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Abstract

Graph Contrastive Learning (GCL) has attracted
considerable interest due to its impressive node
representation learning capability. Despite the
wide application of GCL techniques, little atten-
tion has been paid to the security of GCL. In this
paper, we systematically study the vulnerability
of GCL in the presence of malicious backdoor
adversaries. In particular, we propose GCBA, the
first backdoor attack for graph contrastive learn-
ing. GCBA incorporates three attacks: poisoning,
crafting, and natural backdoor, each targeting one
stage of the GCL pipeline. We formulate our at-
tacks as optimization problems and solve them
with a novel discrete optimization technique to
overcome the discrete nature of graph-structured
data. By extensively evaluating GCBA on mul-
tiple datasets and GCL methods, we show that
our attack can achieve high attack success rates
while preserving stealthiness. We further con-
sider potential countermeasures to our attack and
conclude that existing defenses are insufficient
to mitigate GCBA. We show that as a complex
paradigm involving data and model republishing,
GCL is vulnerable to backdoor attacks, and specif-
ically designed defenses are needed to mitigate
the backdoor attacks on GCL.

1. Introduction
Graph-structured data is commonly seen nowadays, such as
social media networks, mobile payment networks, and credit
networks (Shchur et al., 2018; Hamilton et al., 2017; Zeng
et al., 2019). In such networks, identities are connected with
each other, and each of them contains rich information about
the identity’s properties. Extracting useful information from
these graph structure data can provide better services to
many downstream tasks on graphs such as recommenda-
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tions (Wu et al., 2020; Monti et al., 2017; Ying et al., 2018),
link prediction (Zhang & Chen, 2018; Zhu et al., 2023;
Qu et al., 2020), and node classification (Kipf & Welling,
2016; Veličković et al., 2017; Xu et al., 2018). Recently,
Graph Neural Networks (GNNs) (Kipf & Welling, 2016;
Veličković et al., 2017; Xu et al., 2018) are widely adopted
as the feature extractor for graph structure data. However,
well-trained GNN models usually require large amounts of
labeled data, which are expensive and time-consuming to
collect, especially when the graph size is large.

Very recently, graph contrastive learning (GCL) (Velick-
ovic et al., 2019; Hassani & Khasahmadi, 2020; You et al.,
2020; Zhang et al., 2021a; Zhu et al., 2020; 2021; Lin et al.,
2022b) were proposed to address this challenge. GCL has
achieved impressive effectiveness in dealing with a large
quantity of graph-structured data in the absence of super-
visory signals. Its unsupervised property is especially fa-
vorable since collecting and labeling data in a traditional
supervised manner is extremely costly. GCL aims to pre-
train a GNN encoder mapping each node in graph-structured
data to a low-dimensional representation called node em-
bedding. Fine-tuning a downstream classifier based on a
GNN encoder significantly reduces the cost of collecting
and labeling data.

Prior works revealed that GNNs are vulnerable to so-called
backdoor attacks (Xi et al., 2021; Zhang et al., 2021b; Yang
et al., 2022). A graph backdoor adversary aims to inject
a hidden backdoor into the victim GNN model. The inter-
fered GNN will behave like a genuine model on clean in-
puts. However, once the input is stamped with an adversary-
defined “trigger”, the victim GNN will behave maliciously,
such as misclassifying the poisoned input into a specific
class. This is commonly achieved by poisoning the training
set involving modifying the labels. However, existing graph
backdoor attacks do not fit GCL settings since they need to
access labels to inject the backdoor. Nevertheless, human-
fed supervisory labels are not required and thus unavailable
in GCL.

Despite the excessiveness of research on backdoor at-
tacks (Gu et al., 2017; Chen et al., 2017; 2021; Li et al.,
2022), the vulnerability of GCL against backdoor attacks
has yet to be explored, which is highly concerning given
the broad application of GCL in security-sensitive domains
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(Qian et al., 2022; Jia et al., 2021). For instance, graph en-
coders can help classify credit network users as either high
credit or low credit. A user marked as low credit will have
restricted privileges compared to high credit ones. Such a
distinction protects the credit system and encourages appro-
priate and legitimate user behavior. However, if a backdoor
adversary injects a backdoor into the encoder, the encoder
will be misled to produce erroneous user embeddings, caus-
ing misclassification of the user’s credit status from low to
high credit. If the backdoor adversary can arbitrarily flip the
credit status, the system will become insecure, which may
lead to serious consequences. However, previous backdoor
attacks in the graph domain assumed a supervised train-
ing scenario, thus cannot directly serve for evaluating the
vulnerability of GCL to backdoor attacks.

Our work. To bridge this gap, we present GCBA, the
first backdoor attack for graph contrastive learning. GCBA
aims to manipulate the behavior of the downstream classi-
fier built on the pre-trained GNN encoder. To achieve this
goal, GCBA adversary injects a hidden backdoor into the
encoder. The embedded backdoor can be activated by a
pre-defined “trigger”. Once triggered, the backdoor will
force the victim GNN encoder to produce a specified result,
such as mapping the input node to a specific embedding. In
particular, GCBA adversary guides the victim GNN encoder
to learn a connection between the pre-defined trigger and
an adversary-chosen embedding pattern referred to as target
embedding. In this paper, we adopt a single injected node
attached to the victim node as the trigger. We expect the
victim GNN encoder to map any trigger-attached node to
the target embedding.

To achieve the attackers’ goals, we formulate GCBA as a bi-
level optimization problem to search for the optimal model
parameter and trigger node attributes. We define our attack-
ing loss as the difference between the embedding of trigger-
attached nodes and the target embedding. By minimizing
the attacking loss, we can force the victim GNN encoder
to map trigger-attached nodes to the target embedding and
the corresponding trigger attributes. Due to the discrete
nature of node attributes in graph-structured data, conven-
tional continuous optimization does not directly apply to
our attack. To address this challenge, we design a novel
discrete optimization method based on convex relaxation.
By adopting a latent variable approximating the discrete so-
lution space, we can apply gradient-based methods to solve
the optimization problem.

We evaluate GCBA on different datasets collected from the
real world. Empirical experiments show that GNN encoders
trained by GCL are highly vulnerable to GCBA attacks un-
der different scenarios. Regardless of the limitations on the
adversary’s capabilities, GCBA can achieve considerable
effectiveness. Moreover, our attack can inject a backdoor

into any pre-trained GNN encoders while keeping the back-
door stealthy to downstream users. Our experiments also
demonstrate that existing defenses in the graph domain may
not be able to mitigate GCBA sufficiently.

Contributions. To the best of our knowledge, this paper
proposes the first backdoor attacks on pre-trained GNN
encoders under graph contrastive learning frameworks. Our
contributions can be summarized as follows.

• We propose the detailed design of GCBA, the first back-
door attacks against graph contrastive learning. The pro-
posed attack aims to compromise GCL under various
circumstances.

• We systematically evaluate the backdoor robustness of
current GCL frameworks under the attack by GCBA in
different scenarios and show the effectiveness of the pro-
posed attack.

• We demonstrate that existing defenses in the graph do-
main may not be able to mitigate GCBA, entailing an
urgent demand for specifically designed defenses.

2. Preliminary
2.1. Graph Neural Networks

A Graph Neural Network (GNN) (Kipf & Welling, 2016;
Xu et al., 2018; Veličković et al., 2017; Qu et al., 2021;
Zhu & Wang, 2022) f receives a graph G = (X,A) as
the input and outputs U containing embeddings for each
node in node classification tasks. X ∈ Rn×d denotes the
node features where d is the feature dimension and n rep-
resents the number of nodes in the graph G. Especially, in
some graphs, the node features are in binary format, which
means X ∈ {0, 1}n×d instead. A ∈ {0, 1}n×n denotes the
adjacency matrix for the graph. U ∈ Rn×m refers to the em-
bedding matrix containing n node embeddings where m de-
notes the embedding dimension. We thus have U = f(V,G)
where V denotes the set of nodes in the graph. In this paper,
we further denote the node embedding produced by a GNN
f for node vi in a graph G as ui = f(vi,G).

2.2. Graph Contrastive Learning

Graph Contrastive Learning (GCL) (Zhu et al., 2020; 2021;
Zhang et al., 2021a; Velickovic et al., 2019; Thakoor et al.,
2021) aim to learn representations in absence of supervision.
We summarize representative GCL methods in A. In par-
ticular, Zhu et al. (2020; 2021) first randomly augment the
input graph into two views. A GNN encoder will map nodes
in different views into node embeddings. The encoder is
trained to minimize the classical InfoNCE objective (Oord
et al., 2018):
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where uG1
i and uG2

i are node embeddings of node vi in
two augmented views G1,G2 respectively, G1 = T1(G) and
G2 = T2(G) are two views augmented from the original
graph G by applying heuristic augmentations T1 and T2,
sim can be any similarity metric like cosine similarity, and
τ denotes a temperature parameter. With a GNN as the
graph encoder, we have uG

i = f(vi,G). ⟨uG1
i ,uG2

i ⟩ forms
a positive pair while {⟨uG1

i ,uG2

k ⟩ | i ̸= k} forms the set
of negative pairs. By minimizing the contrastive loss, the
embeddings of the same node in different views will be
similar, while the embeddings of different nodes will dispart.

3. Design of GCBA
3.1. Overview of Three Attack Scenarios

Fig 1 shows an overview of GCBA. A typical GCL pipeline
involves four stages: data collection, training, publishing,
and inference. During data collection, node attributes and
topological information are collected to form an unlabeled
graph. Next, the model trainer trains the encoder using GCL
(training) and publishes it on the Internet to make it accessi-
ble to downstream users (publishing). A downstream user
downloads the pre-trained encoder and builds a downstream
classifier on the encoder using a minor labeled dataset. Fi-
nally, the entire system consisting of the pre-trained encoder
and the downstream classifier is evaluated on the inference
set (inference).

As stated above, we consider implementing our attack in
three stages during the GCL pipeline, leading to three dif-
ferent kinds of adversaries: poisoning adversary, crafting
adversary, and natural backdoor adversary.

• Poisoning adversary executes the attack during the data
collection stage. The poisoning adversary aims to forge a
poisoned dataset from a clean one so that once the model
trainer trains an encoder on the poisoned dataset with
GCL, the encoder will be backdoored.

• Crafting adversary aims to inject a backdoor into a clean
pre-trained encoder. Any downstream classifier built on
the backdoored encoder will inherit the backdoor.

• Natural backdoor adversary shares a similar goal with
the crafting adversary. However, the natural backdoor
adversary is restricted from modifying the victim GNN
encoder. Instead, the adversary will discover a backdoor
logic naturally existing in the clean encoder trained by
GCL.

3.2. Backdoor Trigger

We adopt a consistent trigger design for these three attacks.
In particular, we consider the trigger as an injected node
connected to the victim node. We call the injected node
a “trigger node”. Such a trigger design is practical in our
attack settings. First, node injection is easy to achieve in
many real-world scenarios. The adversary can inject a node
into the citation network by publishing a dummy paper or
into the social network by creating a new account. Second, a
single injected node is highly stealthy for downstream users
to distinguish.

We denote the injecting operation as G′ = INJ(G, δ, v̂)
where δ is the trigger node attribute and v̂ is the victim
node connected with the trigger node. We define connecting
two nodes as v1 ⊕ v2, so we can further refer to the trigger
attached target node as v̂ ⊕ vδ .

3.3. Poisoning Adversary

Threat model: The poisoning adversary aims to attack the
data collection stage of graph contrastive learning. We
assume the adversary has access to a clean dataset. The
adversary will poison the dataset and publish it to make it
available to the model trainer. Once the poisoned dataset is
collected by the trainer and used to train a GNN, the GNN
will be backdoored. We assume the poisoning adversary
cannot access any other stages of GCL. For instance, the
adversary has no knowledge of the adopted GCL framework
or the training parameters like learning rate.

Our attack: To achieve the attacker’s goal, we create a con-
nection between the trigger pattern and the target class. We
expect the victim GNN f ′ to produce similar embeddings
for trigger attached nodes v ⊕ vδ and nodes in the target
class v[yt] ∈ V[yt]. This objective can be formulated as

f ′(v ⊕ vδ) ≈ f ′(v[yt]) (2)

It is not easy to achieve this goal in contrastive learning. In
supervised scenarios, traditional backdoor adversaries can
change the labels of poisoned samples to the target class,
thus connecting the trigger with the target class. Never-
theless, GCL methods do not rely on labels as supervisory
signals during the training procedure. Prior work (Saha
et al., 2022) tried to apply a clean-label-like backdoor attack
on image contrastive learning frameworks by only adding
the trigger to samples in the target class. However, the attack
effectiveness was much worse than that in the supervised
scenario. The simple co-existence of the trigger pattern and
semantic content of the target class cannot create a strong
connection between the trigger and the target class in the
encoder trained with contrastive learning.

However, we can naturally utilize the augmentation method
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Figure 1. Overview of GCBA.

adopted by graph contrastive learning to achieve the goal
in Equation 2. Recall that GCL performs random edge
dropping to generate different views of the input graph.
Meanwhile, the contrastive loss in Equation 1 and Equation
13 maximizes the similarity between the embeddings of the
same node in different views. Take the InfoNCE loss as an
instance, if the adversary connects a trigger node vδ to the
target node vi with label yi, the positive pair of the target
node vi in the InfoNCE loss will fall into three conditions
after the augmentation:

(1)max esim(u
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G2
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(2)max esim(u
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(3)

where u
Gj

i,δ = f(vi ⊕ vδ,Gj) is the node embedding of a
trigger attached node in one view. In the first condition, the
edges between the target node and the trigger node in the
two views are both dropped. In the second condition, the
edges are both kept. In the last condition, the edge between
the target node and the trigger node is kept in the first view
G1 while in the second view G2, it is dropped. Intuitively, the
second condition is similar to a clean-label backdoor with a
target class yi by forcing the co-existence of the trigger and
the semantic content of the target class. Most importantly,
the third condition is just the same as the attacker’s goal in
Equation 2 if we treat uG2

i as the target embedding f ′(vyt).
So if we have yi = yt where yt is the target class, we can
achieve the attacker’s goal utilizing the contrastive loss. In
order to prove our intuition, we empirically demonstrate the
contribution of the second and third conditions in section
4.3. Our intuition holds for other contrastive losses like
CCA loss in CCA-SSG (Zhang et al., 2021a) since these
three conditions only focus on positive pairs.

Therefore, the attack flow of a GCBA poisoning adversary

consists of three steps:

• Backdoor configuration: Given a clean graph dataset
G = (X,A), the adversary picks the target class yt and
corresponding trigger node attribute δ;

• Poisoning: The adversary picks a part of nodes V̂ =
{v̂i|v̂i ∈ V[yt]}n

′

i=1 in the clean graph only from the target
class yt and then connect them with the trigger node to
construct the poisoned graph G′.

• Dataset sharing: The adversary shares the poisoned
dataset with interested trainers. The model trainer will
train a GNN encoder using GCL on the poisoned dataset.

To achieve better attack performance, we search for the
optimal trigger node attribute δ through joint optimization
during the backdoor configuration. In brief, we random
initialize the trigger node attribute δ and poison the dataset
with the initial trigger. Then we train a surrogate encoder
on the poisoned dataset using GCL. The trigger pattern will
be optimized jointly with the surrogate encoder parameters
to minimize the contrastive loss. Finally, we can obtain
an optimal trigger node attribute δ∗ by the end of back-
door configuration. We will use δ∗ as the final trigger node
attribute in the poisoning step. Mention that the node fea-
ture is sparse and discrete in many graphs, such as citation
networks. So the trigger node attribute is constrained in a
binary format. The objective of the joint optimization can
be therefore formulated as

min
θ,δ

n′∑
i=1

Lcontrastive(G′, T1, T2)

s.t. δ ∈ {0, 1}d,G′ = INJ(G, δ, v̂i),

(4)

where θ denotes the encoder parameters. Lcontrastive refers to
the contrastive loss used to train the surrogate encoder.

In order to solve this discrete optimization, instead of di-
rectly optimizing δ, we try to optimize a flipping vector p
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with the same shape as δ. Starting from a base attribute
vector δ0, we have

δ = δ0 + (1− 2δ0)⊙ p, (5)

where ⊙ denotes the element-wise product. The adversary
can arbitrarily initialize the base attribute δ0. Here 1− 2δ0
represents the flipping vector for δ0. If δ0,i = 1, then
(1− 2δ0)i = −1 represents that we can flip δ0,i from 1 to
0. For the ease of optimization, we relax p ∈ {0, 1}d to its
convex hull p ∈ [0, 1]d. This can be viewed as that instead
of directly making decision on whether we will flip certain
dimensions, we try to give the probabilities of how likely we
will flip these attributes. So we further define p = σ(τϕ),
where σ(·) refers to the sigmoid function, τ ∈ R+ denotes
the temperature coefficient, and ϕ ∈ Rd is a latent variable.
We define the trigger generation function tg(·) as:

δ = tg(δ0,ϕ) = δ0 + (1− 2δ0)⊙ σ(τϕ). (6)

We can optimize ϕ ∈ Rd with normal gradient descent
methods. The temperature coefficient τ is a hyperparameter
controlling the optimization procedure. We gradually in-
crease the temperature coefficient to gradually push σ(τϕ)
towards a binary-like vector whose values are near 0 or
1, thus approximating the discrete constraint. We filter K
biggest probabilities from the result to control the attack
budget to keep our attack stealthy:

δ = tg(δ0,ϕ,K)

= δ0 + (1− 2δ0)⊙ topk(σ(τϕ),K)).
(7)

Putting everything together, Algorithm 1 in Appendix de-
scribes the flow of GCBA-poisoning attack.

3.4. Crafting Adversary

Threat model: The crafting adversary aims to forge a back-
doored encoder from a clean pre-trained one so that any
downstream classifier built on the backdoored encoder will
inherit the embedded backdoor logic. The interfered down-
stream classifier will predict any trigger-attached node into
the target class chosen by the adversary. Meanwhile, the
adversary should keep the injected backdoor stealthy from
downstream users by maintaining the encoder’s performance
on clean nodes.

We assume that the crafting adversary has access to a set
of unlabeled nodes called crafting set Vc. We also as-
sume that the attacker has access to a target set Ṽ[yt] ⊂
V[yt],#Ṽ[yt] ≪ #V[yt]. This setting is reasonable given
that the adversary can easily collect these nodes from pub-
licly available data. For instance, the crafting adversary
wants to attack a pre-trained encoder producing embeddings
for papers in a citation network. The task is to predict the

domain to which the paper (node) belongs, such as “sys-
tem”, “machine learning”, and “security”. To obtain the
crafting set, the adversary can randomly collect some pa-
pers regardless of their domains. The adversary can also
manually collect one or more papers and filter out those
belonging to the target domain like “security”.

Our attack: To achieve the adversary’s goals, we fine-
tune the backdoored encoder on the crafting set so that the
encoder will behave differently on trigger-attached nodes
and clean nodes. On clean nodes v, the backdoored en-
coder shares a similar behavior with the clean encoder, thus
making the backdoor logic stealthy and undetectable. In
contrast, the backdoored encoder will map trigger attached
nodes v ⊕ vδ and target nodes ṽ ∈ Ṽ[yt] to similar embed-
dings. In particular, we define two losses as

Lbkd = −E[vc∈Vc,ṽ∈Ṽ[yt]
]sim(f ′(vc ⊕ vδ,G′), f ′(ṽ,G′))

Lclr = −E[v∈Vc∪Ṽ[yt]
]sim(f ′(v,G), f(v,G))

G′ = INJ(G, δ, vc)
(8)

where f denotes the pre-trained clean encoder, f ′ denotes
the backdoored encoder parameterized by θ′, and sim refers
to the similarity metric such as cosine similarity. By min-
imizing lbkd, we can maximize the similarity between the
embedding of trigger-attached nodes and the embedding of
target nodes. By minimizing lclr, we can preserve the en-
coder’s behavior on clean nodes before and after the attack.
Combining two losses, we formulate the crafting adversary’s
optimization objective as

min
θ′,ϕ
Lbkd + λLclr (9)

where λ denotes a hyperparameter balancing lbkd and lclr.
We reuse the solution from the poisoning adversary by intro-
ducing a latent variable ϕ to solve the discrete optimization.
Algorithm 2 in Appendix illustrates the GCBA-crafting at-
tack.

3.5. Natural Backdoor Adversary

Threat model: The natural backdoor adversary shares a
similar threat model with the crafting adversary, except that
the natural backdoor adversary is restricted from modifying
the clean encoder. This happens when the model provider
apply trivial file integrity verification, like checksum, to
prevent model tampering.

Our attack: The natural backdoor adversary aims to dis-
cover a hidden backdoor logic naturally existing in the clean
pre-trained encoder instead of forging a backdoored encoder.
Given the slight difference, we only need to preserve the
clean encoder and optimize the trigger pattern only:

min
ϕ
Lbkd (10)
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Mention that since the encoder is not modified, we do not
include lclr in the objective function anymore. Algorithm 3
in Appendix concludes the GCBA-natural-backdoor attack.

4. Evaluation
4.1. Experimental Setup

Datasets and GCL methods - We evaluate GCBA on
five commonly used datasets: Cora, CiteSeer(Kipf &
Welling, 2016), DBLP(Fu et al., 2020), BlogCatalog, and
Flickr(Meng et al., 2019). We further use three state-of-
the-art GCL methods: GRACE (Zhu et al., 2020), GCA
(Zhu et al., 2021), and CCA-SSG (Zhang et al., 2021a). We
introduce details of mentioned datasets and GCL methods
in appendix C.1.

Baselines - To our best knowledge, GCBA is the first back-
door attack on graph contrastive learning. We thus pro-
pose two variants of GCBA and mainly compare GCBA
with its variants. Specifically, GCBAB1 randomly picks a
node from nodes accessible by the adversary as the trigger.
GCBAB2 randomly initializes ϕ in Equation 7 and uses the
fixed trigger to execute the attack.

Mention that fixed trigger attacks are not compatible with
the natural backdoor adversary. In particular, we use the
unsupervised version of LGCB (Chen et al., 2022) as a base-
line for the natural backdoor adversary. LGCB was designed
to attack classifiers under supervised settings. We design an
unsupervised version of LGCB which adopts a clustering
algorithm to train a surrogate downstream classifier. We use
K-medoids(Park & Jun, 2009) as the clustering algorithm.

Metrics - We use three metrics to evaluate GCBA: Accuracy
Drop (AD), Attack Success Rate (ASR), Flipping Rate (FR).
These metrics are widely used to evaluate backdoor attacks
but you can still find a detailed explanation in appendix C.2.

Parameter Settings - We list parameter settings for each
type of adversary as follows. See appendix C.3 for more
experimental setting details.

Poisoning Adversary. The poisoning adversary poisons
a part of nodes in the target class. We define rpoison as
the ratio of poisoned nodes to nodes in the target class. By
default, we set rpoison = 0.1. We define the attack budget as
ϵ = K

d where K is the trigger size, and d is the node feature
dimension. By default, we use ϵ = 0.3 for the poisoning
adversary.

Crafting and Natural Backdoor Adversary share similar
settings. They can access a crafting set Vc containing a part
of unlabeled nodes and a target set Vyt

containing several
nodes from the target class. We denotes the size of these
two sets as #Vc and #Vyt

. We define rcraft = #Vc

#V as
the crafting ratio. We assume the benign encoder is trained

using a subgraph Gpre sampled from the original graph.
The adversary and the downstream user cannot access the
subgraph used for pre-training. By denoting nodes in Gpre as
Vpre, we further define rpre =

#Vpre

#V . Table 7 summarizes
parameter settings for these two types of adversaries.

By default, the attack budget for the crafting adversary is
ϵ = 0.01 while for the natural backdoor adversary is ϵ =
0.15

4.2. Experimental Results

We demonstrate the effectiveness of our GCBA by present-
ing its performance under the settings mentioned above. We
also compare GCBA to its baselines and explore the impact
of attack budget as follows.

GCBA is effective while maintaining utility. Table 1
records AD, ASR, and FR of GCBA. The experimental
results demonstrate that GCBA can achieve high attack suc-
cess rates under most settings. For instance, the poisoning
adversary achieves a 96.2% attack success rate with only
a 0.2% accuracy drop when the target dataset is Cora, and
the GCL method is GRACE. Even if we exclude nodes that
would be misclassified to the target label by a clean down-
stream classifier, we can still achieve a flipping rate as high
as 95.9%. When the crafting adversary attacks a graph en-
coder trained on DBLP dataset using GRACE, the adversary
can achieve a 100% attack success rate and flipping rate,
even though the adversary is limited by a tiny attack budget
ϵ = 0.01. If not allowed to modify the encoder parameter, a
natural backdoor adversary can still achieve a 98.6% attack
success rate and 92.3% flipping rate with a slightly larger
attack budget ϵ = 0.15. Note that the natural backdoor
adversary does not manipulate the encoder, so the natural
backdoor adversary will not incur any accuracy drop. So
we leave the accuracy drop for natural backdoor adversaries
blank.

GCBA outperforms baselines. We further compare GCBA
to mentioned baselines in appendix D.1. In most cases,
GCBA achieve higher attack performance in comparison to
other baselines.

4.3. Analysis

In this section, we discuss the intuition of GCBA-poisoning
as mentioned in section 3.3. We further analyze GCBA
by exploring the impact of the attack budget and available
dataset size on our attack. We also show the transferability
of GCBA across different GCL methods.

Clarifying GCBA-poisoning. As stated in Section 3.3,
GCBA-poisoning injects the backdoor by utilizing the aug-
mentations in GCL. We use the following empirical experi-
ments to prove our intuition. We modify the augmentation
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Table 1. Performance of GCBA.

Poisoning Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GRACE 0.2% 96.2% 95.9% 0.2% 94.6% 94.3% 0.0% 95.3% 73.3% -0.8% 100% 100% 0.6% 97.4% 97.1%
GCA -0.2% 100% 100% -0.8% 100% 100% 0.0% 100% 100% -0.4% 90.6% 89.7% -0.4% 93.9% 93.3%
CCA-SSG -1.4% 73.3% 70.9% 0.2% 83.3% 81.9% 0.0% 98.8% 80.0% -1.0% 98.8% 98.2% -0.6% 85.5% 84.0%

Crafting Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GRACE 8.8% 96.3% 95.8% 5.5% 97.3% 97.2% -3.1% 100% 100% 0.5% 86.5% 83.3% 1.6% 100% 100%
GCA 9.3% 95.6% 95.1% 6.1% 97.2% 97.1% 2.5% 98.2% 97.5% 2.9% 88.9% 86.6% 1.2% 100% 100%
CCA-SSG 9.8% 92.5% 91.8% 5.3% 99.2% 99.1% -4.3% 97.2% 86.4% 4.2% 81.8% 76.9% 1.4% 100% 100%

Natural Backdoor Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GRACE - 98.5% 98.3% - 97.2% 97.1% - 98.6% 92.3% - 86.5% 82.6% - 100% 100%
GCA - 98.7% 98.5% - 81.6% 80.8% - 100% 100% - 64.5% 57.8% - 100% 100%
CCA-SSG - 94.5% 94.0% - 82.0% 81.3% - 99.5% 96.2% - 78.2% 72.0% - 99.0% 98.6%

Table 2. The impact of trigger presence.

Setting AD ASR FR
GCBA 0.2% 96.2% 95.7%

S1 0.2% 7.4% 0.0%
S2 0.3% 100% 100%
S3 0.2% 81.2% 78.0%

strategies to form three scenarios:

• S1: no trigger nodes presented in the graph.
• S2: edges connecting trigger nodes and target nodes will

not be dropped by augmentations.
• S3: edges connecting trigger nodes and target nodes will

all be kept in one view while dropped in another.

These three scenarios correspond to the three conditions in
Equation 3 respectively. We then train an encoder under
each scenario and obtain experimental results in Table 2.
Observe that in S1, we achieve low ASR and FR since no
trigger nodes are presented in the graph. While in S2 and
S3, we can achieve high ASRs and FRs. Note that while
the attack success rate in S3 is lower than S2, the third
condition is still critical since the final attack performance
is a combination of the attack performance caused by three
conditions. In GCBA-poisoning, we cannot avoid either of
these conditions given that the augmentations in GCL are
randomly conducted, and the training procedure in GCL is
out of the adversary’s access.

Impact of attack budget. GCBA adversaries’ capability is
restricted by the attack budget ϵ. Therefore we explore the

impact of the attack budget on GCBA. We test the attack
performance with different ϵ and summarize the results in
appendix D.2. In general, GCBA can achieve higher attack
performance with a larger attack budget. But even with the
default settings which strictly limit the attack budget, GCBA
can already achieve comparable attack success rate.

Impact of available dataset size. We limit the available
dataset size to GCBA adversaries to verify whether the pro-
posed method can still work when the attacker cannot access
or control many data points. In GCBA-poisoning, the avail-
able dataset refers to the set of nodes to be poisoned. In
GCBA-crafting and GCBA-natural-backdoor, the available
dataset refers to the crafting set. We adjust these parameters
to show the sensitivity of our attack to dataset sizes. We
include detailed results in appendix D.3.
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Figure 2. Transferable cases concerning transfer ratio.
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Figure 3. Performance of GCBA defended by RS/PreProcess.

Impact of the degree of victim nodes. Intuitively, it is dif-
ficult to misclassify a victim node with many neighbors. We
show the impact of the degree of victim nodes by investigat-
ing the attack success rate concerning the degree of victim
nodes in Table 3. In particular, we adopt GCBA-natural-
backdoor and set the dataset as BlogCatalog. Observe that
when ϵ = 0.15, all unsuccessful cases happened on victim
nodes with more than 40 neighbors. As ϵ decreases, more
unsuccessful cases were observed on victim nodes with
more neighbors. However, note that the gap between ASRs
on nodes with more or less neighbors was not obvious. For
instance, when ϵ = 0.04, GCBA can achieve an ASR of
60% on victim nodes with more than 30 and less than 40
neighbors. While GCBA can achieve an ASR of 57% on
victim nodes with more than 40 neighbors, which is merely
3% lower.

Transferability. We further study the transferability of our
GCBA. It is necessary to evaluate the transferability of
our attack since the adversary cannot make sure that the
victim user will use the same GCL method adopted by the
adversary. For instance, the adversary attacks an encoder
trained using a certain GCL method such as GRACE (source
GCL). However, can we still inject and activate the backdoor
if the victim user trains the encoder using CCA-SSG (target
GCL)? We thus explore the transferability of GCBA across
different GCL methods to answer this question. In particular,
we define tranfer ratio to evaluate the transferability of
GCBA, which is given by

transfer ratio =
ASR on target GCL
ASR on source GCL

For each type of GCBA attack, we have 30 transferring
cases (5 datasets, 3 source GCL methods, and 2 target GCL
methods). Given a transfer ratio threshold ranging from 0
to 1, a transfer case whose transfer ratio is larger than the
threshold is called a “transferable case”. Fig. 2 shows the
number of transferable cases concerning different transfer
ratio thresholds. We observe that our attacks can transfer
across different GCL methods with over 0.8 transfer ratio

under most scenarios. For instance, 23 out of 30 cases
of GCBA-crafting are transferrable under a transfer ratio
threshold of 0.8. We also observe that the transferability
of GCBA-natural-backdoor is weaker than the other two
attacks. This can be explained by the firm connection be-
tween the trigger and the encoder in a natural backdoor
attack. In GCBA-natural-backdoor, each trigger is specifi-
cally designed for the target encoder. Given that encoders in
this scenario are left unmodified, it is more difficult to trans-
fer across different encoders. In contrast, GCBA-poisoning
and GCBA-crafting triggers influence the target encoder
during the training stage or crafting procedure, which may
lead encoders trained with different GCL methods to share
some common properties related to the trigger pattern. The
commonalities make it easier to transfer across GCLs under
this circumstance. Appendix D.4 forms a case study of the
transferability of GCBA on Cora.

We further discuss the transferability of GCBA across var-
ied model architectures. In particular, we demonstrate the
effectiveness of GCBA on state-of-the-art GNN model ar-
chitectures like GAT (Veličković et al., 2017). As shown in
Table 4, GCBA can also achieve high attack success rates
when the model architecture is GAT. For instance, when the
dataset is Cora and the GCL method is GRACE, GCBA can
achieve an ASR of 100%, which is higher than the ASR on
GCN.

4.4. Possible Countermeasures

In this section, we discuss potential countermeasures to
GCBA. Since there are no defenses designed explicitly for
the contrastive learning scenario, even in other domains, we
focus on extending defenses in other scenarios to defend
GCBA. In particular, we consider three defenses: Random
Subsampling (RS) (Xi et al., 2021; Zhang et al., 2021b),
PreProcess (Wu et al., 2019) and GNNGuard (Zhang &
Zitnik, 2020) as the potential countermeasure to our GCBA
attack. We introduce these defenses in detail in appendix
D.5.
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Table 3. The impact of victim node degree.

Victim node degree [0,10) [10,20) [20,30) [30,40) [40,50) Summary
ϵ=0.15 0/0 0/0 2/2=1.00 10/10=1.00 130/143=0.91 142/155=0.92
ϵ=0.08 0/0 0/0 2/2=1.00 8/10=0.80 118/143=0.83 128/155=0.82
ϵ=0.04 0/0 0/0 1/2=0.50 6/10=0.60 81/143=0.57 89/155=0.57

Table 4. Performance of GCBA on GAT.

Poisoning Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GRACE 0.6% 89.2% 88.6% -1.0% 94.9% 94.5% 0.0% 95.1% 50.0% 0.2% 95.6% 95.3% -0.2% 88.7% 88.1%
GCA -0.2% 100% 100% -0.8% 100% 100% 0.0% 100% 100% -0.4% 90.6% 89.7% -0.4% 93.9% 93.3%
CCA-SSG -1.0% 82.1% 80.3% 0.2% 83.3% 81.9% 0.0% 100% 100% 0.0% 97.1% 95.9% 1.0% 96.1% 95.5%

Crafting Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GRACE 1.7% 100% 100% -1.6% 100% 100% 3.1% 100% 100% 8.5% 70.1% 65.3% -0.4% 96.3% 95.9%
GCA 8.7% 93.1% 92.3% 8.0% 92.7% 92.2% 6.8% 100% 100% -3.8% 100% 100% 1.7% 100% 100%
CCA-SSG 10.1% 90.4% 89.4% 6.3% 99.3% 99.3% 0.1% 100% 100% 8.2% 100% 100% 10.4% 99.6% 99.6%

Natural Backdoor Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GRACE - 99.8% 99.8% - 100% 100% - 100% 100% - 100% 100% - 72.8% 72.2%
GCA - 98.7% 98.5% - 81.6% 80.8% - 100% 100% - 64.5% 57.8% - 100% 100%
CCA-SSG - 94.5% 94.0% - 82.0% 81.3% - 99.5% 96.2% - 78.2% 72.0% - 99.0% 98.6%

We use empirical experiments to validate the effectiveness
of the proposed defenses. Figure 3 shows our experimental
results. The shadow around lines is confidence intervals
for five runs. Each figure records the attack success rate
with or without corresponding defense. Figure 3a demon-
strates the effectiveness of Random Subsampling on the
GCBA-poisoning attack with different subsampling ratios
µ. As the subsampling ratio decreases, the ASR first drops
and then increases. This can be explained by the fact that
Random Smoothing improves the robustness of the encoder
by randomly subsampling from the original graph. When
the subsampling ratio µ is large, subsampling can remove a
part of injected nodes, thus degrading the attack success rate.
However, as the subsampling ratio continuously decreases,
the semantic context in the input graph is also disrupted. As
a result, even a few injected nodes can still achieve a high
attack success rate.

Figure 3b and 3c shows the effectiveness of PreProcess
on GCBA-crafting and GCBA-natural-backdoor attacks, re-
spectively, with varied attack budget ϵ. In both figures,
the target dataset is Cora, and the applied GCL method is
GRACE. Observe that when the attack budget is small, Pre-
Process can insufficiently mitigate our attacks. However, as
the attack budget grows, PreProcess fails to limit the attack

success rate.

Furthermore, we consider using state-of-the-art robust GNN
models as a possible countermeasure to mitigate GCBA. In
particular, we explore the attack performance of GCBA on
GNNGuard (Zhang & Zitnik, 2020). GNNGuard is a robust
GNN model which ignores edges connecting not similar
nodes to prevent malicious perturbation. Table 11 shows the
experimental results. Observe that GCBA can still achieve
satisfying attack success rates on robust GNN models.

5. Conclusion and Future Work
This paper comprehensively studies the vulnerability of cur-
rent graph contrastive learning methods to backdoor attacks.
We propose GCBA, the first backdoor attack against graph
contrastive learning. By tampering input dataset or models,
GCBA can inject backdoors into the downstream classifier
under different threat models. We also discuss possible
countermeasures to our attack. Interesting future work in-
cludes: 1) designing new defenses to mitigate our attacks,
and 2) extending our attacks to other domains.

Acknowledgements: We thank the anonymous reviewers
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E. L., Munos, R., Veličković, P., and Valko, M. Large-
scale representation learning on graphs via bootstrapping.
arXiv preprint arXiv:2102.06514, 2021.

Turner, A., Tsipras, D., and Madry, A. Label-consistent
backdoor attacks. arXiv preprint arXiv:1912.02771,
2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.
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A. Graph Contrastive Learning Details
Advanced by the progress in contrastive learning in the image and language domain (Wu et al., 2018; Chen et al., 2020b;
Hjelm et al., 2018; He et al., 2020; Grill et al., 2020), graph contrastive learning (GCL) (Zhu et al., 2020; 2021; Thakoor
et al., 2021; Zhang et al., 2021a; Velickovic et al., 2019) has achieved impressive performance. GCL aims to pre-train a
graph encoder on an unlabeled dataset. Downstream users can further use the graph encoder to train a downstream classifier
on a relatively more minor labeled dataset.

Inspired by DeepInfomax (Hjelm et al., 2018), DGI (Velickovic et al., 2019) first adopted a contrastive loss comparing
node-level information to graph-level information. GRACE (Zhu et al., 2020) further adopted a SimCLR-like (Chen et al.,
2020b) method to learn node-level representations. First, GRACE augments the input graph into different views by applying
random edge dropping or feature masking. Then encoder is trained using a contrastive loss, maximizing the agreement
between node embeddings across different views. The InfoNCE-like (Oord et al., 2018) contrastive loss used by GRACE
can be defined as follows.

L(uG1
i ,uG2

i ) = − log
esim(u

G1
i ,u

G2
i )/τ

esim(u
G1
i ,u

G2
i )/τ +

∑
i̸=k e

sim(u
G1
i ,u

G2
k )/τ

(11)

where uG1
i and uG2

i are node embeddings of node vi in two augmented views G1,G2 respectively, G1 = T1(G) and
G2 = T2(G) are two views augmented from the original graph G by applying heuristic augmentations T1 and T2, sim can
be any similarity metric like cosine similarity, and τ denotes a temperature parameter. With a GNN as the graph encoder,
we have uG

i = f(vi,G). ⟨uG1
i ,uG2

i ⟩ forms a positive pair while {⟨uG1
i ,uG2

k ⟩ | i ̸= k} forms the set of negative pairs. By
minimizing the contrastive loss, the embeddings of the same node in different views will be similar, while the embeddings of
different nodes will dispart. We further define the loss function as L = 1

2

∑
i(L(u

G1
i ,uG2

i ),L(uG2
i ,uG1

i )) to main symmetry.
For simplicity, in this paper, we refer to this contrastive loss as

Lcontrastive(G, T1, T2) =
1

2

∑
i

(L(uG1
i ,uG2

i ),L(uG2
i ,uG1

i )) (12)

GCA (Zhu et al., 2021) further extended GRACE by applying adaptive augmentations. Unlike GRACE, where each edge
and feature dimension will be uniformly dropped, GCA assigned different probabilities that incorporate various priors
for the graph’s topological and semantic aspects. GCA will maintain important components like edges with higher node
centrality or node attributes with rich semantic information.

Instead of focusing on instance-level discrimination, CCA-SSG (Zhang et al., 2021a) optimizes an innovative feature-level
objective inspired by the classical canonical correlation analysis (Hotelling, 1936). CCA-SSG deprecates augmentation-
variant information by learning invariant representations. Requiring no negative samples, mutual information estimator, and
projector, CCA-SSG is a simple but effective GCL method. The contrastive loss used in CCA-SSG is formulated as follows.

Lcontrastive(G, T1, T2) = ||U1 − U2||2F + λ(||UT
1 U1 − I||2F + ||UT

2 U2 − I||2F ) (13)

where U i is the embeddings of nodes in the augmented graph Gi, I ∈ {0, 1}n×n is a diagonal matrix. ||U1 − U2||2F is the
invariance term, while the remaining part is called decorrelation term. Minimizing the invariance term is essentially maxi-
mizing the agreement between two views, which plays a similar role to positive pairs in InfoNCE-like losses. Furthermore,
by minimizing the decorrelation term, CCA-SSG encourages different embedding dimensions to capture distinct semantic
information.
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B. GCBA algorithms

Algorithm 1 GCBA-Poisoning

Input: θ (model parameters of f ), G (clean graph), max epoch, α1 (learning rate of encoder parameters), α2 (learning rate
of the trigger), δ0 (base trigger attribute), K (trigger size), yt (target label), n′ (number of target nodes), ∆τ (temperature
increasing factor).

Output: G′(poisoned dataset), δ (trigger node attribute).
τ ← 1
ϕ← 0d

Pick target nodes {v̂i|v̂i ∈ V[yt]}n
′

i=1

epoch← 1
while epoch ≤ max epoch do
i← 1
while i ≤ n′ do
G′ = INJ(G, tg(δ0,ϕ,K), v̂i)
θ ← θ − α1 · ∇θLcontrastive(G′, T1, T2)
ϕ← ϕ− α2 · ∇ϕLcontrastive(G′, T1, T2)
i← i+ 1

end while
τ ← τ +∆τ

epoch← epoch+ 1
end while
δ ← tg(δ0,ϕ,K)
i← 1
G′ ← G
while i ≤ n′ do
G′ = INJ(G′, δ, v̂i)
i← i+ 1

end while
Output: G′, δ

Algorithm 2 GCBA-crafting

Input: θ (model parameters of f ), Vc (crafting set), Ṽ[yt] (target set), max epoch, α1 (learning rate of encoder parameters),
α2 (learning rate of the trigger), δ0 (base trigger attribute), K (trigger size), ∆τ (temperature increasing factor), λ
(balancing coefficient).

Output: θ′ (model parameters of f ′), δ (trigger node attribute).
θ′ ← θ
τ ← 1
ϕ← 0d

epoch← 1
while epoch ≤ max epoch do
θ′ ← θ′ − α1 · ∇θ(Lbkd + λLclr)
ϕ← ϕ− α2 · ∇ϕ(Lbkd + λLclr)
τ ← τ +∆τ

epoch← epoch+ 1
end while
δ ← tg(δ0,ϕ,K)

Output: θ′,δ
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Algorithm 3 GCBA-natural-backdoor

Input: f (clean encoder), Vc (crafting set), Ṽ[yt] (target set), max epoch, α (learning rate), δ0 (base trigger attribute), K
(trigger size), ∆τ (temperature increasing factor).

Output: δ (trigger node attribute).
τ ← 1
ϕ← 0d

epoch← 1
while epoch ≤ max epoch do

ϕ← ϕ− α · ∇ϕLnbkd
τ ← τ +∆τ

epoch← epoch+ 1
end while
δ ← tg(δ0,ϕ,K)

Output: δ

C. Experimental Details
C.1. Details of used Datasets and GCL Methods

We evaluate GCBA on five commonly used datasets: Cora, CiteSeer (Kipf & Welling, 2016), DBLP (Fu et al., 2020),
BlogCatalog, and Flickr (Meng et al., 2019). The first three datasets are citation networks in which each node represents a
paper in the network, edges denote the citation relationship between papers, and node features refer to the presence of words.
The BlogCatalog dataset is a social network containing blog users as nodes. Edges in BlogCatalog denote users’ social
relationships, and node features are generated from keywords in user profiles. Flickr is also a social network with users as
nodes and social connections as edges. Moreover, for each dataset, we pick one consistent target label yt across different
attacker settings. The details of used datasets are summarized in Table 5 (in Appendix).

In this paper, we use three state-of-the-art GCL methods: GRACE (Zhu et al., 2020), GCA (Zhu et al., 2021), and CCA-SSG
(Zhang et al., 2021a). GRACE uses a SimCLR-like (Chen et al., 2020b) way to learn node-level representations. GCA
further adopts adaptive augmentation to highlight important information. CCA-SSG requires neither negative pairs nor
mutual information estimators. Using GCL methods with different architectures and implementations, we factor out the
impact of varied learning strategies. Table 6 summarizes their performance in terms of accuracy on node classifications
tasks. For all these GCL methods, we obey their authors’ default settings presented in papers.

C.2. Metrics

We use three metrics to evaluate GCBA: Accuracy Drop (AD), Attack Success Rate (ASR), Flipping Rate (FR).

• AD is the difference between the clean and backdoor downstream classifier accuracy on the clean downstream dataset. A
lower AD demonstrates that the evaluated attack method does not change the encoder behavior significantly. Since we
expect our attack to preserve the backdoor downstream classifier’s classification accuracy compared to the clean one, a
lower AD is preferred.

• ASR of a backdoor downstream classifier is defined as the ratio of predicting a trigger-attached node into the target class.
We only attack and test one victim node at each iteration to avoid impacting neighbors of the victim node. We then sum
them up to calculate the ASR following

ASR =
# successfully attacked nodes

# target nodes
(14)

• FR of a backdoor downstream classifier derived from ASR. When calculating ASR, we also count in nodes that will be
misclassified into the target class even if we do not execute our attack. We exclude these false positive data points to get
the FR. FR can accurately reflect the effectiveness of the evaluated attack.
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Table 5. The statistics of datasets.
Dataset ↓ Property→ Nodes Edges Classes Features yt

Cora 2708 10556 7 1433 3
CiteSeer 3327 9228 6 3703 3
DBLP 17716 105734 4 1639 0

BlogCatalog 5196 343486 6 8189 4
Flickr 7575 479476 9 12047 0

Table 6. Accuracy (%±σ) of graph contrastive learning methods on node classification.
Dataset ↓ GCL→ GRACE GCA CCA-SSG

Cora 81.6 ± 0.5 81.9 ± 0.4 81.81 ± 0.8
CiteSeer 65.8 ± 0.7 66.5 ± 0.4 64.4 ± 0.1
DBLP 81.8 ± 0.3 82.4 ± 0.5 81.9 ± 0.3

BlogCatalog 76.1 ± 0.2 77.2 ± 0.6 82.3 ± 0.4
Flickr 47.6 ± 0.1 48.0 ± 0.3 50.1 ± 0.1

C.3. Implementation Details

We use PyTorch (Paszke et al., 2019) as the deep learning framework for implementations. In our implementation, we follow
the default settings as stated in (Zhu et al., 2020; 2021; Zhang et al., 2021a). We adopt AdamW (Loshchilov & Hutter, 2017)
to optimize the trigger node attribute δ with a learning rate of 0.0015. For GCBA-poisoning and GCBA-crafting, we update
the trigger and encoder for 600 epochs; for GCBA-natural-backdoor, we update the trigger for 1000 epochs. We adopt
AdamW to optimize the downstream classifiers with a learning rate of 0.001 and a weight decay of 0.1. The downstream
classifiers are updated for 1000 epochs. We set the base trigger pattern δ0 in Equation 5 as the attributes of a node randomly
selected from the attacker-accessible nodes. In p = σ(τϕ), we initialize ϕ as 0d. Therefore at the beginning, we have
p = 0.5d which indicates that we are uncertain about which dimension to flip. As the training proceeds, ϕ is optimized to
assign different flip probabilities for p. Recall that we filter K biggest probabilities, so when K = 0, we simply inject a
node already existing in the graph. Furthermore, we set the poisoning factor as 25%, which means we poison at most 25%
of the trigger nodes for each compromised victim node. To train the downstream classifier, we used half of the nodes from
the downstream dataset as the downstream training set and used the remaining nodes as the testing set.

Table 7. Parameter settings for the crafting and natural-backdoor adversary
Dataset ↓ Parameter→ #Vpre(rpre) #Vc (rcraft )

Cora 1899 (0.7) 216 (0.08)
CiteSeer 2329 (0.7) 266 (0.08)
DBLP 8858 (0.5) 213 (0.012)

BlogCatalog 2598 (0.5) 125 (0.024)
Flickr 3788 (0.5) 182 (0.024)

D. More Experimental Results
D.1. Compare GCBA to baselines

Table 8 compares the performance of GCBA to corresponding baselines on GRACE. We can observe that for the poisoning
adversary, GCBA can significantly improve the attack success rate and flipping rate. In comparison to GCBAB1 , GCBA
can improve the ASR by at least 7.1% and at most 100%. Mention that the slightest improvement in ASR is observed
when the target dataset is DBLP. However, the FR of GCBAB1

on DBLP is only 0%, which means that GCBAB1
fails to

flip any node to the target label. The high misclassification rate of the clean downstream classifier causes the high ASR
achieved by GCBAB1

on DBLP. In this setting, GCBA can successfully flip nodes to the target label and improve the FR
from 0% to 73.3%. In comparison to GCBAB2 , GCBA also improves both ASR and FR. These attacks are generally ranked
as GCBA > GCBAB2 > GCBAB1 . This observation holds for the crafting adversary. Since the crafting adversary can
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manipulate the encoder parameters, GCBAB1
and GCBAB2

can also achieve comparable ASRs and FRs, but GCBA still
outperforms baselines. For the natural backdoor adversary, we compare GCBA to unsupervised LGCB. On most datasets,
GCBA significantly improves both ASRs and FRs. On CiteSeer, GCBA even improve the ASR and FR by 79.8% and 80.8%,
respectively. LGCB only achieves higher ASR and FR on DBLP, but GCBA still obtains close results. Experimental results
on GCA and CCA-SSG are shown in Table 9 and Table 10, respectively. Our observation is consistent with these two GCL
methods. We can thus conclude that GCBA outperforms baselines under different settings.

Table 8. Comparison of baselines on GRACE.
Poisoning Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GCBAB1 0.0% 27.4% 18.2% 0.6% 22.3% 17.2% 0.0% 88.2% 0.0% 0.2% 0.0% 0.0% 0.8% 10.5% 3.7%
GCBAB2 0.4% 90.3% 89.5% 0.2% 87.2% 86.6% -0.2% 94.1% 53.3% -0.2% 49.4% 44.8% -0.8% 91.8% 91.1%
GCBA 0.2% 96.2% 95.9% 0.2% 94.6% 94.3% 0.0% 95.3% 73.3% -0.8% 100% 100% 0.6% 97.4% 97.1%

Crafting Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GCBAB1 10.3% 79.9% 77.7% 5.4% 66.2% 64.8% -3.9% 94.4% 75.3% 1.6% 75.7% 69.6% 1.6% 100% 100%
GCBAB2 9.5% 87.0% 85.5% 4.8% 87.2% 86.7% -3.0% 100% 100% -0.3% 75.9% 74.9% 1.1% 100% 100%
GCBA 8.8% 96.3% 95.8% 5.5% 97.3% 97.2% -3.1% 100% 100% 0.5% 86.5% 83.3% 1.6% 100% 100%

Natural Backdoor Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

LGCB - 85.3% 83.3% - 17.4% 16.3% - 100% 100% - 60.0% 60.0% - 100% 100%
GCBA - 98.5% 98.3% - 97.2% 97.1% - 98.6% 92.3% - 86.5% 82.6% - 100% 100%

Table 9. Comparison of baselines on GCA.
Poisoning Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GCBAB1 -0.4% 14.4% 4.6% -1.0% 35.4% 27.8% 0.0% 100% 100% 0.2% 7.6% 0.3% 1.0% 0.0% 0.0%
GCBAB2 -1.2% 98.7% 98.6% -0.6% 90.8% 90.1% 0.0% 100% 100% -0.0% 65.3% 62.2% 0.2% 68.4% 65.9%
GCBA -0.2% 100% 100% -0.8% 100% 100% 0.0% 100% 100% -0.4% 90.6% 89.7% -0.4% 93.9% 93.3%

Crafting Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GCBAB1 8.5% 79.6% 77.4% 6.1% 81.8% 80.7% 1.7% 66.0% 53.2% 2.9% 62.6% 55.9% 3.2% 85.0% 84.4%
GCBAB2 8.5% 89.1% 88.0% 6.7% 90.0% 89.5% 1.9% 87.2% 81.9% 2.3% 71.29% 65.7% 0.8% 100% 100%
GCBA 9.3% 95.6% 95.1% 6.1% 97.2% 97.1% 2.5% 98.2% 97.5% 2.9% 88.9% 88.6% 1.2% 100% 100%

Natural Backdoor Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

LGCB - 81.2% 81.0% - 53.1% 51.0% - 60% 60.0% - 57.3% 47.2% - 80.0% 80.0%
GCBA - 98.7% 98.5 % - 81.6% 80.8% - 100% 100% - 64.5% 57.8% - 100% 100%

D.2. Impact of attack budget

Fig. 4, Fig. 5 , and Fig. 6 show our experimental results of attacks with different attack budget ϵ. Each figure contains three
rows corresponding to poisoning, crafting, and natural backdoor adversary. The attack budget ϵ is varied among GCLs and
datasets. In each subfigure, the hatched bars refer to attack performances under default settings.
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Table 10. Comparison of baselines on CCA-SSG.
Poisoning Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GCBAB1 0.2% 20.0% 9.8% -1.4% 10.3% 3.8% 0.0% 94.1% 0.0% 1.0% 15.3% 1.7% -0.2% 13.9% 0.9%
GCBAB2 -0.4% 44.9% 40.1% -0.2% 67.4% 65.7% -0.2% 94.1% 0.0% 0.0% 82.4% 76.6% -0.8% 15.5% 5.3%
GCBA -1.4% 73.3% 70.9% 0.2% 83.3% 81.9% 0.0% 98.8% 80.0% -1.0% 98.8% 98.2% 0.6% 85.5% 84.0%

Crafting Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GCBAB1 11.1% 80.1% 78.1% 6.3% 89.7% 89.3% -4.3% 89.5% 62.5% 6.6% 59.5% 51.2% 1.4% 98.7% 98.4%
GCBAB2 10.1% 86.7% 85.4% 5.0% 95.7% 95.6% -3.9% 83.8% 68.1% 6.6% 65.0% 56.1% 1.2% 100% 100%
GCBA 9.8% 92.5% 91.8% 5.3% 99.2% 99.1% -4.3% 97.2% 86.4% 4.2% 81.8% 76.9% 1.4% 100% 100%

Natural Backdoor Adversary

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

LGCB - 19.7% 16.9% - 1.0% 0.0% - 89.0% 65.2% - 23.0% 11.4% - 20.5% 15.3%
GCBA - 94.5% 94.0% - 82.0% 81.3% - 99.5% 96.2% - 78.2% 72.0% - 99.0% 98.6%

We have the following observations about the impact of attack budget on our attacks. First, all three GCBA attacks achieve
higher ASRs and FRs as the attack budget grows. Second, for those attacks achieving relatively low ASRs or FRs under
default settings, the attack performance quickly rises as the attack budget increases. For instance, in Fig 6a, GCBA-poisoning
achieves 73.3% ASR on Cora-CCA. When we enlarge ϵ to 1, we can achieve 97.7% ASR. Third, the crafting adversary
can achieve a higher ASR even if the attack budget is small. This phenomenon can be explained by the crafting adversary
being allowed to modify the encoder parameters. So even if the attack budget is strictly limited, the crafting adversary is less
impacted compared to the other two adversaries. Last, we can observe that the accuracy drop of crafting adversary also
becomes smaller as the attack budgets increase. This observation conflicts with other backdoor attacks, in which a larger
attack budget (trigger size) commonly incurs a larger utility corruption. This can be attributed to the difference between our
trigger design and traditional backdoor trigger design. In prior works, the backdoor adversary “covers” the target samples
with the trigger pattern. For instance, in the image domain, a trigger can be a white square located at the corner of the input
image; in GTA(Xi et al., 2021) a trigger is a subgraph substituting nodes in the input graph. These triggers will “delete” a
part of the input, thus corrupting the semantic content of clean inputs. However, in GCBA, the trigger is designed as an
attached node, which will not significantly interfere with the clean input. Moreover, with a larger attack budget, the graph
encoder can easily distinguish the trigger-attached nodes from other clean nodes and map them to the target embedding.
This can explain why we can obtain a smaller accuracy drop as the attack budget increases.

D.3. Impact of available dataset size

Fig. 7 shows the impact of available dataset size on GCBA. The lines represent the mean of the results and the shadow
around lines are confidence intervals for five runs. We adjust the ratio of available dataset size from 10% to 150%. With a
50% ratio of available dataset size, we use half of the available dataset for attacking. In GCBA-poisoning, the available
dataset refers to the set of nodes to be poisoned. The size of poisoned nodes can be given by the multiplication of rpoison
and #V[yt]. Given that by default we set rpoison = 0.1, Fig 7a shows the attack performance when the rpoison varies from
0.01 to 0.15. Observe that a smaller or larger available dataset size does not significantly impact the attack performance.

In GCBA-crafting and GCBA-natural-backdoor, the available dataset refers to the crafting set. We, therefore, adjust rcraft
to study the impact of crafting set size on GCBA. We have the following interesting observations. First, a smaller crafting
set size will not degrade the attack success rate and flipping rate much. For instance, in Fig. 7b, even if we only use a
crafting set sized 10% of the default size, GCBA-crafting can still achieve over 80% attack success rate. While in Fig.
7c, GCBA-natural-backdoor achieves nearly the same ASR with different crafting set sizes. Second, GCBA-crafting can
achieve a lower accuracy drop with a smaller crafting set size. This can be explained by that GCBA-crafting has a smaller
impact on the encoder parameters if the crafting set size is limited.
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Figure 4. The impact of attack budget on GCBA, GRACE. Hatched bars refer to performances under default settings
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Figure 5. The impact of attack budget on GCBA, GCA. Hatched bars refer to performances under default settings
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Figure 6. The impact of attack budget on GCBA, CCA-SSG. Hatched bars refer to performances under default settings
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Figure 7. The impact of available dataset size on GCBA.

D.4. Case study on the transferability of GCBA

Fig. 8 forms a case study of the transferability of GCBA on Cora. We visualize our experimental results using heatmaps.
Fig. 8a, 8b, 8c shows the transferability of GCBA-poisoning, GCAB-crafting, and GCAB-natural-backdoor attack respec-
tively. The rows of heatmaps represent the source GCL method, while the columns represent the target GCL method. The
values in each unit are transfer ratio. As shown in the figure, all three attacks are transferable across different GCL methods
with high transfer ratios. Observe that GCBA-crafting achieves slightly lower ASRs after transferring among these three
attacks. Two reasons may cause this. First, the crafting adversary modifies the encoder parameters, and the trigger is paired
with the backdoor encoder. The trigger cannot perfectly match up with the backdoor encoder trained using the target GCL
method. Second, the crafting adversary has a significantly smaller attack budget than the other two attacks.

D.5. Countermeasures

In this paper, we mainly consider three countermeasures: Random Smoothing (RS). For this defense, we consider the
model trainer as the defender. The defender collects a graph G as the training dataset. During the training process, the
defender randomly subsamples a set of subgraphs {Gi}ni=1 from G. The set of subgraphs is further used to train the graph
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Figure 8. The transferability of GCBA on Cora.

Table 11. Performance of GCBA on GNNGuard.

Setting Cora CiteSeer DBLP BlogCatalog Flickr

AD ASR FR AD ASR FR AD ASR FR AD ASR FR AD ASR FR

GRACE 8.6% 68.0% 66.7% 6.4% 57.5% 55.3% 1.8% 95.9% 95.5% 0.2% 88.4% 80.2% 9.1% 54.8% 53.3%
GCA 5.6% 52.8% 50.7% 8.0% 57.9% 55.7% 1.0% 100% 100% -2.6% 61.9% 56.1% 8.6% 100% 100%
CCA-SSG 7.3% 78.8% 77.5% 3.9% 58.8% 53.7% 2.5% 98.2% 96.6% -0.3% 87.1% 84.0% 8.9% 100% 100%

encoder. The subsampling procedure is controlled by a hyperparameter µ (subsampling ratio). In particular, if the defender
sets µ = 0.6, the defender will randomly remove 40% (1− µ) nodes from the graph and mask 40% of the remaining nodes’
features. The defender repeats this subsampling procedure for n times to obtain n subgraphs. The defender trains the graph
encoder using these subgraphs iteratively to get a smooth graph encoder. We only apply Random Smoothing in the poisoning
scenario since we consider the model trainer a Random Smoothing defender. However, in the crafting and natural backdoor
scenario, the model trainer trains the encoder on a clean graph.

PreProecss. PreProcess was first proposed to mitigate adversarial attacks in the graph domain. This method can improve the
robustness of GNN by removing edges connecting nodes with low feature similarity. We extend PreProcess to fit our threat
model. We consider the downstream user as the defender. The PreProcess defender aims to build a downstream classifier
given a pre-trained graph encoder and a downstream dataset. The defender first removes edges connecting dissimilar nodes
from the downstream training dataset. Then, the defender trains the classifier on the pre-processed dataset. Finally, during
the inference stage, the defender drops edges connecting nodes with low similarity in the testing set. PreProcess purifies
the training set before the training stage and filters incoming malicious samples in the inference stage. Same as (Wu et al.,
2019), we adopt Jaccard similarity as a measurement of the edge similarity score. Edges with a 0 similarity score will be
removed from the graph.

GNNGuard. GNNGuard was proposed as a robust GNN architecture to mitigate the threats of adversarial attacks.
Particularly, GNNGuard adopted neighbor importance estimation which quantifies how relevant node u is to another linked
node v so that it preserved the successful routing of messages through edges. By default, GNNGuard used the cosine
similarity of node attributes to measure the relevance between linked nodes. Edges with a low node similarity were assigned
lower weights and contributed less to the message aggregation. GNNGuard further pruned edges with a node similarity
lower than a given threshold. To smooth the evolution of edge pruning, GNNGuard also applied layer-wide graph memory,
in which pruned edges were partially kept across layers. In particular, we initialize δ0 as the victim node attributes to bypass
GNNGuard. The experimental results are shown in Table 11.
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E. Related Works
E.1. Backdoor Attacks

With the blossom of pre-trained models (Devlin et al., 2018; Chen et al., 2020a; Vaswani et al., 2017; Qiu et al., 2020; Khan
et al., 2022; Dosovitskiy et al., 2020), backdoor attacks (Gu et al., 2017; Chen et al., 2017) have become an immense threat
to the security of Deep Neural Networks (DNNs). Since being proposed, backdoor attacks and corresponding defenses have
been extensively explored in the image and text domain under supervised scenarios (Wang et al., 2021; Turner et al., 2019;
Saha et al., 2020; Souri et al., 2021; Li et al., 2022; Sheng et al., 2022; Qi et al., 2021; Chen et al., 2021; Wang et al., 2019;
Chai & Chen, 2022; Wu & Wang, 2021; Zeng et al., 2021). Supervised backdoor adversaries commonly poison the dataset
to create a connection between the trigger and the target class.

Most recently, there have been several backdoor attacks against unsupervised training (Carlini & Terzis, 2021; Jia et al.,
2022; Saha et al., 2022). Carlini & Terzis (2021) proposed poisoning and backdoor attacks for multi-modal contrastive
learning on (image, text) pairs. Instead of modifying the labels, they inject keywords related to the target class into image
captions. BadEncoder (Jia et al., 2022) aims to forge a backdoored image encoder from a clean one. In BadEncoder,
embeddings of samples in the target class are used as the supervisory information. BadEncoder forces the victim encoder
to produce similar embeddings for trigger-stamped images and images in the target class. Saha et al. (2022) proposed a
clean-label-like backdoor attack. The attack is achieved by guaranteeing that the trigger pattern is only added to images in
the target class. However, this attack is merely effective under limited scenarios and can be easily mitigated by transferring
or distillation.

E.2. Security Threats to GNNs

With the application of GNNs on security-sensitive domains, attacks and defenses on GNNs have been extensively studied
in previous works (Bojchevski & Günnemann, 2019; Bojchevski et al., 2020; Geisler et al., 2020; Jin et al., 2021; Xu et al.,
2019; Zhang & Zitnik, 2020; Sun et al., 2020; Zügner et al., 2018; Lin et al., 2022a). Particularly, Sun et al. (2020); Xu et al.
(2019); Zügner et al. (2018) are adversarial attacks to graph-structured data. Bojchevski & Günnemann (2019) proposed the
adversarial attack to early-stage unsupervised node embedding learning algorithms such as Random Walk (Perozzi et al.,
2014). From the defender’s side, Zhang & Zitnik (2020) and Geisler et al. (2020; 2021) proposed robust GNN backbones to
defend GNN models from potential attackers by filtering out abnormal nodes from the input graph. Bojchevski et al. (2020)
firstly transferred Randomized Smoothing (Cohen et al., 2019) to the graph domain. However, Bojchevski et al. (2020)
cannot be directly applied to GCL since it needs to access the labels of inputs during the training stage.

In this work, we mainly focus on backdoor attacks on state-of-the-art GCL algorithms, which have not been studied in
existing works. In recent years, backdoor attacks in the graph domain also attract attention from researchers. Zhang et al.
(2021b) proposed to use a fixed subgraph as tFhe trigger pattern and implemented the first graph backdoor attack focusing on
the graph classification task. GTA (Xi et al., 2021) introduced a target-specific trigger generator to obtain an adaptive trigger
for each target sample. There were also attempts to adopt different trigger designs. Yang et al. (2022) used a structural
trigger derived from the gradient score matrix for graph structure. In LGCB (Chen et al., 2022), the trigger derives from a
linear approximation of target GNNs by maximizing the classification error.

However, prior works on graph backdoors only focused on attacking GNNs trained in supervised manners. They all require
control over ground truth labels leading to incompatibility with graph contrastive learning paradigm.
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