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Abstract
Although powerful graph neural networks
(GNNs) have boosted numerous real-world ap-
plications, the potential privacy risk is still under-
explored. To close this gap, we perform the first
comprehensive study of graph reconstruction at-
tack that aims to reconstruct the adjacency of
nodes. We show that a range of factors in GNNs
can lead to the surprising leakage of private links.
Especially by taking GNNs as a Markov chain
and attacking GNNs via a flexible chain approxi-
mation, we systematically explore the underneath
principles of graph reconstruction attack, and pro-
pose two information theory-guided mechanisms:
(1) the chain-based attack method with adaptive
designs for extracting more private information;
(2) the chain-based defense method that sharply
reduces the attack fidelity with moderate accu-
racy loss. Such two objectives disclose a critical
belief that to recover better in attack, you must
extract more multi-aspect knowledge from the
trained GNN; while to learn safer for defense,
you must forget more link-sensitive information in
training GNNs. Empirically, we achieve state-of-
the-art results on six datasets and three common
GNNs. The code is publicly available at: https:
//github.com/tmlr-group/MC-GRA.

1. Introduction
Deep learning has promoted tremendously broad research
from Euclidean data like images to non-euclidean data like
graphs. Specifically, graph neural networks (GNNs) (Kipf &
Welling, 2016a; Gilmer et al., 2017; Zhang & Chen, 2018)
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Figure 1: An illustration of Graph Reconstruction Attack.
The forward inference of a trained model is to predict the
node category ŶA, i.e., the family name of each character;
while the backward inversion attack is to recover the original
adjacency A, i.e., the kinship among characters (red edges).

proposed in the recent years have drawn much attention and
boosted a wide range of real-world applications, e.g., social
network (Fan et al., 2019), recommender systems (Wu et al.,
2020a) and drug discovery (Ioannidis et al., 2020).

Nevertheless, the privacy concerns behind these applications
raise with the development of the Model Inversion Attack
(MIA) technique, which only requires a trained model and
non-sensitive features to recover the sensitive information.
In particular, recent progress on MIA (Fredrikson et al.,
2015; Zhang et al., 2020; Struppek et al., 2022) has shown
the feasible recovery of private images in high fidelity and di-
versity. As for the scenarios of GNNs, the similar inversion
of the adjacency of the training graph is also a severe pri-
vacy threat, since links can reflect the sensitive relationship
information or intellectual properties of the model’s owner.
We term this kind of MIA on graphs as Graph Reconstruc-
tion Attack (GRA) for simplicity and illustrate exemplars in
Fig. 1. To date, only limited research has been conducted on
GRA (He et al., 2021a; Zhang et al., 2021b) that is designed
for ad-hoc scenarios. The general principles for strengthen-
ing and defending GRA are still unknown, which presents
hidden dangers in extensive real-world applications. Thus,
it is urgent to understand the vulnerability of GNNs under
such attacks and explore the proper defense methods to
protect GNNs and avoid privacy risks in advance.

In this work, we systematically investigate this crucial yet
under-explored problem from both sides of attack and de-
fense. Roughly, the GNNs’ inference procedure can be
viewed as a Markov Chain fθ : (A,X)→HA→ ŶA↔Y ,
where the adjacent matrix A and node features X are taken
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Figure 2: Recovered adjacency on Cora dataset. Green dots
are correctly predicted edges while red dots are wrong ones.
GRA on normal GNN leads to privacy leakage, while GRA
on protected GNN cannot recover the private adjacency.

as the inputs to generate node embeddings HA, and a linear
layer with activation transforms HA into the classification
outputs ŶA to predict node labels Y . More importantly, we
reveal that every variable in {X,Y,HA, ŶA} can recover
adjacency to a certain extent through a simple transforma-
tion. However, different from the single variable in MIA for
images, it is mysterious to understand the intriguing mecha-
nism behind the multiple interplaying factors in GNNs, thus
challenging to apply for strengthening and defending GRA.

To close the gap, we formulate the GRA problem from a
novel perspective, i.e., approximating the original Markov
chain by the attack chain (Fig. 3). Note that such a mod-
eling manner brings three-fold advantages: (1) adaptively
supports the white-box attack that utilizes any set of prior
knowledge; (2) help derive the chain-based attack and de-
fense objectives in optimization; (3) enables analysis from
the information-theoretical view. On the basis of the chain
modeling, we investigate the underneath principles of the
GRA problem, which are two folds. To strengthen the attack,
we derive the Markov Chain-based Graph Reconstruction
Attack (MC-GRA) that simulates the hidden transforma-
tion procedure of the target GNN by approximating all the
known informative variables in a combinatorial manner. As
for defense, we propose the Markov Chain-based Graph Pri-
vacy Bottleneck (MC-GPB), which regularizes the mutual
dependency among graph representations, adjacency, and
labels to alleviate privacy leakage, as shown in Fig. 2.

In short, our main contributions are summarized as follows.
(1) To our best knowledge, we are the first to conduct a
systematic study of GRA and reveal several essential and
useful phenomenons (Sec. 4). (2) On the basis of the chain
modeling, we propose a new method for the attack that
boosts the attack fidelity with parameterization techniques
and injected stochasticity (Sec. 5), and propose an infor-
mation theory-guided principle for the defense that signif-
icantly degenerates all the attacks with only a slight accu-
racy loss (Sec. 6). (3) We provide a rigorous analysis from
information-theoretical perspectives to disclose several valu-
able insights on what and how to strengthen and defend
GRA. (4) Both the two proposed methods achieve state-of-
the-art results on six datasets and three GNNs (Sec. 7).

Figure 3: Modeling the GRA problem as approximating the
original Markov chain (upper) by the attack chain (lower).
Note that the original chain is with the original adjacency A,
while the attack chain is with the recovered adjacency Â.

2. Related Work
Inversion attacks on images. Pioneer works (Szegedy
et al., 2013; Fredrikson et al., 2014; 2015; Hidano et al.,
2017) introduced the Model Inversion Attack (MIA) with
shallow models and justified the feasibility of MIA in recov-
ering the monochrome images. However, they fail in attack-
ing deep models for image classification tasks, where the
reconstructed images are of low fidelity. Generative model
inversion (Zhang et al., 2020) is the first to conduct MIA
on convolution neural networks. Instead of directly recon-
structing the private data from scratch, its inversion process
is guided by a distributional prior through the generative
adversarial networks (GAN) that can reveal private training
data of the target model with high fidelity. Later, variational
model inversion (Wang et al., 2021) further formulates the
MIA as the variational inference. It generally can bring a
higher attack accuracy and diversity for its equipped power-
ful generator StyleGAN to optimize its designed variational
objective. Recent advance (Struppek et al., 2022) signifi-
cantly decreases the cost of conducting MIA through relax-
ing the dependency between the target model and the image
prior. It enables the use of a single GAN to attack a wide
range of targets, requiring only minor adjustments to the
attack. It shows that MIA is possible with publicly available
pre-trained GANs under strong distributional shifts.

Inversion attacks on graphs. Early works (Duddu et al.,
2020; Chanpuriya et al., 2021) attempt to reconstruct the
target graph from released graph embeddings of each node
that are generated by Deepwalk or GNNs. The link stealing
attack (He et al., 2021a) is the first work to steal links from
a GNN as the target model. It aims to conduct the MIA with
three kinds of prior knowledge, including node features,
partial target graph, and a shadow dataset. It considered
all permutations of the three elements and proposed eight
kinds of attack methods in total that are adaptive to the eight
scenarios with chemical networks and social networks. An-
other recent work (Zhang et al., 2021b) is a learnable attack
that also aims to recover the links of the original graph. With
the white-box access to the target GNN model, the optimal
adjacency is obtained by maximizing the classification ac-
curacy regarding the known node labels. Please refer to
Appendix. C for a detailed introduction to related work.
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3. Preliminaries
Notations. With adjacent matrix A and node features X , an
undirected graph is denoted as G=(A,X), where Aij =1
means there is an edge eij between vi and vj . For each node
vi, its D-dimension node feature is denoted as X[i,:]∈RD,
and its label yi∈Y indicates the node category. The node
classification task is to predict the label Y of each node
via a parameterized model fθ(·). I(X;Y ) indicates the
mutual information of variables X and Y . We summarize
the frequently used notations in Table 10 of Appendix. A.1

Graph neural networks. Predicting node labels requires
a parameterized hypothesis fθ with GNN architecture and
the message propagation framework (Gilmer et al., 2017).
Specifically, the forward inference of a L-layer GNN gen-
erates the node representations HA∈RN×D by a L-layer
message propagation. The follow-up linear layer transforms
the representations HA to the classification probabilities
ŶA∈RN×C , with C categories of nodes in total.

Model inversion attack on graphs. In this study, to catch
more attention to the privacy risk of GNNs, we study the
reconstruction of the graph adjacency by MIA and term it
Graph Reconstruction Attack (GRA), as elaborated below.

Definition 3.1 (Graph Reconstruction Attack). Given a set
of prior knowledge K and a trained GNN fθ∗(·), the graph
reconstruction attack aims to recover the original linking
relations Â∗ of the training graph Gtrain=(A,X), namely,

GRA: Â∗ = argmax
Â

P(Â|fθ∗ ,K). (1)

Here, P(·) is the attack method to generate Â, and K can be
any subset of {X,Y,HA, ŶA}. Note that GRA is conducted
in a post-hoc manner, i.e., after the training of GNN fθ(·).

4. A Comprehensive Study of GRA
In this section, we formulate the Graph Reconstruction At-
tack as a Markov chain approximation problem (Sec. 4.1),
quantify the privacy risk of releasing the non-sensitive fea-
tures (Sec. 4.2), and investigate the training dynamics of
graph representations w.r.t. the privacy leakage (Sec. 4.3).

4.1. Modeling GRA as Markov chain approximation.

To adaptively support the white-box GRA that leverages
the target model and any prior knowledge; and to properly
locate, present, and utilize the interplaying variables of GNN
forward in a generic manner; we cast the GRA problem as
approximating the original Markov chain ORI-chain by
the attack chain GRA-chain, as shown in Fig. 3, namely,

ORI-chain:Z0 A−→
θ1

Z1
A

A−→
θ2

Z2
A→· · · A−−−→

θL+1
ZL+1

A ,

GRA-chain:Z0 Â−→
θ1

Z1
Â

Â−→
θ2

Z2
Â
→· · · Â−−−→

θL+1
ZL+1

Â
,

(2)

Table 1: Quantitative analysis of I(A;Z) with AUC metric
under range [0, 1]. A higher AUC value means a severer
privacy leakage. "—" indicates that nodes in this dataset do
not have features. Besides, the boldface numbers mean the
best results, while the underlines indicate the second-bests.
The target model fθ is a two-layer GCN by default.

MI Cora Citeseer Polblogs USA Brazil AIDS

I(A;X) .781 .881 — — — .521
I(A;HA) .766 .760 .763 .850 .758 .584
I(A; ŶA) .712 .743 .772 .826 .732 .561
I(A;Y ) .815 .779 .705 .728 .613 .536

Table 2: An ensemble study on the prior knowledge with
AUC metric. For a generic evaluation, it is assumed that
node feature X is accessible (if exists), based on which
we evaluate all the possible 8 combinations with 2, 3, or 4
components, where "✓" means accessible for this variable.

X HA ŶA Y Cora Citeseer Polblogs USA Brazil AIDS

✓ ✓ .781 .881 .763 .850 .758 .521
✓ ✓ .781 .881 .772 .826 .732 .521
✓ ✓ .849 .907 .705 .728 .613 .522

✓ ✓ ✓ .781 .881 .763 .848 .756 .521
✓ ✓ ✓ .849 .907 .779 .850 .743 .522
✓ ✓ ✓ .842 .907 .785 .842 .730 .522

✓ ✓ ✓ ✓ .849 .907 .781 .852 .717 .522

where Z0=X , Zi
A=Hi

A for i=1,· · ·, L and ZL+1
A = ŶA.

Note that GNNs’ forward can be seen as a Markov chain
that is discrete-time finite, non-reversible, and pairwise-
independent. The probability of current state Hi

A only
depends on the previous state Hi−1

A , where the transition
kernel is determined by A and θi. Importantly, the principle
of GRA to recover the adjacency A by Â is to approximate
latent variables SA = {Zi

A : Zi
A ∈K} in ORI-chain by

the corresponding SÂ={Zi
Â

: Zi
A∈SA} in GRA-chain.

4.2. What leaks privacy in ORI-chain?

Intuitively, variables in ORI-chain might contain infor-
mation about ground-truth adjacency A as the transition
kernel is partially determined by A. To figure out, we quan-
tify the direct correlation between A and a single variable
Z ∈ {X,Y,HA, ŶA} in ORI-chain through the infor-
mative concept of mutual information (MI) I(A;Z). Fol-
lowing link prediction works (Zhang & Chen, 2018; Zhu
et al., 2021), the AUC metric is utilized to quantify I(A;Z)
regarding edges in A and ÂZ = σ(ZZ⊤), where σ(·) is
the activation function. Here, the inner product transforms
the informative variable Z∈RN×D to the predictive adja-
cency ÂZ ∈RN×N , where the (i, j) entry in ÂZ indicate
the existence of edge eij . See Appendix. E.1 for details.

Observation 3.1. As shown in Tab. 1, a single variable
in ORI-chain can recover the original adjacency to a
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Figure 4: Graph information plane: tracking the standard training procedures of a two-layer GCN on Cora (left) and Brazil
(right). The accuracy of GCN layer-2 and the linear layer is the same as ŶA=Linear(H2

A) (thus with overlapped curves).

certain extent through the inner-product transformation. It is
applicable to black-box attacks once obtain these variables.
Besides, the model outputs {HA, ŶA} generally contain
more adjacency information than the original data {X,Y }.

As single variables Z in ORI-chain present diverse ap-
proximation power, the stored private information might be
complementary to each other in recovering adjacency. To an-
swer, we ensemble these variables via a linear combination,
namely, Âesm=1/|K|

∑|K|
i=1 ÂKi

, where ÂKi
=σ(KiKi

⊤).

Observation 3.2. As shown in Tab. 2, the straightforward
and linear combination of informative terms only brings
marginal improvements in recovering the adjacency. Such
an observation is consistent with the chain rule of MI, i.e.,
∀Ki,Kj ∈ K, I(A;Ki,Kj) ≥ max

(
I(A;Ki), I(A;Kj)

)
.

4.3. How ORI-chain memorizes the privacy?

For further understanding of the learning and memorization
mechanisms of ORI-chain and acquiring inspiration for
devising the corresponding defense approach, we track the
training process by privacy I(A;Z) and accuracy I(Y ;Z),
where variable Z∈{H1

A,H
2
A, ŶA} are from ORI-chain.

Conceptually, we derive Graph Information Plane 1 inspired
by information theory (Tishby & Zaslavsky, 2015; Shwartz-
Ziv & Tishby, 2017). The anytime Z in training phase is pro-
jected to the two-dimensional

(
I(A;Z), I(Y ;Z)

)
plane.

Observation 3.3. As shown in Fig. 4, the training proce-
dure with v-shape curves contains two main phases: fitting
and compressing. In the first and shorter phase, the layers
increase the information about privacy. While in the second
and longer phase, the layers gradually forget about privacy.

5. To Recover Better, You Must Extract More
To attack, one must integrate all the available prior knowl-
edge to backward recover the adjacency. The key challenge

1We leave the formal definition and details in Appendix. E.2.

here is the lack of an effective way to employ all the prior
knowledge and the target model in attacks. Besides, it is
also hard to represent and update the recovered adjacency in
a differentiable way due to the discrete nature of adjacency.

To solve, we propose the Markov Chain-based Graph Re-
construction Attack (MC-GRA) framework, as illustrated
in Fig. 5(a). Here, instead of directly maximizing I(Â;K),
we choose to promote I(Zi

Â
;Zi

A =Ki) as it provides su-
pervision signals that can be tractably approximated. To be
specific, we adopt the aforementioned chain-based modeling
for extracting the knowledge stored in the target model while
utilizing all the prior knowledge for optimization simulta-
neously. 2 The relaxation power hails from approaching
the known variable Ki of ORI-chain by the locationally
corresponding Zi

Â
generated by GRA-chain, namely,

MC-GRA: Â∗ = argmax
Â

αpI(HA;H
i
Â
)︸ ︷︷ ︸

propagation approximation

+αoI(YA;YÂ) + αsI(Y ;YÂ)︸ ︷︷ ︸
outputs approximation

−αcH(Â)︸ ︷︷ ︸
complexity

.
(3)

Note that MC-GRA is a maximin game: it maximizes the
approximation of forward processes of the two Markov
chains, while minimizing the complexity in each transition
with Â to avoid trivial solutions by constraining the density.
Remark 5.1. The adaptive power of MC-GRA comes from
its leveraging any prior knowledge set. That is, the propa-
gation approximation term in Eq. (3) for HA works once
obtained, while the outputs approximation term for ŶA and
Y . Thus, it can be utilized for all the 7 settings in Tab. 2.

Parameterize Eq. (3) with different forms. For approx-
imating the original adjacency in a learnable manner, the
recovered adjacency is parameterized and updated with the
relaxed objective. Each time forward, an adjacency Â is
sampled from its parameterized distribution as Â∼Pϕ(Â).

2The detailed deriving is elaborated in Appendix. D.5.
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(a) The attack framework MC-GRA. In forward, a recovered adja-
cency Â is sampled from the parameterized distribution Pϕ(Â) and
injected with manual stochasticity. As for backward, the learnable
parameters ϕ gain supervision from the MC-GRA objective Eq. (3).

(b) The defense framework MC-GPB. It solves the accuracy-privacy
tradeoff by objective Eq. (4) through regularizing graph representa-
tions to make GNNs forget about private A and injecting stochastic-
ity to promote forgetting that decreases the privacy risk further.

Figure 5: Illustrations of the two proposed methods for strengthening (a) and defending (b) the GRA, respectively.

Technically, three implementations of Pϕ(Â) with learnable
weights ϕ are listed below with increasing complexity.

• Formulating Â as the only learnable parameter and di-
rectly optimizing it, i.e., Pϕ(Â) = Â ∈ [0, 1]N×N .

• A Gaussian distribution Pϕ = N (µ,σ2) with two learn-
able parameters µ,σ ∈ [0, 1]N×N . That is utilized to gen-
erate Â as Â = µ+ϵσ, where random noise ϵ ∼ N (0, 1).

• A parameterized generator fϕ(·) initialized with the same
architecture and weights as fθ∗(·). It generates the prob-
abilistic distribution by Pϕ = σ(HIH

⊤
I ) ∈ [0, 1]N×N ,

where I is the identity matrix and HI =fϕ(I,X).

Optimize Eq. (3) with injected stochasticity. Considering
that both Â and X contribute to to Z ∈ {HA, ŶA, Y }, the
mutual dependence among these three variables is coupled
together. The spurious correlation I(X; Â|Z), possibly
degenerates the effectiveness of GRA (Yang et al., 2022;
Miao et al., 2022). To solve, we inject stochasticity to further
remove the spurious correlation among Â, X and Z, where
the probability of spurious correlation naturally increases
with the length of the Markov chain. Specifically, the debias
power comes from the lower MI I(X̃; Ã|Z), where X̃, Ã
are perturbed as X̃ =X ⊕Xϵ, Ã= Ã ⊕ Aϵ. Technically,
for each potential edge eij , its existence aij is sampled from
a Bernoulli distribution, i.e., aij ∼Bern(pij), aij ∈{0, 1},
and pij = Âij ∈ [0, 1]. To cooperate with the stochasticity
and enable the back-propagation of gradients, the Gumbel-
softmax reparameterization (Kool et al., 2019; Xie & Ermon,
2019) is applied. That is, the edge probabilities are perturbed
as p̃ij=pij−log(−log(ϵ)), where ϵ∼Uniform(0, 1).

Remark 5.2. The incremental contribution of Â regarding
X to approximate Z is I(Z; Â|X)=I(Z;A,X)−I(Z;X).
Here, a general solution for obtaining a more informative Â
is to reduce I(Z;X) via perturbation and promote I(Z; Â).

Theoretical analysis about Eq. (3). A rigorous analysis is
conducted on the basis of information properties shown in
Fig. 6. The non-invertible nature of GNN forwarding, which
hails from the adopted non-linear operations, decreases the
information entropy by layers and forms a bottleneck that

extracts informative signals from the input data. As a result,
the MI of two Markov chains (Eq. (2)) is decreasing by
layers, which is elaborated in the following Theorem 5.3.
Based on this, we derive a tractable bound in Theorem 5.4
to estimate the attack fidelity without the ground truth A.

Theorem 5.3. The layer-wise transformations Zi
A→Zi+1

A

are non-invertible, e.g., Zi+1
A =σ(ψ(A) ·Zi

A · θi), where
ψ(A) is the graph convolution kernel, as in Eq. (2). It
leads to a lower MI between the two Markov chains, i.e.,
I(Zi

A;Z
i
Â
)−I(Zi+1

A ;Zi+1

Â
)≥0. Proof. See Appendix.A.3.

Theorem 5.4 (Tractable Lower Bound of Fidelity). The
attack fidelity satisfies I(A; Â) ≥ H(HA) − Hb(e) −
P (e) log(|H|), where P (e)≜P (HA ̸=HÂ) is the proba-
bility of approximation error, H denotes the support of HA,
and Hb(·) is the binary entropy. Proof. See Appendix. A.4.

The estimated I(A; Â) can be a valuable reference when
conducting GRA that maximizes such a MI term (see
Fig. 6(b)). Besides, Theorem 5.4 also indicates that a higher
approximation I(HA;HÂ) with a lower error P (e) can
bring a higher I(A; Â) that indicates a higher attack fidelity.
Then, we indicate the worst privacy leakage with the optimal
attack fidelity as the upper bound in following Theorem 5.5.

Theorem 5.5 (The Optimal Fidelity). The recovering fi-
delity satisfies I(A;X,Y,HA)−I(A; Â)≥0. Solving MC-
GRA sufficiently yields a solution to achieve the optimal case,
i.e., I(A; Â∗)=I(A;X,Y,HA). Proof. See Appendix. A.5.

Theorem 5.5 indicates that MC-GRA is capable of achiev-
ing optimal recovering fidelity. Nonetheless, the remaining
information of A, i.e., H(A|Â∗) =H(A|K), is unobserv-
able from K={X,Y,HA}. Such information refers to the
non-overlapping area of A shown in Fig. 6(b), which cannot
be recovered unless additional information is provided.

6. To Learn Safer, You Must Forget More
Recall in Sec. 4, graph representations naturally comprise
the connectivity information, while the graph information
plane shows that increasing privacy information is stored in
the training phase. So, how can GNNs be GRA-resistant?
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(a) Standard training. (b) Reconstruction attack by MC-GRA. (c) Defensive training by MC-GPB.

Figure 6: Illustrations of the information properties regarding the training, attacking, and defending processes.

For defense, one must require the GNN to forget the privacy
information in the training process, i.e., make the learned
representations contain less information about adjacency.
Nonetheless, it could easily degenerate the accuracy as the
adjacency also essentially supports the prediction. To solve
the trade-off, we proposed the Markov Chain-based Graph
Privacy Bottleneck (MC-GPB) framework to defend against
GRA (see Fig. 5(b)). Intuitively, the expected graph repre-
sentations should come from a refined training process that
learn the θ∗ from the original data A,X, Y . Inspired by
the principle that to learn, you must forget by the informa-
tion bottleneck (Tishby et al., 2000; Shwartz-Ziv & Tishby,
2017; Wu et al., 2020b) that constrains the data compression
procedure X→Z→Y , we derive the defense objective as

MC-GPB:θ∗=argmin
θ

L∑
i=1

−I(Y;Hi
A)︸ ︷︷ ︸

accuracy

+βi
pI(A;H

i
A)︸ ︷︷ ︸

privacy

+

L−1∑
i=1

βi
cI(H

i
A;H

i+1
A )︸ ︷︷ ︸

complexity

.

(4)

Note that MC-GPB is also a maximin game: the correlation
between hidden representations and labels is maximized,
while that with adjacency is minimized instead. Analytically,
it aims to minimize the conditional MI I(A;Hi

A|Y ) through
balancing accuracy I(Y ;Hi

A) and privacy I(A;Hi
A). And

the transformation complexity I(Hi
A;H

i+1
A ) is constrained

to relieve the smoothing effect of message propagation.

Promote forgetting in Eq.(4) with injected stochasticity.
Making GNNs forget more about adjacency leads to lower
privacy risk. For simplicity, the DropEdge (Rong et al.,
2020) method is adopted, which performs random drop with
probability p on each observed edge of A. The perturbed
adjacency Ã = A ⊕ Aϵ : Aϵ ⊥⊥ A, Y,Z, which satisfies
I(Ã;Y ) ≤ I(A;Y ) and I(Ã;Z) ≤ I(A;Z) (You et al.,
2020; 2022). The injected stochasticity enforces the GNN
model to discriminate the essential topological information
I(A;Y ), rather than fully capturing the association between
A and Y that can be potentially spurious (Zhao et al., 2022).
As such, the redundancy I(Ã;Z|Y ) is compressed to pre-
serve privacy and maintain accuracy simultaneously.

Promote feasibility via differentiable measurements.
Solving Eq. (3) and Eq. (4) requires tractable objectives.
Given two variables, X∈RN×Dx and Y ∈RN×Dy , we cal-

culate the similarity s(X,Y ) to approximate I(X,Y ) con-
sidering six differentiable measurements (Kornblith et al.,
2019). Technical details can be found in Appendix. E.3.

Theoretical analysis about Eq. (4). Regularizing the
graph representations HA with a lower I(A;HA) indi-
cates a lower I(A;X,Y,HA), and thus, the optimal fidelity
I(A; Â∗) is also decreased (refer to Theorem 5.5). Note that
accuracy is prior to privacy in optimization with trade-offs,
which corresponds to the concept of sufficient statistics.

Proposition 6.1 (Sufficient Statistics). Denote the sufficient
statistics of X as Z. Namely, Z is a compression of X as
Z=f(X), and sufficiency satisfies I(Z;Y )=I(X;Y ).

Theorem 6.2 (Maximum Adjacency Information). The MI
between representations HA and adjacency A satisfies that
I(A;HA)≤I(A;A)=H(A). Proof. See Appendix. A.6.

As such, Theorem 6.2 indicates that the graph representa-
tions might maintain the maximum information of privateA,
as max I(A;HA)=H(A). Thus, the only sufficient guar-
antee is not safe enough, and the representations HA poten-
tially stores excess adjacency information I(A;HA|Y ), as
illustrated in Fig. 6(a). To reduce, we refer to the minimal
sufficient statistics in Proposition 6.3, and deduce the lower
bound of adjacency information in Theorem 6.4 as follows.

Proposition 6.3 (Minimal Sufficient Statistics). Denote suf-
ficient statistics (Proposition 6.1) of X as Z, and the mini-
mal sufficient statistics, Z∗, is the optimal graph represen-
tation, namely, Z∗ = argminZ: I(Z;Y )=I(X;Y ) I(Z;X).

Theorem 6.4 (Minimum Adjacency Information). For any
sufficient graph representations HA of adjacency A w.r.t.
task Y , its MI with A satisfies that I(A;HA) ≥ I(A;Y ).
The minimum information I(A;HA) = I(A;Y ) can be
achieved iff I(A;HA|Y )=0. Proof. See Appendix. A.7.

Then, the Theorem 6.5 justifies that solving MC-GPB yields
an approximation to the optimal representations H∗

A, as
illustrated in Fig. 6(c), It satisfies sufficiency (accuracy guar-
antee) and contains minimal adjacency (privacy guarantee).

Theorem 6.5. When degenerating βc = 0 and βi = β,
MC-GPB Eq. (4) is equivalent to minimizing the Informa-
tion Bottleneck Lagrangian, i.e., L(p(Z|A)) = H(Y |Z) +
βI(Z;A). It yields a sufficient representation Z of data A
for task Y , that is an approximation to the optimal represen-
tation Z∗ in Proposition 6.3. Proof. See Appendix. A.8.
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Table 3: Results of MC-GRA with standard GNNs. Relative promotions (in %) are computed w.r.t. results in Tab. 2.

X HA ŶA Y Cora Citeseer Polblogs USA Brazil AIDS

✓ ✓ .864 (10.6%↑) .912 (3.5%↑) .831 (8.9%↑) .883 (3.8%↑) .771 (1.7%↑) .574 (10.1%↑)
✓ ✓ .839 (7.4%↑) .902 (2.3%↑) .836 (8.2%↑) .913 (10.5%↑) .800 (9.2%↑) .567 (8.8%↑)
✓ ✓ .896 (5.5%↑) .918 (1.2%↑) .837 (18.7%↑) .825 (13.3%↑) .753 (22.8%↑) .574 (9.9%↑)

✓ ✓ ✓ .866 (10.8%↑) .921 (4.5%↑) .839 (9.9%↑) .878 (3.5%↑) .776 (2.6%↑) .572 (9.7%↑)
✓ ✓ ✓ .905 (6.5%↑) .930 (2.5%↑) .832 (6.8%↑) .878 (3.5%↑) .758 (2.0%↑) .603 (15.5%↑)
✓ ✓ ✓ .897 (5.6%↑) .928 (2.3%↑) .839 (6.8%↑) .870 (3.3%↑) .758 (3.7%↑) .567 (8.6%↑)

✓ ✓ ✓ ✓ .904 (6.4%↑) .931 (2.6%↑) .853 (9.2%↑) .870 (1.9%↑) .760 (5.9%↑) .588 (12.6%↑)

Table 4: Results of GRA with MC-GPB protected GNNs. Relative reductions are computed w.r.t. results in Tab. 1.
I(A;HA), I(A; ŶA) are non-learnable GRA (He et al., 2021a) while I(A;H1

Â
) is the learnable GRA (Zhang et al., 2021b).

MI Cora Citeseer Polblogs USA Brazil AIDS

I(A;HA) .706 (7.8%↓) .750 (1.3%↓) .724 (5.1%↓) .716 (15.8%↓) .745 (1.7%↓) .564 (3.4%↓)
I(A; ŶA) .704 (0.1%↓) .730 (1.7%↓) .705 (8.7%↓) .587 (28.9%↓) .692 (5.5%↓) .559 (0.4%↓)
I(A;H1

Â
) .625 (9.9%↓) .691 (9.8%↓) .506 (26.3%↓) .300 (64.5%↓) .609 (25.1%↓) .514 (10.6%↓)

Acc. .734 (3.0%↓) .602 (4.4%↓) .830 (1.1%↓) .391 (16.8%↓) .808 (5.1%↑) .668 (0.0%↑)

Table 5: Results of MC-GRA with MC-GPB protected GNNs. Relative reductions are computed w.r.t. results in Tab. 3.

X HA ŶA Y Cora Citeseer Polblogs USA Brazil AIDS

✓ ✓ .816 (5.5%↓) .871 (4.4%↓) .748 (9.9%↓) .841 (4.7%↓) .752 (2.4%↓) .503 (12.3%↓)
✓ ✓ .817 (9.7%↓) .843 (6.5%↓) .707 (15.4%↓) .844 (7.5%↓) .747 (6.6%↓) .458 (19.2%↓)
✓ ✓ .892 (0.4%↓) .888 (3.2%↓) .699 (16.4%↓) .738 (10.5%↓) .700 (7.0%↓) .490 (14.6%↓)

✓ ✓ ✓ .804 (7.1%↓) .894 (2.9%↓) .706 (15.8%↓) .754 (14.1%↓) .636 (16.7%↓) .546 (3.7%↓)
✓ ✓ ✓ .890 (1.6%↓) .881 (5.2%↓) .731 (12.1%↓) .808 (5.6%↓) .705 (6.9%↓) .507 (15.9%↓)
✓ ✓ ✓ .858 (4.3%↓) .903 (2.6%↓) .791 (5.7%↓) .768 (11.7%↓) .656 (13.4%↓) .511 (9.8%↓)

✓ ✓ ✓ ✓ .864 (4.4%↓) .891 (4.2%↓) .757 (11.2%↓) .853 (1.9%↓) .637 (16.1%↓) .547 (6.9%↓)

7. Empirical Study
In this section, we empirically verify the two proposed meth-
ods and provide answers to the three questions. Q1: how
effective are the proposed methods on real-world datasets
with common GNNs? Q2: how helpful are MI constraints
and injected stochasticity? Q3: what insights can empirical
results provide to GNNs and defending GRA in practice?

Setup. The default target model is a two-layer GCN fol-
lowed by a linear layer. We also investigate other GNN
architectures, including GAT (Veličković et al., 2018) and
GraphSAGE (Hamilton et al., 2017). For evaluation, we use
the AUC metric as in (Zhang et al., 2021a; Zhu et al., 2021;
Zhang et al., 2021b), which considers a set of thresholds. Be-
sides, the implementation software is Pytorch (Paszke et al.,
2017) while the hardware is an NVIDIA RTX 3090 GPU.
Details of the six datasets are referred to Appendix. B.1.

Baselines. Two recent works are considered as baselines
here: (1) Stealing link (He et al., 2021a) that performs non-
learnable GRA on the target model’s outputs, which shares
a similar spirit as in Sec. 4.2. (2) GraphMI (Zhang et al.,
2021b) that conducts learnable GRA with prior knowledge
K={X,Y }. The recovered adjacency is obtained by maxi-
mizing the classification probability with regard to labels.

7.1. Quantitative Results

Attacking. As results shown in Tab. 3, the proposed MC-
GRA achieves the best results in all six datasets with various
settings of prior knowledge sets. The relative promotions
in AUC are gained by comparing with the linear ensemble
results in Tab. 2. As can be seen, more prior knowledge
with a larger |K| generally bring a higher attack AUC. The
learnable MC-GRA brings significantly and consistently
better results than the non-learnable methods, especially on
the more challenging datasets, i.e., Brazil and AIDS, where
at most 22.8% and 15.5% promotion can be achieved.

Defending. Here, we evaluate the effectiveness of the pro-
posed MC-GPB method in defending against GRA. First,
in Tab. 4, we show that MC-GPB is able to defend all the
attack methods of GRA. Especially on the Polblogs dataset,
MC-GPB achieves a 13.4% average reduction in privacy
leakage at the cost of 1.1% loss in accuracy. Besides, as
in Tab. 5. we show that MC-GPB can also defend the MC-
GRA, where it shows consistent and significant reductions
in attack AUC. The above results verify the effectiveness
of MC-GPB in defending both learnable and non-learnable
GRA methods. It can potentially protect GNNs applied in
real-world applications, e.g., the recommendation system.
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Table 6: MC-GRA with various architectures on Cora.

K GCN GAT GraphSAGE
L=2L=4L=6L=2L=4L=6L=2L=4L=6

{X,Y } .895 .892 .878 .883 .878 .876 .889 .872 .840
{X,Y,HA} .904 .900 .884 .897 .885 .874 .892 .8881 .873

{X,Y,HA, Ŷ } .905 .895 .892 .913 .887 .879 .909 .893 .865

Acc. .792 .661 .248 .637 .651 .630 .614 .443 .145

Table 7: MC-GPB with various architectures on Polblogs.

MI GCN GAT GraphSAGE
L=2 L=4 L=6 L=2 L=4 L=6 L=2 L=4 L=6

I(A;HA) .724 .790 .810 .901 .808 .854 .805 .808 .813
I(A; ŶA) .705 .650 .650 .654 .623 .673 .803 .668 .652
I(A;HÂ) .506 .577 .532 .542 .656 .536 .599 .769 .468

Acc. .830 .822 .512 .855 .880 .869 .830 .869 .801

Different GNN architectures. As shown in Tab. 6 as well
as Tab. 7, we show that both proposed methods are model-
agnostic as they can be generalized to different kinds of
GNN with various layers. Generally, a deeper model (larger
L) can better protect privacy (lower I(A;HL

A)), which is
consistent with observations in Sec. 4.3. However, it might
come at the cost of severe accuracy degradation due to
the well-known over-smoothing effect of GNNs in message
propagation. Besides, it is found that a more powerful model
with a higher accuracy is usually more vulnerable to GRA,
which presents a higher risk of privacy leakage in practice.

7.2. Ablation Study

The MI regularization. As shown in Tab. 8, each MI com-
ponent contributes to the final results. Specifically, the en-
coding approximation terms in MC-GRA contribute most to
the attack. A potential reason is that hidden representations
HA contain more information about privacy than other vari-
ables. And thus, extracting this term brings a higher fidelity
in outcomes. In addition, all three kinds of constraints con-
tribute greatly to MC-GPB, while the contributing patterns
are diverse. Thus, it is essential to have a careful balance of
these three constraints with tuning hyperparameters βi

p, β
i
c.

The injected stochasticity. As can be seen from Tab. 9,
learning without injecting stochasticity generally leads to
sub-optimal outcomes for both methods. That is, the manual
randomness help the removal of spurious correlation for MC-
GRA and boosts the forgetting about privacy for MC-GPB.
In addition to MI regularization and injected stochasticity,
the other ablation study can be found in Appendix. B.2.

7.3. Case Visualizations

The recovered adjacency. We show the recovered Â by var-
ious GRA methods in Fig. 8. Compared with GraphMI, MC-
GRA can recover adjacency more accurately, with fewer
wrong predictions and higher AUC values. As for defense,
MC-GPB significantly degenerates both GRA methods, with
more failure cases and much lower AUC values.

Table 8: Ablation study of two algorithms w.r.t. the approxi-
mation (appr.) and constraint (cons.) terms.

variant Cora USA AIDS

MC-GRA (full) .905 .904 .572
- w/o encoding appr. .829 (8.3%↓) .870 (3.7%↓) .536 (6.2%↓)
- w/o decoding appr. .854 (5.6%↓) .849 (6.0%↓) .490 (14.3%↓)

- w/o complexity cons. .889 (1.7%↓) .858 (5.0%↓) .537 (11.3%↓)

MC-GPB (full) .745 .391 .668
- w/o accuracy cons. .681 (8.6%↓) .369 (5.6%↓) .625 (6.4%↓)
- w/o privacy cons. .707 (5.1%↓) .249 (36.3%↓) .480 (28.1%↓)

- w/o complexity cons. .705 (5.4%↓) .251 (35.8%↓) .448 (32.9%↓)

Table 9: Results of removing injecting stochasticity.

type case USA Brazil AIDS

attack
K={X,Y } .802 (2.7%↓) .713 (5.3%↓) .567 (1.2%↓)

K={X,Y,HA} .856 (1.3%↓) .740 (2.3%↓) .572 (5.1%↓)
K={X,Y,HA, Ŷ } .864 (0.4%↓) .730 (3.9%↓) .567 (3.5%↓)

defense
I(A;HA) .861 (16.2%↑) .758 (1.7%↑) .564 (0.0%↑)
I(A; ŶA) .309 (47.4%↓) .722 (4.3%↑) .548 (2.0%↓)
I(A;HÂ) .389 (29.7%↑).796 (30.7%↑).539 (4.9%↑)

Acc. .259 (33.8%↓).538 (33.4%↓).628 (6.0%↓)

A further analysis with the graph information plane.
Besides, we visualize the training procedures of MC-GPB
in Fig. 7 based on the graph information plane introduced in
Sec. 4.3. As shown, the privacy term is markedly reduced
while that in standard training is increased, especially in the
later training stage. It shows the trade-off between accuracy
and privacy in training GNNs: the accuracy I(Y ;Z) also
starts to decrease when the privacy I(A;Z) is minimized
to some extent. More visualizations are in Appendix. B.3.

8. Further Discussions
GRA in practice. In real-world examples regarding the
threat model, the prior knowledge set K can be accessed
by an adversary in practice. For instance, to train a GNN
model for fraudulent account detection, a social network
service provider uses the technology of another company.
In this case, the provider will frequently send the company
the model’s outputs YA to debug and improve. Similar
circumstances apply to the node embeddings HA, which
are typically released. Thus, the inversion of adjacency re-
quiring only a subset K of the informative variables can be
a privacy threat in real-world scenarios of GNNs, which
have been widely used in recommendation systems, social
networks, citation networks, and drug discovery. There-
fore, the user’s privacy should be protected especially for
personalized relationships and certain sensitive information.

The inversion target. Intuitively, the adjacency A and
the node features X can be regarded as inversion targets.
The key motivations to attack adjacency are the practical
risks and understandability to human beings. Unlike visual
images that are naturally understandable to humans, the
node features are not understandable without the sufficient
knowledge of human experts, while the adjacency is much
easier to understand. More discussions are in Appendix. D.
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Figure 7: Graph information plane: defensive training with MC-GPB. Compared with the standard training (Fig. 4) without
any constraints, MC-GPB effectively decreases the amount of privacy information contained in the graph representations.

(a) GRA on normally trained GNNs.

(b) GRA on protected GNNs, i.e., trained with MC-GPB.

Figure 8: Examples of recovered adjacency. Green dots are
correctly predicted edges while red dots are wrong ones.

Limitations. This work follows the common homophily
assumption that connected nodes are likely to be in the same
category and possess similar features (He et al., 2021a;
Zhang et al., 2021b). We leave the generalization to het-
erogeneous graphs as future work. Besides, our proposed
method requires white-box access to the target model. The
black-box scenarios with only access to the model’s outputs
can be more practical but also much more challenging.

Future directions. One general direction to enhance GRA
is to extract information about adjacency from more infor-
mation sources, e.g., with partial edges of the target graph or
an auxiliary dataset to conduct a transferring attack. GRA
can be conducted on more GNN architectures and cooper-
ated with generative models, e.g., the graph auto-encoders
or diffusion models. Besides, a more fine-grained study on
graph properties is also intriguing, e.g., density, community,
number of triangles. To what extent can the above properties
be recovered will shed insights into the power of GRA and
the memorization effect of GNNs. Besides, applying GRA
to more realistic and general settings is also promising, e.g.,
inductive GNNs which can generalize well to unseen nodes,
or the black-box scenarios where the attacker can only get

access to the outputs of the target model. As for defending
against GRA in practice, a trained model might be required
to completely forget about partial training data with limited
budgets for updating their weights. A promising solution
here is machine unlearning, especially on large-scale graphs.

Broader impacts. The gun is not guilty, the person who
pulled the trigger is, said the father of the AK-47. It must be
admitted that GRA (or any kind of MIA) might be misused
to attack real-world targets. For this reason, it is essential to
raise the awareness of such an adversary and the potential
privacy risk. More importantly, investigating GRA (MIA)
enables to understand the black-box deep learning models,
to inspire more robust methods, to protect privacy in ad-
vance, and to make AI products safer and more trustworthy.

9. Conclusion
In this work, we conduct a comprehensive study of enhanc-
ing and defending Graph Reconstruction Attack. We con-
ceptually abstract the problem as approximating the original
Markov chain by the attack chain. Technically, we derive
(1) the chain-based attack method with adaptive designs for
extracting more private information; and (2) the chain-based
defense method that sharply reduces the attack fidelity with
moderate accuracy loss. Empirically, the proposed methods
achieve the best results on six datasets and three GNNs.
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A. Theoretical justification
A.1. Notations

With adjacent matrix A and node features X , an undirected graph is denoted as G=(A,X), where Aij =1 means there
is an edge eij between vi and vj . For each node vi, its D-dimension node feature is denoted as X[i,:]∈RD, and its label
yi ∈ Y = {yi}Ni=1 indicates the node class. The node classification task is to predict the label Y = {yi}Ni=1 of each node via
a parameterized model fθ(·), i.e., fθ(A,X) = Ŷ ↔ Y . We summarize the frequently used notations in Table 10 as follows.

Table 10: The most frequently used notations in this work.

notations meanings

V = {vi}Ni=1 the set of nodes

E={eij}Mij=1 the set of edges

A ∈ {0, 1}N×N the adjacent matrix with binary elements

X ∈ RN×D the node features

G=(A,X) the input graph of a GNN

Y the labels of nodes

HA representation of all nodes with adjacency A

H(X) the information entropy of random variable X

H(X,Y ) the joint entropy of variable X and Y

I(X;Y ) the mutual information of X and Y

I(X;Y |Z) the conditional mutual information of X and Y when observing Z

A.2. Preliminaries for information measures

Definition A.1 (Informational Divergence). The informational divergence (also called relative entropy or Kullback-Leibler
distance) between two probability distributions p and q on a finite space X (i.e., a common alphabet) is defined as

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep

[
log

p(X)

q(X)

]
(5)

Remark A.2. D(p||q) measures the distance between p and q. However, D(·||·) is not a true metric, and it does not satisfy
the triangular inequality. D(p||q) is non-negative and D(p||q) = 0 if and only if p = q.

Definition A.3 (Mutual Information). Given two discrete random variables X and Y , the mutual information (MI) I(X;Y )
is the relative entropy between the joint distribution p(x, y) and the product of the marginal distributions p(x)p(y), namely,

I(X;Y ) = D(p(x, y)||p(x)p(y))

=
∑

x∈X,y∈Y

p(x, y) log
( p(x, y)

p(x)p(y)

)
=

∑
x∈X,y∈Y

p(x, y) log
(p(x|y)
p(x)

)
.

(6)

Remark A.4. I(X;Y ) is symmetrical in X and Y , i.e., I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = I(Y ;X).

Proposition A.5 (Chain Rule for Entropy). H(X1, X2, · · · , Xn) =
∑n

i=1H(Xi|X1, X2, · · · , Xi−1).

Proposition A.6 (Chain Rule for Conditional Entropy). H(X1, X2, · · · , Xn|Y ) =
∑n

i=1H(Xi|X1, X2, · · · , Xi−1, Y ).

Proposition A.7 (Chain Rule for Mutual Information). I(X1, X2, · · · , Xn;Y ) =
∑n

i=1 I(Xi;Y |X1, X2, · · · , Xi−1).

Corollary A.8. ∀A,Zi, Zj , I(A;Zi, Zj) ≥ max
(
I(A;Zi), I(A;Zj)

)
.
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Proof. As I(A;Zi|Zj) ≥ 0, I(A;Zi, Zj) = I(A;Zi) + I(A;Zi|Zj) ≥ I(A;Zi). Similarly, I(A;Zi, Zj) ≥ I(A;Zj) can
be obtained. Thus, we have I(A;Zi, Zj) ≥ max

(
I(A;Zi), I(A;Zj)

)
.

Proposition A.9 (Chain Rule for Conditional Mutual Information). I(X1,· · ·, Xn;Y|Z)=
∑n

i=1 I(Xi;Y|X1,· · ·, Xi−1, Z).

Definition A.10 (Markov). A discrete stochastic process is called Markov if it satisfies p(xi+1|xi, xi−1, xi−2, · · · , x1) =
p(xi+1|xi) ∀i. As such, ∀n > 1, p(x1, x2, . . . , xn) = p(x1)p(x2|x1)p(x3|x2) . . . p(xn|xn−1).

Definition A.11 (Causally Similarity). Suppose we have two stochastic processes X(t) and Y (t) defined on the ordered
set R with associated probability functions p and q and the same outcome sets {−→x (t)}. We say that the two processes are
causally similar if p(−→x (t)|−→x (t− a)) = q(−→x (t)|−→x (t− a)) ∀t and ∀a > 0.

Remark A.12. Two stochastic processes are causally similar if they are time homogenous, Markov, and share the same
transition matrix. Besides, two Markov processes are also causally similar that is not necessarily time homogenous if they
share the same transition matrix at the same time step.

Lemma A.13. Suppose we have two causally similar stochastic processes with probability functions at time t of p(−→xt) and
q(−→xt). Then D(p(−→xt)||q(−→xt)) ≤ D(p(−→xs)||q(−→xs)) when t > s.

Lemma A.14. In a stationary Markov process, the entropy conditioned on the initial condition is non-decreasing.

Proof. That is, H(Xn|X1) ≥ H(Xn|X1, X2) as further conditioning reduces entropy. Besides, H(Xn|X1, X2) =
H(Xn|X2) = H(Xn−1|X1). Thus, H(Xn|X1) ≥ H(Xn−1|X1), which shows that H(Xn|X1) is non-decreasing.

A.3. Proof for Theorem 5.3

Lemma A.15 (Invertible Transformations Are Invariant to MI). The mutual information is invariant to any invertible
transformations ψ(·), ϕ(·), namely, I(X;Y ) = I(ψ(X);Y ) = I(X;ϕ(Y )) = I(ψ(X);ϕ(Y )).

Lemma A.16 (Non-invertible Transformation Reduces MI). For any non-invertible transformation ψ(·), it reduce the MI
between X and Y as I(X;Y ) ≥ I(ψ(X);Y ) ≥ I(ψ(X);ψ(Y )).

Proof. Based on Lemma A.15 and Lemma A.16, we have the following deduction. As Zi+1
A = σ(ψ(A) ·Zi

A · θi), where
graph convolution kernel ψ(A) ∈ RN×N and weights θi ∈ RD×D are invertible transformations. Note the activate function
σ(·) (e.g., ReLU) is a non-invertible transformation that H(X) ≥ H(σ(X)), and I(X;Y ) ≥ I(σ(X);σ(Y )).

I(Zi+1
A ; Zi+1

Â
) = I

(
σ(ψ(A) ·Zi

A · θi) ; σ(ψ(Â) ·Zi
Â
· θi)

)
≤ I

(
ψ(A) ·Zi

A · θi ; ψ(Â) ·Zi
Â
· θi

)
= I

(
ψ(A) ·Zi

A ; ψ(Â) ·Zi
Â

)
= I

(
Zi

A · θi ; Zi
Â
· θi

)
= I(Zi

A ; Zi
Â
).

(7)

Thus, ∀i ∈ [L− 1], I(Zi+1
A ;Zi+1

Â
)≤I(Zi

A;Z
i
Â
). The layer-wise MI of the two Markov chains is decreasing by layers.

A.4. Proof for Theorem 5.4

Lemma A.17 (Finite sample bounds). Assume all variables’ empirical estimates of the mutual information are based on
finite support, i.e., K = |X̂| ≈ 2I(X̂;X). Then, we denote by Î(·; ·) the finite sample distribution p̂(x, y) for a given sample
of size n. The generalization bounds in (Shamir et al., 2010) guarantee that

I(X̂;Y ) ≤ Î(X̂;Y ) +O(
K|Y|√
n

),

I(X̂;X) ≤ Î(X̂;X) +O(
K√
n
).

(8)

Proof. Let the random variables X and Y represent input and output messages with a joint probability P (x, y). Let
e represent an occurrence of error, i.e., that X ̸= X̂ with X̂ = f(Y ) being an approximate version of X . Fano’s
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inequality (Fano, 1961) (also known as the Fano converse) states that the conditional entropy

H(X|Y ) = −
∑
i,j

P (xi, yj) logP (xi|yj)

≤ Hb(e) + P (e) log(|X |+ 1),

(9)

where the probability of the communication error P (e) ≜ P (X ̸= X̂) ≥ H(X|Y )−1
log(|X |) , and Hb(e) is the corresponding binary

entropy that computed as Hb(e) = −e log2(e)− (1− e) log2(1− e).

Note that the data processing inequality (Cover, 1999) indicates that any three variables X,Y, Z that form a Markov chain

X→Y →Z, satisfy I(X;Y ) ≥ I(X;Z) and I(Y ;Z) ≥ I(X;Z). As (A,X)
θ1

−→ Z1
A and (Â, X)

θ1

−→ Z1
Â

, we have

I(A; Â) ≥ I(Z1
A ; Z1

Â
) ≥ I(Z2

A ; Z2
Â
) ≥ · · · ≥ I(ZL

A ; ZL
Â
) = I(HA ; HÂ) (10)

Then, according to Fano’s inequality (Fano, 1961), the lower bound of MI I(HA;HÂ) is

I(HA ; HÂ) = H(HA)−H(HA | HÂ)

≥ H(HA)−Hb(e)− P (e) log(|H|),
(11)

where entropy H(HA) = Ex∈HA
[− log p(x)] = −

∑
x∈HA

p(x) log p(x), the probability of approximation error P (e) =
P (HA ̸= HÂ), and the binary entropyHb(e) = −e log2(e)−(1−e) log2(1−e). H denotes the support of HA. Specifically,
the approximation fidelity I(A; Â) ≥ −

∑
x∈HA

p(x) log p(x) + e log2(e) + (1− e) log2(1− e)− P (e) log(|H|).

A.5. Proof for Theorem 5.5

Proof. To learn Â given the prior knowledge K = {X,Y,HA}, we have H(Â) ≤ H(K), and ∀Z, I(Z; Â) ≤ I(Z;K) =
I(Z;X,Y,HA). Thus, the recovering fidelity of Â satisfies I(A;X,Y,HA)− I(A; Â) ≥ 0. Then, we obtain the upper
bound of the attack fidelity with the optimal recover adjacency Â∗, namely,

Â∗ = max
Â

I(A; Â) = I(A;K) = I(A;X,Y,HA),

s.t. I(A;K|Â∗) = I(A; Â∗|K) = 0.
(12)

Solving MC-GRA (Eq. (3)) that ∃α1, α2 ∈ R, Â∗ = argmaxÂ
∑L

i=1 α1I(HA;H
i
Â
) + α2I(Y ;YÂ) yields a sufficient

solution to achieve the optimal fidelity, i.e., Â∗ : I(A; Â∗)=I(A;X,Y,HA). However, the optimal Â∗ does not necessarily
mean exactly recover the original A, as H(A|Â∗) = H(A)− I(A; Â∗) ≥ 0. Intuitively, the perfect recovery can not be
achieved due to the data compression nature of the learning process. Besides, H(A) ≥ maxZ∈KH(Z) is a usual case
as the hidden dimension D ≪ N . The remaining information, i.e., H(A|Â∗) = H(A|K), that is unobservable from
K = {X,Y,HA}, can not be recovered unless additional information is provided.

A.6. Proof for Theorem 6.2

Proof. ∀X,Y , we have I(X;Y ) ≤ I(X;X) = H(X). Thus, the MI between representations HA and adjacency A
satisfies that I(A;HA) ≤ I(A;A) = H(A). Which means, the upper bound of the MI, i.e., the worst privacy leakage as
I(A;HA) ≤ H(A), is that all the private information H(A) about the adjacency is obtained for the attacker.

A.7. Proof for Theorem 6.4

Proof. For any sufficient graph representations HA of adjacency A w.r.t. task Y introduced in Proposition 6.1, its MI with
A satisfies that I(A;Y ) = I(HA;Y ), as HA can be seen as extracted from A. However, I(A;HA)≥I(A;Y ) as the data
processing inequality (Cover, 1999) in Markov chain A→ HA → Y . Based on the two above conditions, the minimum
information I(A;HA) = I(A;Y ) can be achieved if and only if I(A;HA|Y ) = 0. That is, the optimal representations
H∗

A satisfy (1) sufficient condition that I(A;Y ) = I(H∗
A;Y ), and (2) minimal condition that I(A;H∗

A) = I(A;Y ).

Thus, I(A;H∗
A|Y ) = I(A;H∗

A, Y )− I(A, Y ) = I(A, Y )− I(A, Y ) = 0.
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A.8. Proof for Theorem 6.5

Proof. When degenerate βc = 0 and βi = β, MC-GPB is equivalent to minimizing the Information Bottleneck La-
grangian (Shwartz-Ziv & Tishby, 2017), i.e., L(p(Z|A)) = H(Y |Z) + βI(Z;A), in the limit β → 0. Specifically,
L(p(Z|A)) = H(Y |Z) + βI(Z;A) = H(Y )− I(Z;Y ) + βI(Z;A) ∝ −I(Z;Y ) + βI(Z;A), where entropy H(Y ) is
a constant. Then, we deduce the optimal case of minL(p(Z|A)) = max I(Z;Y )− βI(Z;A) as follows.

max I(Z;Y )− βI(Z;A)

=max
(
I(Y ;Z, A)− I(A;Y |Z)

)
− β

(
I(Z;A, Y )− I(A;Y |Z)

)
=max I(Y ;Z, A)− (1− β)I(A;Y |Z)− βI(Z;A, Y )

=max I(Y ;A)− (1− β)I(A;Y |Z)− βI(Z;A, Y )

=max(1− β)I(A;Y )− (1− β)I(A;Y |Z)− βI(Z;A|Y )

=(1− β)I(A;Y ).

(13)

As the two MI terms I(A;Y |Z) ≥ 0 and I(Z;A|Y ) ≥ 0, the optimal Z∗ should satisfies that I(A;Y |Z∗) = I(Z∗;A|Y ) =
0. As such, it yields a sufficient representation Z of data A for task Y , that is an approximation to the minimal and sufficient
representations Z∗ in Proposition 6.3, i.e., Z∗ = argminZ: I(Z;Y )=I(A;Y ) I(Z;A).

B. Full empirical study
B.1. Datasets

Six common datasets are utilized in experiments, which are collected from four diverse domains: (1) Cora and Citeseer (Sen
et al., 2008) are citation networks where nodes are documents, and edges indicate citations among them; (2) Polblogs (Adamic
& Glance, 2005) is a social network of political blogs where nodes represent blogs with political leaning while edges are
citations; (3) USA and Brazil (Ribeiro et al., 2017) are air-traffic networks where nodes are airports and edges denote
airlines; (4) AIDS (Riesen et al., 2008) is a chemical network where each node is an atom, and each edge is a chemical bond.
The data statistics are in Tab. 11.

Table 11: Dataset statistics. The hard homophily of an edge eij is computed as I(yi, yj) with node labels, while the soft
homophily is calculated by cos(xi, xj) with node features. "—" means this dataset is intrinsic without node features.

dataset Cora Citeseer Polblogs USA Brazil AIDS

# Nodes 2,708 3,327 1490 1190 131 1429
# Edges 5,278 4,676 33430 27164 2077 2948
# Class 7 6 2 4 4 14

# Features 1433 3703 — — — 4
Soft homophily 0.83 0.81 — — — 0.06
Hard homophily 0.81 0.74 0.91 0.70 0.45 0.51

B.2. Full quantitative results

A further comparison of attack methods. For the attack, we further compare the proposed method (MC-GRA) with
three baselines in the below table. Here, the evaluation is also with the AUC metric, where a higher value indicates a better
attack performance. The boldface numbers represent the best results. As can be seen from the table below, the MC-GRA
consistently achieves the best in all six datasets, outperforming all the baselines by a large margin.

Table 12: A further quantitative comparison of attack methods (with AUC metric).

dataset Cora Citeseer Polblogs USA Brazil AIDS

single MI (Tab. 1) .815 .881 .763 .850 .758 .584
ensemble (Tab. 2) .849 .907 .781 .852 .717 .522

GraphMI .812 .781 .791 .769 .680 .575
MC-GRA (Tab. 3) .904 .931 .853 .870 .760 .588
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A further comparison of defense methods. For the defense, we compare the proposed MC-GPB with two additional
defense methods, i.e., adding random noise and differentiable privacy. Specifically, we inject Gaussian noise into the model
prediction, termed random noise. While another baseline, termed differential privacy (Abadi et al., 2016), is achieved by
adding Gaussian noise to the clipped gradients in each training iteration. The empirical results are shown in the below
table, where GraphMI (Zhang et al., 2021b) is used as the attack method. As can be seen, the defending power of random
noise and differential privacy comes at the price of sharply degenerating the model’s accuracy. By contrast, our proposed
MC-GPB significantly degenerates GRA with much lower AUC while maintaining high accuracy simultaneously.

Table 13: A further quantitative comparison of defense methods.

dataset Cora Citeseer Polblogs USA Brazil AIDS
ACC↑ AUC↓ ACC↑ AUC↓ ACC↑ AUC↓ ACC↑ AUC↓ ACC↑ AUC↓ ACC↑ AUC↓

No defense .757 .812 .630 .781 .833 .791 .470 .769 .769 .680 .668 .575
Random noise .620 .657 .570 .727 .802 .759 .440 .754 .634 .713 .572 .559

Differential privacy .315 .500 .224 .500 .553 .502 .263 .500 .423 .706 .131 .502
MC-GPB .734 .625 .602 .691 .830 .506 .391 .300 .808 .609 .668 .514

Ablation study of similarity measurement. We also conduct experiments with the influence of similarity measurement
since our implementation depends on the estimation of mutual information, shown as Tab. 14. As can be seen, the MC-GRA
has consistent performance across different similarity measurements, while the MC-GPB exhibits a high variance for
different similarity measurements. Therein, the HSIC and CKA are generally good choices.

Table 14: Ablation study of similarity measurements (with AUC metric).

type case Cora USA
DP HSIC CKA KDE DP HSIC CKA KDE

attack
K={X,Y } .876 .871 .873 .876 .791 .800 .802 .802

K={X,Y,HA} .892 .890 .892 .895 .856 .850 .845 .851
K={X,Y,HA, Ŷ } .898 .898 .904 .896 .846 .852 .818 .840

defense
I(A;HA) .476 .751 .701 .706 .716 .873 .879 .883
I(A; ŶA) .508 .688 .705 .704 .587 .542 .872 .873
I(A;HÂ) .505 .644 .644 .625 .300 .467 .770 .728

Acc. .306 .635 .758 .734 .391 .319 .431 .447

Ablation study of parameterization methods. We also provide the empirical result of different parameterization methods
of MC-GRA, which are mentioned in Sec. 5. Overall, the GNNs method achieves the best score out of the three methods,
especially for the dataset with given node features (Cora, Citeseer, AIDS), and exceeds its counterparts by a large margin.
Therein, the Gaussian parameterization generally performs better than its counterparts for graphs without node features.

Table 15: Attack with different parameterization methods (with AUC metric).

variant Cora Citeseer Polblogs USA Brazil AIDS

Direct Matrix .890 .580 .684 .737 .521 .540
Gaussian .893 .654 .777 .846 .758 .567

GNNs .891 .889 .803 .776 .731 .662

A further empirical study about the evaluation metric. Without requiring any estimation, we utilize the AUC (area under
the curve) metric with the ground-truth edges in A to quantify the mutual information I(A;Z). And alternatively, the metric
can be replaced by AP (Average Precision), MRR (Mean Reciprocal Rank), Hit@K (the ratio of positive edges that are
ranked at the K-th place or above), which are also common in the link prediction task.

The metrics mentioned above treat all edges equally indeed. An objective measurement is required to further discriminate
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between high-value and low-value links. Here, the link homophily is a proper measurement. For instance, the link (Jaime,
Tyrion) in Figure. 1 can be seen as a homogeneous link because Jaime and Tyrion have the same node labels (i.e., Lannister).
On the other hand, the link (Daenerys, Jon) can be seen as a heterogeneous link because Daenerys and Jon do not have the
same node labels (as audiences in the earlier period, we do not know they are Targaryens, and they have a kinship). Formally,
the homogeneous links can be denoted as {eij : yi = yj} while the heterogeneous links are {eij : yi ̸= yj}, where yi, yj are
node labels of node i, node j. In what follows, we further investigate the effectiveness of GRA on these two kinds of links.

(1) For the attack, the homogeneous links are much easier to recover, as shown in the table below. More importantly, it is
observed that the high-value heterogeneous links are naturally protected but can still be recovered to some extent.

Table 16: A further quantitative comparison of attack methods on homogeneous or heterogeneous links (with AUC metric).

dataset Cora Citeseer Polblogs USA Brazil AIDS

MC-GRA (Homogeneous links) .960 .917 .896 .951 .891 .585
MC-GRA (Heterogeneous links) .684 .861 .298 .716 .564 .551
GraphMI (Homogeneous links) .724 .799 .717 .919 .871 .707
GraphMI (Heterogeneous links) .569 .675 .391 .666 .728 .437

(2) For defense, we apply the proposed MC-GPB to protect GCN against the GRA by GraphMI. In addition, we also
implement a revised version, i.e., MC-GPB-hetero, which only focuses on protecting the heterogeneous links of the original
adjacency matrix. As results are shown in the table below, the recovery of heterogeneous links is significantly degenerated
by MC-GPB and further degenerated by MC-GPB-hetero. Thus, we justify that MC-GPB and its revised version are capable
of protecting the high-value heterogeneous links.

Table 17: A further quantitative comparison of attack methods on homogeneous or heterogeneous links (with AUC metric).

dataset Cora Citeseer Polblogs USA Brazil AIDS

No defense (Heterogeneous links) .569 .675 .391 .666 .728 .437
MC-GPB (Heterogeneous links) .532 .584 .453 .552 .530 .471

MC-GPB-hetero (Heterogeneous links) .493 .515 .210 .494 .416 .423

Empirical results on large-scale datasets. Here, we conduct an empirical study on two large-scale datasets for node
property prediction, i.e., ENZYME (6254 nodes and 23914 edges) and OGB-Arxiv (8532 nodes and 26281 edges). Detailed
statistics are shown below. Specifically, we use GraphSAINT (Zeng et al., 2019) random walk sampler to extract the
subgraph for illustration. The dataset split setting of train/validate/test sets is consistent with other datasets used in this work.

Table 18: Dataset statistics of the two large-scale datasets.

dataset # Nodes # Edges # Class # Features Hard homophily

ENZYME 6254 23914 3 18 0.629
OGB-Arxiv 8532 26281 40 128 0.618

(1) Then, we evaluate the performance of MC-GRA with K = {X,Y }, as shown in the table below (the higher the AUC
value, the better the attack performance). As can be seen, MC-GRA is also effective on these two large-scale datasets.
Besides, MC-GRA outperforms the baseline GRA method by a large margin.

Table 19: A comparison of attack methods on large-scale datasets (with AUC metric).

dataset ENZYME OGB-Arxiv

GraphMI .494 .828
MC-GRA .761 .891
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(2) We also conduct the experiment of our defense method MC-GPB on these two datasets, with GraphMI as the attack
method. As shown in the table below (the lower, the better), MC-GPB degenerates both kinds of GRA (i.e., MC-GRA and
GraphMI), which empirically proves the effectiveness of our defense method on large-scale datasets.

Table 20: A comparison of attack methods on large-scale datasets our defense method MC-GPB (with AUC metric).

dataset ENZYME OGB-Arxiv

GraphMI .488 (1.2%↓) .533 (35.6%↓)
MC-GRA .607 (20.2%↓) .848 (4.8%↓)

Attacks without node feature. We further implement the experiments without node features X in the following. Note that
the usair, brazil, and polblogs datasets have no initial node feature. Therefore, calculating I(A;X) in Table. 1 with these
datasets is infeasible due to the lack of X . Here, we present the attack results of our method on Cora, Citeseer, and AIDS
datasets without using the node feature.

Table 21: A further quantitative comparison of attack methods without access to the node feature (with AUC metric).

dataset Cora Citeseer AIDS

Dot-Product (Tab. 2) .849 .907 .521
GraphMI (without X) .802 .759 .575

MC-GRA (K = {HA}) .834 .887 .575
MC-GRA (K = {ŶA}) .771 .890 .540
MC-GRA (K = {Y }) .864 .853 .525

MC-GRA (K = {HA, ŶA}) .828 .918 .525
MC-GRA (K = {HA,Y }) .875 .919 .539
MC-GRA (K = {ŶA,Y }) .867 .896 .539

MC-GRA (K = {HA, ŶA,Y }) .883 .914 .580

As shown in the above table, without using node features X as the prior knowledge, the MC-GRA is still effective in
recovering adjacency with considerable AUC results. Besides, the performance of MC-GRA is still better than the baselines.
In fact, node features do not always exist, e.g., for the Polblogs, USA, and Brazil datasets. While on the other hand, the
characteristic adjacency A is indispensable for graph learning. Besides, we further justify the feasibility of our MC-GRA
without node features. For the extension of GRA, a more fine-grained study on graph properties is intriguing, e.g., density,
community, number of triangles w.r.t. adjacency A. To what extent can the above properties be recovered will shed insights
into the power of GRA and the memorization effect of GNNs.

Why would some of the model accuracy benefit from the defense mechanism? As shown in Tab. 4, MC-GPB can also
bring improvement in classification accuracy on partial datasets. We speculate that the reason is forgetting more might also
lead to learning better in some cases. We provide a three-fold analysis from the information-theory perspective as follows.

(1) For brevity, we consider a simplified objective of the graph privacy bottleneck in Eq. (4), i.e., to solve min−I(H;Y ) +
β · I(H;A) w.r.t. representations H , graph adjacency A, and node labels Y . The maximin game here is to encourage the
accuracy by a higher I(H;Y ), and reduce the complexity by regularizing the I(H;A) with β for the trade-off.

(2) In this case, the spurious correlation measured by I(H;A|Y ) will also be reduced and help the inference in test
time. The reason is that absorbing too much irrelevant information between A and Y , which can be superficially but not
causally associated, will lead to degenerated test performance for GNNs (Zhao et al., 2022). Thus, a lower I(H;A|Y ) here
encourages the forgetting of adjacency and might bring a better generalization power in the test-time inference of GNNs.
While the optimal case, i.e., I(H;A|Y ) = 0, is also discussed in Theorem 6.4.

(3) Another supporting material is that only relying on a subgraph for reasoning can also boost the test-time perfor-
mance (Miao et al., 2022). The method GSAT (Miao et al., 2022) aims to extract a subgraph Gs as the interpretation. It
inherits the same spirit of information bottleneck in its optimization, i.e., min−I(Gs;Y ) + β · I(Gs;G). The integrated
subgraph sampler can explicitly remove the spurious correlation or noisy information in the entire graph G.
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Besides, we should note that in the cases where the model does not suffer from severe spurious correlations. The defense
mechanism usually induces the drop trade-off regarding the model accuracy.

B.3. Full qualitative results

The recovered adjacency. Fig. 9-11 shows the recovered adjacency of each dataset, which is grouped by node label under
different attack strategies. In addition, we also provide the recovered adjacency on protected GNN, which is training with
our proposed MC-GPB mechanism (sub-figure (d) and (e)). As can be seen, GNN training with MC-GPB successfully
resists both attacks in terms of a larger amount of wrong prediction compared to the normal GNN. For example, for the
Cora dataset, MC-GRA (Fig. 9(b)) achieves a better result compared to GraphMI (Fig. 9(c)) under both normal training
strategy, in terms of fewer error predictions (red dots). Whereas MC-GPB successfully defended the MC-GRA (Fig. 9(d))
and GraphMI (Fig. 9(e)), and MC-GRA still have better performance compared to GraphMI with protected GNN.

(a) Ground truth (b) With normal GNN (c) With normal GNN (d) With protected GNN (e) With protected GNN

Figure 9: Recovered adjacency on Cora dataset.

(a) Ground truth (b) With normal GNN (c) With normal GNN (d) With protected GNN (e) With protected GNN

Figure 10: Recovered adjacency on Citeseer dataset.

(a) Ground truth (b) With normal GNN (c) With normal GNN (d) With protected GNN (e) With protected GNN

Figure 11: Recovered adjacency on Polblogs dataset.
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(a) Ground truth (b) With normal GNN (c) With normal GNN (d) With protected GNN (e) With protected GNN

Figure 12: Recovered adjacency on USA dataset.

(a) Ground truth (b) With normal GNN (c) With normal GNN (d) With protected GNN (e) With protected GNN

Figure 13: Recovered adjacency on Brazil dataset.

(a) Ground truth (b) With normal GNN (c) With normal GNN (d) With protected GNN (e) With protected GNN

Figure 14: Recovered adjacency on AIDS dataset.

Tracking the MI terms. We show the learning curves of MC-GRA and MC-GPB on each dataset as follows.

For MC-GRA ( Fig. 15), most of the output and propagation loss converged to near zero, showing that the model efficiently
approximates the original Markov chain. For MC-GPB, we track three constraints layer-wise and average them out to
visualize the overall trend. We also record the model accuracy constraint, i.e., the cross-entropy of model output, to check
whether the layer and the full model have consistent patterns. Both privacy and complexity constraints, despite the fluctuation
of the former in some datasets, show a downward trend throughout the training, especially for the usair dataset. The accuracy
curves also have similar patterns.
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Figure 15: Training curves of MC-GRA on each dataset.
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Figure 16: Training curves of MC-GPB on each dataset.

A further analysis with the training dynamics. We show the graph information planes with/without MC-GPB as follows.
The model training without MC-GPB memorizes the privacy information at the beginning of training before gradually
forgetting it. By applying our MC-GPB, we can enhance such forgetting procedures while preventing the model from
discarding task-relevant information that might lead to a drop in accuracy.
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(a) GNN with normal training
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(b) GNN trained with MC-GPB

Figure 17: Graph information plane on Cora dataset.
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(a) GNN with normal training
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(b) GNN trained with MC-GPB

Figure 18: Graph information plane on Citeseer dataset.
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(a) GNN with normal training
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(b) GNN trained with MC-GPB

Figure 19: Graph information plane on Polblogs dataset.
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(a) GNN with normal training
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(b) GNN trained with MC-GPB

Figure 20: Graph information plane on USA dataset.
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(a) GNN with normal training
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(b) GNN trained with MC-GPB

Figure 21: Graph information plane on Brazil dataset.

0.5 0.6
Privacy I(A;H)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ac
cu

ra
cy

 I(
Y;

H)

Graph Information Plane (AIDS dataset)
GCN Layer-1 GCN Layer-2 Linear

0 50 100 150 200
Training epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Ac
cu

ra
cy

 I(
Y;

H)

0 50 100 150 200
Training epoch

0.5

0.6

Pr
iv

ac
y 

I(A
;H

)

0
50
100
150
200

Tr
ai

ni
ng

 e
po

ch

(a) GNN with normal training

0.5 0.6
Privacy I(A;H)

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

 I(
Y;

H)

Graph Information Plane (AIDS dataset)
GCN Layer-1 GCN Layer-2 Linear

0 50 100 150 200
Training epoch

0.0

0.1

0.2

0.3

Ac
cu

ra
cy

 I(
Y;

H)

0 50 100 150 200
Training epoch

0.5

0.6

Pr
iv

ac
y 

I(A
;H

)

0
50
100
150
200

Tr
ai

ni
ng

 e
po

ch

(b) GNN trained with MC-GPB

Figure 22: Graph information plane on AIDS dataset.

25



On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation

C. Related work
C.1. Graph Neural Networks

Predicting node labels requires a parameterized hypothesis fθ(A,X) = ŶA with GNN architecture (Kipf & Welling,
2016a; Veličković et al., 2018; Hamilton et al., 2017) and message propagation framework (Gilmer et al., 2017), where the
architecture can be GCN (Kipf & Welling, 2016a), GAT (Veličković et al., 2018), or GraphSAGE (Hamilton et al., 2017).
The forward inference of a L-layer GNN generates node representations HA∈RN×D by a L-layer message propagation.

Formally, let ℓ = 1 . . . L denote the layer index, hℓi is the representation of the node i, MESS(·) is a learnable mapping
function to transform the input feature, AGGREGATE(·) captures the 1-hop information from neighborhood N (v) in the
graph, and COMBINE(·) is the final combination between neighbor features and the node itself. Then, the l-layer operation
of GNNs can be formulated as mℓ

v=AGGREGATEℓ({MESS(hℓ−1
u ,hℓ−1

v , euv) :u ∈ N (v)}), where the representation of
node v is hℓ

v = COMBINEℓ(hℓ−1
v ,mℓ

v). After L-layer propagation, the final node representations hL
e of each e∈V are

obtained. In addition, we summarize the detailed architectures of different GNNs in the following Table 22.

Then, the follow-up linear layer transforms HA to classification probabilities ŶA∈RN×C , with C categories in total. The
training objective is to minimize the classification loss, e.g., the cross-entropy between predictions ŶA and ground truth Y .

Table 22: Detailed architectures of different GNNs.

GNN MESS(·) & AGGREGATE(·) COMBINE(·)
GCN ml

i = W l
∑

j∈N (i)
1√
d̂id̂j

hl−1
j hl

i = σ(ml
i +W l 1

d̂i
hl−1
i )

GAT ml
i =

∑
j∈N (i) αijW

lhl−1
j hl

i = σ(ml
i +W lαiih

l−1
i )

GraphSAGE ml
i = W l 1

|N (i)|
∑

j∈N (i) h
l−1
j hl

i = σ(ml
i +W lhl−1

i )

C.2. Privacy Attack on Graphs

Generally, the privacy attack on graphs can be attributed to membership inference attack, model extraction attack, and model
inversion attack. Specifically, the membership inference attack (He et al., 2021b) aims to indicate whether a data sample
is used to train the model. Besides, model extraction attack (Shen et al., 2022) is to extract information about the model
parameters and reconstruct a surrogate model that behaves like the black-box model. Lastly, the model inversion attack aims
to extract sensitive features of training data with only access to a trained model and non-sensitive features. We summarize
the literature on the model inversion attack as follows.

C.3. Inversion Attack on Graphs

As introduced before, most works of model inversion attack are investigated images and texts domains, leaving its
effectiveness in the non-grid domain an open problem, e.g., graph-structured data. While recently, several graph neural
networks (GNNs) (Kipf & Welling, 2016a; Gilmer et al., 2017; Kipf & Welling, 2016b; Zhang & Chen, 2018) are proposed
for graph data and boosted many real-world applications, e.g., recommendation systems (Wu et al., 2020b) and drug
discovery (Ioannidis et al., 2020). In graph scenarios, the target of the model inversion attack is to recover the topology of
the training graph, i.e., the connectivity properties w.r.t. each edge.

In practice, inferring links between nodes leads to a severe privacy threat when the links represent sensitive information, e.g.,
the relationship between users in social networks. Besides, it may also compromise a model owner’s intellectual property.
The challenges of applying the model inversion attack to graphs are two folds. (1) The discrete nature of graph structure. It
is hard to optimize in a differentiable way. Besides, the nodes and edges in a graph cannot be resized to the same shape. (2)
Lack of domain knowledge as priors. Graph data are less intuitive than images, and the domain knowledge can be diverse,
e.g., molecules, social networks, and citation networks.

The pioneer works (Duddu et al., 2020; Chanpuriya et al., 2021) attempt to reconstruct the target graph from released graph
embeddings H ∈ RN×D of each node, that are generated by Deepwalk or GNNs. The specific attack method can be the
Deepwalk Backward (Chanpuriya et al., 2021), or a decoder fdec(H) : RN×D → {0, 1}N×N that is trained on auxiliary
datasets (Duddu et al., 2020). Graph embedding attack with the auto-encoder framework is also an exciting direction as the
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graph embeddings of each node can usually be accessed in practice. (Zhang et al., 2022b) systematically investigate the
information leakage of graph embedding, and justify that the basic graph properties, e.g., number of nodes, number of edges,
and graph density, can be accurately extracted. Besides, it can determine whether a given subgraph is contained in the target
graph or not. More importantly, it also shows that the graph topology can be recovered via conducting the MIA with graph
embeddings.

The link stealing attack (He et al., 2021a) is the first work to steal links from a GNN as the target model. It aims to conduct
the attack on black-box settings with three kinds of prior knowledge, including (1) node features, (2) target dataset’s partial
graph, and (3) a shadow dataset. This work proposed 8 different kinds of attacks in total to be adaptive to the 23 = 8
scenarios. Each proposed method for the attack was verified on chemical networks and social networks, which justified the
feasibility of conducting a model inversion attack on graphs. However, it requires to be accessible to the partial graph and an
auxiliary dataset. The partial graph actually contains sensitive information about the adjacency, and selecting the auxiliary
dataset also requires extra information about the target graph. Thus, these methods cannot be directly utilized here. Besides,
the GraphMI (Zhang et al., 2021b) is also a learnable attack that also aims to recover the links of the original graph. With
the white-box access to the target model, the optimal adjacency is obtained by maximizing the classification probability
w.r.t. given node labels Y , namely, Â∗=argmaxÂ P(fθ(Â, X), Y ). In practice, the Â∗ can be recursively updated by the
projected gradient descent (PGD). The proposed attack method In this work is partially inspired by GraphMI, and it can be
degenerated to GraphMI when the prior knowledge set is reduced to K = {X,Ysub}, where Ysub ⊂ Y .

In addition to attacking GNNs trained for node classification tasks, a recent work (Zhang et al., 2022b) also attempted to
attack the model for graph classification tasks. The shift from node-level tasks to graph-level tasks brings several unique
challenges as the obtained one-dimensional embeddings hG ∈ RD are the compressed information of the whole graph G.
This work reconstructs the graphs with a graph auto-encoder that takes the graph embeddings as inputs and then generates
the corresponding graphs. Note that the adopted graph auto-encoder is trained on an auxiliary dataset and then applied to the
target dataset. It shares a similar spirit of generative attacks on degenerate that the generator (e.g., a generative adversarial
network) is pre-trained on public datasets.

C.4. Model Inversion Attack on Images

Pioneer works (Fredrikson et al., 2014; 2015; Hidano et al., 2017) introduce the model inversion attack with comparably
simple models, e.g., linear regression, decision trees, and shallow networks. These early works justified the feasibility of
model inversion attacks and succeeded in recovering the monochrome images. However, the reconstructed images are also
usually of low fidelity (Szegedy et al., 2013), and they fail in attacking DNNs for image classification tasks.

So, how can we recover the polychromatic and realistic images used for training? Generative Model Inversion (GMI) (Zhang
et al., 2020) is the first to conduct model inversion attacks on deep models, i.e., the convolution neural networks. Instead of
directly reconstructing the private data from scratch, its inversion process is guided by a distributional prior through the
generative adversarial networks (GAN). Specifically, the used GAN is pretrained on public datasets for obtaining the generic
prior knowledge of human faces via minimizing the canonical WassersteinGAN training loss, namely,

LGAN (G,D) = Ex[D(x)]− Ez[G(z)]. (14)

that optimizes the generator G and the discriminator D in an adversarial training manner. Then, GMI introduces a diversity
loss to encourage the more diverse generated images to recover more training patterns in Xtra. To be specific, with two
sampled latent vectors z1, z2, the diversity loss is calculated as

Ldiv(G) = Ez1,z2

[ ||ffeatθ (G(z1))− ffeatθ (G(z2))||
||z1 − z2||

]
. (15)

where ffeatθ is the feature extractor of the target network. With these two loss functions, the full objective of GAN is as
follows.

min
G

max
D

LGAN (G,D)− λLdiv(G). (16)

After training the GAN, GMI aims to find the latent vector z that achieves the highest likelihood under the target network
while being constrained to the data manifold learned by G, i.e.,

z∗ = min
z

−D(G(z))− λ log[fθ(G(z))]. (17)
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where a lower prior loss −D(G(z)) require the more realistic images, while a lower identity loss log[fθ(G(z))] encourages
the generated images to have a higher likelihood w.r.t. the targeted network. In summary, GMI conducts the model inversion
attack in an end-to-end manner based on GANs that can reveal private training data of the target model with high fidelity,
which make up for the deficiency of the early works. Besides, it also reveals the non-convex nature of model inversion
attacks on deep models, where a more powerful target model can exhibit a higher privacy risk.

However, the top-one identification accuracy of face images inverted from the classifier is not that high. Is it because CNNs
do not memorize much about private data or is it due to the imperfect attack algorithm? To answer, the follow-up work,
Knowledge-Enriched Distributional Model Inversion (KED-MI) (Chen et al., 2021), shows that the target network maybe
not be fully utilized. KED-MI further distills the useful knowledge from the target model with two designs. On the one
hand, instead of generating and discriminating real or fake samples, DMI utilizes the target model to generate soft labels for
supervising the GAN, i.e., to minimize the loss LGAN = L(D) + L(G), specifically,

L(D) =Lsup(D) + Lunsup(D)

Lsup(D) =− Ex∼pdata(x)
∑K

k=1
fθ(x) log pdisc(y = k|x)

Lunsup(D) =−Ex∼pdata
logD(x)+Ez∼noise log(1−D(G(z)))

L(G) =||Ex∼pdata
fθ(x)− Ez∼noisefθ(G(z))||22 + λLent

(18)

where the entropy regularization term Lent is taken from previous work (Grandvalet & Bengio, 2004).

On the other hand, no longer recovering a sample given a label in a one-to-one manner, DMI explicitly parameterizes
the distribution of private data and proceed with the model inversion attack in a new many-to-one way. Technically, the
latent vectors of the generator are sampled from a learnable distribution to capture the class-wise information, while
the discriminator acts as a (K+1)-classifier to differentiate the K classes of private data. Here, the latent variable z is
parameterized by z = σϵ+ µ by the reparameterization trick that the corresponding distribution pgen samples the optimal
z∗ as follows.

z∗ = min
z

−Ez∼pgen
logD(G(z))− λEz∼pgen

log[fθ(G(z))]. (19)

Basically, a successful attack should generate realistic and diverse samples. So, how can we generate more diverse samples?
The Variational Model Inversion (VMI) (Wang et al., 2021) further formulates the model inversion attack as the variational
inference. VMI generally can bring a higher attack accuracy and diversity for its equipped powerful generator StyleGAN to
optimize its designed variational objective. Specifically, for the target class y, VMI approximates the target posterior with a
variational distribution q(x) ∈ Qx from the variational family Qx. The target model fθ(x) is then denoted as pTAR(x|y).
The variational objective is derived as follows.

q∗(x) = min
q∈Qx

DKL(q(x)||pTAR(x|y))

= min
q∈Qx

Eq(x)

[
− log pTAR(x|y) +DKL(q(x)||pTAR(x))

] (20)

In addition to recovering images, can model inversion attack be applied to other extensions? The Contrastive Model Inversion
(CMI) (Fang et al., 2021) aims for data-free knowledge distillation. It recovers the training data from the target model via
model inversion attacks, based on which it trains a student model. To overcome the mode collapse problem that recovered
images are highly similar to each other, CMI proposes the contrastive learning objective upon the generated data to promote
diversity while remaining considerable fidelity. With the similarity measurement sim(x1, x2, h) = cos(h(x1), h(x2) =
<h(x1),h(x2)>/||h(x1)||·||h(x2)||, where the h(·) projects xi to the embedding space, the contrastive loss is formulated as

Lcon(X,h) = −Exi∈X

[
log

exp(sim(xi, x
+
i , h)/τ)∑

j exp(sim(xi, x
−
j , h)/τ)

]
(21)

Besides, XAI-aware model inversion attack (Zhao et al., 2021) shows that the additional knowledge collected from the
model inference procedure can promote the model inversion attack performances. In detail, if the model explanations e.g.,
saliency maps of Gradients or Grad-CAM, are attainable in practice, it might do harm to privacy since these explanations
can help recover private data.
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In addition, (Kahla et al., 2022) conducts the first label-only model inversion attack only accessing the model’s predicted
labels without the confidence scores. As a machine learning model is often packed into a black-box that only generates
the hard label (i.e., the label of the class with the highest probability), such an attack scenario is more practical but also
much more challenging to perform. Despite requiring less knowledge about the target model, this work justifies that such a
black-box attack is also feasible and effective. Specially, it attempts to generate the most likelihood images for the target
class, and observes that a region of high likelihood shall be located in the center of the class. Based on this observation, this
work proposes to iteratively move the generated image away from the decision boundary and closer to the center.

Recent advance (Struppek et al., 2022) significantly decreases the cost of conducting a model inversion attack through
relaxing the dependency between the target model and the image prior. This work enables the use of a single GAN to attack
a wide range of targets, requiring only minor adjustments to the attack. Moreover, this work shows that the model inversion
attack is possible even with publicly available pre-trained GANs and under strong distributional shifts.

C.5. Model Inversion Attack on Texts

In addition to recovering training images with visual models introduced before, model inversion attack on text data with
language models is also attacking more and more interests. In this domain, the input X is changed from image to text (i.e.,
sentences), and the architecture of model fθ is also shifted from the convolutional neural network to the transformer-based
language model.

A pioneer work (Carlini et al., 2021) demonstrates that large language models (i.e., the GPT-2) memorize and leak individual
training examples, with only black-box query access. The private information of an individual person can be accurately
recovered. More importantly, this work reveals that some worst-case training examples are indeed memorized, although
training examples do not have noticeably lower losses than test examples on average. Such a phenomenon is correlated with
the memorization effect of DNNs and deserved further investigations.

Besides, another work, Text Revealer (Zhang et al., 2022a), firstly proposed to apply the model inversion attack to text
classification with the transformer-based pretrained language models. Its attack consists of two stages: (1) collect texts from
the same domain as the public dataset and extract high-frequency phrases from the public dataset as templates; (2) train a
language model as the text generator on the public dataset. By minimizing the text classification loss, i.e., cross-entropy, the
generated text distribution becomes closer to the private dataset.

C.6. On defending Model Inversion Attack

As for defending against the model inversion attack, a natural solution can be differential privacy (DP). Although effective
in defending the membership attack (Abadi et al., 2016), the techniques of DP are proved to be ineffective with model
inversion attacks (Fredrikson et al., 2014; Zhang et al., 2020).

The mutual-information-based defense (MID) (Yang et al., 2019) and Bilateral Dependency Optimization (BiDO) (Peng
et al., 2022) are two representative defense methods that are specially designed for the model inversion attack. They follow
a similar principle, that is, to control the mutual information among inputs X , hidden representations Z, prediction outputs
Ŷ , and labels Y . Specifically, MID directly decreases the mutual information between I(X; Ŷ ). BiDO forces the model to
learn the robust representations by minimizing I(X;Z) to limit redundant information that is transferred from the inputs to
the latent representations, while maximizing I(Y ;Z) to keep the representations informative.

These two robust methods are effective in defending against model inversion attacks. The recovered images are neither
correct nor realistic. However, such defense methods can do harm to the performance of the target model, as the informative
signals from the input side can be overlooked under the balance of mutual information. Thus, a better trade-off between the
model inversion-robustness and prediction performance is expected. In general, such an area of defending against model
inversion attacks is still under-explored.

In general, the principle of conducting the model inversion attack is to utilize prior knowledge as much as possible, to extract
more information from the target model, in order to generate more realistic and diverse samples. While defending against
the model inversion attack, one promising solution is to store less information about input data in the weights of the model.
In this way, the attacker is unable to recover the private data via querying the target model. However, it usually forms a
trade-off between privacy and accuracy that such privacy-safe solutions can harm the accuracy, Thus, a better defensive
approach is needed. The model inversion defense in practice where several trained models are expected to be protected
without further modifications are much more challenging and essential.
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D. A Further Discussion on Graph Reconstruction Attack
D.1. Background of the research problem

In this part, we would further clarify the background and settings of the research problem in our work, i.e., Graph
Reconstruction Attack. To be specific, we provide rigorous answers to the three following research questions.

• Q1. About the black-box or white-box attack settings regarding accesses to the target model. Here, the black-box setting
indicates that the attackers can only query the target model and receive the classification results, which is the most difficult
setting for the adversary. When a company employs GNN tools from another company that could be considered an
adversary who possesses black-box access to the GNN model. On the contrary, the white-box setting means that the entire
parameters of the target model can be obtained. Here, white-box attacks have created an increasingly serious threat to
privacy due to the rise in the number of internet venues and online platforms where users can download full models.

• Q2. About accesses to the prior knowledge. The GNN model prediction results ŶA shared by many departments within the
same corporation may be accessed by an adversary. For instance, to train a GNN model for fraudulent account detection,
a social network service provider uses the technology of another business. In this situation, the supplier frequently
must send the business the nodes’ prediction results in order to debug or improve them. Similar circumstances apply to
representations HA (i.e., node embeddings), which are typically released. Furthermore, GNNs use the message passing
framework, as is common knowledge, to produce representations of each node that are used in downstream tasks like
node classification and link prediction. Additionally, a prior study (He et al., 2021a) also took into account the availability
of an auxiliary dataset and a partial graph Asub ⊆ A. The additional prior knowledge does successfully improve the GRA,
even though it necessitates more access. As a result, the GRA can be carried out if the attacker can access the trained
GNN model from malicious clients and has some leaked prior knowledge that is connected to the model.

• Q3. About the attack target i.e., the adjacency rather than the node feature. Intuitively, the adjacency A and the node
feature X are all located on the input sides of the forward Markov chain, which means both of them can be the inversion
target. The key motivation to attack the adjacency is two folds, i.e., its practical risks and understandability to human
beings. For instance, social network data is gathered with user consent in order to train GNNs for better service, such as
friend classification or ad recommendation. It should be noted that user friendship data is sensitive and relational and that
it should be kept secret. If the user’s friendship is recovered in this scenario, the user’s privacy will be compromised. A
bigger security risk is presented by the fact that attackers can grasp such privacy, which is more critical. As a result, the
privacy of graph adjacency data should receive greater attention and protection because it is more sensitive and intelligible
than the node feature.

D.2. Graph Reconstruction Attack in practice

Here, we provide a detailed explanation for the existence of the threat model in practice with several real-world examples.

Q1. Why can adjacency be attacked, and should be protected in practice? In practice, inferring links between nodes leads to
a severe privacy threat when the links represent sensitive information, e.g., the relationship between users in social networks.
Taking social networks as an example, which require gathering interaction among individuals, GNNs can only have satisfied
performance on downstream tasks like community detection or ad recommendation once the network structure is accurately
characterized. However, this connection among users should be private since it is gathered with user consent and shall be
kept between the service provider and users.

For instance, to train a GNN model for fraudulent account detection, a social network service provider uses the technology
of another business. In this case, the supplier will frequently send the business the nodes’ prediction results to debug or
improve them. Similar circumstances apply to node representations, which are typically released. Thus, the model’s outputs
shared by many departments within the same corporation can be accessed by an adversary. The same to node features
and node labels. Note that the graph reconstruction attack can be conducted with only a subset of the above informative
variables, as we have empirically justified its feasibility in Section 7. The attack target here, i.e., links, can reflect the
model owner’s sensitive relationship information or intellectual properties, which brings considerable safety risk that is
orthogonal to the well-known and widely-studied adversarial attacks (Dai et al., 2018; Chen et al., 2022; Zhu et al., 2023).
The inversion of adjacency is a severe privacy threat in several real-world scenarios of GNNs, which have been widely used
in recommendation systems, social networks, citation networks, and drug discovery.

Thus, the users’ privacy should be paid attention to and protected, especially for personal relationships and sensitive
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information. The private connection among individuals shall be protected since it might become a powerful weapon for
fraud syndicates to generate fake identities or threaten people with concerns about their secret relationships. Moreover, in
the drug discovery scenario, the company might train its graph generation model for searching for new medicine and share
its model with other companies for further development. However, the dataset for training the model contains private drug
structures on the market, which is worth stealing as it involves tremendous efforts to discover and test the drug’s safety
before appearing on the market.

Q2. Why investigating the GRA is meaningful and practical? One cannot ignore the importance of privacy leaking of
existing GNNs, regardless of the possibility of the attack. The model inversion attack also receives noticeable attention in
the visual domain (Fredrikson et al., 2014; Hidano et al., 2017; Chen et al., 2021; Wang et al., 2021; Zhao et al., 2021; Kahla
et al., 2022) and the natural language processing domain (Carlini et al., 2021; Zhang et al., 2022a). For the graph domain,
previous works (He et al., 2021a; Zhang et al., 2021b) have justified the practical feasibility and possible impact on real life.

The GRA, or the general MIA, is a well-defined problem that attacks growing interests. We have justified that the adjacency
matrix contains rich private information and is prone to attack. The purpose of this work is to illustrate the flaw of the
current GNNs training process and provide a direction to protect the model. One cannot wait until a mistake is made to fix it.

D.3. Issues of existing attack or defense methods

In this part, we further elaborate the challenges of the studied GRA problems and issues of existing methods (introduced in
Appendix. C), which are summarized in the following three folds.

• Directly applying existing methods (Fredrikson et al., 2015) to graphs can be easily sub-optimal. The attribute is that
they are originally designed for grid data like images, overlooking the inherently topological and semantical properties
of graphs. Besides, another modality gap is the lacking of a distributional prior (e.g., a public face dataset) stored in a
pre-trained generative adversarial network that is used to guide the inversion process of graphs. Thus, it hinders several
generative attack methods (Zhang et al., 2020; Struppek et al., 2022) to be applicable to graphs.

• Considering the inductive nature that graphs can be collected from diverse domains, the fetched prior knowledge set K is
of vital importance. However, |K| can be 2, 3, or 4 (with 7 combinations in total), while trivially treating each case with a
specific method is quite non-general. Thus, how the adaptively utilized each Ki∈K in the form of one generic objective
of combination optimization, is the main challenge to solving the non-convex problem here.

• As for the defense, the differential privacy techniques are proven to be of little help to defend against MIA (Zhang et al.,
2020; 2021b), although it can be helpful to defend against the membership attack. On the other hand, the improvement
of privacy guarantee might come at the cost of degenerating the empirical performance (Bietti et al., 2022). Thus, an
effective defense method customized for GNNs that nicely balancing of accuracy and privacy is expected.

Technical contribution. To better clarify the technical contribution of our work, we provide a brief summary with regard to
existing works as follows.

• For the attack, we propose the Markov Chain-based Graph Reconstruction Attack (MC-GRA) that boosts the attack
fidelity with parameterization techniques and injected stochasticity. Unlike existing GRA methods designed for ad-hoc
scenarios, our proposed MC-GRA aims to locate, present, and utilize the interplaying variables of GNN forward in a
generic manner. It can adaptively support the white-box GRA that leverages the target model and any prior knowledge.
That is, to recover better, you must extract more.

• For the defense, existing works have justified that differential privacy (DP) is ineffective with GRA (or general MIA). And
currently, there is a lack of an effective way to defend GRA. In this work, we propose the Markov Chain-based Graph
Privacy Bottleneck (MC-GPB), an information theory-guided principle that significantly degenerates GRA with only a
slight accuracy loss. The MC-GPB requires the GNN to forget the privacy information in the training process, i.e., to
make the learned representations contain less information about adjacency. That is, to learn safer, you must forget more.

• To the best of our knowledge, we are the first to conduct a systematic study of GRA from both sides of attack and defense.
By taking GNNs as a Markov chain and attacking GNNs via a flexible chain approximation, we systematically explore the
underlying principles of GRA and reveal several essential phenomena. In addition, we also provide a rigorous analysis
from information-theoretical perspectives to disclose several valuable insights on how to strengthen and defend GRA.
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D.4. The information-theoretic principles of GRA

Basically, the objective of the attack is to recover the adjacency, as was stated earlier. On the other hand, the defense consists
of acquiring a dependable and thoroughly trained model that is resistant to assault. In order to launch an attack, one must
first collect and combine all of the relevant prior knowledge and then do a backward recovery concerning the adjacency; As
a sort of defense, rather than that, it is necessary to mandate that the GNN forget all of the information on the adjacency
during its training phase.

Specifically, the correlation between each Ki ∈ K and its counterpart in the forward process with the recovered adjacency Â
should be encouraged to enhance the GRA. For example, ŶA ∈ K should be approximated by ŶÂ, i.e., a higher I(ŶA; ŶÂ),
that is essential to obtain a high fidelity I(A; Â). On the contrary, constraining the correlation between intermediate
variables and the original adjacency, e.g., a lower I(A;Hi

A) for i = 1, 2, · · · , L, is a natural solution to defend the GRA. As
such, even these variables are leaked, the attacker is scarcely possible to recover A.

D.5. Deriving the MC-GRA objective

For approximating A by Â, the basic objective of attacking and its relaxed form to optimize Â are derived as follows.

The basic attack objective. Intuitively, given a prior knowledge set K⊆{X,Y,HA, ŶA}, the optimal recovered adjacency
Â∗ can be obtained by directly maximizing its correlation with each term Ki∈K, i.e., solving the Basic-GRA,

Â∗ = argmax
Â

I(Â;K) ≜
∑
Ki∈K

αiI(Â;Ki). (22)

where the hyper-parameters {αi}|K|
i=1 balance the MI terms {I(Â;Ki)}|K|

i=1. Intuitively, maximizing I(Â;K) enables to
extract information in K and store it in Â to approximate A, namely,

max
Â

H(Â)≈H(K) ⇒ max
Â

I(A; Â)≈I(A;K). (23)

The Basic-GRA can be applied to black-box settings, however, it can also be sub-optimal as locations of Â and Ki are
distant: Â is in the front-end while Ki is in the back-end. Which means, the information unrelated to adjacency induced by
the ORI-chain, i.e., H(Ki|A), will be also stored in H(Â). That is, maxÂ I(A; Â)≈I(A;K) might come at the cost of
H(Â)≈H(K). Besides, the knowledge stored in the target model fθ∗(·) is entirely not utilized. Thus, the recovered Â∗ is
not good enough, and a refined objective is required.

The relaxed attack objective. For extracting the target model and relaxing the optimization simultaneously, we replace Â
in Eq. (22) by the latent variable Zj

Â
generated by GRA-chain fθ∗(Â, X). We promote I(Zj

A;Z
j

Â
) instead of I(Zj

A; Â),

as it provides supervision signals that can be tractably approximated. Here, Zj

Â
shares the same location as Ki in the chain

(Zj
A=Ki). The derived new objective is

MC-GRA: Â∗ = argmax
Â

αpI(HA;H
i
Â
)︸ ︷︷ ︸

propagation approximation

+αoI(YA;YÂ) + αsI(Y ;YÂ)︸ ︷︷ ︸
outputs approximation

−αcH(Â)︸ ︷︷ ︸
complexity

.
(24)

Note that MC-GRA is a maximin game: it maximizes the approximation of encoding and decoding processes of the two
Markov chains, while minimizing the complexity to avoid trivial solutions by constraining the graph density. Compared
with Basic-GRA (Eq. (22)), it approximates latent variables SA in ORI-chain by SÂ in GRA-chain, i.e.,

max
Â

I(SA;SÂ) ⇒ max
Â

I(A; Â), s.t. SA={Zi
A : Zi

A∈K}, SÂ={Zi
Â

: Zi
A∈SA}. (25)

E. Implementation Details
In this section, we provide a detailed introduction to the technical designs and implementation details of the proposed
methods in our work. Specifically, Appendix. E.1 and Appendix. E.2 are technical details of the empirical study in Sec. 4,
Appendix. E.3 and Appendix. E.4 are elaboration for the methodology in Sec. 5 and Sec. 6.
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E.1. Quantifying privacy leakage

As introduced in Sec. 4, studying the direct correlation between ground-truth adjacency A and single variable Z ∈
{X,Y,HA, ŶA} can provide insight into the studied GRA problem. The informative concept of mutual information (MI)
that I(X;Y ) = DKL[p(x, y)||p(x)p(y)] = H(X)−H(X|Y ) is a measure of the symmetric correlation between the two
variables, which suits our needs perfectly. To avoid the cumbersome calculation of MI, a surrogate estimation w.r.t. the
existence of edges in A, i.e., the AUC (area under the curve) metric is utilized (Zhang & Chen, 2018; Zhu et al., 2021) to
quantify I(A;Z) regarding edges in A and ÂZ=σ(ZZ⊤) can be an efficient solution here.

Specifically, suppose A∈{0, 1}N×N and Z∈RN×D, where N is the number of nodes and D is the hidden size. We define
I(A;Z) ≜ I(A; ÂZ), where ÂZ =σ(ZZ⊤)∈RN×N indicates the predictive existence of each edge. Note that the dot
product ZZ⊤ followed by the activate function σ(·) is in direct proportion to the cosine similarity, which is commonly
utilized in investigating the distribution of representations. Here, a higher MI I(A;Z) indicates a lower expectation of
distance E(i,j)∼Ad(zi, zj), where measurement d(·, ·) can be cosine, euclidean, etc. Alternatively, the activation function
σ(·) can be ReLU, Sigmoid, etc. For quantifying I(A; ÂZ), the AUC (area under the curve) is utilized as the metric (Zhang
& Chen, 2018; Zhu et al., 2021) regarding edges in factual adjacency A and recovered adjacency ÂZ .

E.2. Graph information plane

Recall that in Sec. 4.3, we track the aforementioned MI terms in the training process for further study. Here, the training
dynamics of representations H in each layer are projected to the two dimensional

(
I(A;H), I(Y ;H)

)
plane. The I(X;H)

is not considered as node features do not always exist, while the characteristic adjacency A and labels Y are indispensable
for supervised graph learning. Thus, we derive the Graph Information Plane as defined in the following Def. E.1.
Definition E.1 (Graph Information Plane). For any node representations H of a graph, it can be seen as encoded from the
adjacency A and decoded into the prediction objective Y . The sample complexity of the graph learning model is determined
by the encoder MI I(A;HA), while the generalization error is indicated by the decoder MI I(Y ;H). And technically, the
AUC is utilized for computing I(A;H) w.r.t. edges in A, while the Accuracy is used to measure I(Y ;H). Here, the node
representations H can be uniquely mapped to the plane with coordinates

(
I(A;H), I(Y ;H)

)
.

E.3. Differentiable similarity estimations

Solving Eq. (3) and Eq. (4) requires to derive tractable objectives. Given two variables, X∈RN×Dx and Y ∈RN×Dy , we
estimate their similarity s(X,Y ) with six following differentiable measurements (Kornblith et al., 2019).
• Dot Product-Based Similarity (DP). That is, dot products measure the similarity between samples’ features as DP(X,Y )=

tr(XX⊤Y Y ⊤)= ||Y ⊤X||2F . Note the ij-th element of XX⊤ are dot products of feature xi and xj .

• Hilbert-Schmidt Independence Criterion (HSIC). HSIC first takes a nonlinear feature transformation of each variable,
and then measures the norm of cross-covariance between these features. The empirical estimation (Gretton et al., 2005)
is HSIC(K,L)= 1

(n−1)2 tr(KHLH). Specifically, Kij=k(xi, xj) and Lij= l(yi, yj), k and l are kernels, and H is the
centering matrix of size N .

• Centered Kernel Alignment (CKA). CKA (Cortes et al., 2012) is devised based on HSIC. It cooperates with HSIC
with normalization to become invariant to isotropic scaling, i.e., ∀α, β ∈ R+, s(X,Y ) = s(αX, βY ). In calculation,
CKA(K,L) = HSIC(K,L)/

√
HSIC(K,K)HSIC(L,L).

• Kernel Density Estimation (KDE). KDE estimates the margin and joint PDF (Probability Density Function) of the data as
KH(x) = (2π)−d/2|H|−1/2

e−
1
2x

TH−1x. KDE generates the pX and pY along with kernels kX and kY , which are then
used to compute the joint PDF pXY by simply taking the dot product, based on which the MI I(X;Y ) is then computed.

• The Kullback-Leibler Divergence (KL). Given two probability distributions X and Y , the KL divergence is computed as
KL(X,Y ) =

∑
z∈X X(z) log(X(z)/Y (z)).

• Mean Squared Error (MSE). MSE calculates the point-wise distance of two distributions to indicate their similarity as
MSE(X,Y ) = 1

n

∑n
i=1(Xi − Yi)

2.

E.4. Full algorithm

Recall that the two proposed methods, MC-GRA and MC-GPB, that are illustrated in Fig. 5(a) and Fig. 5(b). Here, regarding
these two methods, we respectively elaborate the full algorithms in Alg. 1 and Alg. 2 as follows.

33



On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation

Algorithm 1 Markov Chain-based Graph Reconstruction Attack.

Require: Target model fθ∗ , prior knowledge set K, similarity measurement s(·)
1: initialize the parameterized distribution Pϕ(Â) with parameters ϕ
2: collect SA={Zi

A : Zi
A∈K}

3: for i = 1 . . . n do
4: sample an adjacency from the distribution Â ∼ Pϕ(Â)

5: inject stochasticity as X̃=X ⊕Xϵ, Ã=Ã⊕Aϵ

6: obtain SÂ={Zi
Â

: Zi
A∈SA} by the forward of GRA-chain as fθ∗(Ã, X̃)

7: update ϕ by maximizing the MC-GRA objective in Eq. (3) with SÂ and SA

8: end for
9: return The optimal recovered adjacency Â∗ that Â∗ ∼ Pϕ∗(Â)

Algorithm 2 Markov Chain-based Defensive Training Against Graph Reconstruction Attack.

Require: Graph data A,X, Y and similarity measurement s(·)
1: initialize parameters θ of the GNN fθ
2: for i = 1 . . . n do
3: inject stochasticity as Ã=A⊕Aϵ by randomly dropping edges
4: obtain the hidden representations in each layer and outputs by forwarding fθ(Ã,X)
5: update θ by minimizing the MC-GPB objective in Eq. (4)
6: end for
7: return The trained model fθ∗

E.5. Reproduction

The source code is publicly available at: https://github.com/tmlr-group/MC-GRA. In addition, we summarize
the search space of hyperparameters and optimal cases as follows. The optimal hyperparameters are obtained by random
search or grid search (LaValle et al., 2004).

Table 23: The search space of hyper-parameters in MC-GPB.
component name type range

Privacy constraint
β1
p (GNN layer-1) float (0, 10)

β2
p (GNN layer-2) float (0, 10)

β3
p (linear layer) float (0, 10)

Complexity constraint β1
c (GNN layer-1) float (0, 10)

β2
c (GNN layer-2) float (0, 10)

Similarity measurement metric s(·, ·) category DP, HSIC, CKA, KDE, KL, MSE

Table 24: The optimal hyper-parameters for MC-GPB.
component name Cora Citeseer Polblogs USA Brazil AIDS

Privacy constraint
β1
p (GNN layer-1) 1.3 0.09 3.00 6.60 1.90 2.40

β2
p (GNN layer-2) 1.3 0.006 2.00 1.00 2.50 3.90
β3
p (linear layer) 1.7 0.01 2.00 0.50 1.00 1.30

Complexity constraint β1
c (GNN layer-1) 1.4 5e-10 1.00 1.30 1.20 1.30

β2
c (GNN layer-2) 1.5 1e-10 1.00 3.80 1.20 1.30

Similarity measurement metric s(·, ·) KDE KDE KDE DP KDE KDE
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Table 25: The search space of hyper-parameters in MC-GRA.
component name type range

Complexity constraint αc (information entropy of Â) float (10−4, 104)

Propagation approximation αp (between HÂ and HA) float (10−4, 104)

Output approximation αo (between ŶÂ and ŶA) float (10−4, 104)

Label approximation αs (between ŶÂ and Y ) float (10−4, 104)

Similarity measurement metric s(·, ·) category DP, HSIC, CKA, KDE, KL, MSE

Table 26: The optimal hyper-parameters for MC-GRA.
dataset prior K αc αp αo αs s(·, ·)

cora

{X,HA} 10000 1000 0 0 MSE
{X,YA} 100 0 0.1 0 KL
{X,Y } 0.01 0 0 1 CKA

{X,HA,YA} 0.1 100 100 0 MSE
{X,HA, Y } 0.0001 10 0 1 MSE
{X,YA, Y } 10 0 0.01 1 MSE

{X,HA,YA, Y } 10 10 1000 1 MSE

citeseer

{X,HA} 0.01 10 0 0 KL
{X,YA} 0 0 1 0 KL
{X,Y } 100 0 0 1 MSE

{X,HA,YA} 10 100 0.001 0 MSE
{X,HA, Y } 0.0001 100 0 1 KL
{X,YA, Y } 1 0 10000 1 KL

{X,HA,YA, Y } 0.001 1000 0.001 1 KL

polblogs

{X,HA} 0 1000 0 0 KL
{X,YA} 100 0 1 0 DP
{X,Y } 1000 0 0 1 MSE

{X,HA,YA} 0.1 1000 0 0 MSE
{X,HA, Y } 100 0.001 0 1 HSIC
{X,YA, Y } 100 0 0 1 CKA

{X,HA,YA, Y } 10000 0.001 1000 1 HSIC

usair

{X,HA} 100 100 0 0 MSE
{X,YA} 0.01 0 0.001 0 MSE
{X,Y } 0.0001 0 0 1 DP

{X,HA,YA} 0.0001 0.01 0.0001 0 HSIC
{X,HA, Y } 1000 0.001 0 1 HSIC
{X,YA, Y } 1000 0 0.01 1 CKA

{X,HA,YA, Y } 10 0.01 0.01 1 DP

brazil

{X,HA} 100 0.01 0 0 KL
{X,YA} 1 0 100 0 MSE
{X,Y } 0.001 0 0 1 KDE

{X,HA,YA} 0.0001 100 1000 0 MSE
{X,HA, Y } 0.0001 100 0 1 HSIC
{X,YA, Y } 100 0 0.1 1 DP

{X,HA,YA, Y } 0.1 0.1 100 1 KL

AIDS

{X,HA} 10000 1000 0 0 KL
{X,YA} 1 0 0.01 0 MSE
{X,Y } 0.0001 0 0 1 CKA

{X,HA,YA} 0.001 1 100 0 MSE
{X,HA, Y } 0.0001 0.1 0 1 MSE
{X,YA, Y } 0 0 0 1 MSE

{X,HA,YA, Y } 0 1000 0.0001 1 KL
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