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Abstract
This paper studies the online node classifica-
tion problem under a transductive learning set-
ting. Current methods either invert a graph ker-
nel matrix with O(n3) runtime and O(n2) space
complexity or sample a large volume of random
spanning trees, thus are difficult to scale to large
graphs. In this work, we propose an improve-
ment based on the online relaxation technique
introduced by a series of works (Rakhlin et al.,
2012; Rakhlin & Sridharan, 2015; 2017). We first
prove an effective regret O(

√
n1+γ) when suit-

able parameterized graph kernels are chosen, then
propose an approximate algorithm FASTONL en-
joying O(k

√
n1+γ) regret based on this relax-

ation. The key of FASTONL is a generalized
local push method that effectively approximates
inverse matrix columns and applies to a series of
popular kernels. Furthermore, the per-prediction
cost is O(vol (S) log 1/ϵ) locally dependent on
the graph with linear memory cost. Experiments
show that our scalable method enjoys a better
tradeoff between local and global consistency.

1. Introduction
This paper explores the online node labeling problem within
a transductive learning framework. Specifically, we con-
sider the scenario where multi-category node labels yt enter
online, and our goal is to predict future labels yt+1 under
constraints imposed by an underlying graph. To illustrate
this, consider the example of online product recommenda-
tions on platforms such as Amazon. At each time step t,
the task is to recommend one of k products to a user (node)
based on their relationships (edges) with other users. The
success of these recommendations is gauged by whether the
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user proceeds to purchase the recommended product. In this
context, leveraging local information, such as recommenda-
tions from friends, becomes a viable strategy. However, this
presents a significant challenge as we need to generate per-
iteration predictions within microseconds while managing
large-scale graphs comprising millions or even billions of
nodes. Due to their computational complexity, traditional
methods that require solving linear systems of order O

(
n3
)

are ill-suited for this task where n is the number of nodes.
This issue is not only critical in web-spam classification
(Herbster et al., 2008b), product recommendation (Ying
et al., 2018), and community detection (Leung et al., 2009),
but also permeates many other graph-based applications.

Previous studies in this area have fallen into two categories.
The first involves sampling the spanning tree from the graph
and then predicting labels via a weighted majority-like
method (Herbster et al., 2008b; Cesa-Bianchi et al., 2009;
2013). Such methods require repeated spanning tree sam-
plings and often suffer a large variance issue. The second
family of methods designs a loss function and builds feature
vectors from different graph kernels (Herbster et al., 2005;
Herbster & Pontil, 2006; Herbster & Lever, 2009; Herbster
et al., 2015; Gentile et al., 2013; Rakhlin & Sridharan, 2015;
2016b; 2017). These kernel-based methods can successfully
capture the label smoothness of graphs but need to invert
the graph kernel matrices, severely limiting their scalability.

Several classical and modern graph representation learning
works (Zhu et al., 2003; Blum et al., 2004; Kipf & Welling,
2017) suggest that graph kernel-based methods are more
effective in real-world applications. We focus on a signif-
icant line of work based on online relaxation (Rakhlin &
Sridharan, 2015; 2016a;b; 2017), which achieves linear time
per-iteration cost. However, two challenges remain. First,
the choice of the used graph kernel matrix affects perfor-
mance, and it is unclear how to make this choice optimally
and obtain an effective regret. Second, the previous relax-
ation method (Rakhlin & Sridharan, 2017) assumes that the
inverse of the graph kernel matrix is readily available, which
is not reasonable in practice. Note that a vanilla approach to
computing a matrix inverse of a graph kernel involves O(n3)
computational cost and O(n2) space complexity. Approxi-
mate matrix inverse techniques are required, but the regret
guarantee for utilizing such schemes does not yet exist. The
key question, then, is whether there exists an online node
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labeling method which accounts for the kernel matrix in-
version, where the per-iteration cost is independent of the
whole graph and the overall method is nearly-linear time.

In this paper, we propose such a solution by extending
the online relaxation method (Rakhlin & Sridharan, 2015;
2016b; 2017; 2016a) via a fast local matrix inverse approx-
imation method. Specifically, the inversion technique is
based on the Approximate PageRank (APPR) method (An-
dersen et al., 2006), which is particularly effective and ef-
ficient when the magnitudes of these kernel vectors follow
a power-law distribution, often found in real-world graphs.
Our proposed Fast Online Node Labeling algorithm FAS-
TONL approximates the kernel matrix inverse via variants
of APPR. Moreover, we compute an effective regret bound
of O(k

√
n1+γ), which accounts for the matrix inversion

steps. While we focus on static graphs, the method can
naturally be extended to the dynamic graph setting.

Our contributions.

• For the first time, we show that online relaxation-based
methods with suitable graph kernel parameterization
enjoy an effective regret when the graph is highly
structured; specifically, the regret can be bounded by
O(

√
n1+γ) if the graph Laplacian is regularized by

O(nγ) for some γ ∈ (0, 1). This is generalized to
several parameterized graph kernels.

• To overcome the O(n3) time and O(n2) space com-
plexity of the large matrix inversion barrier, we con-
sider the APPR approach, which gives a per-iteration
cost of O(vol (S) log(1/ϵ)). This locally linear bound
is exponentially superior to the previous O(1/ϵ) bound
for general graphs (Andersen et al., 2006).

• On graphs between 1000 and 1M nodes, FASTONL
shows a better empirical tradeoff between local and
global consistency. For a case study on the English
Wikipedia graph with 6.2M nodes and 178M edges, we
obtain a low error rate with a per-prediction run time
of less than a second.

Our code and datasets have been provided as supplementary
material and are publicly available at https://github.
com/baojian/FastONL. All proofs have been post-
poned to the appendix.

2. Related Work
Online node labeling. Even binary labeling of graph
nodes in the online learning setting can be challenging. A
series of works on online learning over graphs is consid-
ered (Herbster et al., 2005; Herbster, 2008; Herbster et al.,
2008b; Herbster & Lever, 2009; Herbster & Robinson, 2019;

Herbster et al., 2021). Initially, Herbster et al. (2005) con-
sidered learning graph node labels using a perceptron-based
algorithm, which iteratively projected a sequence of points
over a closed convex set. This initial method already re-
quires finding the pseudoinverse of the unnormalized Lapla-
cian matrix. Moreover, the total mistakes is bounded by
4ΦG(y)DG bal(y) where ΦG is the graph cut, DG is the
diameter, and bal(y) is the label balance ratio. This mistake
bound, which is distinct from the regret bound in this paper,
vanishes when the label is imbalanced. Subsequent works,
such as PUNCE (Herbster, 2008) and SEMINORM (Herbster
& Lever, 2009), also admitted mistake bounds. To remedy
this issue, the following works (Herbster & Pontil, 2006;
Herbster et al., 2008a; Herbster, 2008) proposed different
methods to avoid these large bounds. However, to the best
of our knowledge, their effectiveness has not been validated
on large-scale graphs. Additionally, it is unclear whether
these methods can be effective under multi-category label
settings.

The algorithms proposed in Herbster et al. (2008a); Herbster
& Lever (2009); Cesa-Bianchi et al. (2009); Vitale et al.
(2011); Cesa-Bianchi et al. (2013) accelerate per-prediction
by working on trees and paths of the graph; see also (Gentile
et al., 2013) for evolving graphs. However, the total time
complexity of the proposed method is quadratic w.r.t the
graph size. Additionally, Herbster et al. (2015) considered
the setting of predicting a switching sequence over multiple
graphs, and Gu & Han (2014) explored an online spectral
learning framework. All these works fundamentally depend
on the inverse of the graph Laplacian.

More generally, the problem of transductive learning on
graphs has been extensively studied over past years (Ng
et al., 2001; Zhou et al., 2003; Zhu et al., 2003; Ando &
Zhang, 2006; Johnson & Zhang, 2007; El Alaoui et al., 2016;
Kipf & Welling, 2017). Under batch transductive learning
setting, the basic assumption is that nodes with same labels
are well-clustered together. In this case, the quadratic form
of the graph Laplacian kernel (2) or even p-Laplacian-based
(El Alaoui et al., 2016; Fu et al., 2022) should be small.
However, different from batch settings, this paper considers
online learning settings based on kernel computations.

Personalized PageRank and approximation. Personal-
ized PageRank (PPR) as an important graph learning tool
has been used in classic graph applications (Jeh & Widom,
2003; Andersen et al., 2008) and modern graph neural net-
works (Gasteiger et al., 2019; Bojchevski et al., 2020; Epasto
et al., 2022) due its scalable approach to matrix inversion.
The local push method has been proposed in a seminal work
of Andersen et al. (2006) as an efficient and localized ap-
proach toward computing PPR vectors; it was later shown
to be a variant of coordinate descent (Fountoulakis et al.,
2019), and related to Gauss-Seidel iteration (Sun & Ye,
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2021). This paper introduces a new variant of the local push
to approximate many other graph kernel inverses.

3. Preliminaries
This section introduces notation and problem setup and
presents the online relaxation method with surrogate loss.

3.1. Notations and problem formulation

Notations. We consider an undirected weighted graph
G = (V, E ,W ) where V ≜ {1, 2, . . . , n} is the set of nodes,
E ⊆ V × V is the set of m = |E| edges, andW ∈ Rn×n+ is
the nonnegative weighted adjacency matrix where each edge
(u, v) ∈ E has weight Wuv > 0. The unnormalized and
normalized graph Laplacian is defined as L ≜D −W and
L ≜ D−1/2LD−1/2, respectively.1 The set of neighbors
of u is denoted as N (u) ≜ {v : (u, v) ∈ E} and the
degree du = |N (u)|. The weighted degree matrix is defined
as a diagonal matrix D where Duu =

∑
v∈N (u)Wuv.2

Following the work of Chung (1997), for S ⊆ V , the volume
of S is defined as vol (S) ≜∑v∈S dv .

Given k labels, each node v has a label yv ∈
{1, 2, . . . , k, }. For convenience, we use the binary form
yt ∈ {e1, e2, . . . , ek} =: Y where ei is the one-hot
encoding vector. X:,i ∈ Rn is the i-th column vector
of matrix X ∈ Rn×n and Xi,: ∈ Rn is the transpose
of i-th row vector of X . The support of x ∈ Rn is
supp (x) ≜ {v : xv ̸= 0, v ∈ V}. The trace of a square
matrixM is defined as tr (M) =

∑n
i=1mii where mii is

the i-th diagonal. For a symmetric matrixM , denote λ(M)
as the eigenvalue function ofM .

Problem formulation. This paper considers the fol-
lowing online learning paradigm on G: At each time
t = 1, 2, . . . , n, a learner picks a node v and makes a predic-
tion ŷv ∈ Y . The true label yv is revealed by the adversary
with a corresponding 0-1 loss ℓ(ŷv,yv) = 1−y⊤

v ŷv back to
the learner. The goal is to design an algorithm, so the learner
makes as few mistakes as possible. Denote a prediction of V
as Ŷ = [ŷ1, ŷ2, . . . , ŷn] ∈ F and true label configuration
as Y = [y1,y2, . . . ,yn] ∈ F from the allowed label con-
figurations F ∈

{
F ∈ {0, 1}k×n : F⊤

:,j · 1 = 1,∀j ∈ V
}

.
Without further restrictions, the adversary could always se-
lect aY so that the learner makes the maximum (n) mistakes
by always providing yv ̸= ŷv . Therefore, to have learnabil-
ity, often the set F is restricted to capture label smoothness
(Blum & Mitchell, 1998; Blum & Chawla, 2001; Zhu et al.,
2003; Zhou et al., 2003; Blum et al., 2004). Formally, given
an algorithm A, the learner’s goal is to minimize the regret

1When G contains singletons,D−1/2 =
(
D+

)1/2 whereD+

is the Moore-Penrose inverse ofD.
2Note that du = Du only when G is unweighted but du ̸= Duu

for a weighted graph in general.

defined as

Reg
Ŷ ∼A

:=

n∑

t=1

ℓ(ŷt,yt)− min
F∈Fλ,β

n∑

t=1

ℓ(F:,t,yt), (1)

where

Fλ,β =

{
F ∈ F :

k∑

i=1

Fi,:
⊤K−1

β Fi,: ≤ λ

}
, (2)

andKβ is a positive definite kernel parameterized by β, and
λ is a label smoothing parameter controlling the range of
allowed label configurations. For example, assumeK−1

β =
D −W for a unit weight graph; then if λ = 1, yi = yj
whenever (i, j) ∈ E for all Y ∈ F ; clearly in this case
the labeling is learnable. On the other hand, if λ > n,
then Y can be any labeling and is not learnable. If ℓ is
convex with a closed convex set F , typical online convex
optimization methods such as online gradient descent or
Follow-The-Regularized-Leader could provide sublinear
regret (Shalev-Shwartz et al., 2012; Hazan et al., 2016) for
minimizing the regret (1). However, when ℓ is the 0-1 loss,
the combinatorial nature of F makes directly applying these
methods difficult. Inspired by Rakhlin & Sridharan (2017),
we propose the following convex relaxation of Fλ,β to

F̄λ,β =

{
F ∈ Rk×n :

k∑

i=1

F⊤
i,:Mλ,βFi,: ≤ 1

}
,

where Fλ,β ⊆ F̄λ,β and the regularized kernel matrix is

Mλ,β =

(
K−1
β

2λ
+
In
2n

)−1

. (3)

3.2. Online relaxation and surrogate loss

Algorithm 1 RELAXATION(G, λ,D)(Rakhlin & Sridharan)

1: ComputeM =Mλ,β

2: T1 = tr (M) , A1 = 0,G = [0, . . . ,0] ∈ Rk×n
3: for t = 1, . . . , n do
4: ψt = −GM:,t/

√
At +D2 · Tt

5: Predict ŷt ∼ qt(ψt), ∇t = ∇ϕψt
(·,y)

6: UpdateG:,t = ∇t

7: At+1 = At + 2∇⊤
t GM:,t +mtt · ∥∇t∥22

8: Tt+1 = Tt −mtt

9: end for

In the online relaxation framework (Alg.1), a key step of
prediction node t is to choose a suitable ψt strategy so
that the regret defined in (1) can be bounded. Specifically,
the prediction ŷt is randomly generated according to dis-
tribution qt(ψt) where the score ψt ∈ Rk is a scaling of
−∑i<t∇iMi,t, computed in an online fashion. The distri-
bution, qi = max(ψi − τ, 0) for the choice of τ such that

3



Fast Online Node Labeling for Very Large Graphs

Table 1: The parameterized graph kernel matrices with their basic kernel presentation

ID K−1
β α Basic Kernel Presentation Paper

1 L λ
n Mλ,β = 2λXL (Rakhlin & Sridharan, 2017)

2 L λ
n+λ Mλ,β = 2nD−1/2XLD

1/2 (Rakhlin & Sridharan, 2017)
3 I − βD−1/2WD−1/2 n+λ−βn

n+λ Mλ,β = 2λn
n+λ−βnD

−1/2XLD
1/2 (Zhou et al., 2003)

4 βI + S−1/2LS−1/2 nβ+λ
n Mλ,β = 2λS−1/2XLS1/2 (Johnson & Zhang, 2008)

5 S−1/2(βI + L)S−1/2 2λ Mλ,β =
(
S1/2

4nλ + βS−1/2

4λ2

)−1
XLS1/2 (Johnson & Zhang, 2007)

6 L+ b · 11⊤ + βI β + λ
n Mλ,β = 2λXL

(
I − b11⊤

α+nb

)
(Herbster et al., 2005)

∑k
i=1 qi = 1. This technique corresponds to minimizing

the surrogate convex loss 3

ϕψ(g,y) =





1+maxr:er ̸=y{g⊤er−g⊤y}
1+1/|S(ψ)| y /∈ S(ψ)

1− g⊤y +
g⊤1S(ψ)−1

|S(ψ)| y ∈ S(ψ)
(4)

where S (ψ) is the support of ψ, and ∇t is the gradient of
ϕ(·,y) of the first variable. Specifically, yt /∈ S(ψ) means
the learner receives loss ϕψ(g,y) ≥ 1. Note that the per-
iteration cost of Alg.1 is O(kn) once the ψt is computed.

We now define an admissible relaxation function.

Definition 3.1 (Admissible function (Rakhlin et al., 2012)).
Let ∇i ∈ Rk, ∥∇i∥2 ≤ D for some D > 0. A real-valued
function Rel(∇1:t) is said to be admissible if, for all t ∈ V ,
it satisfies recursive inequalities

inf
ψt∈Rk

sup
∥∇t∥2≤D

{
∇⊤
t ψt +Rel(∇1:t)

}
≤ Rel(∇1:t−1),

with Rel(∇1:n) ≥ − infF∈Fλ,β

∑n
t=1 ∇⊤

t F:,t.

It was shown in Rakhlin et al. (2012) (and later (Rakhlin
& Sridharan, 2015; 2016b; 2017)) that if there exists an ad-
missible function Rel for some ψt, then the regret of Alg.1
is upper bounded by Rel(∅) =

√
D · tr (M), providing an

upper bound of the regret. Here M is either ( L
2λ + I

2n )
−1

or ( L2λ + I
2n )

−1 for the binary case. Note that in both cases,
since λmax(M) ≤ n, then in the worst case, the regret
could be O(n) (vanishing in general). Thus, two questions
remain.

1. Does there exist K−1
β that not only captures label

smoothness but also has regret smaller than O(n)?

2. How do we reconcile the kernel computation overhead
O(n3) but still provide an effective regret bound?

These two main problems motivate us to study this online
relaxation framework further. Sec. 4 answers the second

3The method could naturally apply to other types of losses (See
more candidate losses in Johnson & Zhang (2007)).

question by showing that solving many popular kernel ma-
trices is equivalent to solving two basic kernel matrices,
and we explore local approximate methods for both. We
then answer the first question in Sec. 5 by proving effective
bounds when the parameterized kernel matrix is computed
exactly or approximated.

4. Local approximation of kernelMλ,β

Section 4.1 presents how popular kernels can be evaluated
from simple transformations of the inverse approximations
computed via FIFOPUSH, whose convergence is described
in Section 4.2.

4.1. Basic kernel presentations ofMλ,β

The regularized kernel matrix is defined in (3) for various
instances ofK−1

β as listed in Tab. 1. As shown in the table,
a key observation is that several existing online labeling
methods involve the inverse of two basic kernel forms. We
present this in Thm. 4.1.
Theorem 4.1. Let K−1

β be the inverse of the symmetric
positive definite kernel matrix defined in Tab. 1. ThenMλ,β

can be decomposed into Mλ,β = aA−1XB, which is
easily computed onceX available. X represents two basic
kernels

XL = (αI + L)−1
, XL = α

(
I − (1− α)WD−1

)−1

corresponding to the inverse of variant matrices of L and
L, respectively.4

In Tab. 1, the column “Basic Kernel Presentation” shows
howMλ,β can then be efficiently computed from eitherXL

orXL, using minimal post-processing overhead. As in the
online relaxation framework, for any time t of node vt, it
requires to access the vt-th column ofMλ,β . Therefore, we
need to solve the following two basic equations

Type-L: xvt =XLevt , (5)
Type-L: xvt =XLevt . (6)

4Note L = αD1/2(I − (1−α)D−1/2WD−1/2)−1D−1/2.
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For the second case, note xvt = XLevt gives the Person-
alized PageRank Vector (PPV) (Page et al., 1999; Jeh &
Widom, 2003). For example, using α = n

n+κ , we compute
Mλ,β = 2nD−1/2XLD

1/2 whereXL is the Personalized
PageRank matrix (See the second row of Tab. 1). We now
discuss the inversion for computingXL andXL.

Algorithm 2 FIFOPUSH(G, ϵ, α, s)

1: r =

{
Type-L : esα
Type-L : es

2: x = 0,Q = [s]
3: while Q ≠ ∅ do
4: u = Q.pop()
5: if ru < ϵ · du then
6: continue
7: end if

8: xu =

{
Type-L: xu + αru

α+Du

Type-L: xu + αru
9: for v ∈ N (u) do

10: rv =

{
Type-L: rv + ru

α+Du
· wuv

Type-L: rv +
(1−α)ru
Du

· wuv
11: if v /∈ Q then
12: Q.push(v)
13: end if
14: end for
15: ru = 0
16: end while
17: Return x, r

Before introducing the FIFOPUSH inversion method, let
us consider the more commonly used power iteration for
matrix inversion. Mλ,β can be approximated by a series of
matrix multiplications. TakeK−1

β = I −D−1/2WD−1/2

as an example. Then a truncated power iteration gives

Mλ,β ≈ 2nλ

n+ λ

p∑

i=0

( n

n+ λ
D−1/2WD−1/2

)i
(7)

assuming that ∥ n
n+λD

−1/2WD−1/2∥2 < 1 (See Lemma
2.3.3 of Golub & Van Loan (2013)). When p is small, this
method often produces a reasonable and efficient approxi-
mation ofMλ,β , and is especially efficient ifW is sparse.
However, as p gets large, the intermediate iterates quickly
become dense matrices, creating challenges for online learn-
ing algorithms where the per-kernel vector operator is pre-
ferred ( See also Fig. 15 on real-world graphs ). Thus, the
situation is even worse when we only need to access one
column at each time t under the online learning setting.

For these reasons, we introduce FIFOPUSH (Alg. 2), which
reduces to the well-known APPR algorithm (Andersen et al.,
2006) when the goal is to approximateXL. Specifically, it

ut′ ut′+1 ut′+2 ut′+3 ut′+i−1 ut′+i

St: All active nodes in Ut

Q:

Some inactive nodes

Ut

Neighbors of ut′ not in Q will be pushed into Q

‡

· · ·ut′1 ut′2

· · · ut′1 ut′2 · · ·
Ut+1

Figure 1: The illustration of t-th epoch of FIFOPUSH. At
the initial of t-th epoch, Q = [ut′ , . . . , ut′+i] contains all
active nodes (red) St and part of inactive nodes (gray). After
the first active node ut′ has been processed, the neighbors of
ut′ that are not in Q will be pushed into Q for next (t+1)-th
epoch. ‡ is a dummy node to mark the end of an epoch.

is a local push method for solving either (5) or (6) based
on First-In-First-Out (FIFO) queue. Each node ut ∈ St is
either active, i.e., rut

≥ ϵdut
, or inactive otherwise. As

illustrated in Fig. 1, at a higher level, it maintains a set of
nonzero residual nodes Ut and active nodes St ⊆ Ut in each
epoch t. FIFOPUSH updates the solution column x and
residual r (corresponding to the “gradient”) by shifting mass
from a high residual node (an active node) to its neighboring
nodes in x and r. This continues until all residual nodes are
smaller than a tolerance ϵ. This method essentially retains
the linear invariant property introduced in Appendix A.2.

4.2. Local linear convergence of FIFOPUSH

For calculating XL, Andersen et al. showed that FIFO-
PUSH gives a time complexity O( 1

αϵ ) for precision level
ϵ > 0. 5 This bound is local sublinear, meaning the bound
is locally dependent of G and sublinear to the precision
ϵ. Moreover, the rate’s independence on G is a key advan-
tage of FIFOPUSH over other numerical methods such as
Power Iteration, which is similar to FIFOPUSH (Wu et al.,
2021) when ϵ < O(m−1) (recall m = |E|). Specifically,
the Power Iteration typically needs O(mα log 1

ϵ ) operations.
However, whenm is large, and ϵ is very small, the advantage
of the local sublinear bound is lost, and the time complexity
bound is not optimal.

It is natural to ask whether any method achieves a locally
dependent and logarithmically related bound to ϵ. We an-
swer this question positively. Specifically, we notice that
in most real-world sparse graphs, the columns of X have
magnitudes following a power law distribution (See Karate
graph in Fig. 2, real-world graphs shown in Fig. 17 and
18 for XL and XL, respectively.), suggesting that local
approximations are sufficient in computing high fidelity ap-
proximate inverses. Note that this greatly improves compu-
tational complexity and preserves memory locality, reducing
graph access time for large-scale graphs.

5This algorithm was also proposed in Berkhin (2006), namely
Book Coloring algorithm.
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(b) x22,ϵ on G

100 101

Ranking of xs, (i)

10 2

10 1

x s
,

(i)

10 0.5

10 1.1

10 1.6

10 2.2

(c) Power law ofXϵ

Figure 2: Power law distribution of |(XLes)i| on Karate graph (Girvan & Newman, 2002). (a) The Karate contains 34 nodes
and 78 edges forming four communities (wuv is the 2-dimensional Euclidean distance.); (b) We run FIFOPUSH(G, ϵ, α, s)
on s = 22 with α = 0.2 and ϵ = 10−12. Neighbors of s = 22 have large magnitudes of xs; (c) The power law distribution
of entries of xs for all 34 nodes.

We now provide our local linear and graph indepen-
dent complexity bound. Denote the estimation matrix
Xϵ = [x1,ϵ, . . . ,xn,ϵ] and the residual matrix Rϵ =
[r1,ϵ, . . . , rn,ϵ] where (xs,ϵ, rs,ϵ) = FIFOPUSH(G, ϵ, α, s)
for all s ∈ V . Denote It = supp (rt) as the support of
residual after t-th epoch, and St as the set of active nodes.
Theorem 4.2 (Local linear convergence of FIFOPUSH for
XL). Let xs = XLes. Denote T as the total epochs
executed by FIFOPUSH, and St := {v : rt(v) ≥ ϵ · dv, v ∈
It} as the set of active nodes in t-th epoch. Then, the total
operations of FIFOPUSH(G, ϵ, α, s) is dominated by

RT :=

T∑

t=1

∑

ut∈St

dut
≤ vol (S1:T )

α · η1:T
log

(
Cα,T
ϵ

)
, (8)

where vol (S1:T ) =
∑T
t=1 vol (St) /T is the average vol-

ume of St. Additionally, η1:T =
∑T
t=1 ηt/T is the average

of local convergence factors ηt ≜
∑
u∈St

du/
∑
v∈It

dv,
and Cα,T = 1/(

∑
v∈IT

(1 − α)duwuv/Du). For s, i ∈ V ,
we have xs = xs,ϵ +XLrs,ϵ, rs,ϵ(i) ≤ [0, ϵdi).

Thm. 4.2 provides a local linear convergence of FIFOPUSH
where both vol (S1:T ) and η1:T are locally dependent on
G, α, and ϵ. For unweighted G, the bound in (8) can be
simplified as vol(S1:T )

α·η1:T log 1
ϵ(1−α)|IT | . The key of Thm. 4.2

is to evaluate vol (S1:T ) and η1:T . To estimate vol (S1:T ),
since each active node appears at most T times and at least
once in all T epochs, after FIFOPUSH terminates, we have

vol (supp (xs,ϵ))

T
≤ vol (S1:T ) ≤ vol (supp (xs,ϵ)) ,

where for α and ϵ such that O(| supp (xs,ϵ) |) ≪ n means
O(vol (supp (xs,ϵ))) ≪ m in expectation. More impor-
tantly, compared with O(1/αϵ) of Andersen et al. (2006),

Thm. 4.2 provides a better bound when ϵ ≤ O(m−1). The
work of Fountoulakis et al. (2019) shows APPR is equiv-
alent to the coordinate descent method, and the total time
complexity is comparable to Õ( 1

αϵ ).

The average linear convergence factor η1:T is always > 0
by noticing that at least one active node is processed in
each epoch. We empirically found that η1:T ≥ 0.3 in all
testing cases as shown in Appendix A.2. The above theorem
is a refinement of (Wu et al., 2021) where O(m log 1

ϵ ) is
obtained (only effective when ϵ < 1/2m). However, our
proof shows that obtainingm independent bound is possible
by showing that local magnitudes are reduced by a constant
factor. The above theorem gives a way to approximate
Mλ,β , and we will build an approximate online algorithm
based on FIFOPUSH. We close this section by introducing
our local linear convergence forXLes as the following.

Theorem 4.3 (Local convergence of FIFOPUSH forXL).
Let xs = XLes and run Alg. 2 for XL. For s, i ∈ V , we
have xs = xs,ϵ+αXLrs,ϵ, with rs,ϵ(i) ≤ [0, ϵdi),∀i ∈ V .
The main operations of FIFOPUSH forXL is bounded as

RT ≤ vol (S1:T ) (α+Dmax)

α · η1:T
log

(
Cα,T
ϵ

)
, (9)

where vol (S1:T ) and η1:T are the same as in Thm. 4.2,

ηt ≜
∑

u∈St
du/(α+Du)∑

v∈It
dv/(α+Dv)

, Cα,T = 1/
∑
v∈IT

duwuv

α+Du
, and

Dmax = maxv∈supp(xs,ϵ)Dv .

Remark 4.4. We obtain a similar local linear convergence
for solvingXL by FIFOPUSH. The additional factor (α+
Dmax) appears in Equ. (9) due to the upper bound of the
maximal eigenvalue of L.
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Figure 3: The bounds comparison of RT . To see if
there is a true advantage of our bound, we compare two
bounds of FIFOPUSH, O( 1

αϵ ) (Andersen et al., 2006) and
O(mm

α log 1
ϵm + m) (Wu et al., 2021) with Ours. Each

vertical line with its left part is when ϵ satisfies Cor. 5.4

5. Fast Online Node Labelling: FASTONL
This section shows how we can obtain a meaningful regret
using parameterized graph kernels for the original online
relaxation method. We then design approximated methods
based on FIFOPUSH.

5.1. Regret analysis for online relaxation method

As previously discussed, simply applying M−1
λ,β = L or

L will not yield a meaningful regret as the maximal eigen-
value ofMλ,β depends on the minimal eigenvalue ofM−1

λ,β .
In particular, for a connected graph G, the second small-
est eigenvalue of L is lower bounded by diam(G) ≥ 4

λ2n
(Mohar, 1991), and is tight for a chain graph; this yields a
O(n2) bound which is non-optimal. Instead, our key idea of
producing a method with improved bounds is to “normalize”
the kernel matrixK−1

β so that tr (Mλ,β) ≪ O(n2), yield-
ing a more meaningful bound. We state the regret bound as
in the following theorem.

Theorem 5.1 (Regret of RELAXATION with parameterized
M−1

β ). Let Ŷ be the prediction matrix returned by RELAX-
ATION, if the true label sequences Y ∈ Fλ,β with param-
eter λ = nγ and γ ∈ (0, 1). Then choosing β = nγ−1 for
kernelK−1

β = I − βD−1/2WD−1/2 and β = 1− λ
n for

K−1
β = βI +S−1/2LS−1/2, we have the following regret

Reg = E
Ŷ ∼A

n∑

t=1

ℓ(ŷt,yt)−
2k − 1

k
min

F∈Fλ,β

n∑

t=1

ℓ(ft,yt),

which is bounded i.e., Reg ≤ D
√
2n1+γ . 6

Remark 5.2. The constant D involved in the bound is the
assumption of the bounded gradient of ∇t, which is always
≤ 2 for the loss chosen in (4). The above Thm. 5.1 is an
improvement upon the regret given in Rakhlin & Sridha-
ran (2017) of O(n). Note that this rate does not take into

6Note that, for binary case, k = 2, Reg exactly recover
EŶ ∼A Reg for binary case defined in Equ. (1).

account the run time O(n3) required to invertMλ,β in RE-
LAXATION. In the rest, we give the regret of FASTONL,
which implements RELAXATION using FIFOPUSH, and
show that the regret is still small.

5.2. Fast approximation algorithm FASTONL

We describe the approximated method, FASTONL in Alg.
3 as follows, and recall that mtt = (Mϵ)t:t.

Algorithm 3 FASTONL(G, ϵ,K−1
β , λ)

1: G = [0,0, . . . ,0] ∈ Rk×n
2: A1 = 0
3: Mϵ is obtained via FIFOPUSH(G, ϵ, α, s) ∀s ∈ V
4: T1 =

∑n
t=1mt,t

5: for t = 1, 2, . . . , n do
6: v = G(Mϵ):,t +G(Mϵ)t,:
7: ψt = −v/

√
At + k · Tt

8: Update gradientG:,t = ∇t = ∇ϕ(·,y)
9: At+1 = At +∇⊤

t v +mtt · ∥∇t∥22
10: Tt+1 = Tt −mtt

11: end for

Theorem 5.3 (Regret analysis of FASTONL with approxi-
mated parameterized kernel). Consider the similar residual
matrix R̃ϵ =D

−1/2RϵD
1/2. Given λ = nγ for γ ∈ (0, 1),

picking ϵ so that ∥R̃ϵ∥2 ≤ 1
α yields

Reg ≤ D
√

(1 + k2)n1+γ ,

where the restriction on ϵ is due to maintaining the positive
semidefiniteness of

(
Mϵ +M

⊤
ϵ

)
/2.

Based on Thm. 5.3, we have the following runtime require-
ment for FASTONL.

Corollary 5.4 (Per-iteration complexity of FIFOPUSH).
Based on the conditions of Thm. 5.3, the number of opera-
tions required in one iteration of FASTONL is bounded by

O
( S1:T

α · η1:T
log3/2 (n)

)
. (10)

Fig. 3 illustrates the advantage of our local bound by plot-
ting all constants for the PubMed graph (Similar trends are
observed in other graphs in Appendix A.2). In practice,
we observe that ϵ ∼ O(n−1) ≫ O(n−3/2), given from a
pessimistic estimation of ∥D−1/2RϵD

1/2∥2. In particular,
we notice a significant improvement of our bound over the
previous ones when α is large.

Practical implementation. A caveat of approximate in-
version in FASTONL is thatMϵ is not in general symmetric;
therefore, for analysis, we require ψt to be computed using
the symmetrized Mϵ[:, t] +Mϵ[t, :], which requires row
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Figure 4: Error rate as the function of samples seen on six small-scale graphs.

and column access at time t; effectively, this requires that
Mϵ is fully pre-computed. While this does not affect our
overall bounds, the memory requirements may be burden-
some. However, when Mϵ ≈ M (which is symmetric),
then (Mϵ):,t ≈ (Mϵ)t,: and in practice, we use the column
to represent the row; our experiments show that this does not
incur noticeable performance drop. To avoid pre-computing
diagonal elements of Mϵ, we estimate

∑n
t=1mtt ≈ kn2;

experiments show this works well in practice.

Dynamic setting. An extension of our current setting is
the dynamic setting, in which newly labeled nodes and their
edges are dynamically added or deleted. As is, FASTONL
is well-suited to this extension; the key idea is to use an
efficient method to keep updating FIFOPUSH, which can
quickly keep track of these kernel vectors (Zhang et al.,
2016, e.g.). The regret analysis of the dynamic setting is
more challenging, and we will consider it as future work.

6. Experiments
In this section, we conduct extensive experiments on the
online node classification for different-sized graphs and
compare FASTONL with baselines. We address the fol-
lowing questions: 1) Do these parameterized kernels work
and capture label smoothness?; 2) How does FASTONL
compare in terms of classification accuracy and run time
with baselines?

Experimental setup. We collect ten graph datasets where
nodes have true labels (Tab. 4) and create one large-scale
Wikipedia graph where chronologically-order node labels
are from ten categories of English Wikipedia articles. We
consider four baselines, including 1) Weighted Majority
(WM), where we predict each node u by its previously la-
beled neighbors (a purely local but strong baseline described
in Appendix D); 2) RELAXATION (Rakhlin & Sridharan,
2017), a globally guaranteed method; 3) Weighted Tree Al-
gorithm (WTA) (Cesa-Bianchi et al., 2013), a representative
method based on sampling random spanning trees;7 and 4)

7We note that the performance of WTA is competitive to, some-
times outperforms PERCEPTRON-based methods (Herbster et al.,
2005).

APPROXIMATE, the power iteration-based method defined
by Equ. (7). We implemented these baselines using Python.
For FASTONL, we chose the first two kernels defined in Tab.
1 and named them as FASTONL-K1 and FASTONL-K2,
respectively. All experimental setups, including parameter
tuning, are further discussed in Appendix D.
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Figure 5: The comparison of error rate of FASTONL and
WM on middle-scale graphs.

Online node labeling performance. The online labeling
error rates over 10 trials on small-scale graphs are presented
in Fig. 4 where we pick ϵ = 10−5. As we can see from
Fig. 4, the approximated performance is almost the same as
of RELAXATION but with great improvements on runtime
as shown in Tab. 2. The WM can be treated as a strong
baseline. For middle and large-scale graphs, matrix inver-
sion is infeasible, and these baselines are unavailable. We
compare FASTONL with the local method WM. Fig. 5 and
7 present the error rate as a function of the number of seen
nodes. FASTONL outperforms the local WM by a large
margin. This indicates that FASTONL has a better tradeoff
between local and global consistency. The average run time
of these methods is presented in Tab. 2. The local method
WM has the lowest run time per iteration. Our method is
between RELAXATION and WTA.
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Table 2: Run time of online node labeling methods over six graphs (seconds) averaged over 10 trials.

Political Citeseer Cora Pubmed MNIST Blogcatalog
WM 0.01 0.01 0.01 0.08 0.09 0.05
WTA 66.61 146.97 213.00 2177.49 10726.67 5108.45
APPROXIMATE 1.47 0.66 0.97 159.48 43.83 68.52
RELAXATION 0.78 1.66 2.94 122.45 976.69 154.32
FASTONL-K1 1.12 1.10 1.73 4.86 22.42 22.14
FASTONL-K2 1.21 1.12 2.57 7.27 33.00 12.03
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Figure 6: The accuracy of applying the first four kernel
matrices for FASTONL on six small graphs.

Performance of parameterized kernels. In our theory,
we showed what the effect of parameters (λ, β) is on the
regret (see Thm.5.1). The parameter λ is a label smoothing
parameter controlling the range of allowed label configu-
rations while β is the kernel parameter. We tested the first
four kernels where kernels K1 and K2 solely depend on
λ, while kernels K3 and K4 involve both λ and β. How-
ever, forK3, β is defined as λ/n, and forK4, it is defined
as β = 1 − λ/n, as established in Thm.5.1. By defin-
ing β this way, our theorem ensures an effective regret.
We experimented with various values of λ, selecting from
0.1 · n, 0.2 · n, . . . , 0.9 · n, n. Fig. 6 shows how different
kernels perform over different graphs. All of the kernels
successfully captured label smoothing but exhibited differ-
ing performances with varying λ. We consider the first
four kernels as listed in Tab. 1, sweeping λ. To answer
our first question, we find that all kernels can capture the
label smoothing well but perform differently with different λ.
Overall, the normalized kernel ofK2 enjoys a large range
of λ, whileK1 andK3 tend to prefer big λ.

Case study of labeling Wikipedia articles. We apply
our method to a real-world Wikipedia graph, which con-
tains 6,216,199 nodes where corresponding labels appear
chronically and unweighted 177,862,656 edges (edges are
hyperlinks among these Wikipedia articles). Each node may
have a label (downloaded from DBpedia (2021), about 50%
percentage of nodes have labels, we use the first 150,000
labeled nodes) belonging to ten categories describing the
Wikipedia articles, such as people, places, etc. Fig. 7

presents our results on this large-scale graph. Compared
with the strong baseline WM, our FASTONL truly outper-
forms it by a large margin with only about 0.3 seconds for
each article.
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Figure 7: The comparison of error rate of FASTONL and
WM on one large-scale graph.

7. Conclusion
We study the online relaxation framework for the node la-
beling problem. We propose, for the first time, a fast ap-
proximate method that yields effective online regret bounds,
filling a significant gap in the theoretical analysis of this on-
line learning problem. We then design a general FIFOPUSH
algorithm to quickly compute an approximate column of the
kernel matrix in an online fashion that does not require large
local memory storage. Therefore, the actual computational
complexity per-iteration is truly local and competitive to
other baseline methods. The local analysis of FIFOPUSH is
challenging when the acceleration is added to the algorithm.
It is interesting to see if there is any local analysis for accel-
erated algorithms (See the open question (Fountoulakis &
Yang, 2022)). It is also interesting to see whether our work
can be extended to directed or dynamic graph settings.
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The appendix is organized as follows: Section A presents all missing proofs for graph kernel matrices computation and
approximation. Section B proves the bounds of eigenvalues ofMϵ andRϵ. Section C provides the regret analysis. Section
D presents more experimental details and results.

A. Proofs
A.1. Graph kernel matrices and their equivalence: The proof of Thm. 4.1

Recall that our goal is to compute the following augmented kernel matrix

Mλ,β =

(
K−1
β

2λ
+
In
2n

)−1

for various instances of K−1
β as listed in Table 1. The unnormalized Laplacian is defined as L ≜ D −W where W

is the nonnegative symmetric weighted adjacency matrix, and D is the corresponding weighted degree matrix defined
as diag(W1). The normalized graph Laplacian is L ≜ D−1/2LD−1/2. Using FIFOPUSH, we can approximate the
following two basic matrices

Type-L : XL = α
(
In − (1− α)WD−1

)−1
, Type-L : XL = (αIn +D −W )

−1
. (11)

We repeat our theorem in the following
Theorem 4.1. LetK−1

β be the inverse of the symmetric positive definite kernel matrix defined in Table 1. ThenMλ,β can be
decomposed intoMλ,β = aA−1XB, which is easily computed onceX available. X represents two basic kernel inverse

XL = (αI + L)−1
, XL = α

(
I − (1− α)WD−1

)−1

corresponding to inverse of regularized L and L, respectively.

Proof. We now show how each of these kernelsK can be efficiently computed given eitherXL orXL as follows:

Instance 1. For the kernelK−1
β = L, we have

(
K−1
β

2λ
+
In
2n

)−1

=

( L
2λ

+
In
2n

)−1

=

(
D −W

2λ
+
In
2n

)−1

= 2λ (αIn +D −W )
−1

= 2λXL,

where we let α = λ
n .

Instance 2. For the kernelK−1
β = I −D−1/2WD−1/2, we have

(
K−1
β

2λ
+
In
2n

)−1

=

(
In −D−1/2WD−1/2

2λ
+
In
2n

)−1

=

(
1

2λ
+

1

2n

)−1

·
(
In −

(
1
2λ + 1

2n

)−1

2λ
D−1/2WD−1/2

)−1

=
2nλ

n+ λ
D−1/2

(
In − n

n+ λ
WD−1

)−1

D1/2

= 2nαD−1/2
(
In − (1− α)WD−1

)−1
D1/2

= 2nD−1/2XLD
1/2,

where α = λ
n+λ .
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Instance 3. The kernel K−1
β = I − βD−1/2WD−1/2. Different from Instance 2, the kernel is now parameterized.

Specifically, we have

(
K−1
β

2λ
+
In
2n

)−1

=

(
In − βD−1/2WD−1/2

2λ
+
In
2n

)−1

=

(
1

2λ
+

1

2n

)−1

·
(
In − β

(
1
2λ + 1

2n

)−1

2λ
D−1/2WD−1/2

)−1

=
2nλ

n+ λ
D−1/2

(
In − βn

n+ λ
WD−1

)−1

D1/2

=
2nλ

(n+ λ)α
D−1/2α

(
In − (1− α)WD−1

)−1
D1/2 =

2λn

n+ λ− nβ
D−1/2XLD

1/2,

where 1− α = nβ
n+λ , and the parameter β ∈ (0, n+λn ).

Instance 4. The kernelK−1
β = βI + S−1/2LS−1/2 was initially considered in Johnson & Zhang (2008) where S is a

positive diagonal matrix. Typical examples of S could beD, I , etc. Note that

(
K−1
β

2λ
+
In
2n

)−1

=

(
βI + S−1/2LS−1/2

2λ
+
In
2n

)−1

=

(
1

b

(
abI + S−1/2(D −W )S−1/2

))−1

// let a =

(
β

2λ
+

1

2n

)
, b = 2λ

= bS1/2 (abS +D −W )
−1
S1/2

= bS−1/2
(
abI + (D −W )S−1

)−1
S1/2

= bS−1/2
(
abI + (D −W )S−1

)−1
S1/2

= 2λS−1/2XLS
1/2,

where α = βn+λ
n . Note (D −W )S−1 is a positive semidefinite matrix as D −W is positive semidefinite and S−1 is

positive definite, then applying D
′
= DS−1 and W

′
=WS−1. Therefore, it is essential to solve (αI +D′ −W ′)−1

becauseD′ −W ′ has nonnegative eigenvalues and D′
u =

∑
v∈N (u)W

′
uv for all u ∈ V . Therefore, it belongs to Type-II.

Here, we abuse notations where we letD =D′ andW =W ′.

Instance 5. The normalized kernel matrix K−1
β = S−1/2(βI + L)S−1/2, the S is the normalization matrix (Ando &

Zhang, 2006; Johnson & Zhang, 2007). Just like Instance 4, we could have different choices for S: I ,D, or (βI + L)−1

(for the last case, the kernel is then normalized with unit diagonal), etc. Note

(
K−1
β

2λ
+
In
2n

)−1

=

(
S−1/2(βI + L)S−1/2

2λ
+
In
2n

)−1

= S1/2

(
S̃ +

L
2λ

)−1

S1/2 // let S̃ =
βI

2λ
+
S

2n

= 2λS1/2
(
2λS̃ + L

)−1

S1/2

= 2λS1/2S̃−1
(
2λI + (D −W )S̃−1

)−1

S1/2,
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where (D −W )S̃−1 is a transformed version of L. We continue to have
(
K−1
β

2λ
+
In
2n

)−1

= 2λS1/2S̃−1
(
2λI + (D −W )S̃−1

)−1

S1/2

= 2λS1/2

(
βI

2λ
+
S

2n

)−1 (
2λI + (D −W )S̃−1

)−1

S1/2

=

(
S1/2

4nλ
+
βS−1/2

4λ2

)−1

XLS
1/2,

where α = 2λ. Similar to Instance 4, (D−W )S̃−1 is transformed Laplacian matrix. LetD′ =DS̃−1 andW ′ =WS̃−1.
We abuse of notations ofD,W and letD =D′ andW =W ′.

Instance 6. The augmented kernelKλ = L+ b · 11⊤ + βI (Herbster et al., 2005) can be reformulated as
(
K−1
β

2λ
+
In
2n

)−1

=

(L+ b · 11⊤ + βI

2λ
+
I

2n

)−1

=

(L+ βI

2λ
+
I

2n
+
b · 11⊤

2λ

)−1

= 2λXL

(
I − b11⊤XL

1 + b1⊤XL1

)
,

where α = β + λ
n and we use the similar method as in Instance 4 but plus a rank one matrix 11⊤. The last equality is from

the fact that, for any invertible matrixX , by the Sherman–Morrison formula, we have

(X + 11⊤)−1 =X−1 − X−111⊤X−1

1 + 1⊤X−11
.

Furthermore, note the summation of each column of (αI+L)−1 is a constant 1/α, then 1⊤XL1 = n/α. Then, we continue
to have

(
K−1
β

2λ
+
In
2n

)−1

= 2λXL

(
I − b11⊤XL

1 + b1⊤XL1

)

= 2λXL

(
I − αb11⊤XL

α+ nb

)

= 2λXL

(
I − b11⊤

α+ nb

)
,

where note that 11⊤XL = 11⊤/α.

A.2. Local linear convergence of FIFOPUSH for α
(
I − (1− α)WD−1

)−1
es: The proof of Thm. 4.2

Given any α ∈ (0, 1), ϵ > 0, Algorithm 4 is to approximate α
(
I − (1− α)WD−1

)−1
es. Before the proof of Theorem

4.2, we provide an equivalent version of FIFOPUSH as presented in Algorithm 4 where time index t of r,x and time index
t′ of processed nodes u are added. Our proof is based on this equivalent version. Compared with Algorithm 2, the only
difference is that we added a dummy node ‡. Still, Algorithm 4 is essentially the same as Algorithm 2. The chronological
order of processed nodes ut′ by FIFOPUSH can then be represented as the following order

‡ u1︸︷︷︸
U1

‡ u2, u3, . . .︸ ︷︷ ︸
U2

‡ · · · ‡ ut′ , ut′+1, ut′+2, . . . , ut′+i︸ ︷︷ ︸
Ut

‡ · · · , (12)

where Ut = {ut′ , ut′+1, . . . , ut′+i} is the set of nodes processed in t-th epoch. Hence, (12) defines super epochs indexed
by t where Ut will be processed. From epoch t, new nodes will be added into Q for the next epoch as illustrated in
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Algorithm 4 FIFOPUSH(G, ϵ, α, s)(Andersen et al., 2006) with a dummy node ‡
1: Initialize: rt = es, xt = 0, t = 1, t′ = 1
2: Q = [s, ‡] // At the initial stage, Q contains s and a dummy node ‡.
3: while Q.size() ̸= 1 do
4: ut′ = Q.pop()
5: if ut′ == ‡ then
6: t = t+ 1 // Nodes in Ut has been processed. Go to the next epoch.
7: Q.push(ut′)
8: continue
9: end if

10: if rut′ < ϵ · dut′ then
11: t′ = t′ + 1 // ut′ is an “inactive” node
12: continue
13: end if
14: xut′ = xut′ + αrut′ // ut′ is an “active” node
15: for v ∈ N (ut′) do
16: rv = rv +

(1−α)ru
t′

Du
t′

· wut′v

17: if v /∈ Q then
18: Q.push(v)
19: end if
20: end for
21: rut′ = 0
22: t′ = t′ + 1
23: end while
24: Return (xt, rt)

Fig. 1. Ut contains: 1) a set of active nodes St ≜
{
ut′ : rut′ ≥ ϵ · dut′ , ut′ ∈ Ut

}
; and 2) a set of inactive nodes{

ut′ : 0 < rut′ < ϵ · dut′ , ut′ ∈ Ut
}
= Ut\St.8 FIFOPUSH terminates only when Q contains the dummy node ‡.

Define X = α
(
I − (1− α)WD−1

)−1
. Denote the estimation matrix Xϵ = [x1,ϵ, . . . ,xn,ϵ] and the residual matrix

Rϵ = [r1,ϵ, . . . , rn,ϵ] where (xs,ϵ, rs,ϵ) = FIFOPUSH(G, ϵ, α, s) for all s ∈ V . The next lemma shows thatXϵ is a good
approximation ofX from the bottom when ϵ is small.

Lemma A.1. LetX = α
(
I − (1− α)WD−1

)−1
and denote s-th column ofX as xs = α

(
I − (1− α)WD−1

)−1
es.

Let (xs,ϵ, rs,ϵ) = FIFOPUSH(G, ϵ, α, s) be the pair of vectors returned by Alg. 4 where xs,ϵ is an estimate of xs and
rs,ϵ is the corresponding residual vector. Denote the estimation matrix Xϵ = [x1,ϵ, . . . ,xn,ϵ] and the residual matrix
Rϵ = [r1,ϵ, . . . , rn,ϵ] by calling FIFOPUSH for all s ∈ V . For any ϵ > 0, we have

X =Xϵ +XRϵ,

whereRϵ satisfies 0n×n ≤ Rϵ < ϵ · diag(d1, . . . , dn) · 11⊤.

Proof. Let us assume t = t′ at the beginning of t-th epoch. During the t-th epoch, FIFOPUSH updates t to t+1 and updates
t′ from t′ = t′0, t

′
1, t

′
2, . . . to t′|St| = t+ 1 where t′i is the time after the update of node ut′i . Recall St is the set of processed

active nodes (at the beginning of t-th epoch, we do not know how many nodes in St since some inactive nodes could be
active after some push operations). For each active node ut′i (i = 1, 2, . . . , |St|) at t-th epoch, we denote xut′

i
and rut′

i
as

the updated vectors of xt and rt, respectively. After all active nodes ut′i ∈ St have been processed, x is updated from xt to

8We say a node ut′ is active if rut′ ≥ ϵdut′ and inactive if 0 ≤ rut′ < ϵdut′ .
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xt+1 and r from rt to rt+1 as the following

xt = xut′0

ut′1−−→ xt′1

ut′2−−→ xt′2 · · ·
ut′|St|−−−−→ xt′|St|

= xt+1

rt = rut′0

ut′1−−→ rut′1

ut′2−−→ rut′2
· · ·

ut′|St|−−−−→ ru′
|St|

= rt+1.

For each i-th active node ut′i , the updates are from Line 14 to Line 21 of Alg. 4 give us the following iterations

xt′i = xt′i−1
+αrut′

i−1
· eut′

i−1︸ ︷︷ ︸
Line 14

(13)

rt′i = rt′i−1
+(1− α)rut′

i−1
·WD−1eut′

i−1︸ ︷︷ ︸
Line 15,16

−rut′
i−1

· eut′
i−1︸ ︷︷ ︸

Line 21

. (14)

These two iterations (13) and (14) essentially moves residual rut′
i−1

out of node ut′i−1
to its estimate vector x and residual

entries of its neighbors. Specifically, the first iteration (13) moves α times magnitude of rut′
i−1

to x and the second iteration

(14) moves (1− α) times of rut′
i−1

to neighbors spread the magnitude by the distribution vectorWD−1eut′
i−1

. The last
term −rut′

i−1
· eut′

i−1
is to remove rut′

i−1
from node ut′i−1

. Rearrange (14), we have

rt′i = rt′i−1
+ (1− α)rut′

i−1
·WD−1eut′

i−1
− rut′

i−1
· eut′

i−1

rt′i = rt′i−1
−
(
I − (1− α)WD−1

)
rut′

i−1
· eut′

i−1

αrut′
i−1

· eut′
i−1

= α
(
I − (1− α)WD−1

)−1
(
rt′i−1

− rt′i
)
. (15)

Use (15) and (13), we have

xt′i = xt′i−1
+ αrut′

i−1
· eut′

i−1

= xt′i−1
+ α

(
I − (1− α)WD−1

)−1
(
rt′i−1

− rt′i
)

Since i = 1, 2, . . . , |St|, we sum above equation over all active nodes St, we have

xt+1 = xt|St|′

= xt|St|−1′ + α
(
I − (1− α)WD−1

)−1
(
rt′|St|−1

− rt′|St|

)

...

= xt0′ + α
(
I − (1− α)WD−1

)−1
|St|∑

i=1

(
rt′i−1

− rt′i
)

= xt0′ + α
(
I − (1− α)WD−1

)−1
(
rt′0 − rt′|St|

)

= xt + α
(
I − (1− α)WD−1

)−1
(rt − rt+1)

On the other hand, for all epochs, we continue to use the last equation to have

xt+1 = xt + α
(
I − (1− α)WD−1

)−1
(rt − rt+1)

= α
(
I − (1− α)WD−1

)−1
t∑

i=1

(ri − ri+1)

= α
(
I − (1− α)WD−1

)−1
(r1 − rt+1)

=X(es − rt+1). (16)
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Since xs,ϵ is an estimate of xs returned by FIFOPUSH, for any node s ∈ V and by (16), we have

Xes = xs,ϵ +Xrs,ϵ, ∀s ∈ V.

Write the above equation as a matrix form; we obtain X = Xϵ +XRϵ. Notice that each u-th element of rs,ϵ satisfies
0 ≤ rs,ϵ(u) < ϵdu. Hence we have 0n×n ≤ Rϵ < ϵ · diag(d1, . . . , dn) · 11⊤.

Remark A.2. The above lemma is essentially the linear invariant property (Andersen et al., 2006). Here, we show a relation
between the estimation and residual vectors. Recall that for any subset of nodes S ⊆ V , the volume of S is defined
vol (S) =∑v∈S dv . We are ready to prove Thm. 4.2.

Theorem 4.2 (Local linear convergence of FIFOPUSH forXL). Let xs =XLes. Denote T as the total epochs executed
by FIFOPUSH, and St := {v : rt(v) ≥ ϵ · dv, v ∈ It} as the set of active nodes in t-th epoch. Then, the total operations of
FIFOPUSH(G, ϵ, α, s) is dominated by

RT :=

T∑

t=1

∑

ut∈St

dut
≤ vol (S1:T )

α · η1:T
log

(
Cα,T
ϵ

)
, (17)

where vol (S1:T ) =
∑T
t=1 vol (St) /T is the average volume of St. Additionally, η1:T =

∑T
t=1 ηt/T is the average of

local convergence factors ηt ≜
∑
u∈St

du/
∑
v∈It

dv , and Cα,T = 1/(
∑
v∈IT

(1− α)duwuv/Du). For s, i ∈ V , we have
xs = xs,ϵ +XLrs,ϵ, rs,ϵ(i) ≤ [0, ϵdi).

Proof of Theorem 4.2. From Lemma A.1, we know that for s, i ∈ V , we have xs = xs,ϵ +XLrs,ϵ, rs,ϵ(i) ≤ [0, ϵdi). At
epoch t ≥ 1, recall Q contains a set of active nodes St and a set of inactive nodes Ut\St. After FIFOPUSH processed the
last node ut′+i in Ut, it is easy to see that the total operations of t-th epoch are dominated by the volume of St, i.e., vol (St)
(from Line 13 to Line 16). Hence, the total time complexity is dominated by RT =

∑T
t=1 vol (St). In the rest, we shall

provide two upper bounds of RT .

1. The first is to prove an upper bound 1/αϵ, which is directly followed from Andersen et al. (2006). We repeat the main
idea here. For each active iteration of Algo. 4, we have rut′ ≥ ϵ · dut′ , which indicates rut′ was at least ϵ · dut′ ; hence
∥rt∥1 decreased by at least αϵ · dut′ with total dut′ operations. Hence, overall ut′ ∈ St, we have

αϵ
∑

ut′∈St

dut′ ≤ α
∑

ut′∈St

rut′ = ∥rt∥1 − ∥rt+1∥1.

Summing the above inequality over t, we have the total operations of FIFOPUSH bounded by

RT =

T∑

t=1

vol (St) =
T∑

t=1

∑

u∈St

du ≤ 1

αϵ

T∑

t=1

(∥rt∥1 − ∥rt+1∥1) =
1− ∥rT+1∥1

αϵ
≤ 1

αϵ
, (18)

where note that ∥r1∥1 = 1.

2. The sublinear bound O( 1
αϵ ) in (18) is independent of the graph size which is the key advantage of FIFOPUSH over

other numerical methods such as Power Iteration where O(mα log( 1ϵ )) operations needed, where m is the number of
edges in the graph. However, when ϵ becomes small, O( 1

αϵ ) is too pessimistic. It is natural to ask whether there exists
any bound that takes advantage of both FIFOPUSH and POWERITER. We answer this question positively by providing
a local linear convergence. There are two key components in our proof: 1) residuals left in rT are relatively significant
so that total epochs T can be bound by O(log 1

ϵ ); 2) the average operations of t epochs is equal to vol (S1:T ), which is
independent of m.

After the T -th epoch finished, the set of all inactive nodes is exactly IT+1, i.e., IT+1 = {v : 0 < rT+1(v) < ϵ ·dv, v ∈
V}. For each v ∈ IT+1, note that there exists at least one of its neighbor ut′ ∈ N (v) such that rut′ ≥ ϵ · dut′ had
happened in a previous active iteration. Combine with Line 12 of Algorithm 4, we have

∀v ∈ IT+1,
(1− α)ru

Du
wuv ≥

(1− α)ϵdu
Du

wuv ≜ r̃v,
9 (19)

9We ignore the time index t′, which is unrelated with our analysis.
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where r̃v is the residual pushed into v but never popped out. From (19), note that
∑
v∈IT+1

r̃v is an estimate of
∥rT+1∥1 from bottom. That is

∑

v∈IT+1

r̃v =
∑

v∈IT+1

(1− α)ϵdu
Du

wuv ≤ ∥rT+1∥1. (20)

Next, we show a significant amount of residual that has been pushed out from rt to rt+1. For t-th epoch, the total
amount of residual that had been pushed out is α

∑
ut′∈St

rut′ (Line 10). That is,

∥rt∥1 − ∥rt+1∥1 ≥ α
∑

ut′∈St

rut′ . (21)

On the other hand, by the activation condition, we have

∀ut′ ∈ St, rut′ ≥ ϵ · dut′ , ∀v ∈ It\St, 0 < rt(v) < ϵ · dv.

Summation above inequalities over all active nodes ut′ and inactive nodes v, we have
∑
ut′∈St

rut′∑
ut′∈St

dut′

≥ ϵ >

∑
v∈It\St

rv∑
v∈It\St

dv
,

which indicates
∑
ut′∈St

rut′∑
ut′∈St

dut′

>

∑
ut′∈St

rut′ +
∑
v∈It\St

rv∑
ut′∈St

dut′ +
∑
v∈It\St

dv
=

∑
v∈It

rv∑
v∈It

dv
=

∥rt∥1∑
v∈It

dv
, (22)

where the last equality is due to the fact that It indexes all nonzero entries of rt, i.e., ∥rt∥1 =
∑
v∈It

rt(v). Combine
(21) and (22), for t = 1, 2, . . . , T , we have

∥rt+1∥1 <
(
1−

α
∑
u∈St

du∑
v∈It

dv

)
∥rt∥1. (23)

Notice that ∥rT+1∥1 is lower bounded by (20). Use (23) from t = 1 to t = T , we obtain

ϵ(1− α)C̃T ≤ ∥rT+1∥1 ≤
T∏

t=1

(
1−

α
∑
u∈St

du∑
v∈It

dv

)
, (24)

where C̃T =
∑
v∈IT+1

duwuv

Du
. Take the logarithm on both sides of (24) and use the fact that log(1−x) ≤ −x,∀x ≥ 0.

We reach

α

T∑

t=1

∑
u∈St

du∑
v∈It

dv
≤ log

(
1

ϵ(1− α)C̃T

)
. (25)

Let ηt =
∑

u∈St
du∑

v∈It
dv

be the active ratio at t-th epoch. The average of all ηt is then defined as η1:T = 1
T

∑T
t=1 ηt. Note

both ηt and η1:T are in (0, 1]. Then by (25), the total number of epochs can be bounded by

T ≤ 1

α · η1:T
log

(
1

ϵ(1− α)C̃T

)
.

The total operations for processing active nodes is RT , which can be represented as

RT =

T∑

t=1

∑

u∈St

du =

T∑

t=1

vol (St) = T · vol (S1:T ) ≤
vol (S1:T )

α · η1:T
log

(
1

ϵ(1− α)C̃T

)
(26)
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Combine two bounds in (18) and (26), we have

RT ≤ min

{
1

αϵ
,
vol (S1:T )

α · η1:T
log

(
1

ϵ(1− α)C̃T

)}
.

Let Cα,T = 1/((1− α)C̃T ), we finish the proof.

Remark A.3. One of the key components in our proof is the local convergence factor ηt in (23), which is inspired by a
critical observation in Lemma 4.4 of Wu et al. (2021). The authors show that FIFOPUSH is similar to a variant of Power
Iteration when ϵ < 1

2m with admitted time complexity O(mα log( 1
ϵm )). There is no bound for ϵ > 1

2m . However, our
provided bound works for all ϵ > 0. We first show that there is a relatively significant amount of residual left in rt, which
makes us bound the total epochs T by O( 1

α·η1:T log( 1
ϵ(1−α) ). The other critical component is that we show the number of

operations of each epoch mainly depends on O(vol (St)) instead of O(m).

To see the effectiveness of the local linear convergence bound, we apply FIFOPUSH with α = 0.1, 0.5, 0.9 where the results
as illustrated in Fig. 8, 9, and 10 of Cora dataset. We also include the results of Citeseer dataset as shown in Fig. 11, 12, and
13. Our bound is much better, especially when α is large. We find similar patterns on other graph datasets.
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Figure 8: The illustration of operations on the Cora dataset. We run FIFOPUSH(S, ϵ, α, s) for α = 0.1 and ϵ ∈[
10−2, 102

]
∗
√

1−α
1+α/n. Compared with the linear bound 1/αϵ in Andersen et al. (2006) and power-iteration bound

m
α log

(
1
ϵm

)
+m provided in Wu et al. (2021), our bound is better and shows the “locality” property of FIFOPUSH. Note

that the bound m
α log

(
1
ϵm

)
+m only works when ϵ < 1/2m.
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Figure 9: The illustration of our bound and parameters on the Cora dataset. We run FIFOPUSH(S, ϵ, α, s) with α = 0.5.

A.3. Local linear convergence of FIFOPUSH for (αI +D −W )−1: The proof of Thm. 4.3

Given any α > 0, ϵ > 0, Algo. 5 is to approximate (αI +D −W )−1
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Figure 10: The illustration of our bound and parameters on the Cora dataset. We run FIFOPUSH(S, ϵ, α, s) with α = 0.9.
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Figure 11: The illustration of operations on the Citeseer dataset. We run FIFOPUSH(S, ϵ, α, s) for α = 0.1 and ϵ ∈[
10−2, 102

]
∗
√

1−α
1+α/n. Compared with the linear bound 1/αϵ in Andersen et al. (2006) and power-iteration bound

m
α log

(
1
ϵm

)
+m provided in Wu et al. (2021), our bound is better and shows the “locality” property of FIFOPUSH. Note

that the bound m
α log

(
1
ϵm

)
+m only works when ϵ < 1/2m.
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Figure 12: The illustration of our bound on the Citeseer dataset. We run FIFOPUSH(S, ϵ, α, s) with α = 0.5.
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Figure 13: The illustration of our bound on the Citeseer dataset. We run FIFOPUSH(S, ϵ, α, s) with α = 0.9.
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Algorithm 5 FIFOPUSH(G, ϵ, α, s) with a dummy node ‡
1: Initialize: rt = es

α , xt = 0, t = 1, t′ = 1
2: Q = [s, ‡] // At the initial stage, Q contains s and a dummy node ‡.
3: while Q.size() ̸= 1 do
4: ut′ = Q.pop()
5: if ut′ == ‡ then
6: t = t+ 1 // Nodes in Ut has been processed. Go to the next epoch.
7: Q.push(ut′)
8: continue
9: end if

10: if rut′ < ϵ · dut′ then
11: t′ = t′ + 1 // ut′ is an “inactive” node
12: continue
13: end if
14: xut′ = xut′ +

αru
t′

α+Du
t′

// ut′ is an “active” node

15: for v ∈ N (ut′) do
16: rv = rv +

ru
t′
wvu

t′
α+Du

t′

17: if v /∈ Q then
18: Q.push(v)
19: end if
20: end for
21: rut′ = 0
22: t′ = t′ + 1
23: end while
24: Return (xt, rt)

Theorem 4.3 (Local convergence of FIFOPUSH forXL). Let xs =XLes and run Aglo. 2 forXL. For s, i ∈ V , we have
xs = xs,ϵ + αXLrs,ϵ, with rs,ϵ(i) ≤ [0, ϵdi),∀i ∈ V . The main operations of FIFOPUSH forXL is bounded as

RT ≤ vol (S1:T ) (α+Dmax)

α · η1:T
log

(
Cα,T
ϵ

)
, (27)

where vol (S1:T ) and η1:T are the same as in Thm. 4.2, ηt ≜
∑

u∈St
du/(α+Du)∑

v∈It
dv/(α+Dv)

, Cα,T = 1/
∑
v∈IT

duwuv

α+Du
, and Dmax =

maxv∈supp(xs,ϵ)Dv .

Proof. The key of Alg. 5 is to maintain xt and rt so that 1/α magnitudes will move from r to x. For each active node ut,
xt updates to x̃t+1 and rt updates to r̃t+1 as the following

x̃t+1 = xt +
αru

α+Du
eu

r̃t+1 = rt +
ru

α+Du
Weu − rueu = rt −

(
I +

D −W
α

)
αru

α+Du
eu

αru
α+Du

eu =

(
I +

D −W
α

)−1

(rt − r̃t+1)
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Bring back t′ for u. After all active nodes in t-th epoch have been updated, we have

xt+1 = xt +
∑

ut′∈St

αrut′

α+Dut′

eut′

= xt +

(
I +

D −W
α

)−1

(rt − rt+1) = x1 +

(
I +

D −W
α

)−1 t∑

i=1

(ri − ri+1)

=

(
I +

D −W
α

)−1 (es
α

− rt+1

)
,

where rt = r̃t → r̃t′+1 → r̃t′+2 → · · · r̃t′+|St| = rt+1. Denote xt+1 as xs,ϵ and rt+1 as rs,ϵ, then we have

xs = xs,ϵ + αXrs,ϵ. (28)

After the T -th epoch finished, IT+1 = supp (rs,ϵ). For each v ∈ IT+1, note that there exists at least one of its neighbor
u ∈ N (v) such that ru ≥ ϵ · du had happened in a previous active iteration.

∀v ∈ IT+1,
ruwuv
α+Du

≥ ϵduwuv
α+Du

≜ r̃v,

where r̃v is the residual pushed into v but never popped out; hence
∑
v∈IT+1

r̃v is an estimate of ∥rT+1∥1 from bottom.
That is ∑

v∈IT+1

r̃v =
∑

v∈IT+1

ϵduwuv
α+Du

≤ ∥rT+1∥1. (29)

The operation bounds are similar to that of 4.2. Note that for each epoch, the updates of r satisfies

∥rt∥1 − ∥rt+1∥1 ≥
∑

ut′∈St

αrut′

α+Dut′

. (30)

By the condition, we have ∀ut′ ∈ St, rut′ ≥ ϵ · dut′ ,∀v ∈ It\St, 0 < rt(v) < ϵ · dv. Summation above inequalities over
all active ut′ and inactive v, multiply α

α+Du
on both sides, we have

∑
ut′∈St

αru
t′

α+Du
t′∑

ut′∈St

αdu
t′

α+Du
t′

≥ ϵ >

∑
v∈It\St

αrv
α+Dv∑

v∈It\St

αdv
α+Dv

,

which indicates ∑
ut′∈St

αru
t′

α+Du
t′∑

ut′∈St

αdu
t′

α+Du
t′

≥
∑
ut′∈St

αru
t′

α+Du
t′
+
∑
v∈It\St

αrv
α+Dv

∑
ut′∈St

αdu
t′

α+Du
t′
+
∑
v∈It\St

αdv
α+Dv

≥
α

α+Dmax
∥rt∥1∑

v∈It

αdv
α+Dv

(31)

where the last equality is due to the fact that It indexes all nonzero entries of rt, i.e., ∥rt∥1 =
∑
v∈It

rt(v). Combine (30)
and (31), for t = 1, 2, . . . , T , we have

∥rt+1∥1 <
(
1− α

α+Dmax

∑
u∈St

du/(α+Du)∑
v∈It

dv/(α+Dv)

)
∥rt∥1.

From t = 1 to t = T , we obtain

∑

v∈IT+1

ϵduwuv
α+Du

≤ ∥rT+1∥1 ≤
T∏

t=1

(
1− α

α+Dmax

∑
u∈St

du/(α+Du)∑
v∈It

dv/(α+Dv)

)
.

Denote CT = 1/
∑
v∈IT+1

duwuv

α+Du
. Take the logarithm on both sides of the above and we reach

α

α+Dmax

T∑

t=1

∑
u∈St

du/(α+Du)∑
v∈It

dv/(α+Dv)
≤ log

(
CT
ϵ

)
. (32)
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(b) x22,ϵ on G

100 101

Ranking of xs, (i)

10 3

10 2

10 1

100

x s
,

(i)

10 1.1

10 1.6

10 2.2

(c) Power law ofXϵ

Figure 14: Power law distribution ofXLes on Karate graph (Girvan & Newman, 2002). (a) The Karate contains 34 nodes
and 78 edges forming four communities (wuv is the 2-dimensional Euclidean distance.); (b) We run FIFOPUSH(G, ϵ, α, s)
on s = 22 with α = 0.85 and ϵ = 10−12. Neighbors of s = 22 have large magnitudes of xs; (We changed the magnitude of
xs(22) to the largest magnitude of rest for better visibility.) (c) The power law distribution of entries of xs for all 34 nodes.

Then by (32), the total number of epochs can be bounded by T ≤ α+Dmax

α·η1:T log
(
CT

ϵ

)
. The total operations for processing

active nodes is RT =
∑T
t=1 vol (St), which is bounded as

RT ≤ (α+Dmax) vol (S1:T )

α · η1:T
log

(
CT
ϵ

)
.

A.4. Approximation kernels and their residuals

Table 3: The parameterized graph kernel matrices with their kernel approximation

ID α Basic Kernel Presentation ApproximationMϵ Residual Matrix Eϵ

1 λ
n

Mλ,β = 2λXL 2λXϵ 2λαXLRϵ

2 λ
n+λ

Mλ,β = 2nD−1/2XLD
1/2 2nD−1/2XϵD

1/2 2nD−1/2XLRϵD
1/2

3 n+λ−βn
n+λ

Mλ,β = 2λn
n+λ−βn

D−1/2XLD
1/2 2λn

n+λ−βn
D−1/2XϵD

1/2 2λn
n+λ−βn

D−1/2XLRϵD
1/2

4 nβ+λ
n

Mλ,β = 2λS−1/2XLS
1/2 2λS−1/2XϵS

1/2 2λS−1/2αXLRϵS
1/2

5 2λ Mλ,β =
(
S1/2

4nλ
+ βS−1/2

4λ2

)−1

XLS
1/2

(
S1/2

4nλ
+ βS−1/2

4λ2

)−1

XϵS
1/2 α

(
S1/2

4nλ
+ βS−1/2

4λ2

)−1

XLRϵS
1/2

6 β + λ
n

Mλ,β = 2λXL
(
I − b11⊤

α+nb

)
Mλ,β = 2λXϵ

(
I − b11⊤

α+nb

)
2λαXLRϵ

(
I − b11⊤

α+nb

)
Recall two types of matrix presentation and their approximations

XL = α(I − (1− α)WD−1)−1 =Xϵ +XLRϵ,

XL = (αI +D −W )−1 =Xϵ + αXLRϵ.

Based on the above lemmas, we list the approximation kernels in Tab. 3. Xϵ = [x1,ϵ,x2,ϵ, . . . ,xn,ϵ] be the matrix obtained
by applying FIFOPUSH as described in Algorithm 2. We only show the first two cases to see how to represent these matrices
in terms ofXϵ andRϵ. For example, in the first case, we have

Mλ,β =

(
D −W

2λ
+
In
2n

)−1

= 2λ (αIn + L)−1
= 2λXL = 2λ(Xϵ + αXLRϵ).
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For the second case, the kernel matrix can be rewritten asM = 2nD−1/2XLD
1/2. By Lemma A.1, we have

XL =Xϵ +XLRϵ

2nD−1/2XLD
1/2 = 2nD−1/2(Xϵ +XLRϵ)D

1/2

M = 2nD−1/2XϵD
1/2 + 2nD−1/2XLRϵD

1/2

M = 2nD−1/2XϵD
1/2 +MD−1/2RϵD

1/2.

For all these cases, we have the relationship thatM =Mϵ +Eϵ.

B. Eigenvalues ofMλ,β and quadratic approximation guarantees ofMϵ

Mλ,β is the matrix we want to approximate. Recall Xϵ be the approximated matrix by FIFOPUSH. Mϵ be the matrix
built uponXϵ (See 3rd column of Table 3). In the following, we will construct the relaxation function based onMϵ. The
following lemma shows that if Mϵ is a good approximation of M then we can define a relaxation function based Mϵ.
Before we present the theorem, let us characterize the eigenvalues ofXL andXL.

Lemma B.1. The eigenvalue functions of these two basic kernel matricesXL andXL satisfy

λ(XL) = λ
(
α
(
I − (1− α)WD−1

)−1
)
∈
[

α

2− α
, 1

]
,

λ(XL) = λ
(
(αI +D −W )

−1
)
∈
[

1

α+ 2Dmax
,
1

α

]
,

where Dmax is the maximum weighted degree among V . ForXL, we assume α ∈ (0, 1), and forXL, α > 0.

Proof. Notice that since the magnitude of the eigenvalues of the column stochastic matrix WD−1 is bounded by 1, i.e.,
|λ(WD−1)| ≤ 1, then we have

λ(I − (1− α)WD−1) ∈ [α, 2− α]

λ
((
I − (1− α)WD−1

)−1
)
∈
[

1

2− α
,
1

α

]

λ
(
α
(
I − (1− α)WD−1

)−1
)
∈
[

α

2− α
, 1

]
.

Hence, we have the first bounding inequality. To show the second inequality, notice that if x is an eigenvalue ofD −W ,
then

(D −W )x = λx

x⊤(D −W )x = λx⊤x
∑

(u,v)∈E
wuv(xu − xv)

2 = λx⊤x.

Hence λ ≥ 0, and the lower bound is achieved when x = 1. On the other hand, a well-known result (Anderson Jr & Morley,
1985) of the upper bound is

λ(D −W ) ≤ max
(u,v)∈E

Du +Dv ≤ 2Dmax.

where Dmax is the maximum weighted degree among all nodes. It follows that

λ(D −W ) ∈ [0, 2Dmax]

λ(αI +D −W ) ∈ [α, α+ 2Dmax]

λ
(
(αI +D −W )

−1
)
∈
[

1

α+ 2Dmax
,
1

α

]
.
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Lemma B.2. LetM be a symmetric positive definite matrix andD be a positive diagonal matrix. Then, for any nonnegative
real matrixR ∈ Rn×n+ and x ̸= 0, we have

1

2

x⊤(MD−1/2RD1/2 +D1/2R⊤D−1/2M)x

x⊤Mx
≤ ∥D−1/2RD1/2∥2. (33)

Proof. SinceM is a symmetric positive definite matrix, one can writeM = BB⊤ andB are invertible. The decomposition
ofM isM = QΛQ⊤ = QΛ1/2Λ1/2Q⊤ where we can letB = QΛ1/2 andQ is an orthonormal matrix. Let y = B⊤x,
then x⊤Mx = y⊤y and x = (B⊤)−1y. Let Z =D−1/2RD1/2. We have

(∗) = 1

2

x⊤ (MD−1/2RD1/2 +D1/2R⊤D−1/2M
)
x

x⊤Mx

=
1

2

x⊤ (MZ +Z⊤M
)
x

y⊤y

=
1

2

y⊤B−1
(
BB⊤Z +Z⊤BB⊤) (B⊤)−1y

y⊤y

=
1

2

y⊤ (B⊤Z(B⊤)−1 +B−1Z⊤B
)
y

y⊤y

=
1

2

y⊤ (Λ1/2Q⊤Z(Q⊤)−1Λ−1/2 +Λ−1/2Q−1Z⊤QΛ1/2
)
y

y⊤y

≤ 1

2

∥∥∥Λ1/2Q⊤Z(Q⊤)−1Λ−1/2 +Λ−1/2Q−1Z⊤QΛ1/2
∥∥∥
2

where the inequality follows Rayleigh’s quotient property, that is, any matrix norm bounds the maximal absolute eigenvalue,
and the spectral radius is less than any matrix norm. Denoting A = Q⊤Z(Q⊤)−1, we may write

2(∗) =
∥∥∥Λ1/2Q⊤Z(Q⊤)−1Λ−1/2 +Λ−1/2Q−1Z⊤QΛ1/2

∥∥∥
2

= max
∥u∥2=1

∣∣∣u⊤Λ1/2AΛ−1/2u+ u⊤Λ−1/2AΛ1/2u
∣∣∣

and denoting w = Λ1/2u,v = Λ−1/2u

∣∣∣u⊤Λ1/2AΛ−1/2u+ u⊤Λ−1/2AΛ1/2u
∣∣∣ = 2|w⊤Av| = 2| tr

(
vw⊤A

)
|

(◦)
≤ 2|w⊤v|∥A∥2,

where the inequality (◦) is due to Holder’s p = 1 inequality applied to the matrix singular values. Sincew⊤v = u⊤u = 1,
(∗) ≤ ∥Q⊤Z(QT )−1∥2 = ∥Z∥2.

The next lemma shows FIFOPUSH provides good approximations. Here we only show Instance 3 and Instance 4.

Lemma B.3. Let Xϵ and Rϵ be the approximate and the residual matrix obtained by applying FIFOPUSH(G, ϵ, α, s)
∀s ∈ V . Then we have the following inequalities

x⊤
(
Mϵ +M

⊤
ϵ

2

)
x ≥ x⊤Mx

(
1− ∥D−1/2RϵD

1/2∥2
)

forM =
2λn

n+ λ− βn
D−1/2XLD

1/2,

x⊤
(
Mϵ +M

⊤
ϵ

2

)
x ≥ x⊤Mx

(
1− ∥S−1/2RϵS

1/2∥2
)

forM = 2λS−1/2XLD
1/2.

Proof. The inequality is trivially true when x = 0. In the rest, we assume x ̸= 0. For ease of notation, we simply write
M =Mλ,β , and

M =Mϵ +Eϵ, XL =Xϵ +XLRϵ.

We consider two parameterized kernels as follows
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1. M = cD−1/2XLD
1/2 where c = 2λn

n+λ−βn . Here,

XL = α(I − (1− α)WD−1)−1, Mϵ = cD−1/2XϵD
1/2, Eϵ = cD−1/2XLRϵD

1/2.

We have

x⊤Mx = x⊤Mϵx+ x⊤Eϵx

= x⊤
(
Mϵ +Mϵ

2

⊤
)
x+

1

2
x⊤
(
MD−1/2RϵD

1/2 +D1/2R⊤
ϵ D

−1/2M
)
x

= x⊤
(
Mϵ +Mϵ

2

⊤
)
x+ x⊤Mx · x

⊤ (MD−1/2RϵD
1/2 +D1/2R⊤

ϵ D
−1/2M

)
x

2x⊤Mx

≤ x⊤
(
Mϵ +Mϵ

2

⊤
)
x+ x⊤Mx · ∥D−1/2RD1/2∥2,

where the last inequality follows from Lemma B.2 of (33). Rearrange the above; we finish the first case.

2. M = 2λS−1/2XLS1/2. Here,

XL = (αI +D −W )−1 Mϵ = 2λS−1/2XϵS
1/2, Eϵ = 2λS−1/2αXLRϵS

1/2.

Then

x⊤Mx = x⊤(Mϵ +Eϵ)x

= x⊤
(
Mϵ +Mϵ

2

⊤
)
x+

α

2
x⊤
(
MS−1/2RϵS

1/2 + S1/2R⊤
ϵ S

−1/2M
)
x

= x⊤
(
Mϵ +Mϵ

2

⊤
)
x+ x⊤Mx · αx

⊤ (MS−1/2RϵS
1/2 + S1/2R⊤

ϵ S
−1/2M

)
x

2x⊤Mx

≤ x⊤
(
Mϵ +Mϵ

2

⊤
)
x+ x⊤Mx · α∥S−1/2RS1/2∥2,

by applying Lemma B.2 withD = S1/2.

Rearrange the above; we finish the proof.

Remark B.4. The above theorem allows us to control the error of Mϵ. Next, we show that if Mϵ+M
⊤
ϵ

2 is a positive
semidefinite matrix, then we can find an approximate relaxation function.
Lemma B.5. LetGt = [∇1, . . . ,∇t,0, . . . ,0] ∈ Rk×n with ∥∇t∥2 ≤ D. LetMϵ be the approximation built uponXϵ as

defined in Table 3 such that
(
Mϵ+M

⊤
ϵ

2

)
is positive semidefinite. If we provide the following score

ψt = −G
t−1(Mϵ):,t +G

t−1(Mϵ)
⊤
t,:√

Qt−1 +D2
∑n
j=t(Mϵ)j,j

,

where Qt ≜
∑k
i=1 (G

t
i)

⊤
(
Mϵ+M

⊤
ϵ

2

)
Gt
i, then the relaxation function defined

Relt (∇1, . . . ,∇t;Mϵ) ≜

√√√√Qt +D2

n∑

j=t+1

(Mϵ)j,j

is admissible; that is, for all t = 1, 2, . . . , n,

inf
ψt∈Rk

sup
∥∇t∥≤D

{
∇⊤
t ψt +Relt (∇1 . . . ,∇t;Mϵ)

}
≤ Relt−1(∇1, . . . ,∇t−1;Mϵ)

where Rel0(∅;Mϵ) =
√
D2 · tr (Mϵ).
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Proof. Define bti = [0, . . . ,∇t(i), 0, . . . , 0]
⊤ ∈ Rn. Note that (Gt

i)
⊤ = (Gt−1

i + bti)
⊤ where i = 1, 2, . . . , k indexing

label id and t = 1, 2, . . . , n indexing node id. We define the following quadratic based onMϵ

Qt ≜
k∑

i=1

(
Gt
i

)⊤
(
Mϵ +M

⊤
ϵ

2

)
Gt
i

=

k∑

i=1

(
Gt−1
i + bti

)⊤
(
Mϵ +M

⊤
ϵ

2

)(
Gt−1
i + bti

)

=

k∑

i=1

{(
Gt−1
i

)⊤
(
Mϵ +M

⊤
ϵ

2

)
Gt−1
i +

(
Gt−1
i

)⊤ (
Mϵ +M

⊤
ϵ

)
bti + (bit)

⊤
(
Mϵ +M

⊤
ϵ

2

)
bit

}

= Qt−1 +

k∑

i=1

{(
Gt−1
i

)⊤
Mϵb

t
i + (bti)

⊤MϵG
t−1
i + (∇t(i))

2
(Mϵ)t,t

}

= Qt−1 +

k∑

i=1

(
∇t(i)((G

t−1
i )⊤(Mϵ):,t + (Mϵ)

⊤
t,:G

t−1
i ) + (∇t(i))

2(Mϵ)t,t
)
,

where (Mϵ)
⊤
t,: is the t-th row vector of Mϵ and (Mϵ):,t is t-th column vector of Mϵ. When t = 1, we initialize Q0 = 0

andG0 = 0k×n. Finally, the recursion of the above is,

Qt = Qt−1 +∇⊤
t G

t−1(Mϵ):,t +∇⊤
t G

t−1(Mϵ)t,: + (Mϵ)t,t · ∥∇t∥22,
where t = 1, 2, . . . , n. Now we can obtain an upper bound of the relaxation function Relt as the following (t =
0, 1, 2, . . . , n− 1)

Relt (∇1, . . . ,∇t;Mϵ) ≜

√√√√Qt +D2

n∑

j=t+1

(Mϵ)j,j

=

√√√√Qt−1 +∇⊤
t G

t−1(Mϵ):,t +∇⊤
t G

t−1(Mϵ)
⊤
t,: + (Mϵ)t,t · ∥∇t∥2 +D2

n∑

j=t+1

(Mϵ)j,j

≤

√√√√Qt−1 +∇⊤
t G

t−1(Mϵ):,t +∇⊤
t G

t−1(Mϵ)
⊤
t,: +D2

n∑

j=t

Mϵ(j, j),

where the above inequality step is due to ∥∇t∥22 ≤ D2. Hence, we have

inf
ψt∈Rk

sup
∥∇t∥≤D

{
∇⊤

t ψt +Reln (∇1, . . . ,∇t;Mϵ)
}

≤ inf
ψt∈Rk

sup
∥∇t∥≤D

∇⊤
t ψt +

√√√√Qt−1 +∇⊤
t G

t−1(Mϵ):,t +∇⊤
t G

t−1(Mϵ)
⊤
t,: +D2

n∑
j=t

(Mϵ)j,j


≤ sup

∥∇t∥≤D

−
∇⊤

t G
t−1(Mϵ):,t +∇⊤

t G
t−1(Mϵ)

⊤
t,:√

Qt−1 +D2
∑n

j=t Mϵ(j, j)
+

√√√√Qt−1 +∇⊤
t G

t−1(Mϵ):,t +∇⊤
t G

t−1(Mϵ)
⊤
t,: +D2

n∑
j=t

(Mϵ)j,j


≤

√√√√Qt−1 +D2

n∑
j=t

Mϵ(j, j) = Reln(∇1, . . . ,∇t−1;Mϵ),

where the first inequality is due to the upper bound of Reln, and the second is that we replace ψt by its definition. To
see the last inequality, we can prove it in the following way: Letting v = Gt−1(Mϵ):,t + G

t−1(Mϵ)
⊤
t,:, a = Qt−1 +

D2
∑n
j=tMϵ(j, j), we can simplify the above equality as

sup
∥∇t∥≤D

{
h(∇t) := −∇⊤

t v√
a

+
√
a+ 2∇⊤

t v

}
. (34)
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The function h is concave in ∇t, and setting its gradient to 0 gives

v√
a
=

v√
a+∇T

t v
⇐⇒ ∇T

t v = 0

which is feasible in the domain ∥∇t∥ ≤ D. In other words, h(∇t) ≤
√
a, for all ∇t ∈ Rk. This upper bound is always

achievable by noticing that there exists ∇t such that ∇⊤
t v = 0.

Remark B.6. The main argument of the above proof follows from Rakhlin & Sridharan (2017). However, this proof differs
in a way that unlike in Rakhlin & Sridharan (2017), we assume Mϵ+M

⊤
ϵ

2 is the one such that all eigenvalues are nonnegative.
Even ifMϵ is asymmetric, we can still find a relaxation function accordingly.

C. Regret based on the estimation ofMλ,β

Recall we consider the following online learning paradigm on G: At each time t, a learner picks up a node v and makes
a prediction ŷv ∈ Y; then the true label yv is revealed with a cost of corresponding 0-1 loss as ℓ(ŷ,y) = 1 − y⊤ŷ,
the goal is to design an algorithm so that the learner makes as few mistakes as possible. Denote a prediction of V
as Ŷ = [ŷ1, ŷ2, . . . , ŷn] ∈ F and true label configuration as Y = [y1,y2, . . . ,yn] ∈ F where the set of allowed label
configurations F ≜

{
F ∈ {0, 1}k×n : F⊤

:,j · 1 = 1,∀j ∈ V
}

. Formally, the goal is to find an algorithm A, which minimizes
the following regret

Reg
A,Y

(F) := E
Ŷ ∼A

n∑

t=1

ℓ(ŷt,yt)− min
F∈F

n∑

t=1

ℓ(ft,yt),

where the graph Laplacian constraint set is defined as F ≜ Fλ,K =
{
F ∈ F :

∑k
i=1 F

⊤
i K

−1Fi ≤ λ
}

.

Before we present the main theorem, we shall state the important properties of ϕ(·,y) defined in (4). We repeat these
lemmas and their proofs as the following. In the rest, we denote ξ for ϕ when yt /∈ S(ψt)).

Lemma C.1. (Rakhlin & Sridharan, 2017) If we use the loss ϕ defined in (4), then we have the regret upper bounded by

Reg
A,Y

(F) ≤
n∑

t=1

ϕψt (ψt,yt)− inf
F∈F

n∑

t=1

ϕψt (ft,yt)

≤
n∑

t=1

∇ϕψt
(ψt,yt)

⊤
ψt − inf

F∈F

n∑

t=1

∇ϕψt
(ψt,yt)

⊤
ft ≜ Bn. (35)

Proof. For any time t, we have ϕψt
(ψt,yt) satisfies the following inequality (Rakhlin & Sridharan, 2017)

Eŷt∼qt(ψt) [1{ŷt ̸= yt}]− [ξ (ft,yt) 1{yt /∈ S(ψt)}+ 1 {y ̸= ft} 1{yt ∈ S(ψt)}]
≤ ϕψt

(ψt,yt)− ϕψt
(ft,yt) ,

where ξ(·, ·) denote ϕ when yt /∈ S(ψt). Summing over t from 1 to n, we obtain the first inequality (35). Notice ϕψ(g,y)
is a convex function over g. Specifically, for any ψ and y and any g,h ∈ Rk, we have that

ϕψ(g,y)− ϕψ(h,y) ≤ ∇gϕψ(g,y)
⊤(g − h).

Let g = ψt and h = ft, we obtain the following

n∑

t=1

ϕψt (ψt,yt)−
n∑

t=1

ϕψt (ft,yt) ≤
n∑

t=1

∇ϕψt (ψt,yt)
⊤
(ψt − ft) .
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Taking the sup over both sides, we have

sup
F∈F

{
n∑

t=1

ϕψt
(ψt,yt)−

n∑

t=1

ϕψt
(ft,yt)

}
≤ sup
F∈F

{
n∑

t=1

∇ϕψt
(ψt,yt)

⊤
(ψt − ft)

}

n∑

t=1

ϕψt
(ψt,yt)− inf

F∈F

n∑

t=1

ϕψt
(ft,yt) ≤ sup

F∈F

{
n∑

t=1

∇ϕψt
(ψt,yt)

⊤
(ψt − ft)

}

n∑

t=1

ϕψt
(ψt,yt)− inf

F∈F

n∑

t=1

ϕψt
(ft,yt) ≤

n∑

t=1

∇ϕψt
(ψt,yt)

⊤
ψt − inf

F∈F

n∑

t=1

∇ϕψt
(ψt,yt)

⊤
ft.

We finish the proof.

The above lemma tells us that there is a way to use surrogate loss ϕψ to possibly obtain a regret if
∑n
t=1 ∇⊤

t (ψt − F:,t)
can be properly bounded. The next lemma tells us that if we can properly choose a method such that ψt satisfies the above
lemma, then we have the following lemma. Following the notation in (Rakhlin & Sridharan, 2017), we define Bn as in (35).
Lemma C.2. (Rakhlin & Sridharan, 2017) If the loss is defined in (4), we obtain the regret bound

n∑

t=1

E
ŷt∼q(ψt)

1 {ŷt ̸= yt} ≤ inf
F∈F



2

(
1− 1

k

) ∑

t:yt /∈S(ψt)

1 {ft ̸= yt}+
∑

t:yt∈S(ψt)

1 {ft ̸= yt}



+Bn.

Proof. From the Lemma C.1, we have

n∑

t=1

E
ŷt∼q(ψt)

1 {ŷt ̸= yt} ≤ inf
F∈F





∑

t:yt /∈S(ψt)

ξ (ft,yt) +
∑

t:yt∈S(ψt)

1 {ft ̸= yt}



+Bn

= inf
F∈F





∑

t:yt /∈S(ψt)

ξ (ft,yt) E
ŷt∼q(ψt)

1 {ŷt ̸= yt}+
∑

t:yt∈S(ψt)

1 {ft ̸= yt}



+Bn,

where the equality holds is due to the fact that E
ŷt∼q(ψt)

1 {ŷt ̸= yt} = 1 when yt /∈ S(ψt). Furthermore, when yt /∈ S(ψt),

ξ(ft,yt) ≥ 1 and for any j ∈ Y, yt /∈ S(ψt), we have

ξ (ft,yt) =
1 +maxr:er ̸=yt

{
f⊤
t er − f⊤

t yt
}

1 + 1/|S(ψt)|

=
2 · 1{ft ̸= yt}
1 + 1/|S(ψt)|

≤ 2

(
1− 1

k

)
1 {ft ̸= yt} ,

where the last inequality is due to |S(ψt)| ≤ k − 1 when yt /∈ S(ψt).

Algorithm 6 RELAXATION(G, λ,K−1
β ) (Rakhlin & Sridharan, 2017)

1: T1 = tr ((M)) , A1 = 0,G = [0,0, . . . ,0] ∈ Rk×n,Mλ,β =

(
K−1

β

2λ + I
2n

)−1

2: for t = 1, . . . , n do
3: ψt = −GtM [:, t]/

√
At +D2 · Tt

4: Predict ŷt ∼ qt(ψt) and get loss gradient ∇t =

{
maxr:er ̸=y{er−y}

1+1/|S(ψ)| if yt /∈ S (ψt)
1

|S(ψt)|1S(ψt) − yt otherwise
5: UpdateG[:, t] = ∇t

6: At+1 = At + 2∇⊤
t G

tM [:, t] +mtt · ∥∇t∥2
7: Tt+1 = Tt −mtt

8: end for
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If we use the above Algorithm 6, then we have the following lemmas directly from (Rakhlin & Sridharan, 2017)
Lemma C.3. (Rakhlin & Sridharan, 2017) LetG = [∇1, . . . ,∇n] ∈ Rk×n. We have the following

− inf
F∈F̄λ,K

n∑

t=1

∇⊤
t ft =

√√√√
k∑

i=1

G⊤
i Mλ,βGi, (36)

where the pre-computed matrix isMλ,β =

(
K−1

β

2λ + In
2n

)−1

. Then we could have

− inf
F∈Fλ,K

n∑

t=1

∇⊤
t f:,t ≤ − inf

F∈F̄λ,K

n∑

t=1

∇⊤
t F:,t. (37)

The above lemma is from the following fact:
Lemma C.4. Consider the following optimization problem

min
F∈Rk×n

tr
(
FY ⊤) subject to tr

(
FM−1F⊤) ≤ 1, (38)

whereM ∈ Rn×n is a symmetric positive definite matrix and Y ∈ Rk×n. (38) obtains the optimal at F ∗ = − YM√
tr(YMY ⊤)

,

that is
min

F∈Rk×n
tr
(
FY ⊤) ≥ −

√
tr (YMY ⊤) with equality holds at F ∗. (39)

Proof. A possible Lagrangian can be defined as

L(F ;λ) = tr
(
FY T

)
+ λ(tr

(
FM−1F T

)
− 1) (40)

and differentiating and setting the gradient to be 0, we have

∇FL = Y + 2λFM−1 = 0

Y = −2λFM−1.

Denote λ∗ =

√
tr(YMY ⊤)

2 ,F ∗ = −YM
2λ∗ . The rest of the proof is to show (F ∗, λ∗) satisfies the KKT conditions. First of all,

0k×n ∈ ∇FL when F = F ∗ hence stationarity is satisfied. λ∗ > 0, so it is dual feasible. λ∗
(
tr
(
F ∗M−1F ∗⊤

)
− 1
)
=

0, so it satisfies complementary slackness. Clearly, tr
(
F ∗M−1F ∗⊤

)
− 1 ≤ 0, so it is primal feasible. Hence the problem

obtains the optimal at F ∗.

By applying Y = G, we have that F ∗ = − YnM√
tr(YnMY ⊤

n )
.

From the above lemma C.4, we have the following upper bound of the defined regret.
Lemma C.5. (Rakhlin & Sridharan, 2017) The regret has the following bound

E
Ŷ ∼A

n∑

t=1

ℓ(ŷt,yt)− 2

(
1− 1

k

)
min

F∈Fλ,K

n∑

t=1

ℓ(ft,yt) ≤ sup
F∈Fλ,K

{
n∑

t=1

∇1ℓ(ψt,yt)
⊤(ψt − ft)

}

We are ready to prove our main theorem.
Theorem 5.1 (Regret of RELAXATION with parameterized Kernel matrixM−1

β ). Let Ŷ be the prediction matrix returned
by RELAXATION, if the input label sequence Y has good pattern, meaning a strong assumption λ = nγ with γ ∈ (0, 1),
then choosing β = nγ−1 for kernelK−1

β = I − βD−1/2WD−1/2 and β = 1− λ
n forK−1

β = βI + S−1/2LS−1/2, we
have the following regret bound

E
Ŷ ∼A

n∑

t=1

ℓ(ŷt,yt)− 2

(
1− 1

k

)
min

F∈Fλ,K

n∑

t=1

ℓ(ft,yt) ≤ D
√
2n1+γ . (41)
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Proof. Since Fλ,β ⊆ F̄λ,β , we continue to have an upper bound of the regret as

sup
F∈Fλ,β

{
n∑

t=1

∇1ℓ(ψt,yt)
⊤(ψt − ft)

}
≤ sup
F∈F̄λ,β

{
n∑

t=1

∇1ℓ(ψt,yt)
⊤(ψt − ft)

}

=

n∑

t=1

∇1ℓ(ψt,yt)
⊤ψt − inf

F∈F̄λ,β

{
n∑

t=1

∇1ℓ(ψt,yt)
⊤ft

}

=

n∑

t=1

∇⊤
t ψt − inf

F∈F̄λ,β

n∑

t=1

∇⊤
t ft,

where we denote ∇1ℓ(ψt,yt) as ∇t in the last equality. For the term
∑n
t=1 ∇⊤

t ψt, from Lemma B.5, we know that if we
choose

ψt = − Gt−1Mt,:√∑k
i=1

(
Gt−1
i

)⊤
MGt−1

i +D2
∑n
j=tM(j, j)

,

where relaxation is defined as

Relt (∇1, . . . ,∇t;M) =

√√√√
k∑

i=1

(
Gt−1
i

)⊤
MGt−1

i +D2

n∑

j=t

M(j, j)

satisfies
∇⊤
t ψt ≤ Relt−1(∇1, . . . ,∇t−1;M)− Relt(∇1, . . . ,∇t;M), ∀t = 1, 2, . . . , n.

Then we continue to have

n∑

t=1

∇⊤
t ψt ≤

n∑

t=1

{Relt−1(∇1, . . . ,∇t−1;M)− Relt(∇1, . . . ,∇t;M)}

= Rel0(∅;M)− Reln(∇1, . . . ,∇n;M)

= D

√√√√
n∑

i=1

mii −

√√√√
k∑

i=1

(Gn
i )

⊤
MGn

i .

We are ready to provide the whole bound

Reg(Fλ,K) ≤
n∑

t=1

∇⊤
t ψt − inf

F∈F̄λ,K

{
n∑

t=1

∇⊤
t ft

}

≤ D

√√√√
n∑

i=1

mii −

√√√√
k∑

i=1

(Gn
i )

⊤
MGn

i − inf
F∈F̄λ,β

{
n∑

t=1

∇⊤
t ft

}

= D

√√√√
n∑

i=1

mii −

√√√√
k∑

i=1

(Gn
i )

⊤
MGn

i +

√√√√
k∑

i=1

(Gn
i )

⊤
MGn

i

= D

√√√√
n∑

i=1

mii.

1. For the first parameterized kernelK−1
β = I − βD−1/2WD−1/2, we haveMλ,β = 2λn

n+λ−nβD
−1/2XLD

1/2 where

1− α = nβ
n+λ , and the parameter β ∈ (0, n+λn ). Note that the eigenvalue ofXL be

λ(XL) = λ
(
α
(
I − (1− α)WD−1

)−1
)
∈
[

α

2− α
, 1

]
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We have

λ(Mλ,β) =
2λn

n+ λ− nβ
λ(XL) ∈

2λn

n+ λ− nβ

[
α

2− α
, 1

]
.

Notice that when λ = nγ with γ ∈ (0, 1), there always exists such β so that λ(Mλ,β) could be bounded by 2nγ , that is

λ(Mλ,β) ≤
2λn

n+ λ− nβ

=
2λ

1 + λ/n− β

=
2nγ

1 + nγ/n− β

= 2nγ ,

where we always choose β = nγ−1. Note β is a valid parameter for our problem setting where the kernel matrix
requires β ∈ (0, 1) and β ∈ (0, 1 + λ

n ). Notice that the trace ofM is then bounded by

tr ((Mλ,β)) ≤ 2n1+γ .

Therefore, the final regret can be upper bounded as the following

Reg(Fλ,K) ≤ D

√√√√
n∑

i=1

mii ≤ D
√
2n1+γ . (42)

2. Notice that our kernel matrix is K−1
β = βI + S−1/2LS−1/2 and corresponding Mλ,β = 2λS−1/2XLS1/2 with

α = nβ+λ
n (see Table 1). By Lemma B.1, we have

λ(XL) = λ
(
(αI +D −W )

−1
)
∈
[

1

α+ 2Dmax
,
1

α

]

λ(Mλ,β) = λ
(
2λS−1/2XLS

1/2
)
∈
[

2λ

α+ 2Dmax
,
2λ

α

]
.

Whenever λ = nγ with γ ∈ (0, 1), we choose β = 1− λ
n so that α = 1 and β ∈ (0, 1). Hence, the trace ofMλ,β can

be bound by

tr ((Mλ,β)) =

n∑

i=1

λi(Mλ,β) ∈
[

2nλ

α+ 2Dmax
,
2nλ

α

]

∈
[

2nλ

1 + 2Dmax
, 2nλ

]
.

Therefore, we have

Reg(Fλ,K) ≤ D

√√√√
n∑

i=1

mii ≤ D
√
2n1+γ . (43)

Combining (42) and (43), we finish the proof.

Our final step is to prove the approximated bound for FASTONL. We state it as in the following theorem. In the rest, we
simply define Mϵ(i, i) = mii.

Theorem 5.3 (Regret analysis of FASTONL with approximated parameterized kernel). Consider FASTONL presented in
Algo. 3. If we call FASTONL(G, ϵ,Kβ , λ = nγ) and ϵ is chosen such that

∥∥∥D−1/2RϵD
1/2
∥∥∥
2
≤ 1, α

∥∥∥D−1/2RϵD
1/2
∥∥∥
2
≤ 1,
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then we have the following regret bounded by

Reg := E
Ŷ ∼A

n∑

t=1

ℓ(ŷt,yt)−
2k − 1

k
min

F∈Fλ,K

n∑

t=1

ℓ(ft,yt) ≤ D
√

(1 + k2)n1+γ (44)

Proof. Since Fλ,K has been relaxed to F̄λ,K , we have Fλ,K ⊆ F̄λ,K , the surrogate loss has been chosen, we continue to
have an upper bound of the regret as

sup
F∈Fλ,K

{
n∑

t=1

∇1ℓ(ψt,yt)
⊤(ψt − ft)

}
≤ sup
F∈F̄λ,K

{
n∑

t=1

∇1ℓ(ψt,yt)
⊤(ψt − ft)

}

=

n∑

t=1

∇1ℓ(ψt,yt)
⊤ψt − inf

F∈F̄λ,K

{
n∑

t=1

∇1ℓ(ψt,yt)
⊤ft

}

=

n∑

t=1

∇⊤
t ψt − inf

F∈F̄λ,K

n∑

t=1

∇⊤
t ft,

where we denote ∇1ℓ(ψt,yt) as ∇t in the last equality. For the term
∑n
t=1 ∇⊤

t ψt, from Lemma B.5, we know that if we
choose

ψt = −
Gt−1(Mϵ):,t +G

t−1(Mϵ)
⊤
t,:√∑k

i=1

(
Gt−1
i

)⊤
MϵG

t−1
i +D2

∑n
j=tMϵ(j, j)

,

where relaxation is defined as

Relt (∇1, . . . ,∇t;Mϵ) =

√√√√
k∑

i=1

(
Gt−1
i

)⊤
MϵG

t−1
i +D2

n∑

j=t

Mϵ(j, j)

satisfies
∇⊤
t ψt ≤ Relt−1(∇1, . . . ,∇t−1;Mϵ)− Relt(∇1, . . . ,∇t;Mϵ), ∀t = 1, 2, . . . , n.

Then we continue to have

n∑

t=1

∇⊤
t ψt ≤

n∑

t=1

{Relt−1(∇1, . . . ,∇t−1;Mϵ)− Relt(∇1, . . . ,∇t;Mϵ)}

= Rel0(∅;Mϵ)− Reln(∇1, . . . ,∇n;Mϵ)

=

√√√√D2

n∑

j=t

Mϵ(j, j)−

√√√√
k∑

i=1

(Gn
i )

⊤
MϵGni .

We are ready to provide the whole bound

Reg(Fλ,K) ≤
n∑

t=1

∇⊤
t ψt − inf

F∈F̄λ,K

{
n∑

t=1

∇⊤
t ft

}

≤ D

√√√√
n∑

i=1

Mϵ(i, i)−

√√√√
k∑

i=1

(Gn
i )

⊤
MϵGn

i − inf
F∈F̄λ,β

{
n∑

t=1

∇⊤
t ft

}

= D

√√√√
n∑

i=1

Mϵ(i, i)−

√√√√
k∑

i=1

(Gn
i )

⊤
MϵGn

i +

√√√√
k∑

i=1

(Gn
i )

⊤
MGn

i

︸ ︷︷ ︸
E

.
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Notice that when E ≤ 0, we have the regret D
√∑n

i=1Mϵ(i, i), which is less than D
√∑n

i=1mii. In the rest, we will
assume E > 0 and show E is not too large whenRϵ is small enough.

E ≤

√√√√
k∑

i=1

(Gn
i )

⊤
(Mλ,β −Mϵ)Gn

i

=

√√√√
k∑

i=1

(Gn
i )

⊤Gn
i · (G

n
i )

⊤
(Mλ,β −Mϵ)Gn

i

(Gn
i )

⊤Gn
i

≤

√√√√knD2 ·
k∑

i=1

(Gn
i )

⊤
(Mλ,β −Mϵ)Gn

i

(Gn
i )

⊤Gn
i

, (45)

where the first inequality is because ∥∇t∥22 ≤ D2. Hence, ∥Gn
i ∥22 ≤ nD2. The last inequality is due to the Rayleigh

quotient property. Recall from Thm. B.3, we have

x⊤Mx− x⊤Mϵx ≤ x⊤Mx ·
√
λmax(M)

λmin(M)
∥D−1/2RD1/2∥2 ≤ x⊤Mx,

which means
k∑

i=1

Gn
i
⊤MGn

i −Gn
i
⊤MϵG

n
i

Gn
i
⊤Gn

i

≤
k∑

i=1

Gn
i
⊤MGn

i

Gn
i
⊤Gn

i

≤ kλmax(M) ≤ knγ . (46)

Combining (45) and (46), we have

Reg(Fλ,K) ≤

√√√√D2

n∑

i=1

Mϵ(i, i) +D2k2n1+γ ≤ D
√

(1 + k2)n1+γ .

C.1. Practice Implementation

In practice, we use T0 = k · n2 and use xt to estimate the both t-th column and row vector of (Mϵ +M
⊤
ϵ )/2. This upper

bound works well in all our experiments. In the following, mtt = (Mϵ)tt.

Algorithm 7 FASTONL(G, ϵ,K−1
β , λ,Γ)

1: G0 = [0,0, . . . ,0] ∈ Rk×n
2: A1 = 0 and let α,Mϵ be defined in Table 3
3: T1 = Γ // Big enough
4: for t = 1, 2, . . . , n do
5: xt, rt =FIFOPUSH(G, ϵ, α, t)
6: Compute (Mϵ):,t on based on Tab. 1
7: ψt = −Gt(Mϵ):,t/

√
At + k · Tt

8: ∇t =

{
maxr:er ̸=y{er−y}

1+1/|S(ψ)| if yt /∈ S (ψt)
1

|S(ψt)|1S(ψt) − yt otherwise
9: Update gradientGt

:,t = ∇t

10: At+1 = At + 2∇⊤
t v +mtt · ∥∇t∥22

11: Tt+1 = Tt −mtt

12: end for
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D. More experimental details and results
D.1. Experimental setups

We implemented all methods using Python and used the inverse function of scipy library to compute the matrix inverse. All
experiments are conducted on a server with 40 cores and 250GB of memory.

D.2. Dataset Description

Table 4: Datasets Statistics

|V| |L| |E| |Y| Weighted

Political 1,222 1,222 16,717 2 No
Cora 2,485 2,485 5,069 7 No
Citeseer 2,110 2,110 3,668 6 No
PubMed 19,717 19,717 44,324 3 No
MNIST 12,000 12,000 97,089 10 Yes
BlogCatalog 10,312 10,312 333,983 39 No
Flickr 80,513 80,513 5,899,882 195 No
OGB-Arxiv 169,343 169,343 1,157,799 40 No
YouTube 1,134,890 31,684 2,987,624 47 No
OGB-Products 2,385,902 500,000 61,806,303 47 No
Wikipedia 6,216,199 150,000 177,862,656 10 No

We list all ten graph datasets in Tab. 4. where |L| is the number of available labeled nodes.

1. Political (Adamic & Glance, 2005). This political blog graph contains 1,490 nodes and 16,715 edges. Each node
represents a web blog on US politics, and the label belongs to either Democratic or Republican. We collect the largest
connected component, including 1,222 nodes and 16,717 edges.

2. Cora (Sen et al., 2008). The Cora graph has 2,708 nodes and 5,278 edges. The label of each node belongs to a set of 7
categories of computer science research areas, including Neural Networks, Rule Learning, Reinforcement Learning,
Probabilistic Methods, Theory, Genetic Algorithms, Case Based.

3. Citeseer (Sen et al., 2008). The Citeseer graph contains 3,312 nodes, including label sets (Agents, IR, DB, AI, HCI,
ML). Since it contains many small connected components, we remain the largest connected component with 2,110
nodes and 3,668 edges as the input graph.

4. PubMed (Namata et al., 2012). The PubMed graph includes 19,717 edges and 44,324 edges. Each node belongs to one
of three types of diabetes.

5. MNIST (Rakhlin & Sridharan, 2017). We downloaded MNIST with background noise images
from https://sites.google.com/a/lisa.iro.umontreal.ca/public_static_twiki/
variations-on-the-mnist-digits, which includes 12,000 noisy images from digit 0 to 9. To cre-
ate edges between these images, we first create a 10-nearest neighbors graph and then create the edge weights by using
the averaged ℓ2 distance as suggested in Cesa-Bianchi et al. (2013).

6. BlogCataglog, Flickr, and Youtube datasets are found in (Perozzi et al., 2014).

7. OGB-Arix and OGB-Products are from OGB dataset (Hu et al., 2020)

8. Wikipedia. We download the raw corpus of English Wikipedia from https://dumps.wikimedia.your.org/
enwiki/20220820/ until the end of the year 2020. We create the inner-line edges for each Wikipedia article by
checking the interlinks from these articles. Thus, we created the Wikipedia graph with 6,216,199 nodes and 177M
edges. We then collect labels from https://dbpedia.org/ontology/ where we can get 3,448,908 available
node labels (only use first 150,000 nodes in our experiments) from ten categories including, Person, Place, Organisation,
Work, MeanOfTransportation, Event, Species, Food, TimePeriod, Device.
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D.3. Baseline Methods

We describe all four baseline methods and our method as follows

1. RELAXATION (Rakhlin & Sridharan, 2017). It has a parameter λ. To have the best performance, we choose
Mλ,β = 2nD−1/2LD1/2 as the underlying kernel matrix. In our experiments, we tune the parameter λ from
{0.1 ∗ n, 0.2 ∗ n, . . . , 0.9 ∗ n}.

2. APPROXIMATE as defined in (7). It has parameter p = 5 in our small graph experiments. The reason that APPROXIMATE
works well is that we use our FASTONL framework to predict labels. In other words, the only difference from our
method is that APPROXIMATE use (7) to obtain kernel vectors. In contrast, we use FIFOPUSH to obtain kernel
vectors. Similarly, we find the second kernel works great. Hence, we choose the second kernel as the underlying
kernel to approximate. We found memory issues when we apply this approximation method to middle-scale graphs.
As illustrated in Fig. 15, the approximated matrix becomes dense when p ≥ 10 for most of the small graphs. For
example, the approximated solution for the Blogcatalog dataset becomes dense only after 3 iterations. This suggests
that APPROXIMATE is unsuitable for large-scale networks.

3. WM is the weighted-majority method. We implemented it as follows: 1) If ut is the target node to be predicted, then
the algorithm first finds all its available neighbors (nodes that have been seen in some previous iterations). Based on
its neighbors, one can create a distribution of it. We just the maximal likelihood to choose the prediction label. We
randomly select a label from the true label sets if no neighbors are found.

4. WTA is the weighted tree algorithm (Cesa-Bianchi et al., 2013). The essential idea of WTA is that the algorithm first
constructs a random spanning tree (in our implementation, we choose to implement Wilson’s algorithm described in
Wilson (1996) to generate a random spanning tree. In expectation, the run time is linear to the number of nodes. One
important parameter of WTA, we use s = 5 for all small-scale graphs. Our Python implementation is too slow for
middle-scale graphs to finish one graph without several hours. However, we still see a large gap between WTA and
ours.

5. FASTONL has two important parameter, including the label smoothness parameter λ where we choose the same as did
in RELAXATION, and the precision ϵ to control the quality of kernel vectors. Except for the small-scale graphs. In all
middle-scale graphs, we choose ϵ = .1/n, which is good enough for node labeling tasks. To see this ϵ works well in
general, we fix to use the second kernel and set λ based on the best value shown in Fig. 6. The results are shown in Fig.
16. This precision setting is good enough for most of these small datasets. In Fig. 6, we use the first 4 kernel matrices
defined in Tab. 1. We name these kernels asK1,K2,K3, andK4, respectively. ForK3 andK4, we directly use the
defined β for our experiments.

Run time comparison between FASTONL and RELAXATION. We conduct the experiment to compare these two
methods. The table below shows the run time (in seconds) where the total time is to predict all n nodes. Recall the size of
the graph is between n = 1, 222 (Political) to n = 169, 343 (OGB-Arxiv). We fix λ = 0.15n, α = 1− n

n+λ , and useK2.
The parameter ϵ = 0.1/n. We perform experiments per data 10 times and take the average. As presented in Tab. 5 and 6, it
is evident that FASTONL is more efficient in most of datasets. Importantly, this increased efficiency does not come with a
significant trade-off in accuracy.

Table 5: Run time of two methods in seconds

Political Citeseer Cora Blogcatalog MNIST Pubmed OGB-Arxiv

RELAXATION 0.1417 1.0222 1.5480 87.8246 135.3061 585.3558 Out of Memory

FASTONL 0.1557 0.5883 1.0971 5.9510 60.0465 50.7256 3199.6773
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Figure 15: The nnz rate as a function of iteration p for APPROXIMATE. The nnz rate, i.e., the sparsity rate of the
approximated matrix, is defined as nnz (Mp)/n

2 where nnz (Mp) is the number of nonzero entries inMp after p iterations.
Most of these approximations become dense after 10 iterations.

Table 6: Accuracy of two methods

Political Citeseer Cora Blogcatalog MNIST Pubmed OGB-Arxiv

RELAXATION 0.9493 0.7415 0.8404 0.2192 0.7930 0.8254 -

FASTONL 0.9418 0.7404 0.8420 0.2921 0.7960 0.8257 0.7089

Power law of magnitudes of xs. We close up this section by showing the magnitudes of xs of bothXL andXL follow
the power law distribution as we illustrate in Fig. 17 and 18.

Method Regret Per-Iteration Total-Time Memory

WM - O (du) O(m) O(m)

Perceptron ΦG(y) ·
(

n
n†n−

)2 O(n) O
(
n3
)

O
(
n2
)

WTA ΦG(y) · log n O(s) O(s · n log n) O(s · n)

RELAXATION O(
√

tr(M)) O(n) O
(
n3
)

O
(
n2
)

Ours O(
√
n1+γ) O

(
ST

α·ηT log3/2 n
)

O
(
n·ST

α·ηT log3/2 n
)

O(supp(x) · n)

Table 7: Comparison of time and memory complexity between these online node labeling algorithms.
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Figure 16: The overall node labeling accuracy as a function of ϵ over all six small graphs. The vertical line is when ϵ = 10−1

n
corresponding to the ϵ we set in our experiments. This rough parameter estimation is good enough for most of the datasets.
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Figure 17: The power law distribution of magnitudes ofXL on six small graphs. We set ϵ = 10−1/m and fix α = 0.2. We
then randomly select 20 nodes corresponding to 20 columns ofXL, sort the magnitudes of xs, and plot them according to
their rankings. These magnitudes follow the power law distribution.
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Figure 18: The power law distribution of magnitudes inXL on six small graphs. We set ϵ = 10−1/m and fix α = 0.2. We
then randomly select 20 nodes corresponding to 20 columns ofXL, sort the magnitudes of xs, and plot them according to
their rankings. These magnitudes follow the power law distribution.
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