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Abstract

While graph neural networks (GNNs) dominate
the state-of-the-art for exploring graphs in real-
world applications, they have been shown to be
vulnerable to a growing number of privacy at-
tacks. For instance, link stealing is a well-known
membership inference attack (MIA) on edges that
infers the presence of an edge in a GNN’s train-
ing graph. Recent studies on independent and
identically distributed data (e.g., images) have
empirically demonstrated that individuals from
different groups suffer from different levels of
privacy risks to MIAs, i.e., uneven vulnerability.
However, theoretical evidence for such uneven
vulnerability is missing. In this paper, we first
present theoretical evidence of the uneven vulner-
ability of GNNs to link stealing attacks, which
lays the foundation for demystifying such uneven
risks among different groups of edges. We fur-
ther demonstrate a group-based attack paradigm
to expose the practical privacy harm to GNN users
derived from the uneven vulnerability of edges.
Finally, we empirically validate the existence of
obvious uneven vulnerability on ten real-world
datasets (e.g., about 25% AUC difference between
different groups in the Credit graph). Compared
with existing methods, the outperformance of our
group-based attack paradigm confirms that cus-
tomising different strategies for different groups
results in more effective privacy attacks.
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1. Introduction
Graphs depict complex data from a wide range of real-world
applications due to their flexibility in representing objects
and their interactions (Wang et al., 2022; Galmés et al.,
2022; Luo et al., 2022). Taking a graph in social networks
(Backstrom & Leskovec, 2011) for example, nodes represent
individuals and edges indicate connection (e.g., friendship)
between individuals. With the advancement of graph neural
networks (GNNs) (Zheng et al., 2022c; Jin et al., 2022a;
Zheng et al., 2022d; Jin et al., 2022b; Liu et al., 2023b), they
are now widely deployed in practise as a method to explore
graph data. For example, GNNs can provide personalised
searches and recommendations to users on social media
or doctor recommendation systems, dramatically enriching
people’s daily life (Pal et al., 2020).

Along with their widespread deployment, GNNs are in-
creasingly becoming the target of privacy attacks due to
the private information contained in them (e.g., graph data,
model architecture and parameters (Duddu et al., 2020; Wu
et al., 2022a)), whose leakage can benefit privacy attack-
ers in various aspects (e.g., reducing effort in collecting
graph data). However, users of GNN systems desire to keep
their personal information private, especially for sensitive
applications. For example, in a GNN-based doctor rec-
ommendation system that connects patients and specialist
doctors (Mondal et al., 2020), information leakage between
a patient and a heart specialist indicates that attackers can
infer whether the patient has heart disease, consequently
leading to trust crises in GNN systems. Therefore, there is
an urgent need to fully reveal the privacy risks of GNNs.

As a typical privacy attack on GNNs, membership inference
attacks (MIAs) attempt to infer if a particular sample or
graph component exists in the training dataset. In addition
to determining the membership of nodes/graphs (He et al.,
2021b; Wu et al., 2021a; Wang & Sun, 2021), attackers can
also launch MIAs targeting edges. According to a recent
method called link stealing (He et al., 2021a), attackers can
infer the connection between any two nodes in the training
graph based solely on their prediction distributions. It ex-
poses the privacy risk of edges in the most practical setting
when deploying GNNs, where attackers only need to query
target GNNs (i.e., a black-box setting) to launch attacks.
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Currently, almost all MIA methods are designed to be op-
timal in terms of the overall population with a shared dis-
criminator. However, this attack paradigm underestimates
the privacy risk of certain groups. Existing studies (Chang
& Shokri, 2021; Kulynych et al., 2022; Zhong et al., 2022),
which focus on independent and identically distributed (IID)
data (e.g., image data (Wu et al., 2022c)), have empirically
demonstrated that a model’s vulnerability to MIAs differs
across groups, i.e., privacy risk is not uniformly distributed
(Kulynych et al., 2022). Given these studies, one research
question (RQ) concerning the privacy of edges in training
graph of GNNs is (RQ 1) “Do edges in the training graph
of GNNs have an uneven vulnerability?” If yes, what are the
potential factors responsible for this uneven vulnerability?
Furthermore, if an uneven vulnerability exists, GNN users
are interested in knowing whether it will practically harm
their privacy. Thus, another research question is (RQ 2)
“Could intelligent attackers who are aware of this uneven
vulnerability benefit from it?”

To answer these questions, we need to dive into the uneven
vulnerability concerning edge privacy in GNNs. However, it
is not trivial to directly adapt current studies to link stealing
attacks in GNNs for the following reasons. First, to the best
of our knowledge, there is no theoretical evidence regarding
uneven vulnerability to MIAs, when the current literature is
largely empirical in nature. Second, in link stealing attacks,
privacy leakage is associated with the connections between
individuals, rather than unconnected individual samples as
in previous studies on IID data. Finally, edges can be stolen
from GNNs that are not designed for link prediction tasks,
implying that the rationale of link stealing is different from
general MIAs against deep neural networks.

To this end, we model link stealing attacks with a hypothesis
test and analyse the uneven vulnerability of GNNs on edges
to answer RQ1. For RQ2, we propose a group-based at-
tack paradigm to advance current link stealing attacks. The
contributions of our paper are summarised as follows:

• We introduce the first theoretical analysis of uneven
vulnerability in the context of GNNs, and pinpoint
intra-class and inter-class node pairs 1 have different
levels of vulnerability to link stealing attacks.

• We propose a group-based attack paradigm that em-
ploys customised strategies for different groups to
launch attacks, which demonstrates the practical pri-
vacy harm derived from uneven vulnerability.

• We empirically evaluated uneven vulnerability on ten
real-world datasets from different domains and pre-
sented the advantages of our group-based paradigm
compared to generic link stealing attacks.

1In an intra/inter-class node pair, nodes have same/different
predicted labels.

2. Related Work
In this section, we review current MIAs targeting GNNs and
studies regarding uneven vulnerability to MIAs.

2.1. MIAs on GNNs

GNNs are neural network architectures developed to learn
graph embedding for exploring graph data and accomplish-
ing various graph-related tasks (Gilmer et al., 2017; Pan
et al., 2020; Wan et al., 2021; Liu et al., 2023c; Tan et al.,
2023; Liu et al., 2023a). Currently, many GNNs perform
well by using the message passing mechanism (Zheng et al.,
2022b), where the edges are involved in supporting the inter-
action between nodes (Wu et al., 2021b). However, recent
works (Zhang et al., 2021; 2022b; 2023) have demonstrated
that trustworthiness related issues exist in current GNNs
(Zhang et al., 2022a). For example, targeting the privacy
of victim models, MIAs aim to determine the existence of
a sample in the training dataset of the victim models. Ac-
cording to the target type of inference, current MIAs on
GNNs can be categorised into node-level, link-level, and
graph-level attacks (Zhang et al., 2022a). Link-level MIAs
(He et al., 2021a; Wu et al., 2022b) aim to infer if a specific
edge/link is in the training graph of a victim GNN, even if
the target GNN is not designed for the link prediction task.

Link stealing attacks are typical link-level MIAs against
GNNs. According to the attackers’ knowledge, He et al.
(2021a) propose a thorough taxonomy of the threat model.
The most realistic scenario is that the adversary has black-
box access to a victim GNN model, where the only attack
knowledge is the posteriors of nodes from target GNNs.
Link stealing attacks are based on the intuition that two
nodes that share similar attributes and/or predictions are
more likely to be linked, i.e., homophily. Therefore, He
et al. (2021a) propose that attackers can utilise the distance
between two nodes to infer the existence of an edge in this
pair of nodes. However, current link stealing attacks treat
all node pairs equally and use a shared single threshold to
infer edges, which potentially underestimates the privacy
risk of connection status in node pairs from some groups.

2.2. Theoretical Study on MIAs

The first MIA on machine learning models is proposed by
Shokri et al. (2017), who also show how it relates to model
overfitting. Farokhi & Kâafar (2020) evaluate the amount
of information leakage from the victim model under MIAs
through conditional mutual information leakage. Although
some studies show that the vulnerability to MIAs is bounded
by differential privacy (Yeom et al., 2018; Cherubin et al.,
2019), Humphries et al. (2020) found that these bounds
only hold when the victim model owns independent and
identically distributed training data. Jayaraman et al. (2021)

2



Uneven Vulnerability of Link Stealing Attacks against GNNs

propose that attackers can infer private training data based
on hypothesis testing on the output of differential private
mechanisms. Murakonda et al. (2021) analyse the privacy
risk bound of graphical models via employing hypothesis
testing and likelihood ratio test. However, the risk bound
(Murakonda et al., 2021) cannot be applied to link stealing
attacks since GNNs are different from graphical models.
Following these works, in this paper, we employ the hypoth-
esis test to model link stealing attacks.

2.3. Uneven Vulnerability

The model disparity in the field of machine learning has
historically focused on whether a model can tolerate indi-
vidual differences and offer the same level of service (e.g.,
accuracy) to individuals with different backgrounds (Sax-
ena et al., 2019; Mehrabi et al., 2021). Chang & Shokri
(2021) empirically demonstrate that individuals from differ-
ent groups have different privacy risks. Moreover, Kulynych
et al. (2022) characterise the vulnerability to MIAs and show
an analysis of the uneven vulnerability. However, apply-
ing these empirical observations to link stealing attacks is
non-trivial since GNNs memorise the edge differently and
implicitly. Furthermore, there is no theoretical evidence to
support the uneven vulnerability in existing studies.

3. Problem Formulation
This section first introduces the victim GNN model (e.g.,
training data, model architecture and task), followed by
representing the adversary model of link stealing attacks.

3.1. Victim GNN Model

Graphs. A graph G = {V, E} consists of a node set
V =

{
v1, . . . , v|V|

}
and edge set E . E characterises the

relationship information in G. The edge set can also be
denoted by an adjacency matrix A ∈ {0, 1}|V|×|V|, where
Ai,j = 1 when eij = (vi, vj) ∈ E , otherwise Ai,j = 0.
Node features are denoted by X ∈ R|V|×k (k indicates the
dimensionality of features), and the i-th row of X indicates
the feature of node vi. Without loss of generality, another
description form of a graph is G = {A,X}. In this paper,
we focus on the undirected graph, that is, Ai,j = Aj,i.

GNNs. In this paper, we focus on common message-passing-
based GNNs, where the node embedding is repeatedly up-
dated by stacking operations as follows (Gilmer et al., 2017):

m(t)
v =

∑
u∈N (v)

Mt(h
(t−1)
u ,h(t−1)

v ),

h(t)
v = Ut(h

(t−1)
v ,m(t)

v ),

(1)

where h
(t)
v indicates the node embedding of v at layer t ∈

{1, . . . , T}, and the neighbour node set of v is denoted by

N (v). At layer t, Mt(·, ·) indicates the message function
and Ut(·, ·) represents the embedding updating function.

Task. The victim GNNs are designed to perform node
classification. For a graph G = {V, E}, the set of labelled
nodes is denoted by Vl ⊂ V , where yi is the label of vi ∈ Vl.
The set of unlabelled nodes in G is indicated by Vu = V\Vl.
Given G and node labels, node classification aims to train a
GNN model f , which can predict labels for nodes in Vu.

3.2. Threat Model

Attacker’s Goal and Capacity. In this paper, we focus on
a popular attack called link stealing (He et al., 2021a). This
attack aims to steal the training graph structure, which is
typically considered confidential information held by model
developers, and often contains sensitive information (He
et al., 2021a; Wu et al., 2022b). Specifically, the attacker, de-
noted as A, will infer whether there exists an edge between
any two nodes in the training graph G of a victim GNN f
during its inference. We assume that this attacker A has
black-box access to the victim GNN f . Namely, the attacker
can access neither the model parameters nor its internal rep-
resentation during inference. Instead, they can only issue
queries from any node v to f , and obtain the probability
distribution of label prediction (i.e., f(v)). This scenario
presents the greatest level of challenge yet remains a real-
istic circumstance for adversaries in numerous real-world
applications (He et al., 2021a). For example, for a GNN
deployed in machine learning as a service (MLaaS), service
providers (e.g., Amazon (Adeshina, 2020), Google (Lackey,
2022) ) only provide model prediction APIs to customers
during the runtime of model serving due to security and
privacy concerns. Thus, the attacker exploiting these APIs
can only issue queries and obtain responses from f .

Link Stealing Attacks for GNNs. As shown in Eq. (1),
the embedding of v is updated by aggregating the embed-
ding of nodes in N (v), so the connected nodes are prone
to have similar prediction results. Inspired by this, the at-
tacker A uses the distance d(f(vi), f(vj)) to infer whether
a specific edge eij = (vi, vj) is in the edge set E of graph
G = {V, E}, which is the training graph of victim GNN
f . Given d(f(vi), f(vj)) ∈ [0, 1] and d(f(vi), f(vj)) = 0
only when f(vi) = f(vj), the link prediction score is calcu-
lated as s(i, j) = 1− d(f(vi), f(vj)). Let τ ∈ [0, 1] be the
threshold for discriminating the existence of eij = (vi, vj)
in E , the results Apred of link stealing attacks is

Apred
i,j =

{
1 if s(i, j) ≥ τ
0 if s(i, j) < τ.

(2)

Remarks. Current link stealing attacks (He et al., 2021a)
treat all node pairs equally. However, existing studies
(Chang & Shokri, 2021; Kulynych et al., 2022) show that
the privacy risk to MIAs is not evenly distributed. Although

3



Uneven Vulnerability of Link Stealing Attacks against GNNs
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Figure 1. Distributions of p(s|H0) and p(s|H1) and the optimal
decision boundary τ in statistical decision (Duda et al., 2001).

some works analyse privacy risks to MIAs, there is no theo-
retical evidence supporting the existence of uneven vulner-
ability. Our paper substantially differs from these studies
in that: (1) we theoretically demonstrate the existence of
the uneven vulnerability in link stealing attacks and empir-
ically validate it; (2) we propose that intelligent attackers
can excavate the knowledge they own and utilise the uneven
vulnerability for devising group-based link stealing attacks.

4. Group-based Attacks Driven by Uneven
Vulnerability

4.1. Overview

The intuition of group-based attacks is that node pairs from
different groups have different levels of vulnerability. Con-
cretely, for a node pair (vi, vj), the attacker A can use their
label predictions f(vi) and f(vj) to categorise this pair into
intra-class or inter-class groups. Consequently, A can em-
ploy customised attack strategies for each group to carry
out more effective attacks, since using a single strategy is
suboptimal. In this section, we first present how to measure
the vulnerability to MIAs in 4.2. Based on this metric, we
provide theoretical evidence supporting the uneven vulnera-
bility across groups in section 4.3. Finally, in Section 4.4,
we propose that attackers can devise a group-based method
to launch more effective link stealing attacks.

4.2. Metric of Vulnerability to MIAs

In this paper, we use the hypothesis test to evaluate the
privacy risk of edges in the context of link stealing attacks.

Hypothesis Test. In membership inference attacks on a
given pair of nodes (vi, vj), the attacker A aims to discrimi-
nate the following two hypotheses:

• Null hypothesis H0: In the training graph G, the edge
eij = (vi, vj) /∈ E . f(vi) and f(vj) are predictions of
the GNN model f trained on G with Ai,j = 0.

• Alternative hypothesis H1: In the training graph G,
edge eij = (vi, vj) ∈ E . f(vi) and f(vj) are predic-
tions of the GNN model f trained on G with Ai,j = 1.

Given these two hypotheses H0 and H1, we use the quote
symbol to denote the decision of attacker A, i.e., “H0” and
“H1”. According to ground truth Ai,j and prediction Apred

i,j ,
attackers can potentially make two different errors and the
probability of errors are denoted by Pr(“H1” | H0) and
Pr(“H0” | H1), where Pr(·) indicates the probability func-
tion. Following previous research (Murakonda et al., 2021),
we use the error parameter α (i.e., false positive rate) and the
power parameter β (i.e., true positive rate) to quantify the
privacy risks of the victim GNN f . The error α measures
P (“H1” | H0), and power β measures P (“H1” | H1).

Vulnerability Metric. In current MIAs on edges, attackers
employ s(i, j) as the link prediction score on node pair
(vi, vj). Based on current studies on link prediction (Li
et al., 2021) and node classification (Pan et al., 2018), we
assume that s(i, j) ∼ N(µs

0, σ
s) when Ai,j = 0, s(i, j) ∼

N(µs
1, σ

s) when Ai,j = 1, and µs
1 ≥ µs

0, where µs
0/1 and

σs represent the mean and variance of link prediction scores.
According to the Neyman and Pearson lemma (Neyman &
Pearson, 1933), for a given α, the likelihood ratio test has the
maximum β in all decision rules, i.e., the optimal threshold
τ is determined by the interaction position of N(µs

0, σ
s) and

N(µs
1, σ

s). As illustrated in Fig. 1, z1−α+ zβ measures the
privacy risk of edges in the context of link stealing attacks,
where z1−α and zβ indicate the 1 − α and β quantile of
N(0, 1), respectively. In this paper, the vulnerability of a
model f to MIAs is denoted by

V (f) = z1−α + zβ (3)

4.3. Theoretical Evidence of Uneven Vulnerability

In this section, we aim to answer RQ 1, i.e., “Do edges in
the training graph of GNNs have an uneven vulnerability?”.
Concretely, we first show how attackers can divide target
node pairs into intra-class and inter-class groups according
to their predicted labels. Then we define uneven vulnerabil-
ity and prove that intra-class and inter-class node pairs have
different levels of vulnerability to link stealing attacks.

Intra-class and Inter-class Groups. We assume that the
victim GNN f is well trained for binary node classification
for simplicity, which does not affect the generalisation of
the following analysis to multi-class tasks. The label set
of nodes in G is {y0, y1}. Here, we use Xy0 and Xy1

to denote the node features/embedding associated y0 and
y1, respectively. Given m ∈ {0, 1}N (mi = 1 indicates
vi belongs to class y1, and otherwise mi = 0), we have
Xy1 = diag(m)X, Xy0 = (I − diag(m))X, and X =
Xy0+Xy1 . In this paper, we use S(·) to denote the grouping
information of nodes and assume S(vi) = mi due to the
attacker A being able to obtain m by querying the well-
trained f . According to the grouping information of any two
nodes, the linking situation between them can be categorised
into g00 = {Ai,j = 0 | S(vi) ̸= S(vj)}, g10 = {Ai,j = 1 |
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S(vi) ̸= S(vj)}, g01 = {Ai,j = 0 | S(vi) = S(vj)}
and g11 = {Ai,j = 1 | S(vi) = S(vj)}, and we have
g0 = g00∪g10 = {Ai,j | S(vi) ̸= S(vj)} and g1 = g01∪g11 =
{Ai,j | S(vi) = S(vj)}.

Uneven Vulnerability As introduced in Section 2.3, edges
in different groups may own different levels of privacy risks.
Since the likelihood test provides an upper bound for privacy
risks to MIAs, the group-based vulnerability difference is
defined as follows. Given V (f) = z1−α + zβ and two
groups of attack targets, i.e., g▷ and g◁, the vulnerability
difference between g▷ and g◁ is defined as

∆Vg▷,g◁(f) =| Vg▷(f)− Vg◁(f) |, (4)

where | · | calculates the norm and Vg is the vulnerability of
model f on group g.

By calculating ∆Vg▷,g◁(f) in the embedding space rather
than the scoring space, we can evaluate how an edge’s exis-
tence impacts the learnt embedding during message passing
(i.e., Eq. (1)), where edges are involved in GNN archi-
tectures. For simplicity, we consider left normalisation
Â = D̃−1Ã, where Ã = A + I is the adjacency matrix
with self-connection, D̃ = D + I (di = Di,i =

∑
j Ai,j)

is the degree matrix of Ã. Based on existing studies on
graph learning (Pan et al., 2018; Li et al., 2021), we assume
that X[t]yi ∼ N(µe

i , σ
e), where µe

i and σe indicate the
mean and variance of the embedding of nodes from class yi
(i = 0, 1) at t-th layer. The following theorem shows that
there exists a vulnerability difference between the node pair
groups g0 and g1, i.e., ∆Vg0,g1(f) ̸= 0.

Theorem 4.1. Given a well-trained GNN model f designed
for node classification, inter-class node pairs (i.e., g0) and
intra-class node pairs (i.e., g1) have different degrees of
vulnerability to link stealing attacks, i.e.,

E [∆Vg0,g1(f)] =
|(µe

1 − µe
0)|

σe
|E [δg0 ]− E [δg1 ]| ≠ 0,

(5)
where δ is a variable related to node degree and homophily.

Proof. See Appendix A for details.

In link stealing attacks (He et al., 2021a), attackers employ
s(i, j) = 1 − d(f(vi), f(vj)) as the link prediction score
between vi and vj . In a well-trained GNN f , given that
dg(·, ·) represents the distance function in the embedding
space, g0 and g1 have different degrees of privacy risks since
d(f(vi), f(vj)) ∝ dg(vi, vj) and E [∆Vg0,g1(f)] ̸= 0. In
addition to demonstrating the uneven vulnerability of edges
across different groups, Theorem 4.1 also explains the trade-
off between GNN performance and edge privacy (more
discussions can be found in Appendix A).

Remarks. (1) We choose the Gaussian distribution in this
paper for two main considerations. First, the Gaussian dis-
tribution is concise for theoretical analysis and widely used
in existing graph learning methods (He et al., 2015; Egilmez
et al., 2017; Bojchevski & Günnemann, 2018). Second, the
Gaussian distribution follows the maximum entropy princi-
ple (Li & Liu, 2007), enabling it to be suitable for black-box
attacks in which attackers have limited knowledge and want
to maximise their attack benefits. (2) The analysis presented
in Theorem 4.1 adheres to the convention in graph learning
studies, which involves starting from a 1 layer operation
(Kipf & Welling, 2017). It focusses on the most funda-
mental message-passing mechanisms of GNNs (Chen et al.,
2023; Wu et al., 2021b), making it applicable to almost any
GNN layer due to the stacking layer design of current GNNs
(e.g., conducting Theorem 4.1 on the last message-passing
layer of GNNs). (3) Our theoretical analysis is applicable to
multi-class tasks. Specifically, we identify the two classes
with the largest difference in inter-intra vulnerability among
all classes. Subsequently, we employ our theoretical analy-
sis to elucidate the reason behind the existence of this largest
uneven vulnerability in the target GNNs. (4) Our paper fo-
cuses on the issue of link stealing attacks in the context of
homophily graphs and GNNs. In the case of heterophily
graphs (Zheng et al., 2021), the effectiveness of link stealing
attacks may be restricted due to the heterophily property be-
ing in conflict with the intuition behind link stealing attacks
(i.e., homophily). Nevertheless, note that this limitation is
attributable to the current design of link stealing attacks,
rather than to our vulnerability analysis.

4.4. Group-based Link Stealing Attacks

In this section, we seek to answer (RQ 2), i.e., “Could intel-
ligent attackers who are aware of this uneven vulnerability
benefit from it?”. Intuitively, given the uneven vulnerabil-
ity across groups, attackers can devise more effective and
customised privacy attacks since the strategy in current link
stealing attacks (i.e., using a shred single threshold for all
groups) is not optimal. To this end, we propose a paradigm
that underpins the group-based link stealing attacks and then
present a method that instantiates this attack paradigm.

4.4.1. GROUP-BASED ATTACK PARADIGM

Considering that attackers can only query target GNNs in
a black-box setting, an intelligent attacker A can involve
querying results (i.e., f(vi) and f(vj)) in grouping and use
different thresholds for different groups to trigger privacy at-
tacks. Specifically, the group-based attack paradigm (GAP)
can be expressed as

Apred
i,j =

{
1 if s(i, j) ≥ τg(i,j),
0 if s(i, j) < τg(i,j),

(6)
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where τg(i,j) ∈ [0, 1] indicates the group-based threshold,
g(i, j) denotes the grouping result derived from GNN pre-
dictions f(vi) and f(vj).

4.4.2. AN INSTANTIATION OF GAP

This section presents our group-based attack method, which
instantiates the GAP in Eq. (6). We first present the at-
tacker’s knowledge under the black-box setting and then
show how to use them in setting different thresholds for
different groups.

Knowledge of Attackers. Besides GNN predictions, the
knowledge of an intelligent attacker includes grouping in-
formation and size difference between groups. (1) Unlike di-
rectly using GNN predictions in generic link stealing attacks
(i.e., Attack-0 in (He et al., 2021a)), intelligent attackers can
use them in grouping node pairs to conduct more effective
attacks. For example, for a well-trained GNN model en-
gaged in N -class node prediction, intelligent attackers can
divide all node pairs into N(N+1)

2 groups. However, crafting
a specific threshold for each group can be effort-consuming
when N is large. Thus, we propose to divide all node pairs
into the inter-class group and intra-class groups, which is a
basic grouping manner that is not affected by N . (2) The
group size difference represents that the size of the intra-
class group is generally larger than that of the inter-class
group, which indicates that intra-class node pairs are the
majority of all node pairs. For example, assuming that the
victim GNN model is designed for binary node classifica-
tion, attackers can obtain m2+n2

2 intra-class node pairs and
mn inter-class node pairs, where m and n indicate the node
size of class 0 and class 1, respectively. (m2+n2)/2 ≥ mn
supports that the intra-class group is generally the majority
of all node pairs.

Setting of Group Thresholds. Given the above knowledge
of attackers, we propose the following group thresholds to
launch group-based link stealing attacks, i.e.,

τintra = τs,

τinter = ατs + (1− α)β,
(7)

where τs represents the single threshold obtained from the
generic link stealing attacks (i.e., Attack-0 in (He et al.,
2021a)). α is a parameter derived from the group sizes
and we set α = |ginter|

|gintra∪ginter| . Another parameter β takes
into account the homophily of graph data, and we assume
that inter-class node pairs are unconnected (i.e., β = 1)
to alleviate the minor role of ginter when calculating τs.
The intuition of Eq. (7) can be found in our discussion
in Appendix A. Note that in this paper, like vanilla link
stealing attacks, we assume that target GNNs are trained on
homophily graphs and use this common assumption (i.e.,
homophily of graphs) as prior knowledge to set β.

5. Experiments
In this section, we provide empirical evidence on the exis-
tence of uneven vulnerability in current link stealing attacks,
followed by evaluating our group-based attack methods.

5.1. Experimental Setup

Datasets. Our evaluations employ ten real-world datasets:
Cora (Kipf & Welling, 2017), Citeseer (Kipf & Welling,
2017), Pubmed (Kipf & Welling, 2017), COX2 (Sutherland
et al., 2003), DHFR (Sutherland et al., 2003), Enzymes
(Dobson & Doig, 2003), Proteins full (Borgwardt et al.,
2005), Credit defaulter graph (Yeh & Lien, 2009), German
credit graph (Dua et al., 2017) and Ogbn-Arxiv (Hu et al.,
2020). Cora, Citeseer, Pubmed, and Ogbn-Arxiv are citation
networks, where nodes denote publication and edges repre-
sent citations among nodes. COX2, DHFR, Enzymes, and
Proteins come from the chemical community, where nodes
indicate molecules, and edges represent their interaction
relationship (He et al., 2021a). In the Credit and German
datasets, nodes indicate individuals, and they are linked
based on their similarity (e.g., spending patterns). These
datasets are widely utilised to assess edge privacy risks (e.g.,
COX2, Enzymes, Proteins (He et al., 2021a)) or the fairness
(e.g., Credit, German (Agarwal et al., 2021; Dong et al.,
2022)) of GNNs for node classification.

Victim Models and Metrics of Attacking. Following previ-
ous link stealing attacks (He et al., 2021a), we choose Graph
Convolutional Networks (GCNs, (Kipf & Welling, 2017)) as
victim models. Furthermore, we also use Graph Attention
Networks (GATs (Velickovic et al., 2018)) and GraphSAGE
(Hamilton et al., 2017) models to verify the broad existence
of uneven vulnerability in different GNN architectures. The
GCNs have 2 hidden layers with 16 units and employ ReLU
and softmax as activation functions; the GATs have 2 hidden
layers (16 units) with 1 head of attentions and use ELU and
softmax as activation functions; the GraphSAGE models
have 1 hidden layer (16 units, the Relu activation function)
and use 1 MLP layer as the classifier. We use the AUC
(area under the ROC curve) as an evaluation metric of at-
tacking performance. Given a specified scoring model, the
AUC measures the possibility that, when randomly selecting
samples, a positive sample will have a higher score than a
negative sample (Fawcett, 2006). We also use the attack suc-
cess rate (i.e., ASR= # Successful attacks

# All attacks ) (Hu et al., 2022)
of attack methods to compare our method (i.e., group-based
attack methods) and the baseline method (i.e., Attack-0 (He
et al., 2021a)).

Others. Following previous attacks (He et al., 2021a), we
use cosine, euclidean, correlation, chebyshev, braycurtis,
canberra, cityblock and sqeuclidean distance to measure
the similarity of two nodes’ posteriors. Next, the attackers
obtain a link prediction score based on the similarity of two
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Figure 2. Visualisation of AUC scores across groups in GCNs on the Cora dataset. The x- and y-axis indicate the predicted label of the
nodes in a node pair, and the scores in the matrix represent the AUC in link stealing attacks. The difference in AUC between groups
demonstrates the existence of uneven vulnerability to link stealing attacks.

nodes. In our group-based attacks, attackers can divide all
possible node pairs into intra-class and inter-class groups
according to the predicted labels of nodes in node pairs.

5.2. Existence of Uneven Vulnerability

In this section, we conduct generic link stealing attacks (He
et al., 2021a) on ten real-world datasets to evaluate whether
privacy risks of edges change across different groups, which
empirically confirm our theoretical analysis in Section 4.3.

(1) Visualising Privacy Risks of Node Pairs from Differ-
ent Groups. As shown in Fig. 2, the visualisation of AUC
scores demonstrates that node pairs from different groups
suffer different degrees of privacy risks. Specifically, we
have the following observations. (a) In most cases, the AUC
scores from inter-class groups are higher than those from
intra-class groups. This observation provides empirical ev-
idence for uneven vulnerability across groups (i.e., RQ1),
which also confirms our theoretical analysis in Section 4.3.
(b) In inter-class or intra-class groups, the vulnerability of
node pairs with different node labels is also different. For
example, in the intra-class groups, the node pairs from (0,0),
(1,1), (2,2) and (6,6) groups are less vulnerable than that
from (3,3), (4,4), and (5,5) groups across different distances.

In all inter-class groups, node pairs from group (2,4) always
own the largest vulnerability.

(2) Uneven Vulnerability between ginter and gintra. We
evaluate the privacy risk (AUC) difference between groups
when dividing all node pairs into intra-class and inter-class
groups. (a) As shown in Table 2 (Appendix B), the obvious
difference in AUC indicates that there is an uneven vulnera-
bility in GCNs. As a follow-up to these evaluations on small
datasets, further results on Ogbn-Arxiv (Table 5, Appendix
B) indicate that large datasets also exhibit uneven vulnera-
bility. (b) Evaluation results on GAT (Table 3, Appendix B)
and GraphSAGE (Table 4, Appendix B) confirm the broad
existence of uneven vulnerability in different GNN architec-
tures. (c) According to Tables 2, 3, and 4, the GraphSAGE
models have lower privacy risks and a smaller vulnerability
difference between ginter and gintra among the GCN, GAT
and GraphSAGE models, potentially resulting from the sam-
pling operation in GraphSAGE alleviates the memorisation
of GNN on training graphs.

5.3. Performance of Group-based Attacks

This section illustrates the effectiveness of our group-based
link stealing attacks. We first visualise the distribution of
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Figure 3. Distribution of prediction score for node pairs in the COX2 dataset. Figures in the left, middle, and right column demonstrate
the link prediction score for node pairs in the overall samples, the intra-class group, and the inter-class group, respectively. The first,
second and third rows show the score distribution calculated from the cosine, euclidean, and chebyshev distance between two nodes’
posteriors from the victim GNN f . In these figures, the x-axis represents the prediction score on node pairs, and the y-axis indicates the
number of node pairs with different scores. The red lines indicate that there are edges in the training graph of f , while the blue lines
represent the absence of edges.

link prediction score from the view of overall, intra-class,
and inter-class node pairs, and then evaluate the attack per-
formance of our method on nine real-world datasets. The
main observations are listed as follows.

(1) Distribution Similarity. As shown in Fig. 3, our group-
based method has a better threshold setting than generic
attack methods based on a single shared threshold. The
score distribution derived from intra-class groups is similar
to that from overall samples, while the score on inter-class
groups has a different distribution. This observation is con-
sistent with our analysis in Section 4.4.2, which shows that
the intra-class group is the majority of the overall sam-
ples and empirically supports the threshold setting (i.e.,

τintra = τs) in Eq. (7). Noting that although the left and
middle columns in Fig. 3 show that τs may not be optimal,
inferring the threshold by K-means is still an effective and
practical method for attackers in a black-box setting.

(2) Better Threshold. For the inter-class group, our group-
based method obtains a better threshold than τs, since it
is closer to the optimal decision boundary (i.e., the x-axis
value at the interaction position of the red and blue dis-
tributions). According to the right column of Fig. 3, the
threshold obtained from the overall samples underestimates
the privacy risk of node pairs in the inter-class group. For
example, the threshold τs is 0.73 when using the euclidean
distance (see the distribution in the second row and right
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Table 1. Comparison of Attack Success Rate (i.e., ASR) between Our Method and Generic Link Stealing Attacks.
Datasets S G S G S G S G ∆ASR ↑

COX2

cosine euclidean correlation chebyshev

18.40

ginter 41.50 58.61 61.01 83.17 41.20 55.37 63.35 82.25
overall 55.29 60.73 63.13 70.18 55.21 59.72 63.79 69.81

braycurtis canberra cityblock sqeuclidean
ginter 58.24 84.19 78.22 81.08 58.24 84.19 43.92 64.05
overall 62.35 70.61 77.96 78.87 62.35 70.61 56.06 62.47

DHFR

cosine euclidean correlation chebyshev

18.26

ginter 52.44 88.48 76.47 86.27 51.70 87.94 72.88 86.70
overall 64.80 74.19 77.87 80.43 64.31 73.77 76.58 80.19

braycurtis canberra cityblock sqeuclidean
ginter 80.23 85.76 80.28 82.94 80.23 85.76 50.90 87.39
overall 79.34 80.78 83.77 84.46 79.34 80.78 64.51 74.03

PROTEINS

cosine euclidean correlation chebyshev

29.86

ginter 63.39 98.22 68.89 97.91 70.43 98.14 68.11 97.91
overall 51.10 51.41 51.19 51.45 50.61 50.85 51.18 51.45

braycurtis canberra cityblock sqeuclidean
ginter 68.11 97.91 78.56 97.91 68.11 97.91 59.75 98.30
overall 51.18 51.45 51.32 51.49 51.18 51.45 51.06 51.40

* In this table, “S” and “G” indicate the generic link stealing attacks and our group-based method, respectively.
“ginter” and “overall” represent the inter-class group and overall node pairs, respectively. ∆ASR indicates the
average improvement in attack performance of our method on ginter . We only show “ginter” results because the
“gintra” in our method has the same threshold as vanilla link stealing attacks, resulting in the same ASR when
inferring edges.

column in Fig. 3). Using τs, attackers predict that there
exists an edge when the score of a pair of nodes is higher
than τs, even if it is more likely to come from the node
pairs with no edges. However, with setting τinter = 0.91,
our method can produce fewer classification errors from the
view of statistical decision (Duda et al., 2001).

(3) Higher Attack Benefits. In addition to visualising the
obtained thresholds, we compare our group-based attack
method with generic link stealing attacks on nine real-world
datasets to evaluate its practical attack performance. As
shown in Tables 1 and 6, our group-based attack method
consistently outperforms generic link stealing attacks (He
et al., 2021a) on most datasets. For example, when using
cosine distance, the inter-class prediction accuracy on the
Proteins dataset increases by 34.83 (from 63.39 to 98.22)
when employing τinter, which reveals the effectiveness of
our group-based attack method and the serious privacy risks
of node pairs in ginter. It is worth noting that current eval-
uations of our method, whose grouping operation depends
on node predictions, are derived from GNNs that are not
100% accurate, indicating that our method can potentially
be improved if the target GNNs are more accurate.

6. Conclusion
In this paper, we investigate the uneven vulnerability across
different groups to link stealing attacks on GNNs. We first

illustrate theoretical evidence on the vulnerability difference
between intra-class and inter-class groups, which inspires
us to devise group-based methods to achieve more effective
link stealing attacks. Our experimental evaluations validate
the uneven vulnerability across groups and show the superior
performance of the proposed group-based methods.

Our future work mainly includes exploring other types of
uneven vulnerability, which helps GNN researchers and
practitioners understand the practical privacy risks of GNNs.
Furthermore, current fairness studies on GNNs focus on
ensuring fair model performance (e.g., accuracy) on sim-
ilar individuals or vulnerable groups (e.g., female users).
Designing methods to mitigate this unfair vulnerability is
another promising direction for building a fair GNN with
respect to privacy risks.
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A. Proof of Theorem 4.1.
To demonstrate the vulnerability difference between node pairs from g0 = {Ai,j | S(vi) ̸= S(vj)} and g1 = {Ai,j |
S(vi) = S(vj)}, we first derive an equivalent form of vulnerability metric V (f), which is used in our following proof. In
the the likelihood-ratio test, the relationship between α and β can be expressed as

µe
1 − zβσ

e = µe
0 + z1−ασ

e, (8)

which can be derived by z1−α and zβ own a shared interaction position of N(µe
0, σ

e) and N(µe
1, σ

e). So we have

V (f) = z1−α + zβ =
µe
1 − µe

0

σe
. (9)

Next, we will prove ∆Vg0,g1(f) =| Vg0(f) − Vg1(f) |̸= 0. As shown in follows, according to Eq. (9), the uneven
vulnerability can be derived by calculating the distance sensitivity difference between node pairs from g0 and g1 due to the
existence of an edge.

(1) Case g1 = {Ai,j | S(vi) = S(vj)}: As an instance of the message passing in Eq. (1), the one-hop mean-aggregation
operation can be expressed as ÂX. From the view of an individual node vi, the message passing operation is

(
ÂX[t]

)
i
=

1

di + 1

X[t]i +
∑

vj∈N(vi)

X[t]j

 =
1

di + 1

X[t]i +
∑

vj∈N(vi)

mj=0

X[t]y0

j +
∑

vj∈N(vi)

mj=1

X[t]y1

j

 . (10)

Let dy0

i and dy1

i denote the number of nodes from Xy0 and Xy1 , we have di = dy0

i + dy1

i and
∑

vj∈N (vi)
mj=0

X[t]y0

j ∼

N(dy0

i µe
0, d

y0

i σe),
∑

vj∈N (vi)
mj=1

X[t]y0

j ∼ N(dy1

i µe
1, d

y1

i σe). Without loss of generality, here we assume that node pair

(vi, vj) ∈ g01 = {Ai,j = 0 | S(vi) = S(vj)} and S(vi) = 0, then
(
ÂX[t]

)
i

and
(
ÂX[t]

)
j

can be approximately

expressed as (
ÂX[t]

)g0
1

i
≈ 1

di + 1
(X[t]i + dy0

i µe
0 + dy1

i µe
1) ,(

ÂX[t]
)g0

1

j
≈ 1

dj + 1

(
X[t]j + dy0

j µe
0 + dy1

j µe
1

)
.

(11)

When adding an edge between vi and vj , node pair (vi, vj) ∈ g11 = {Ai,j = 1 | S(vi) = S(vj)}, the embedding
(
ÂX[t]

)
i

and
(
ÂX[t]

)
j

can be approximately expressed as

(
ÂX[t]

)g1
1

i
≈ 1

di + 2
(X[t]i +X[t]j + dy0

i µe
0 + dy1

i µe
1) ,(

ÂX[t]
)g1

1

j
≈ 1

dj + 2

(
X[t]j +X[t]i + dy0

j µe
0 + dy1

j µe
1

)
.

(12)

Assuming that the distances between vi and vj are expressed as

dg1
1
(vi, vj) =

(
ÂX[t]

)g1
1

i
−
(
ÂX[t]

)g1
1

j
,

dg0
1
(vi, vj) =

(
ÂX[t]

)g0
1

i
−
(
ÂX[t]

)g0
1

j
,

(13)

the distance sensitivity ∆d(vi, vj) on group g1 with respect to the existence of edge eij can be calculated as

∆dg1(vi, vj) =
∣∣∣dg0

1
(vi, vj)− dg1

1
(vi, vj)

∣∣∣ = ∣∣∣∣ 1

di + 2

((
ÂX[t]

)g0
1

i
−X[t]j

)
− 1

dj + 2

((
ÂX[t]

)g0
1

j
−X[t]i

)∣∣∣∣ .
(14)
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Since

E
[(

ÂX[t]
)g0

1

i
−X[t]j

]
=

(1 + dy0

i )µe
0 + dy1

i µe
1

di + 1
− µe

0 =
dy1

i (µe
1 − µe

0)

di + 1
,

E
[(

ÂX[t]
)g0

1

j
−X[t]i

]
=

(1 + dy0

j )µe
0 + dy1

j µe
1

dj + 1
− µe

0 =
dy1

j (µe
1 − µe

0)

dj + 1
,

(15)

we have E [∆dg1(vi, vj)] = |(µe
1 − µe

0)δg1 |, where δg1 =
d
y1
i

(di+1)(di+2) −
d
y1
j

(dj+1)(dj+2) .

(2) Case g0 = {Ai,j | S(vi) ̸= S(vj)}. Following a similar way, we obtain the expectation of ∆dg0(vi, vj). Without loss
of generality, assuming that S(vi) = 0 and S(vj) = 1, we have

E
[(

ÂX[t]
)g0

0

i
−X[t]j

]
=

(1 + dy0

i )µe
0 + dy1

i µe
1

di + 1
− µe

1 =
(1 + dy0

i )(µe
0 − µe

1)

di + 1
,

E
[(

ÂX[t]
)g0

0

j
−X[t]i

]
=

(1 + dy1

j )µe
1 + dy0

j µe
0

dj + 1
− µe

0 =
(1 + dy1

j )(µe
1 − µe

0)

dj + 1
,

(16)

and E [∆dg0(vi, vj)] = |(µe
1 − µe

0)δg0 |, where δg0 =
1+d

y0
i

(di+1)(di+2) +
1+d

y1
j

(dj+1)(dj+2) .

Given E [∆dg0(vi, vj)] and E [∆dg1(vi, vj)], we have

E [∆Vg0,g1(f)] = E [|Vg0(f)− Vg1(f)|] =
|E [∆dg0(vi, vj)]− E [∆dg1(vi, vj)]|

σe
=

|(µe
1 − µe

0)|
σe

|E [δg0 ]− E [δg1 ]| .
(17)

For a well-trained GNN f , its competent performance in discriminating node labels indicates that |(µe
1 − µe

0)| ̸= 0.
Moreover, according to current literature on graph data (Zhu et al., 2021; Zheng et al., 2022a; 2023) and link stealing attacks
(He et al., 2021a), the homophily of graph data implies nodes from the same class are more likely to connect each other

(i.e., generally 1+d
y0
i

(di+1) in δg0 is larger than d
y1
i

(di+1) in δg1 , and
1+d

y1
j

(dj+1) in δg0 is larger than
d
y1
j

(dj+1) in δg1), which indicates
|E [δg0 ]− E [δg1 ]| ≠ 0. Therefore, we obtain that E [∆Vg0,g1(f)] ̸= 0.

A.1. Discussions

Based on our above proof, some insights into understanding the edge privacy risk can be derived from Eq. (17).

(1) Trade-off between GNN performance and edge privacy. Our analysis results in cases g0 and g1 show that model
performance potentially contributes to the edge privacy risk, since the item |µe

1 − µe
0| indicates that the better a model’s

discrimination ability with respect to node classification, the higher its privacy risk of edges in the training graph. This
insight is consistent with the homophily property (i.e., similar nodes are likely to connect to each other) of most graph data,
which leads to that edges can be inferred once the node labels are exactly predicted by GNNs with competent performance.
In addition to potentially explaining why competent GNNs are vulnerable to link stealing attacks, our analysis also reveals
that there exists a trade-off between GNN performance and edge privacy.

(2) Underestimated privacy risk of g0. As we demonstrated in Section 4.4.2 (i.e., the knowledge of attackers), the
intra-class group dominates node pairs that are used in calculating the shared single threshold, which results in the obtained
threshold is more suitable for attacking the intra-class group and not optimal for the inter-class group. Considering the
homophily property of graph data and connected nodes are prone to have closer embedding and predictions, node pairs in
the inter-class group (i.e., g0) generally have a larger distance than that from the intra-class group (i.e., g1). Thus, improving
the threshold value helps reduce the error of classifying node pairs from g0 as that from g1. Moreover, when setting the
threshold for the inter-class group, the size ratio |ginter|

|gintra∪ginter| should be taken into consideration since it potentially reflects
the bias degree to g1 when calculating the shared single threshold. Given the above considerations, we propose the parameter
setting of our group-based attacks in Section 4.4.2.
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B. Additional Experimental Results.
This section presents supplementary experimental results for Section 5. In this paper, we adopt AUC and ASR as metrics
to assess the privacy risks of edges in GNNs. It should be noted that AUC scores quantify the privacy risk of edges when
attackers attempt to infer the structure of the training graph from the prediction similarity of node pairs. ASR evaluates
the practical attack benefits (i.e., number of successful attacks on both connected and unconnected node pairs) when using
different attack methods. From the perspective of privacy and security, both connected and unconnected status in node
pairs are confidential for target GNNs and should be accorded equal protection. Although there may be a quantity disparity
between connected and unconnected node pairs in practical graphs, ASR provides meaningful and intuitive evaluations of
the attack benefits of different methods.

Table 2. Comparison of Privacy Risks (AUC) between Intra-class and Inter-class Node Pairs on GCN models.
Datasets Cosi Eucl Corr Cheb Bray Canb City Sqeu

Cora Intra-class 69.74 70.39 69.48 70.38 70.59 82.29 70.59 70.39
Inter-class 92.62 88.98 90.93 92.22 93.46 84.05 93.46 88.98

Citeseer Intra-class 73.79 74.68 73.3 74.85 75.07 87.51 75.07 74.68
Inter-class 93.37 89.86 93.83 93.04 94.06 90.85 94.06 89.86

Pubmed Intra-class 77.68 79.14 74.29 79.40 79.40 85.80 79.40 79.14
Inter-class 93.19 93.58 83.48 93.97 93.97 94.69 93.97 93.58

COX2 Intra-class 82.6 82.77 82.18 81.54 84.13 86.89 84.13 82.77
Inter-class 76.5 79.61 74.73 80.02 80.17 92.77 80.17 79.61

DHFR Intra-class 93.06 93.63 92.60 92.84 94.26 92.54 94.26 93.63
Inter-class 97.49 97.57 97.36 96.88 97.93 92.37 97.93 97.57

Enzymes Intra-class 75.20 75.39 74.48 75.56 75.56 84.94 75.56 75.39
Inter-class 86.13 86.16 85.97 86.22 86.22 88.91 86.22 86.16

Proteins Intra-class 50.08 50.06 50.08 50.06 50.06 50.06 50.06 50.06
Inter-class 96.50 96.10 95.88 96.26 96.26 93.05 96.26 96.10

Credit Intra-class 77.60 77.55 50.04 77.55 77.55 77.39 77.55 77.55
Inter-class 53.20 51.99 54.15 51.99 51.99 52.27 51.99 51.99

German Intra-class 62.80 63.42 50.20 63.42 63.42 63.76 63.42 63.42
Inter-class 81.85 82.23 50.02 82.23 82.23 82.49 82.23 82.23

* In this table, Cosi, Eucl, Corr, Cheb, Bray, Canb, City, and Sqeu indicate the cosine, euclidean,
correlation, chebyshev, braycurtis, canberra, cityblock, sqeuclidean distance respectively
when launching generic link stealing attacks (He et al., 2021a).

Table 3. Comparison of Privacy Risks (AUC) between Intra-class and Inter-class Node Pairs on GAT models.
Dataset Cosi Eucl Corr Cheb Bray Canb City Sqeu

Cora Intra-class 68.99 70.56 67.04 70.81 70.89 80.48 70.89 70.56
Inter-class 92.84 90.46 91.13 92.73 93.76 82.98 93.76 90.46

Citeseer Intra-class 76.59 77.54 75.83 77.71 77.87 86.99 77.87 77.54
Inter-class 92.64 89.37 92.75 92.66 93.58 92.22 93.58 89.37

Pubmed Intra-class 78.97 80.22 74.33 80.46 80.46 84.11 80.46 80.22
Inter-class 93.60 93.78 84.24 94.13 94.13 94.69 94.13 93.78

Table 4. Comparison of Privacy Risks (AUC) between Intra-class and Inter-class Node Pairs on GraphSAGE models.
Dataset Cosi Eucl Corr Cheb Bray Canb City Sqeu

Cora Intra-class 61.23 54.16 61.09 54.28 54.87 57.15 53.84 54.16
Inter-class 69.55 62.38 66.93 62.04 67.23 64.26 63.10 62.38

Citeseer Intra-class 65.08 58.75 65.26 58.85 51.51 54.74 58.40 58.75
Inter-class 68.87 57.92 67.49 57.60 66.09 64.57 58.73 57.92

Pubmed Intra-class 65.72 54.92 64.83 54.19 61.15 64.95 56.53 54.92
Inter-class 80.60 77.85 71.02 76.62 80.46 80.50 79.08 77.85
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Table 5. Comparison of Privacy Risks (AUC) between Intra-class and Inter-class Node Pairs on GCN model with the large-scale dataset.
Dataset Cosi Eucl Corr Cheb Bray Canb City Sqeu

Ogbn-Arxiv Intra-class 90.50 76.23 92.37 72.62 84.12 51.77 84.12 76.23
Inter-class 82.07 72.27 83.40 71.74 79.05 55.66 79.05 72.27

Table 6. Comparison of Attack Success Rate (i.e., ASR) between Our Method and Generic Link Stealing Attacks.
Datasets S G S G S G S G ∆ASR ↑

ENZYMES

cosine euclidean correlation chebyshev

7.21

ginter 65.82 83.63 79.61 81.92 71.92 83.77 79.78 81.94
overall 64.08 69.53 70.33 71.04 65.88 69.50 70.41 71.07

braycurtis canberra cityblock sqeuclidean
ginter 79.78 81.94 85.22 81.64 79.78 81.94 59.81 82.59
overall 70.41 71.07 81.00 79.90 70.41 71.07 62.36 69.33

Pubmed

cosine euclidean correlation chebyshev

1.71

ginter 86.31 92.48 92.06 90.82 88.79 91.37 92.29 90.78
overall 77.26 79.48 80.17 79.73 78.24 79.17 80.33 79.78

braycurtis canberra cityblock sqeuclidean
Inter-class 92.29 90.78 92.80 90.85 92.29 90.78 80.21 92.84

overall 80.33 79.78 84.78 84.08 80.33 79.78 75.06 79.61

Cora

cosine euclidean correlation chebyshev

-1.93

ginter 89.95 88.20 89.49 87.18 89.47 87.74 89.34 87.11
overall 86.71 85.86 86.68 85.57 86.47 85.64 86.61 85.54

braycurtis canberra cityblock sqeuclidean
ginter 89.62 86.98 90.10 87.33 89.62 86.98 88.84 89.49
overall 86.79 85.52 83.43 82.09 86.79 85.52 86.17 86.48

Citeseer

cosine euclidean correlation chebyshev

-1.17

ginter 92.23 91.32 92.42 90.77 92.12 91.05 92.59 90.74
overall 86.54 86.13 87.04 86.30 86.49 86.01 87.30 86.49

braycurtis canberra cityblock sqeuclidean
ginter 92.73 90.74 94.16 91.18 92.73 90.74 89.15 92.20
overall 87.38 86.50 87.73 86.41 87.38 86.50 85.17 86.52

German

cosine euclidean correlation chebyshev

0.15

ginter 72.02 77.69 78.20 74.93 74.31 74.31 78.20 74.93
overall 63.71 65.38 67.33 66.70 64.30 64.30 67.33 66.37

braycurtis canberra cityblock sqeuclidean
ginter 78.20 74.93 78.17 74.93 78.20 74.93 66.54 78.40
overall 67.33 66.37 68.58 67.62 67.33 66.37 62.12 65.61

Credit

cosine euclidean correlation chebyshev

8.45

ginter 66.19 92.09 92.81 92.09 92.09 92.09 92.81 92.09
overall 50.05 50.07 50.91 50.91 50.07 50.07 50.91 50.91

braycurtis canberra cityblock sqeuclidean
ginter 92.81 92.09 73.38 92.09 92.81 92.09 66.19 92.09
overall 50.91 50.91 50.62 50.63 50.91 50.91 50.05 50.07

* In this table, “S” and “G” indicate the generic link stealing attacks and our group-based method, respectively. “ginter”
and “overall” represent the inter-class group and overall node pairs, respectively. ∆ASR indicates the average attack
performance improvement of our group-based method on ginter .
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