± 0.18 0.699 ± 0.001 0.013 ± 0.003 0.275 ± 0.000 5.562 ± 0.158

+ 4 Bridgesm × 4.331 × 4.253 80.37 ± 0.11 0.694 ± 0.002 0.013 ± 0.001 0.274 ± 0.000 5.941 ± 0.062

+ 5 Bridgesm × 4.414 × 4.316 80.37 ± 0.14 0.691 ± 0.002 0.013 ± 0.001 0.274 ± 0.000 6.439 ± 0.077

+ 6 Bridgesm × 4.497 × 4.380 80.40 ± 0.15 0.689 ± 0.003 0.013 ± 0.001 0.273 ± 0.000 6.797 ± 0.278

+ 1 Bridgemd × 4.253 × 4.193 80.27 ± 0.10 0.709 ± 0.003 0.014 ± 0.001 0.275 ± 0.000 4.773 ± 0.060

+ 2 Bridgemd × 4.506 × 4.385 80.32 ± 0.11 0.702 ± 0.002 0.013 ± 0.002 0.274 ± 0.000 5.307 ± 0.088

+ 3 Bridgemd × 4.758 × 4.578 80.31 ± 0.12 0.697 ± 0.001 0.012 ± 0.002 0.274 ± 0.000 5.703 ± 0.144

+ 4 Bridgemd × 5.011 × 4.770 80.34 ± 0.06 0.692 ± 0.003 0.012 ± 0.002 0.273 ± 0.001 6.266 ± 0.094

+ 5 Bridgemd × 5.264 × 4.963 80.46 ± 0.12 0.688 ± 0.003 0.013 ± 0.002 0.272 ± 0.001 6.944 ± 0.177

+ 6 Bridgemd × 5.517 × 5.155 80.47 ± 0.10 0.686 ± 0.003 0.013 ± 0.002 0.272 ± 0.001 7.378 ± 0.367

+ 6 Bezier × 10.000 × 10.000 80.49 ± 0.04 0.688 ± 0.003 0.012 ± 0.001 0.271 ± 0.001 7.027 ± 0.265

DE-5 × 5.000 × 5.000 80.54 ± 0.09 0.705 ± 0.003 0.017 ± 0.001 0.272 ± 0.000 5.000
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Table 22: Full result of performance improvement of the ensemble by adding type I bridges on Tiny ImageNet dataset. We
use the same settings as described in Table 2 except that BatchNorm is applied instead of FRN.

Tiny ImageNet (w/ BatchNorm)

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

ResNet (DE-1) × 1.000 × 1.000 63.90 ± 0.11 1.560 ± 0.006 0.035 ± 0.004 0.483 ± 0.002 1.000

+ 1 Bridgesm × 1.050 × 1.057 66.24 ± 0.12 1.378 ± 0.006 0.018 ± 0.004 0.446 ± 0.001 2.354 ± 0.113

+ 2 Bridgesm × 1.099 × 1.114 67.34 ± 0.06 1.332 ± 0.005 0.017 ± 0.002 0.436 ± 0.000 3.130 ± 0.132

+ 3 Bridgesm × 1.149 × 1.171 67.77 ± 0.13 1.313 ± 0.003 0.016 ± 0.001 0.431 ± 0.000 3.678 ± 0.106

+ 4 Bridgesm × 1.198 × 1.228 67.94 ± 0.11 1.300 ± 0.002 0.016 ± 0.001 0.429 ± 0.000 4.050 ± 0.120

+ 1 Bridgemd × 1.180 × 1.206 66.61 ± 0.12 1.358 ± 0.006 0.016 ± 0.002 0.441 ± 0.001 2.675 ± 0.132

+ 2 Bridgemd × 1.360 × 1.412 67.67 ± 0.06 1.307 ± 0.003 0.015 ± 0.003 0.429 ± 0.000 3.822 ± 0.103

+ 3 Bridgemd × 1.540 × 1.618 68.13 ± 0.12 1.286 ± 0.002 0.016 ± 0.001 0.424 ± 0.000 4.634 ± 0.110

+ 4 Bridgemd × 1.721 × 1.824 68.50 ± 0.19 1.272 ± 0.001 0.013 ± 0.002 0.421 ± 0.000 5.210 ± 0.116

DE-2 × 2.000 × 2.000 66.92 ± 0.22 1.401 ± 0.005 0.024 ± 0.003 0.444 ± 0.002 2.000

Table 23: Full result of performance improvement of the ensemble by adding type II bridges on Tiny ImageNet dataset.
We use the same settings as described in Table 3 except that BatchNorm is applied instead of FRN.

Tiny ImageNet (w/ BatchNorm)

Model FLOPs (↓) #Params (↓) ACC (↑) NLL (↓) ECE (↓) BS (↓) DEE (↑)

DE-2 × 2.000 × 2.000 66.92 ± 0.22 1.401 ± 0.005 0.024 ± 0.003 0.444 ± 0.002 2.000

+ 1 Bridgesm × 2.059 × 2.067 68.13 ± 0.27 1.315 ± 0.007 0.020 ± 0.002 0.427 ± 0.002 3.616 ± 0.227

+ 1 Bridgemd × 2.198 × 2.227 68.19 ± 0.12 1.305 ± 0.005 0.018 ± 0.002 0.425 ± 0.001 3.898 ± 0.208

+ 1 Bezier × 3.000 × 3.000 68.74 ± 0.17 1.306 ± 0.006 0.021 ± 0.002 0.420 ± 0.002 3.873 ± 0.255

DE-3 × 3.000 × 3.000 68.21 ± 0.17 1.337 ± 0.006 0.023 ± 0.001 0.427 ± 0.001 3.000

+ 1 Bridgesm × 3.059 × 3.067 68.94 ± 0.24 1.282 ± 0.005 0.022 ± 0.001 0.418 ± 0.001 4.773 ± 0.173

+ 2 Bridgesm × 3.117 × 3.134 69.20 ± 0.13 1.259 ± 0.006 0.018 ± 0.002 0.414 ± 0.002 5.947 ± 0.419

+ 3 Bridgesm × 3.176 × 3.202 69.42 ± 0.13 1.244 ± 0.005 0.017 ± 0.002 0.411 ± 0.002 6.856 ± 0.420

+ 1 Bridgemd × 3.198 × 3.227 68.98 ± 0.16 1.277 ± 0.004 0.019 ± 0.001 0.417 ± 0.001 5.028 ± 0.188

+ 2 Bridgemd × 3.396 × 3.453 69.44 ± 0.15 1.249 ± 0.005 0.016 ± 0.002 0.412 ± 0.001 6.476 ± 0.413

+ 3 Bridgemd × 3.594 × 3.680 69.80 ± 0.17 1.232 ± 0.005 0.014 ± 0.001 0.408 ± 0.001 7.702 ± 0.329

+ 3 Bezier × 6.000 × 6.000 70.25 ± 0.16 1.221 ± 0.004 0.017 ± 0.002 0.400 ± 0.001 8.501 ± 0.255

DE-4 × 4.000 × 4.000 68.92 ± 0.14 1.301 ± 0.004 0.024 ± 0.001 0.418 ± 0.001 4.000

+ 1 Bridgesm × 4.059 × 4.067 69.35 ± 0.11 1.262 ± 0.002 0.020 ± 0.000 0.412 ± 0.000 5.763 ± 0.130

+ 2 Bridgesm × 4.117 × 4.134 69.65 ± 0.16 1.243 ± 0.003 0.018 ± 0.001 0.409 ± 0.001 6.931 ± 0.211

+ 3 Bridgesm × 4.176 × 4.202 69.76 ± 0.17 1.232 ± 0.003 0.016 ± 0.002 0.407 ± 0.001 7.695 ± 0.161

+ 4 Bridgesm × 4.234 × 4.269 69.84 ± 0.10 1.224 ± 0.002 0.016 ± 0.002 0.406 ± 0.001 8.287 ± 0.061

+ 5 Bridgesm × 4.293 × 4.336 69.93 ± 0.04 1.218 ± 0.002 0.015 ± 0.002 0.405 ± 0.001 8.664 ± 0.040

+ 6 Bridgesm × 4.352 × 4.403 70.02 ± 0.05 1.214 ± 0.002 0.015 ± 0.001 0.405 ± 0.001 8.946 ± 0.045

+ 1 Bridgemd × 4.198 × 4.227 69.45 ± 0.09 1.257 ± 0.001 0.020 ± 0.001 0.411 ± 0.000 5.986 ± 0.136

+ 2 Bridgemd × 4.396 × 4.453 69.68 ± 0.07 1.236 ± 0.002 0.016 ± 0.001 0.408 ± 0.000 7.417 ± 0.155

+ 3 Bridgemd × 4.594 × 4.680 69.95 ± 0.07 1.224 ± 0.003 0.016 ± 0.001 0.405 ± 0.001 8.306 ± 0.085

+ 4 Bridgemd × 4.792 × 4.906 70.07 ± 0.10 1.213 ± 0.003 0.015 ± 0.001 0.403 ± 0.001 9.040 ± 0.074

+ 5 Bridgemd × 4.991 × 5.133 70.21 ± 0.09 1.206 ± 0.002 0.015 ± 0.001 0.402 ± 0.001 9.503 ± 0.078

+ 6 Bridgemd × 5.189 × 5.359 70.29 ± 0.12 1.201 ± 0.002 0.015 ± 0.002 0.401 ± 0.001 9.865 ± 0.118

+ 6 Bezier × 10.000 × 10.000 70.82 ± 0.17 1.186 ± 0.003 0.014 ± 0.002 0.393 ± 0.001 10.943 ± 0.304

DE-5 × 5.000 × 5.000 69.50 ± 0.12 1.277 ± 0.002 0.024 ± 0.001 0.412 ± 0.001 5.000
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