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Abstract
Test-time adaptation (TTA) adapts a source
model to the distribution shift in testing data
without using any source data. There have been
plenty of algorithms concentrated on covariate
shift in the last decade, i.e., Dt(X), the distri-
bution of the test data is different from the source
data. Nonetheless, in real application scenarios,
it is necessary to consider the influence of label
distribution shift, i.e., both Dt(X) and Dt(Y )
are shifted, which has not been sufficiently ex-
plored yet. To remedy this, we study a new prob-
lem setup, namely, TTA with Open-world Data
Shift (AODS). The goal of AODS is simulta-
neously adapting a model to covariate and label
distribution shifts in the test phase. In this paper,
we first analyze the relationship between classi-
fication error and distribution shifts. Motivated
by this, we hence propose a new framework,
namely ODS, which decouples the mixed distri-
bution shift and then addresses covariate and la-
bel distribution shifts accordingly. We conduct
experiments on multiple benchmarks with differ-
ent types of shifts, and the results demonstrate
the superior performance of our method against
the state of the arts. Moreover, ODS is suitable
for many TTA algorithms.

1. Introduction
Deep neural networks (DNNs) have achieved great success
in many application scenarios, such as computer vision (He
et al., 2016; Krizhevsky et al., 2012), speech recogni-
tion (Amodei et al., 2016), and natural language process-
ing (Chowdhury, 2003). These successes typically rely on
the independent identically distribution (i.i.d.) assumption
that training and testing data are drawn from the same dis-
tribution. In practice, this assumption is difficult to hold,
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Figure 1. A demonstration of the AODS setup. The pre-trained
model will continually adapt to the changing covariate and label
distributions in the testing phase.

e.g., change of weather, scenes and sensor devices will
cause distribution shifts (Hendrycks & Dietterich, 2019).
Therefore, the distribution shift has a severe impact on the
performance of Deep Neural Networks (DNNs), which has
become a critical issue.

When dealing with distribution shifts in the testing phase,
plenty of test-time adaptation (TTA) algorithms have been
proposed to improve the performance of DNNs (Nado
et al., 2020; Liu et al., 2021; Zhang et al., 2021; Shin et al.,
2022; Kim et al., 2022). Existing algorithms mainly work
by adapting the model parameters (Wang et al., 2021; Niu
et al., 2022) or optimizing the predictions (Wang et al.,
2022a; Boudiaf et al., 2022) with only unlabeled testing
data. Note that these methods are particularly designed to
deal with covariate shifts but ignore that label distribution
Dt(Y ) also accordingly shifts. Some other works, such as
the robust TTA method (Gong et al., 2022), also consider
the variation of Dt(Y ) during the test period. However,
they only try to reduce the adverse effect caused byDt(Y ),
but do not adapt to it.

Although existing TTA methods significantly improve per-
formance, they still ignore the adaptation to the changing
label distribution during the testing phase, which is crucial
for practical machine learning systems (des Combes et al.,
2020; Zhao et al., 2021; Wu et al., 2021; Bai et al., 2022).
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Figure 2. Example of experimental results on the CIFAR10
dataset with label distribution shifts during testing. (a) Changing
the label distribution makes existing TTA methods almost useless.
The proposed framework can efficiently adapt to the changed la-
bel distribution, thereby boosting existing TTA methods. (b) The
robust TTA method cannot adapt to the changed label distribution.
With our framework, the recalls of most classes are improved.

For example, a flu prediction model trained on data with
a regular morbidity rate will not perform well in a loca-
tion or over a period with a high morbidity rate due to la-
bel distribution shift (Tasche, 2017). Computer vision ap-
plications, such as predicting object locations (Yang et al.,
2018) and human poses (Martinez et al., 2017), also experi-
ence changes in label distribution. In this paper, we inves-
tigate the practical problem of simultaneously tuning the
model for covariance and label distribution changes dur-
ing testing. We name this TTA with Open-world Data Shift
(AODS). An illustration of the AODS can be found in Fig-
ure 1. Figure 2(a) shows that the TTA method does not gain
performance when the covariate and the label distribution
are changed together. Figure 2(b) further shows that there
is a large room for performance improvement if the TTA
method adapts to the shifted label distribution. Therefore,
AODS is of great importance and remains challenging.

To address the AODS problem, we first analyze the rela-
tionship between classification error and distribution shifts.
We discover that adapting the feature representation and
optimizing the model prediction according to estimated la-
bel distribution help reduce the classification error. Moti-
vated by this theoretical analysis, we hence present Open-
world Data Shift adaptation (ODS), a generic framework
for simultaneously adapting a model to changing covari-
ate and label distributions in the testing phase. Different
from previous TTA methods that either neglect the chang-
ing label distribution (Wang et al., 2021; Niu et al., 2022)
or forcibly balance it (Gong et al., 2022), ODS tracks label
distribution and then take full advantage of it. Specifically,
ODS contains two essential modules: Distribution Tracker
MT for estimating the label distribution wt at each times-
tamp t and Prediction Optimizer MO for optimizing the
model predictions based on the estimated label distribu-
tion. On one hand, we handle the adverse effects caused
by shifted Dt(Y ) with the help of wt in an adaptive adap-

tation formulation. On the other hand, we optimize the
model prediction to be optimal, making it consistent with
the corresponding distribution. Furthermore, the proposed
ODS framework is applicable to many TTA methods. The
integrated TTA methods and two essential modules jointly
optimize to improve test-time performance.

The contributions of this paper are as follows:

1) We investigate a novel problem of tuning the model to
accommodate both covariance and label changes during
the testing, which is practical in real-world applications.

2) Based on our theoretical analysis, we propose a new
TTA framework. It efficiently adapts the model to open-
world data shift through two basic modules and can be
easily integrated with many existing TTA algorithms.

3) We evaluate the algorithm on multiple benchmarks with
varying degrees of shifts, which shows that the pro-
posed scheme significantly outperforms state-of-the-art
TTA methods.

2. Problem and Analysis
In this section, we first describe the notations and problem
formulation of AODS. Then, a theoretical analysis presents
the relationship between classification error and distribu-
tion shifts, which strongly motivates our algorithm design.

2.1. Problem Formulation

We focus on the multi-class classification with input space
X ∈ Rd and label space Y = [K] , {1, . . . ,K}, where d
and K represent input dimensions and number of classes,
respectively. Accordingly, we use X,Y, Z to denote ran-
dom variables of samples, labels, and feature representa-
tions. Dt(X),Dt(Y ), andDt(X,Y ) indicate covariate dis-
tribution, label distribution, and joint distribution at each
timestamp t, respectively.

In AODS problem, we are given a source model fθ0 : X 7→
Y well trained on class-balanced source data D0(X,Y )
with initial parameters θ0. The probability of prediction
is denoted as fθ0(Y |X) : X 7→ RK . We deploy the model
into the actual applications, where covariate distribution
Dt(X) and label distribution Dt(Y ) constantly change. At
each timestamp t, the model gives the predictions and then
continually evolves its parameter θt → θt+1 using unla-
beled testing data. The goal of AODS is to simultaneously
adapt the model to the time-varying covariate distribution
Dt(X) and label distribution Dt(Y ), namely open-world
data shift, for better performance in the testing phase.

Without prior knowledge or assumptions, it is impossible
to adapt the source model to changing distributions. Fol-
lowing previous studies (des Combes et al., 2020; Wang
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et al., 2022a), we consider the data distribution periodically
changes under generalized label shift in AODS problem:
Definition 2.1 (Generalized Label Shift, GLS). Both co-
variate distribution D0(X) 6= Dt(X) and label distribution
D0(Y ) 6= Dt(Y ) change. Meanwhile, there exists a feature
representation Z = g?(X) satisfies

D0(Z|Y = y) = Dt(Z|Y = y),∀y ∈ Y (1)

Remark 2.2. Although Definition 2.1 allows Dt(X) and
D(Y ) to differ from the source data during testing, the
existence of an intermediate feature representation g?(X)
ensures that the TTA algorithm can maintain good perfor-
mance. Taking the example in Figure 1, samples from the
same class may differ dramatically at different moments.
If the TTA algorithm adapts the representation extractor to
g?, then it can fit the covariate distribution and track the
label distribution at each timestamp.

2.2. Problem Analysis

Empirical results in Figure 2 and Theorem 3.1 in (des
Combes et al., 2020) show that learning methods that do
not adapt to changing label distributions will increase their
classification error. To analyze the AODS problem the-
oretically, we assume that the label distribution Dt(Y ) at
each moment can be estimated by wt. Then, we optimize
the predictions by the plug-in rule introduced in (Menon
et al., 2013) to account for the changing Dt(Y ). To sim-
plify the notation, we denote the original model prediction
as Ŷ = fθt(X) on X for any model fθt . The optimized
prediction introduced above is expressed as:

Ŷo = arg max
y∈Y

fθt(Y = y|X) + lnwt,k (2)

This plug-in rule effectively corrects mismatched label dis-
tributions (Menon et al., 2021) and has good statistical
properties (Menon et al., 2013; Collell et al., 2016).

We then attempt to understand the effectiveness of the
above optimizations through theoretical analysis. Per-
formance guarantees are provided to limit the error gap
between the source data distribution D0(X,Y ) and the
data distribution Dt(X,Y ) at each timestamp t of the
adapted model. We first explain some terms as fol-
lows. Given a model fθt evaluated on data distribution
Dt(X,Y ), its error is εt(Ŷ ) = Dt(Ŷ 6= Y ) and its er-
ror of optimized prediction is εt(Ŷo) = Dt(Ŷo 6= Y ).
We define the balanced source error as BSE

(
Ŷ
)

=

max
y∈Y
D0

(
Ŷ 6= y|Y = y

)
and conditional error gap be-

tween D0(X,Y ) and Dt(X,Y ) as

∆CE(Ŷ ) = max
y 6=y′∈Y

|D0(Ŷ = y′|Y = y)−Dt(Ŷ = y′|Y = y)|

(3)

BSE(Ŷ ) measures the model performance of fθt on
source data D0(X,Y ). ∆CE(Ŷ ) measures the generaliza-
tion of feature representations adapted by TTA algorithm.
When TTA algorithm adapts their feature representation
exactor to g? in Definition 2.1, ∆CE(Ŷ ) is equal to 0.

Based on the above terms, we give an upper bound on the
error gap between D0(X,Y ) and Dt(X,Y ):

Theorem 2.3. For any model fθt , the error gap∣∣∣ε0(Ŷ )− εt(Ŷo)
∣∣∣ is upper bounded by

C‖1− Dt(Y )

wt
‖1BSE

(
Ŷ
)

+ 2(K − 1)∆CE(Ŷ ) (4)

where C is a constant related to D0(Y ).

Remark 2.4. Theorem 2.3 decomposes the error gap of
fθt betweenD0(X,Y ) andDt(X,Y ). This decomposition
is more informative than a direct comparison to the opti-
mal model, since the optimal performance is unknown and
changes gradually as the distribution changes. Compared
to results in previous studies (des Combes et al., 2020), our
results additionally deal with time-varying label distribu-
tions. When we do not track the label distribution and set
wt to a uniform distribution, our theoretical results are con-
sistent with previous studies.
Remark 2.5. The first term in the upper bound contains
‖1 − Dt(Y )/wt‖1, which measures the distance between
the ground-truth label distribution Dt(Y ) and its estimate
wt, indicating that more accurate estimateswt lead to bet-
ter performance. The first term also contains BSE

(
Ŷ
)

,
which shows the relationship between the performance of
the current distribution and the performance of the source
data D0(X,Y ). This also explains why TTA methods (Niu
et al., 2022; Wang et al., 2022a), which try to prevent catas-
trophic forgetting, perform better. The second term in the
upper bound ∆CE(Ŷ ) measures the effectiveness of the
feature representation adapted by the TTA algorithm.

In summary, Theorem 2.3 motivates us to keep track of
changing label distributions, while adaptively performing
model adaptation and efficiently optimizing predictions so
that models can adapt to both covariance and label distri-
butions. The proof is shown in Appendix A.

3. Methodology
We propose the framework in this work: ODS, a general
framework that enables TTA methods to simultaneously
adapt to changing covariate and label distributions. The
dilemma in achieving this goal is that, on one hand, directly
fitting the model to the two distributions leads to severe per-
formance degradation; on the other hand, removing the ad-
verse effect of shifted label distribution instead of adapting
it makes the predictions suboptimal.
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To solve the above problems, we first propose two basic
modules of ODS motivated by Theorem 2.3:

1) Distribution Tracker MT : Given unlabeled data at
timestamp t, Mt estimates label distribution wt for
subsequent adaptation and predictive optimization.

2) Prediction Optimizer MO: Given a previously esti-
mated wt and an adjusted model fθt , MO improves
the prediction that is distributionally consistent with the
ground-truth label distribution Dt(Y ).

We can then handle data shifts for covariate and label dis-
tributions separately using the following formulas:

min
θt

1

Nt

Nt∑
i=1

K∑
k=1

S(wt)kfθt(Y = k|xi) log fθt(Y = k|xi)

s.t. wt is estimated byMT

(5)
where Nt is the number of test samples at this timestamp
and S(wt) = Normalize(1 − wt) inversely weights each
class in loss according to wt. The objective in (5) means
that we explicitly track the changing label distribution and
use it to help our test-time adaptation.

Finally, the prediction Ŷo of our framework is improved by
the moduleMO and wt estimated byMT :

Ŷo =MO (fθt(Y = k|x),wt) (6)

Equation (6) means that our framework maintains an inter-
nal model fθt that gives balanced predictions and can be
improved immediately with the help of MO and the esti-
mated label distribution wt. Eq.(2) is one implementation.

Our framework is plug-and-play with existing TTA algo-
rithms. A general schematic description of the framework
is shown in Figure 3. Below we describe in detail two of
these basic modules:MT andMO.

3.1. Distribution TrackerMT

Following the objective in (5), the first task is to estimate
the label distribution at each timestamp t. For this purpose,
Black Box Shift Estimation (BBSE) (Lipton et al., 2018)
is a powerful technique. It uses the source model fθ0 and
its statistics (i.e., the estimated confusion matrix ĈŶ ,Y ) to

estimate the label shift Dt(Y )
D0(Y ) . Let γt denote the label dis-

tribution estimated at timestamp t, which is evaluated by
fθ0 where γt = 1

Nt

∑Nt

i=1 fθ0(Y |xi). Then, BBSE gener-
ates label shift at timestamp t as follows:

Dt(Y )

D0(Y )
= Ĉ

−1
Ŷ ,Y γt (7)

In our TTA setting, we assume that the source model fθ0 is
well-trained on balanced source data. Therefore, the label
distribution wt estimated at timestamp t approximates γt.

………… …………
Data stream

Inference
Adaptation

Model PredictionLabel Distribution 𝒘!
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Prediction

Distribution 
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Model
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Figure 3. The proposed framework consists of two important parts
that estimate and exploit the label distribution at each timestamp.

However, γt is a poor approximation of the ground-truth
label distribution Dt(Y ) because the covariate distribution
changes, breaking the assumption D0(X|Y ) = Dt(X|Y ).
Note that Definition 2.1 ensures that D0(Z|Y ) =
Dt(Z|Y ), which inspires us to use the feature representa-
tion of fθt to improve the estimation effect. Specifically,
we use the semi-supervised learning technique (Zhou,
2018; Wang et al., 2022b) to optimize the label vector zi
of each sample xi, and then estimates the label distribution
through wt = 1

Nt

∑Nt

i=1 zi . Guided by the clustering as-
sumption (Grandvalet & Bengio, 2004) and the smoothing
assumption (Wagner et al., 2018), the objective optimizes
zi in an unsupervised manner using entropy loss and con-
sistency loss. The optimization objective is formalized as:

min
wt

Nt∑
i=1

z>i log fθ0(Y |xi) + z>i log zi −
Nt∑
j=1

sijz
>
i zj


s.t. wt =

1

Nt

Nt∑
i=1

zi

(8)
satisfying constraints 1>zi = 1,∀i ∈ {1, . . . , Nt}. si,j is
the similarity between xi and xj measured on feature rep-
resentations of newly adapted fθt . We adopt the iterative
solution yielded by (Boudiaf et al., 2022; Yuille & Rangara-
jan, 2001) for efficiently solving objective in Equation (8):

z
(n+1)
i,k =

fθ0(Y |xi) exp
(∑

j si,jz
(n)
j,k

)
∑
k′ fθ0(Y |xi) exp

(∑
j sijz

(n)
j,k′

) (9)

LAME (Boudiaf et al., 2022) uses a similar idea to opti-
mize predictions. The difference is two folds: a) We are
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motivated to improve the estimation of label distribution
wt obtained by the BBSE method instead of prediction; b)
Definition 2.1 theoretically inspires us to adopt the feature
representation of the newly adapted model for optimiza-
tion. We also demonstrate empirically that the direct com-
bination of the TTA method with LAME does not achieve
satisfactory performance improvements in Section 4.4.

Furthermore, the estimates are not stable within each batch.
Therefore, we use a fixed-length FIFO queue to cache the
labels of recent samples and compute the cached average
label distributionwt. This queue only needs to store labels
and therefore consumes negligible resources. In our experi-
ments, the queue length is set to 20× the number of classes.
The overall algorithm ofMT is shown in Algorithm 1.

3.2. Prediction OptimizerMO

We introduce the detail ofMO, which uses the estimated
label distribution wt to make fθt(Y |X) consistent with
Dt(Y ). One feasible approach is to directly adopt the plug-
in solution in (2) to optimize the predictions introduced in
Section 2.2. However, this simple strategy may lead to per-
formance degradation in practice since it is not robust to er-
rors in estimatedwt, especially when the number of classes
in the target task is large.

To address the above issues, we propose a conservative ap-
proach to optimize predictions ŷi for xi. We adopt en-
semble strategy (Zhou, 2021) to take into account both the
results of the original model prediction and estimated wt

in (8). Specifically, the original prediction fθt(Y |xi) and
the intermediate result zi in (8), which represents estimated
label distribution wt, are ensembled as follows:

ŷi,k =

√
zi,kfθt(Y = k|xi)∑

k′∈Y
√
zi,k′fθt(Y = k′|xi)

(10)

Then, the prediction is optimized as follows:

Ŷo = arg max
k∈Y

ŷk (11)

This optimization process is efficient, and computation is
almost negligible. We discuss the performance of two
strategies in (2) and (11) in Section 4.4, as well as their
time consumption.

4. Experiments
In this section, we conduct experiments to answer the fol-
lowing three research questions:

RQ1: Whether ODS can outperform prior TTA methods
when encountering open-world data shift?

RQ2: Whether ODS is generic to integrate with different
TTA methods and boost their performance?

Algorithm 1 Distribution TrackerMT

Input: source model fθ0 , adapted model fθt , samples
x1, . . . ,xNt

Output: label distribution wt

que← Global maintained FIFO queue with fixed size
for i = 1 to Nt do
pi ← fθ0(Y = y|xi)
F i ← Feature representations of fθt(Y = y|xi)

end for
Calculate similarity si,j with {F1, . . . , FNt

}
Calculate Z = [z1; . . . ; zNt

] according to Equation (9)
for i = 1 to Nt do

Push arg max
k={1,...,K}

zi,k into que

end for
wt ← Average label distribution of que
return wt

RQ3: Does ODS accurately estimate label distribution
and effectively optimize the prediction?

4.1. Experimental Setup

Datasets. We conduct experiments on two standard TTA
benchmarks: CIFAR10-C and CIFAR100-C (Hendrycks
& Dietterich, 2019). For experiments on the CIFAR
dataset, We train the source model on the clean CI-
FAR10/CIFAR100 dataset, which has 50,000 32×32 train-
ing images associated with 10/100 classes. Then, we
test each TTA method on the CIFAR10-C/CIFAR100-C
dataset, which contains 15 corrupt testing sets belonging
to four categories. Similar to previous studies (Gong et al.,
2022; Wang et al., 2021; 2022a), we report the results eval-
uated on the most severe corruption level of 5. To con-
struct the shifted label distribution in benchmark datasets,
we employ the tweak-one shift introduced in the previous
study (Guo et al., 2020). For each corruption type, we
will set the probability of one or several selected classes
to appear γ times that of other classes to simulate the ris-
ing probability of certain classes in different scenarios. We
conduct experiments with three distribution shift settings,
i.e., γ = 2, γ = 5, and γ = 10. The detailed experimental
setup is presented in Appendix B.

Compared Methods. We compare our ODS with the vari-
ous TTA algorithms, including typical TTA methods, con-
tinual TTA methods, and recently proposed robust TTA
methods. Specifically, for typical TTA methods, we take
a wide range of studies into comparison: Test-time nor-
malization (Schneider et al., 2020) (BN STATS) updates
the statistics of BN layers from the batch of test sam-
ples; Test entropy minimization (Wang et al., 2021) (TENT)
further updates the parameters of BN layers with entropy
minimization loss; Efficient anti-forgetting test-time adap-
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Table 1. Comparison with state-of-the-art TTA methods on CIFAR10 dataset with severity level 5 and γ = 10. We omit std in this table
due to space issues. The bold number indicates the best results. ODS outperforms comparison methods on almost all corruptions.

METHODS
NOISE BLUR WEATHER DIGITAL AVG.GAUSS. SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIT. CONTR. ELASTIC PIXEL JPEG

SOURCE 14.70 18.52 15.61 56.92 31.99 68.01 63.25 82.19 72.44 76.31 92.41 23.38 72.33 68.72 79.72 55.77
BN STATS 50.60 51.16 45.31 71.73 47.99 69.35 68.59 60.16 60.39 64.27 69.60 67.56 59.21 66.12 58.17 60.68
TENT 53.53 60.97 59.34 63.33 47.12 65.81 68.11 55.08 55.00 58.68 63.40 49.59 46.95 50.45 45.38 56.18
EATA 48.94 48.21 42.05 65.44 43.42 59.81 57.27 55.09 52.98 56.00 59.54 61.47 51.32 55.75 50.88 53.88
LAME 57.99 60.15 53.07 78.83 53.04 76.67 74.90 67.81 67.30 71.94 77.05 74.84 68.53 73.44 66.90 68.16
COTTA 57.43 60.06 56.03 66.66 52.25 66.54 66.65 58.32 58.92 60.09 64.69 55.05 59.37 64.74 61.92 60.58
NOTE 51.90 54.57 68.38 84.29 50.53 88.97 86.21 86.15 86.68 83.27 86.48 90.64 77.84 80.77 81.02 77.18

ODS 67.45 65.78 71.88 88.66 56.32 90.48 88.09 86.16 86.93 83.96 87.37 91.16 79.35 84.43 82.02 80.67

tation (Niu et al., 2022) (EATA) performs active sample
selection for adaptation to simultaneously achieve both
high adaptation efficiency and strong predicting perfor-
mance. For continual TTA methods, we compare one
typical approach: Continual test-time adaptation (Wang
et al., 2022a) (COTTA) eliminates the prediction error ac-
cumulated in the data stream via weight-and-augmentation-
averaged pseudo-labels and parameters stochastic restora-
tion. For robust TTA methods, we take two recently
proposed SOTA methods into comparison: Laplacian ad-
justed maximum-likelihood estimation (Boudiaf et al.,
2022) (LAME) adopts a conservative adaptation approach
that modifies the model’s outputs rather than the model’s
parameters during testing; Non-i.i.d. test-time adaptation
scheme (Gong et al., 2022) (NOTE) proposes instance-
aware batch normalization and prediction-balanced reser-
voir sampling to alleviate the unexpected effects of non-
i.i.d. data streams.

Implementation Details. For all experiments, we adopt
the ResNet18 (He et al., 2016) as the backbone since it is
commonly used in previous studies (Boudiaf et al., 2022;
Gong et al., 2022). We train the source model with batch
size 256 for 200 epochs. The SGD optimizer optimizes
each model with a learning rate of 0.1 using a cosine an-
nealing schedule. For test-time adaptation, we set the batch
size to 64 following previous studies (Wang et al., 2022a;
Niu et al., 2022). For all comparison methods, we use their
original hyperparameter in their paper. We report mean ±
std accuracy over five runs with random seed setting to 0,
1, 2, 3, 4. This work uses the Huawei MindSpore platform
for experimental testing partially. The other implementa-
tion details are presented in Appendix B.

4.2. Empirical Results

RQ1: Whether ODS can outperform prior TTA methods
when encountering open-world data shift?

Our framework can integrate with many TTA methods. To
demonstrate the effectiveness of ODS, we combine our pro-
posal with the SOTA robust TTA method NOTE (Gong
et al., 2022) to answer this question. Table 1 gives the de-

tailed results on CIFAR-10 dataset with shift level γ = 10.
We continually evaluate each method on all corruptions
in order. The results show that ODS consistently outper-
forms existing TTA methods on almost every corruption
and achieves 3.71% accuracy improvement compared to
the SOTA method NOTE. We also evaluate ODS and com-
parison methods on CIFAR-10 and CIFAR-100 datasets
with three shift levels. Table 2 and Table 3 show that ODS
gives the best and most stable performance no matter the
level of label shift because it actively tracks the label distri-
bution and optimizes the prediction. While the other meth-
ods suffer from performance degradation when the shift
level of label distribution changes. Although COTTA per-
forms better than ODS on the CIFAR10 dataset with γ = 2,
ODS still gives competitive results.

Table 2. Comparison with state-of-the-art TTA methods on CI-
FAR10 dataset with three shift levels. Bold indicates the best.

METHODS γ = 2 γ = 5 γ = 10

SOURCE 56.41 ± 0.05 56.12 ± 0.07 55.77 ± 0.16
BN STATS 78.33 ± 0.05 71.75 ± 0.08 60.68 ± 0.14
TENT 68.85 ± 3.14 66.94 ± 3.52 56.18 ± 4.13
EATA 79.35 ± 0.16 69.23 ± 0.25 53.88 ± 0.53
LAME 78.96 ± 0.05 75.20 ± 0.10 68.16 ± 0.13
COTTA 81.81 ± 0.37 73.58 ± 0.28 60.58 ± 0.15
NOTE 78.81 ± 0.27 77.96 ± 0.75 77.18 ± 0.38

ODS 81.13 ± 0.09 80.40 ± 0.36 80.67 ± 0.29

RQ2: Whether ODS is generic to integrate with different
TTA methods and boost their performance?

To validate the universality of our framework, we apply
ODS to three representative TTA methods: 1) TENT, a typ-
ical TTA method; 2) COTTA, a continual TTA method; 3)
NOTE, current SOTA robust TTA method. The detailed re-
sults of each corruption are shown in Figure 4. ODS frame-
work can consistently boost the performance of three TTA
methods when we continually evaluate them on different
corruptions. Table 4 presents the average results on dif-
ferent shift levels, demonstrating the effectiveness of the
proposed ODS framework.
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Figure 6. The confusion matrix
of NOTE on CIFAR10 dataset.
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Figure 7. The confusion matrix
of ODS on CIFAR10 dataset.

Table 3. Comparison with state-of-the-art TTA methods on CI-
FAR100 dataset with three shift levels. Bold indicates the best.

METHODS γ = 2 γ = 5 γ = 10

SOURCE 32.71 ± 0.15 32.71 ± 0.18 32.75 ± 0.14
BN STATS 52.69 ± 0.20 52.82 ± 0.08 52.76 ± 0.15
TENT 40.07 ± 2.35 51.39 ± 0.59 52.95 ± 0.17
EATA 43.68 ± 18.16 45.12 ± 15.79 48.99 ± 7.79
LAME 52.49 ± 0.25 52.51 ± 0.24 52.62 ± 0.21
COTTA 47.74 ± 0.59 50.48 ± 0.57 51.72 ± 0.47
NOTE 50.34 ± 0.11 48.41 ± 0.33 47.06 ± 0.35

ODS 56.86 ± 0.18 56.43 ± 0.21 55.83 ± 0.23

Table 4. Average performance of existing TTA methods w/ and
w/o ODS framework. The bold number indicates the best result.
ODS can consistently improve the performance of TTA methods.

METHODS γ = 2 γ = 5 γ = 10

TENT 68.85 ± 3.14 66.94 ± 3.52 56.18 ± 4.13
TENT W/ ODS 69.00 ± 5.96 73.56 ± 2.85 66.03 ± 1.89

COTTA 81.81 ± 0.37 73.58 ± 0.28 60.58 ± 0.15
COTTA W/ ODS 82.11 ± 0.25 79.74 ± 0.32 74.72 ± 0.64

NOTE 78.81 ± 0.27 77.96 ± 0.75 77.18 ± 0.38
NOTE W/ ODS 81.13 ± 0.09 80.40 ± 0.36 80.67 ± 0.29

RQ3: Does ODS accurately estimate label distribution and
effectively optimize the prediction?

We conduct experiments on CIFAR10 dataset with γ = 10
to investigate the above question. First, we compare the es-
timation error of the three methods: 1) NOTE, the current
SOTA robust TTA method; 2) LAME, a conservative ro-
bust TTA method; 3) ODS, our proposed framework com-
bined with NOTE. For these three methods, we employ the
same FIFO queue to compute mean label distribution as
described in Section 3.1. We adopt KL-divergence (Joyce,
2011) to measure the error between ground-truth label dis-
tributionDt(Y ) and estimated label distributionwt at each
timestamp t. Figure 5 demonstrates that ODS can estimate

Table 5. Average results of three TTA methods w/ and w/o each
module of ODS framework. The results show that the best results
are achieved when combing both modules.

MODULES TENT COTTA NOTEMT MO

56.18 ± 4.13 60.58 ± 0.15 77.18 ± 0.38
X 58.95 ± 2.36 60.65 ± 0.31 77.20 ± 0.57
X X 66.03 ± 1.89 74.72 ± 0.64 80.67 ± 0.29

label distribution more accurately than the other two meth-
ods at each timestamp t. Overall, ODS gives 0.066 KL-
divergence on average, which is significantly better than
0.135 for NOTE and 0.134 for LAME. Then, we com-
pare the confusion matrix of NOTE and ODS. Figure 6
and 7 show that ODS gives more accurate prediction for all
classes compared to NOTE. This suggests that ODS frame-
work can optimize the prediction effectively, aided by the
estimated label distribution vector wt.

4.3. Ablation Study

We investigate the contribution of each module of ODS on
the CIFAR10 dataset with γ = 10. We combine ODS
framework with three TTA methods, and the results are
shown in Table 5. The first row gives the performance of
the original TTA methods. Then, MT is added to each
method to track the label distribution and perform adap-
tively adaptation in the second row. Performance of TENT
improves becauseMT helps it tackle the imbalanced adap-
tation problem. COTTA and NOTE remain the same be-
cause they already adopt techniques for the non-i.i.d. data
streams, e.g., anti-forgetting strategy and class-balanced
data buffer. Finally, we show the performance of the en-
tire ODS framework in the third row. MO utilizes the la-
bel distribution estiamted by MT , and thereby enhancing
the final performance. The results show that ODS signifi-
cantly improves the performance of existing TTA methods,
suggesting that the two modules, i.e., MT and MO, are
crucial to our framework.
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4.4. More Discussion

Different implementations ofMO In Section 2.2, we first
present a straightforward implementation for optimizing
the predictions, which adjusts probabilities according to
wt in (2). Then, a conservative but robust implementation
is proposed in Section 3.2 to get better results in practi-
cal applications. We denote these two implementations as
Statistics Optimization (SO) and Distribution Optimization
(DO). Table 6 gives the performance of two MO imple-
mentations on CIFAR10C dataset with γ = 10. The re-
sults in the second column are consistent with the theoreti-
cal analysis in Section 2.2, and the third column proves that
the implementation in Section 3.2 can give better results.

Table 6. Performance and wall-clock time of ODS with different
MO on CIFAR10 dataset.

NOTE ODS W/ SO ODS W/ DO

PERFORMANCE 77.18 ± 0.38 79.50 ± 0.31 80.67 ± 0.29
AVG. TIME 0.1034S (100%) 0.1150S (111%) 0.1156S (112%)

Time Consumption. We analyze the time consumption
of the ODS framework, using different implementations of
MO. The last row of Table 6 reports the running time of
each algorithm when making predictions on 1,900 images.
The results show that ODS framework can significantly im-
prove performance with only an additional 12% of time.
Moreover, we analyze the time consumption of the COTTA
method, which has good performance in our experiments.
However, it is time-consuming due to the multiple augmen-
tations during test time. Under the same setting, its average
running time is 0.9148s. The results indicate that COTTA
takes about 7 times longer than our proposed ODS frame-
work. Therefore, these experiments prove that two versions
of our proposed ODS framework are efficient and effective.

In-depth Comparison with LAME. LAME can revise
the predictions of the model without adapting itself. A
natural question is whether directly combining LAME with
TTA methods can achieve similar improvement as our pro-
posal. We compare ODS with the combination of LAME
and NOTE on the CIFAR10 dataset. The combination can
only improve the performance when γ = 10 while giving
negative effects on other situations. ODS framework con-
sistently improves the performance benefiting from MT

andMO to estimate label distribution better and optimize
the prediction, respectively.

5. Related Work
Test-time Adaptation. Test-time adaptation aims to
adapt a source model to the distribution shift in testing data
without using any source data. Test-time training stud-
ies, e.g, TTT (Sun et al., 2020), TTT+ (Liu et al., 2021),

Table 7. Comparison with ODS and combination of LAME and
NOTE methods on CIFAR10 dataset. Bold indicates the best. Un-
derline indicates degraded results. The direct combination does
not always work, while ODS gives stable performance gains.

NOTE NOTE+LAME ODS

γ=2 78.81 ± 0.27 77.32 ± 0.17 81.13 ± 0.09
γ=5 77.96 ± 0.75 76.76 ± 0.67 80.40 ± 0.36
γ=10 77.18 ± 0.38 78.43 ± 0.77 80.67 ± 0.29

MT3 (Bartler et al., 2022), operate both model training and
testing process. They additionally optimize self-supervised
objectives at training time and adapt the model parame-
ters via optimized self-supervised objectives at test time.
However, these studies assume that the training phase is
controllable, which limits the scope of applications. Fully
test-time adaptation tackles the above limitation, adapt-
ing the model without assumptions on the source model.
TENT (Wang et al., 2021) introduces entropy minimiza-
tion to update the BN layers at test time. EATA (Niu
et al., 2022) additionally proposes the sample selection and
weighting strategies for efficiency. Other studies (Nado
et al., 2020; Zhang et al., 2021; Goyal et al., 2022) also
re-calibrate BN layers to ensure the performance at the
testing phase. In practice, the deployed model continually
works under non-i.i.d. scenarios. COTTA (Wang et al.,
2022a) adopts the weight-averaged model, augmentation-
averaged prediction, and stochastically restore to enable
the continual adaptation ability in changing environments.
LAME (Boudiaf et al., 2022) proposes a conservative ap-
proach, which revises the predictions without adapting
the model. NOTE (Gong et al., 2022) adopts instance-
aware batch normalization and prediction-balanced reser-
voir sampling to ensure robustness under non-i.i.d. sce-
narios. Some other studies (Niu et al., 2023; Yuan et al.,
2023) also consider TTA in the practical scenarios. They
play roles in promoting the deployment of the TTA method
in practical applications. Our paper focuses on test-time
adaptation settings where covariate and label distributions
change together, and provides theoretical insights.

Distribution Shift. Covariate shift (Huang et al., 2006;
Ruan et al., 2022; Zadrozny, 2004) assumes that the condi-
tional distribution is constant, and marginal covariate dis-
tribution changes. In contrast, label shift (Alexandari et al.,
2020; Azizzadenesheli et al., 2019; Zhao et al., 2021) stud-
ies cases where the class-conditional distribution remains
the same, but the marginal label distribution changes. Some
studies (des Combes et al., 2020; Luo & Ren, 2022) extend
the label shift assumption to the generalized label shift as-
sumption, which allows both covariate and label distribu-
tions to change together under specific constraints. Numer-
ous studies tackle the above problems from the perspec-
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tive of causal (Schölkopf et al., 2012), maximum mean dis-
crepancy (Gretton et al., 2012), Wasserstein distance (Chen
et al., 2018), etc. Our study adopts the generalized label
shift assumption, but the difference is that existing stud-
ies (des Combes et al., 2020) mainly focus on handling the
distribution shift offline with plenty of data, while our study
adapts to the distribution shift at test time with limited data.
Thus, our setting is practical yet challenging.

Online Label Shift. Learning from data streams (Zhou,
2023) cannot ignore that the incoming data stream can be
potentially endless with unknown changes, e.g., label shift.
Online Label shift studies the setting where the test-time la-
bel distribution continually changes, and the model should
dynamically adapt to the shift without observing the true la-
bels. One prior study (Wu et al., 2021) proposes adaptation
algorithms based on classical online learning techniques.
ATLAS (Bai et al., 2022) proposes an online ensemble al-
gorithm (Zhao et al., 2022) for dealing with changing label
distribution, which provides provable guarantees. How-
ever, these studies ignore the covariate shift, which usu-
ally exists in continually changing environments. There-
fore, they can not effectively deal with the practical situa-
tion studied in this paper.

6. Conclusion
In this paper, we study the AODS problem where both
covariate and label distributions change during the testing
phase. Our goal is to adapt the source model to this open-
world data shift. We address this problem by first theo-
retically analyzing the relationship between classification
error and distribution shifts. Motivated by our analysis, we
introduce a generic TTA framework ODS that tracks the
dynamic label distribution while performing model adap-
tation adaptively and optimizing the prediction efficiently.
ODS is generic to integrate with existing TTA methods
and achieves consistent performance gains on benchmark
datasets with varying degrees of label distribution shifts.
Experiment results demonstrate the superior performance
of ODS over the SOTA methods. Our work can motivate
researchers in two directions. Adaptation to real-world dis-
tribution changes deserves further exploration due to its
broad range of applications. In-depth theoretical studies
are needed to help better design TTA algorithms.

One limitation of our framework is it cannot achieve the
SOTA performance when no label distribution shift exists.
Nevertheless, our ODS framework is still capable of achiev-
ing comparable performance in this scenario. In our future
work, we will focus on designing a robust algorithm that
delivers SOTA performance irrespective of label distribu-
tion. Moreover, it is also interesting to study how to incor-
porate the test-time adaptation to facilitate the generaliza-

tion of the large pre-trained vision-language models.
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A. Proof of Theorem 2.3
To simplify the notations, we define γ0 = D0(Y ) and γt = Dt(Y ), representing the label distribution at each timestamp.
Note that we assume that source data distribution is class-balanced. Therefore, γ0 also represents a uniform distribution γ.

Proof. First, we derive the following equality based on the law of total probability:∣∣∣ε0(Ŷ )− εt(Ŷo)
∣∣∣

=
∣∣∣D0(Ŷ 6= Y )−D0(Ŷo 6= Y )

∣∣∣
=

∣∣∣∣∣∣
∑
i6=j

D0(Ŷ = i, Y = j)−
∑
i6=j

D0(Ŷ0 = i, Y = j)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i6=j

γ0,jD0(Ŷ = i|Y = j)−
∑
i6=j

γt,jDt(Ŷo = i|Y = j)

∣∣∣∣∣∣

(A.1)

Then, we can bound the above error gap:∣∣∣ε0(Ŷ )− εt(Ŷo)
∣∣∣

=

∣∣∣∣∣∣
∑
i6=j

γ0,jD0(Ŷ = i|Y = j)−
∑
i6=j

γt,jDt(Ŷo = i|Y = j)

∣∣∣∣∣∣
≤
∑
i 6=j

∣∣∣γ0,jD0(Ŷ = i|Y = j)− γt,jDt(Ŷo = i|Y = j)
∣∣∣

(A.2)

According to the (8) in (Menon et al., 2021), Ŷ0 gives the following equation:

Dt(Ŷo = j|Z) =
wt,j
γj
Dt(Ŷ = j|Z)

Dt(Ŷo = j|Z)Dt(Z|Y ) =
wt,j
γj
Dt(Ŷ = j|Z)Dt(Z|Y )

Dt(Ŷo = j|Y ) =
wt,j
γj
Dt(Ŷ = j|Y )

(A.3)

Combining (A.2) and (A.3), we can bound the error gap by:∣∣∣ε0(Ŷ )− εt(Ŷo)
∣∣∣ ≤∑

i 6=j

∣∣∣∣γ0,jD0(Ŷ = i|Y = j)− γj
γt,j
wt,j
Dt(Ŷ = i|Y = j)

∣∣∣∣ (A.4)

Invoking Lemma A.2 in (des Combes et al., 2020) to bound the above term, we have:∣∣∣ε0(Ŷ )− εt(Ŷo)
∣∣∣

≤
∑
i 6=j

γj |1−
γt,j
wt,j
| ·
(
αjD0(Ŷ = i|Y = j) + βjDt(Ŷ = i|Y = j)

)
+ γ0,j∆CE(Ŷ ) + γj

γt,j
wt,j

∆CE(Ŷ )

=
∑
i 6=j

γj |1−
γt,j
wt,j
| ·
(
αjD0(Ŷ = i|Y = j) + βjDt(Ŷ = i|Y = j)

)
+ 2(K − 1)∆CE(Ŷ )

(A.5)

where αj , βj are some non-negative constants satisfying αj + βj = 1. We can set αj = 1, βj = 0,∀j ∈ [K] and then use
Holder’s inequality: ∣∣∣ε0(Ŷ )− εt(Ŷo)

∣∣∣
≤
∑
i 6=j

γj |1−
γt,j
wt,j
| · D0(Ŷ = i|Y = j) + 2(K − 1)∆CE(Ŷ )

≤C‖1− γt
wt
‖1 ·BSE(Ŷ ) + 2(K − 1)∆CE(Ŷ )

(A.6)
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Table 8. Performance on CIFAR10 dataset with no label distribution shifts. Bold indicates best.

METHODS
NOISE BLUR WEATHER DIGITAL AVG.GAUSS. SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIT. CONTR. ELASTIC PIXEL JPEG

SOURCE
24.27
± 0.00

30.36
± 0.00

20.66
± 0.00

57.62
± 0.00

47.19
± 0.00

65.50
± 0.00

64.41
± 0.00

77.19
± 0.00

62.92
± 0.00

71.31
± 0.00

91.11
± 0.00

35.23
± 0.00

76.22
± 0.00

49.65
± 0.00

74.30
± 0.00 56.53

BN STATS
69.28
± 0.25

71.82
± 0.05

62.29
± 0.24

87.39
± 0.15

66.48
± 0.13

85.65
± 0.03

87.19
± 0.17

81.96
± 0.13

81.13
± 0.16

85.10
± 0.09

91.01
± 0.12

86.03
± 0.11

77.14
± 0.16

79.66
± 0.32

72.62
± 0.28 78.98

TENT
74.78
± 0.70

77.10
± 0.93

63.86
± 2.04

72.16
± 3.31

53.72
± 2.24

58.05
± 4.67

57.79
± 5.75

53.05
± 4.57

49.17
± 5.64

47.51
± 5.94

47.49
± 6.61

40.02
± 7.91

34.40
± 8.19

35.06
± 10.95

30.92
± 10.14 53.01

EATA
73.77
± 0.45

76.75
± 0.55

65.61
± 0.47

87.42
± 0.24

67.84
± 0.51

85.52
± 0.21

87.53
± 0.13

82.99
± 0.27

82.11
± 0.28

85.47
± 0.32

91.16
± 0.15

85.95
± 0.20

77.57
± 0.30

81.23
± 0.47

74.71
± 0.45 80.38

LAME
69.51
± 0.23

72.07
± 0.22

62.12
± 0.18

87.60
± 0.10

66.35
± 0.07

86.04
± 0.05

87.51
± 0.12

82.26
± 0.17

81.46
± 0.17

85.41
± 0.04

91.31
± 0.13

86.24
± 0.12

77.50
± 0.19

80.02
± 0.20

72.85
± 0.10 79.22

COTTA 77.54
± 0.19

80.17
± 0.33

75.44
± 0.41

87.55
± 0.44

74.77
± 0.19

85.41
± 0.24

87.01
± 0.29

83.11
± 0.20

83.24
± 0.36

84.34
± 0.35

88.74
± 0.37

83.84
± 0.37

80.00
± 0.45

83.42
± 0.21

80.53
± 0.36 82.34

NOTE
65.19
± 0.78

77.98
± 0.32

68.34
± 0.81

78.51
± 1.01

67.58
± 0.50

85.60
± 0.15

87.75
± 0.55

85.08
± 0.19

85.84
± 0.54

84.56
± 0.59

91.55
± 0.19

90.82
± 0.42

79.32
± 0.39

75.82
± 1.07

76.65
± 0.83 80.04

ODS+ TENT
74.56
± 0.53

77.60
± 1.90

66.00
± 3.49

77.52
± 5.45

59.57
± 6.25

67.31
± 9.00

68.38
± 10.39

64.65
± 9.80

60.14
± 8.52

58.15
± 8.57

59.25
± 11.24

47.64
± 10.54

46.01
± 8.72

45.18
± 9.24

39.67
± 8.18 60.77

ODS+ COTTA 73.88
± 0.55

77.15
± 0.22

67.31
± 0.65

88.64
± 0.16

70.89
± 0.21

87.38
± 0.05

88.90
± 0.11

84.32
± 0.20

84.24
± 0.26

86.76
± 0.11

91.81
± 0.16

87.90
± 0.26

80.78
± 0.23

83.89
± 0.13

78.08
± 0.17 82.13

ODS+ NOTE
69.23
± 0.44

77.47
± 0.36

68.24
± 0.40

84.60
± 0.26

69.00
± 0.40

87.91
± 0.26

88.72
± 0.25

86.36
± 0.19

87.17
± 0.13

86.33
± 0.29

92.18
± 0.18

92.54
± 0.12

80.54
± 0.35

80.32
± 0.81

77.38
± 0.78 81.87

Table 9. Performance on the CIFAR100 dataset with no label distribution shifts. Bold indicates best.

METHODS
NOISE BLUR WEATHER DIGITAL AVG.GAUSS. SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIT. CONTR. ELASTIC PIXEL JPEG

SOURCE
11.88
± 0.00

13.91
± 0.00

6.61
± 0.00

32.74
± 0.00

21.58
± 0.00

42.45
± 0.00

40.24
± 0.00

45.04
± 0.00

33.34
± 0.00

40.01
± 0.00

65.93
± 0.00

17.43
± 0.00

51.37
± 0.00

23.92
± 0.00

44.30
± 0.00 32.72

BN STATS
39.81
± 0.17

40.66
± 0.17

33.84
± 0.22

64.18
± 0.25

41.73
± 0.27

62.01
± 0.16

64.16
± 0.28

52.69
± 0.21

53.16
± 0.11

56.60
± 0.21

67.24
± 0.13

61.32
± 0.11

53.15
± 0.33

56.07
± 0.35

43.46
± 0.06 52.67

TENT
49.27
± 0.75

50.37
± 0.93

38.18
± 1.19

42.94
± 2.42

28.46
± 2.54

28.47
± 3.08

25.68
± 4.68

16.30
± 4.17

10.91
± 3.42

7.57
± 2.43

6.37
± 2.32

3.35
± 0.97

3.73
± 0.81

3.36
± 0.64

2.95
± 0.52 21.19

EATA
41.82
± 0.80

36.55
± 13.90

27.68
± 12.85

50.80
± 24.57

32.58
± 15.42

49.00
± 23.67

50.80
± 24.47

42.42
± 20.31

42.22
± 20.24

45.71
± 22.21

53.26
± 25.92

48.99
± 23.99

41.40
± 20.18

45.49
± 22.26

35.88
± 17.43 42.97

LAME
38.35
± 0.38

39.23
± 1.06

31.67
± 0.61

64.54
± 0.29

40.83
± 0.33

62.41
± 0.18

64.48
± 0.28

52.74
± 0.33

53.08
± 0.37

56.44
± 0.23

67.82
± 0.09

61.69
± 0.21

53.26
± 0.39

56.47
± 0.29

42.75
± 0.18 52.39

COTTA 45.80
± 0.85

45.74
± 1.15

41.04
± 0.98

52.69
± 0.89

41.86
± 0.98

47.82
± 1.15

48.09
± 0.98

42.27
± 1.04

41.77
± 1.14

39.00
± 1.04

47.06
± 1.02

39.83
± 0.87

40.33
± 0.87

42.31
± 1.08

39.72
± 0.90 43.69

NOTE
35.99
± 0.79

49.45
± 0.55

40.82
± 0.19

51.85
± 1.32

41.81
± 0.42

60.46
± 0.81

62.59
± 0.38

56.57
± 0.24

59.76
± 0.21

54.55
± 0.77

64.71
± 0.63

60.88
± 0.51

51.79
± 0.42

48.67
± 2.07

48.03
± 0.76 52.53

ODS+ TENT
48.16
± 0.30

52.72
± 0.48

42.54
± 0.40

57.91
± 0.77

37.13
± 1.28

44.48
± 1.90

40.16
± 2.78

26.30
± 2.54

19.56
± 2.86

15.82
± 2.75

17.07
± 3.21

9.76
± 1.24

8.04
± 0.80

7.68
± 0.43

5.00
± 0.48 28.82

ODS+ COTTA 44.23
± 0.35

46.49
± 0.42

40.84
± 0.54

65.21
± 0.37

47.11
± 0.43

63.25
± 0.21

64.76
± 0.17

55.55
± 0.36

55.64
± 0.39

57.56
± 0.18

67.49
± 0.23

61.36
± 0.08

55.87
± 0.33

58.91
± 0.18

48.99
± 0.31 55.55

ODS+ NOTE
44.25
± 0.45

49.11
± 0.40

40.97
± 0.43

64.54
± 0.28

46.02
± 0.27

65.95
± 0.19

65.43
± 0.10

60.13
± 0.32

61.68
± 0.26

59.38
± 0.28

70.87
± 0.07

69.56
± 0.19

57.89
± 0.12

58.55
± 0.76

51.11
± 0.46 57.70

where C is one constant related the D0(Y ).

B. Experimental Details
All experiments are repeatedly conducted with one NVIDIA GeForce RTX 3090 GPU with a random seed setting from 0
to 4. In this section, we introduce baseline implementations and dataset details as follows.

For all comparison methods, we referred to their official implementation and reported hyperparameters in their original
paper. If the hyperparameters on the corresponding dataset are not provided for one method, we will further tune the hyper-
parameters for it. Following previous study (Wang et al., 2022a), each method is optimized by Adam Optimizer (Kingma
& Ba, 2015) if not specifically stated. For ODS, we adopt the same hyperparameters as LAME for calculating the similarity
between samples. The details are shown as follows:

• TENT (Wang et al., 2021) sets the learning rate to 0.001 for all datasets. All experiments about TENT are implemented
based on their official code1.

• EATA (Niu et al., 2022) sets the learning rate to 0.005 for all datasets. The entropy constant E0 is set to 0.4 ln 10 for
CIFAR10 dataset and 0.4 ln 100 for CIFAR100 datases. The threshold ε is set to 0.4 for CIFAR10 and CIFAR100
datasets. In the experiments, we adopt source data for calculating weight importance to measure the upper bound of
its performance. Implementation is referred to official code2.

• LAME (Boudiaf et al., 2022) adopts the RBF kernel to calculate the similarity between samples. For the CIFAR10
dataset, the KNN hyperparameter is set to 5. For the CIFAR100 dataset, the KNN hyperparameter is set to 2. Imple-

1https://github.com/DequanWang/tent
2https://github.com/mr-eggplant/EATA
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Table 10. Detailed results of Table 1

METHODS
NOISE BLUR WEATHER DIGITAL AVG.GAUSS. SHOT IMPUL. DEFOC. GLASS MOTION ZOOM SNOW FROST FOG BRIT. CONTR. ELASTIC PIXEL JPEG

SOURCE
14.70
± 0.28

18.52
± 0.27

15.61
± 0.66

56.92
± 0.75

31.99
± 0.81

68.01
± 0.67

63.25
± 0.83

82.19
± 0.53

72.44
± 0.31

76.31
± 0.43

92.41
± 0.70

23.38
± 0.45

72.33
± 0.61

68.72
± 0.63

79.72
± 0.36 55.77

BN STATS
50.60
± 0.65

51.16
± 0.36

45.31
± 0.47

71.73
± 0.68

47.99
± 0.58

69.35
± 0.56

68.59
± 0.62

60.16
± 0.71

60.39
± 0.55

64.27
± 0.40

69.60
± 0.62

67.56
± 0.71

59.21
± 0.47

66.12
± 0.47

58.17
± 0.38 60.68

TENT
53.53
± 1.45

60.97
± 1.29

59.34
± 2.15

63.33
± 2.53

47.12
± 4.22

65.81
± 5.37

68.11
± 6.84

55.08
± 3.88

55.00
± 4.83

58.68
± 5.35

63.40
± 7.06

49.59
± 4.28

46.95
± 5.94

50.45
± 9.98

45.38
± 10.49 56.18

EATA
48.94
± 0.60

48.21
± 0.88

42.05
± 0.79

65.44
± 1.54

43.42
± 1.73

59.81
± 1.20

57.27
± 1.01

55.09
± 1.60

52.98
± 0.99

56.00
± 1.32

59.54
± 0.92

61.47
± 1.83

51.32
± 0.35

55.75
± 1.22

50.88
± 2.23 53.88

LAME
57.99
± 0.67

60.15
± 1.28

53.07
± 1.28

78.83
± 0.68

53.04
± 0.66

76.67
± 1.04

74.90
± 0.20

67.81
± 1.23

67.30
± 0.77

71.94
± 0.50

77.05
± 0.90

74.84
± 0.86

68.53
± 0.98

73.44
± 0.78

66.90
± 0.23 68.16

COTTA 57.43
± 0.66

60.06
± 0.32

56.03
± 0.73

66.66
± 0.64

52.25
± 0.73

66.54
± 0.58

66.65
± 0.78

58.32
± 0.79

58.92
± 1.10

60.09
± 0.97

64.69
± 1.29

55.05
± 1.50

59.37
± 0.68

64.74
± 0.35

61.92
± 1.00 60.58

NOTE
51.90
± 0.91

54.57
± 2.54

68.38
± 1.33

84.29
± 1.14

50.53
± 2.11

88.97
± 0.84

86.21
± 1.35

86.15
± 0.98

86.68
± 1.08

83.27
± 1.12

86.48
± 1.51

90.64
± 0.49

77.84
± 1.51

80.77
± 1.09

81.02
± 1.10 77.18

ODS+ TENT
58.96
± 0.79

64.11
± 0.66

60.20
± 1.52

73.71
± 1.22

49.87
± 3.72

70.86
± 3.50

69.74
± 3.25

67.21
± 4.27

68.04
± 4.82

70.81
± 4.69

76.57
± 5.37

67.14
± 2.81

62.42
± 3.70

68.38
± 4.36

62.46
± 5.17 66.03

ODS+ COTTA 66.56
± 1.55

68.99
± 1.92

64.16
± 1.42

82.29
± 0.49

59.18
± 2.81

80.58
± 1.18

78.81
± 0.83

77.34
± 0.76

75.24
± 1.55

77.18
± 1.01

83.78
± 0.71

76.48
± 0.96

75.94
± 0.43

79.64
± 0.27

74.60
± 0.56 74.72

ODS+ NOTE
67.45
± 1.91

65.78
± 2.78

71.88
± 1.46

88.66
± 0.64

56.32
± 1.67

90.48
± 0.38

88.09
± 0.82

86.16
± 0.35

86.93
± 1.11

83.96
± 0.82

87.37
± 0.58

91.16
± 0.54

79.35
± 1.27

84.43
± 0.57

82.02
± 0.97 80.67
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Figure 8. Illustration of different func-
tions.
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mentation is referred to official code3.

• COTTA (Wang et al., 2022a) sets the learning rate to 0.001 for all datasets. The restoration probability is set to 0.01.
The augmentation threshold pth is set to 0.72 for the CIFAR100 dataset and 0.92 for the CIFAR10 dataset. Same as in
the original paper, we use 32 augmentations for our experiments. More augmentations can bring a slight performance
improvement, but it will seriously affect the prediction speed. Implementation is referred to official code4.

• NOTE: (Gong et al., 2022) sets the learning rate to 0.0001 and the queue size to 64 for all datasets. Implementation is
referred to official code5.

For datasets, we adopted the tweak-one shift introduced in (Guo et al., 2020) to simulate the changing label distribution
in the testing phase. CIFAR10-C and CIFAR100-C datasets contain 15 corruptions falling into four categories: Noise,
Blur, Weather, and Digital. We selected one or several classes for each category and increase their probabilities. For the
CIFAR10 dataset, we selected classes 0, 1, 8, and 9 for the above four categories, respectively. For the CIFAR100 dataset,
we selected super-class pairs (0, 1), (5, 6), (9, 10), and (18, 19) for the above four categories. Samples belonging to selected
classes will be γ times more likely to occur than the other samples during the corresponding corruptions.

C. Additional Experimental Results
C.1. Discussion about S(·)

We utilize a linear function S(wt) = Normalize(1−wt) to transformwt into adaptive weights for (5). In order to further
explore the influence of S, we choose three different functions for experiments: SLinear(wt) = Normalize(1 − wt),
SConvex(wt) = Normalize(1−wt

1−wt
) and SConcave(wt) = Normalize( ln 2−wt

ln 2 ). Illustration of different functions is shown

3https://github.com/fiveai/LAME
4https://github.com/qinenergy/cotta
5https://github.com/TaesikGong/NOTE
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in Figure 8. The results in Figure 9 show that the choice of specific functions does not significantly impact the performance,
and they all can effectively realize the adaptive adaptation. At the same time, in order to prevent numerical errors, we add
ε = 0.1 to the denominator uniformly. Therefore, we use the simple linear function in the original paper.

C.2. Detailed Results

For space reasons, we only present the results on the CIFAR10 dataset with γ = 10 and omit the standard deviation term
in the paper. Here we first give detailed results in Table 10. Then, we present the performance with no label distribution
shifts in Table 8. Since there is no change in label distribution, the best average performance is obtained from existing
TTA methods. In this case, our algorithm is also able to adaptively track the unchanged and balanced label distribution and
gives competitive results. This proves that our method can obtain robust and excellent results in various situations.
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